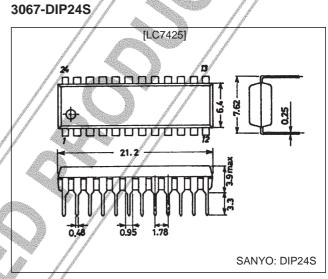


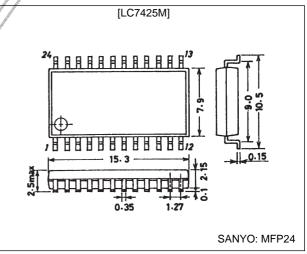
LC74725, 74725M

On-Screen Display Controller LSI

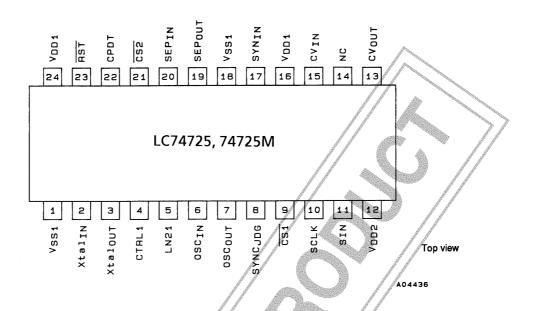
Overview


The LC74725 and LC74725M are built-in EDS on-screen display controller CMOS LSI products that display characters and patterns on a TV screen under microprocessor control. The characters displayed have an 8×8 dot format, and a dot interpolation function is provided. These LSIs can display ten lines of 24 characters each.

Features


- Display format: 24 characters by 10 lines (up to 240 characters)
- Character format: 8 (horizontal) × 8 (vertical) dots (interpolation function provided)
- · Character sizes: Two horizontal and two vertical sizes
- Characters in font: 64 characters
- Initial display positions: 64 horizontal positions and 64 vertical positions
- Blinking: Specifiable on a per-character basis
- Blinking types: Two periods, 1.0 second and 0.5 second
- Blue background screen display: Available in internal synchronization mode
- External control input: 8-bit serial input format
- Built-in sync separator circuit
- EDS support
- Video outputs: Composite video signal output in either NTSC or PAL-M
- Package: 24-pin plastic DIP (300 mil) 24-pin plastic MFP (375 mil)

Package Dimensions


unit: mm

Pin Assignment

Pin Functions

Dia M	Oursel 1	Freed	
Pin No.	Symbol	Function	Description
1	V _{SS} 1	Ground	Ground connection (digital system ground)
2	Xtal _{IN} Xtal _{OUT}	Crystal oscillator	Connections for the external crystal and capacitors used to form a crystal oscillator for internal synchronizing signal generation. Alternatively, these pins can be used for external clock input (2fsc or 4fsc).
4	CTRL1	Crystal oscillator input switching	Switches between external clock input mode and crystal oscillator mode. Low: crystal oscillator mode, high: external clock input mode.
5	LN21	Data output	Line 21H pulse output (MOD0 = low: even field, MOD0 = high: both fields output)
6	OSCIN		Connections for the external coil and capacitor used to form the character output dot clock
7	OSC _{OUT}	LC oscillator	generation oscillator.
8	SYNC _{JDG}	External synchronizing signal judgment output	Outputs the judgment as to where there are or are not external synchronizing signals present. Outputs a high level when there are synchronizing signals. SEL0 = high: Outputs field discrimination pulses (O/E pulses) Outputs the dot clock (LC oscillator) when the CS1 pin is high and the RST pin is low. A command is provided that turns this output off. Outputs the crystal oscillator clock when the CS1 pin is low and the RST pin is low. A command is provided that turns this output off.
9	CS1	Enable input	Enable input for OSD serial data input. Serial data input is enabled when this pin is low. A pull- up resistor is built in (hysteresis input).
10	SCLK	Clock input	Serial data input clock input. A pull-up resistor is built in (hysteresis input).
11	SIN	Data input	Serial data input. A pull-up resistor is built in (hysteresis input).
12	V _{DD} 2	Power supply	Composite video signal level adjustment power supply (analog system power supply)
13	CVOUT	Video signal output	Composite video signal output pin
14	NO	<u>and</u> //	Must be either connected to ground or left open.
15	¢V _{IN}	Video signal input	Composite video signal input pin
16	V _{DD} 1	Power supply	Power supply (+5 V: digital system power supply)
17	SYN _{IN}	Sync separator circuit input	Video signal input to the built-in sync separator circuit
18	V _{SS} 1	Ground	Ground (digital system ground)
19	SEPOUT	Composite synchronizing signal output	Video signal output from the built-in sync separator circuit
20	SEPIN	Vertical synchronizing signal input	Inputs the vertical synchronizing signal generated by integrating the SEP _{OUT} pin output signal. An integrating circuit must be inserted between the SEP _{OUT} pin and this pin. This pin must be tied to V_{DD} 1 if unused.
21	CS2	Enable input	Enable input for EDS data output. EDS data output is enabled when this input is low. A pull-up resistor is built in (hysteresis input).
22	CPDT	Data output	EDS data output (either an n-channel open-drain or a CMOS output circuit)
23	RST	Reset input	System reset input. A pull-up resistor is built in (hysteresis input).
24	V _{DD} 1	Power supply (+5 V)	Power supply (+5 V: digital system power supply)

Note: Both V_{DD} 1 pins must be connected to the power supply.

Specifications

Absolute Maximum Ratings at $Ta=25^{\circ}C$

Parameter	Symbol	Conditions	4	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD} 1, V _{DD} 2		V_{SS} = 0.3 to V_{SS} + 7.0	V
Maximum input voltage	V _{IN} max	All input pins		$V_{SS} - 0.3$ to $V_{QD} + 0.3$	V
Maximum output voltage	V _{OUT} max	LN21, CPDT, SEP _{OUT} , SYNC _{JDG}		V_{SS} – 0.3 to V_{DD} + 0.3	V
Allowable power dissipation	Pd max	Ta = 25°C		350	mW
Operating temperature	Topr			-30 to +70	°C
Storage temperature	Tstg			-40 to +125	°C
Allowable Operating Ranges at 7	Γa = -30 t	to +70°C			

Allowable Operating Ranges at Ta = -30 to $+70^{\circ}C$

		and the second			
Symbol	Conditions	min	typ	max	Unit
V _{DD} 1	V _{DD} 1	4.5	5.0	5.5	V
V _{DD} 2	V _{DD} 2	4.5	5.0	1.27 V _{DD} 1	V
V _{IH} 1	RST, CS1, CS2, SIN, SCLK	0.8 V _{DD} 1		V _{DD} 1 + 0.3	V
V _{IH} 2	CTRL1, SEPIN	0.7 V _{DD} 1	J.	V _{DD} 1 + 0.3	V
V _{IL} 1	RST, CS1, CS2, SIN, SCLK	V _{SS} – 0.3		0.2 V _{DD} 1	V
V _{IL} 2	CTRL1, SEPIN	V _{SS} – 0.3		0.3 V _{DD} 1	V
R _{PU}	Applies to RST, CS1, CS2, SIN, SCLK, and the pins specified as options.	25	50	90	kΩ
V _{IN} 1	CV _{IN} : V _{DD} 1 = 5 V		2.0		Vp-p
V _{IN} 2	SYN _{IN} : V _{DD} 1 = 5 V	1.5	2.0	2.5	Vp-p
V _{IN} 3	$ \begin{array}{l} \mbox{Xtal}_{IN} \mbox{ (when external clock input is used),} \\ \mbox{f}_{IN} = 2fsc \mbox{ or } 4fsc \mbox{ V}_{DD}1 = 5 \mbox{ V} \end{array} $	0.1		5.0	Vp-p
f _{OSC} 1	Xtal _{IN} , Xtal _{OUT} oscillator pins (2fsc: NTSC)		7.159		MHz
f _{OSC} 1	Xtal _{IN} , Xtal _{OUT} oscillator pins (4fsc: NTSC)		14.318		MHz
f _{OSC} 1	Xtal _{IN} , Xtal _{OUT} oscillator pins (2fsc: PAL-M)		7.151		MHz
f _{OSC} 1	Xtal _{IN} , Xtal _{OUT} oscillator pins (4fsc: PAL-M)		14.302		MHz
f _{OSC} 2	OSCIN, OSCOUT oscillator pins (LC oscillator)	5		12	MHz
	$\begin{tabular}{ c c c c c } \hline V_{DD}1 & & \\ \hline V_{DD}2 & & \\ \hline V_{IH}1 & & \\ \hline V_{IH}2 & & \\ \hline V_{IL}2 & & \\ \hline V_{IL}3 & & \\$	$\label{eq:spectral_state} \begin{array}{ c c c c c } \hline V_{DD}1 & V_{DD}2 & V_{DD}2 \\ \hline V_{DD}2 & V_{DD}2 \\ \hline V_{IH}1 & \overline{RST}, \overline{CS1}, \overline{CS2}, SIN, SCLK \\ \hline V_{IH}2 & CTRL1, SEP_{IN} \\ \hline V_{IL}1 & \overline{RST}, \overline{CS1}, \overline{CS2}, SIN, SCLK \\ \hline V_{IL}2 & CTRL1, SEP_{IN} \\ \hline R_{PU} & Applies to \overline{RST}, \overline{CS1}, \overline{CS2}, SIN, SCLK, and the pins specified as options. \\ \hline V_{IN}1 & CV_{IN}: V_{DD}1 = 5 V \\ \hline V_{IN}2 & SYN_{IN}: V_{DD}1 = 5 V \\ \hline V_{IN}3 & Xtal_{IN} (when external clock input is used), \\ f_{IN} = 2fsc or 4fsc! V_{DD}1 = 5 V \\ \hline f_{OSC}1 & Xtal_{IN}, Xtal_{OUT} oscillator pins (2fsc: NTSC) \\ \hline f_{OSC}1 & Xtal_{IN}, Xfal_{OUT} oscillator pins (2fsc: PAL-M) \\ \hline f_{OSC}1 & Xtal_{IN}, Xtal_{OUT} oscillator pins (2fsc: PAL-M) \\ \hline f_{OSC}1 & Xtal_{IN}, Xtal_{OUT} oscillator pins (4fsc: PAL-M) \\ \hline \end{array}$	$eq:spectral_$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Note: Extreme care must be used to prevent noise when the Xtal_{IN} pin is used in clock input mode.

Electrical Characteristics at Ta = -30 to $+70^{\circ}$ C, and unless otherwise specified, with $V_{DD}1 = 5$ V

	and the second s					_
Parameter	Symbol	Conditions	min	typ	max	Unit
Input off leakage current	I _{leak} 1	¢V _{IN}			1	μA
Output off leakage current	I _{leak} 2	CVOUT			1	μA
Output high level voltage	V _{OH} 1	LN21, SYNC _{JDG} , CPDT, SEP _{OUT} : $V_{DD}1 = 4.5 \text{ V}$, $V_{OH} = -1.0 \text{ mA}$	3.5			V
Output low level voltage	V _{OL} 1	LN21, SYNC _{JDG} , CPDT, SEP _{OUT} : V _{DD} 1 = 4.5 V, I_{OL} = 1.0 mA			1.0	V
Input current	1 _{IH}	$\overline{\text{RST}}, \overline{\text{CS1}}, \overline{\text{CS2}}, \text{SIN}, \text{SCLK}, \text{CTRL1}, \text{SEP}_{\text{IN}}: V_{\text{IN}} = V_{\text{DD}}1$			1	μA
Input current	-fu	CTRL1, OSC _{IN} : V _{IN} = V _{SS} 1	-1			μA
Operating current drain	I _{DD} 1	V _{DD} 1: All outputs open, crystal: 7.159 MHz, LC: 8 MHz			30	mA
Operating coment drain	I _{DD} 2	$V_{DD}2: V_{DD}2 = 5 V$			20	mA
Sync level		When the sync level is 0.8 V, $\rm CV_{OUT}:$ $\rm V_{DD}1,$ $\rm V_{DD}2$ = 5 V	0.69	0.81	0.98	V
Sync level	VSN	When the sync level is 1.0 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	0.89	1.01	1.13	V
Pedestal level		When the sync level is 0.8 V, $\rm CV_{OUT}:$ $\rm V_{DD}1,$ $\rm V_{DD}2$ = 5 V	1.28	1.40	1.52	V
recesial level	V _{PD}	When the sync level is 1.0 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	1.47	1.59	1.71	V
Color burst low level	V	When the sync level is 0.8 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2$ = 5 V	0.97	1.09	1.21	V
	V _{CBL}	When the sync level is 1.0 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	1.16	1.28	1.40	V
Calar hurst high lavel	N	When the sync level is 0.8 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	1.60	1.72	1.84	V
Color burst high level	V _{CBH}	When the sync level is 1.0 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	1.79	1.91	2.03	V
Dealersound aslar low lovel	N	When the sync level is 0.8 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	1.44	1.56	1.68	V
Background color low level	V _{RSL}	When the sync level is 1.0 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	1.63	1.75	1.87	V
De aleman el a alembierte la val	N	When the sync level is 0.8 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	1.96	2.08	2.20	V
Background color high level	V _{RSH}	When the sync level is 1.0 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	2.16	2.28	2.40	V

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit
Border level 0	Maria	When the sync level is 0.8 V, CV_{OUT} : $V_{DD}1,V_{DD}2$ = 5 V	1.43	1.55	1.67	V
	V _{BK0}	When the sync level is 1.0 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	1.61	1.73	1.85	V
Border level 1	N	When the sync level is 0.8 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	2.01	2.13	2.25	V
	V _{BK1}	When the sync level is 1.0 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	2.18	2.30	2.42	V
Character level	N	When the sync level is 0.8 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	2.57	2.69	2.81	V
Character level	V _{CHA}	When the sync level is 1.0 V, CV_{OUT} : $V_{DD}1$, $V_{DD}2 = 5$ V	2.76	2.88	3.00	> v

Timing Characteristics at Ta = -30 to $+70^{\circ}$ C, V_{DD}1 = 5 V ± 0.5 V

Symbol	Conditions min typ max	Unit
t _{W (SCLK)}	SCLK 200	ns
t _{W (CS1)}	CS1 (the period when CS1 is high)	μs
t _{SU (CS1)}	CS1 200	ns
t _{SU (SIN)}	SIN 200	ns
t _{h (CS1)}	CS1 2	μs
t _{h (SIN)}	SIN 200	ns
tword	The time to write 8 bits of data 4.2	μs
t _{wt}	The RAM data write time 1	μs
channel open-	drain circuit.)	
t _{CKCY}	SCLK 2	ns
t _{CKL}	SCLK 1	μs
t _{CKH}	SCLK 1	μs
t _{ICK}	SCLK 10	μs
t _{СКО}	CPDT 0.5	μs
	tw (SCLK) tw (CS1) tSU (CS1) tSU (CS1) tSU (SIN) th (CS1) th (SIN) tword twt channel open- tCKCY tCKL tCKH tICK	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Note: Follows the OSD timing for the CMOS output circuit type.

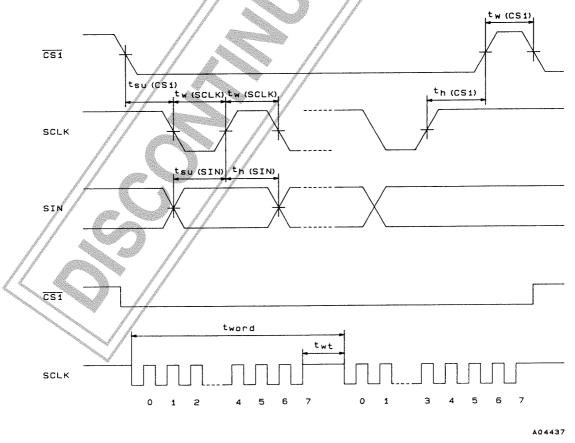
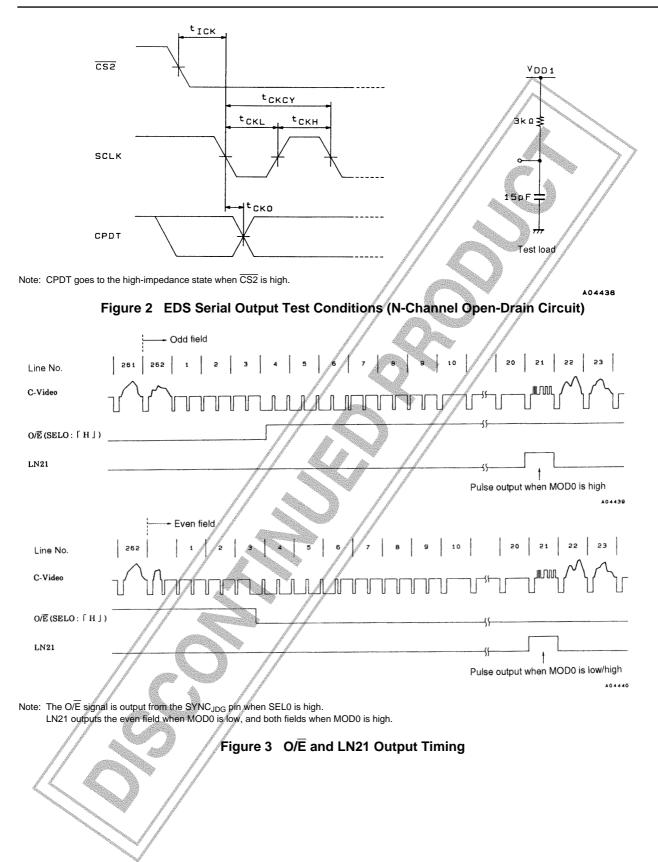
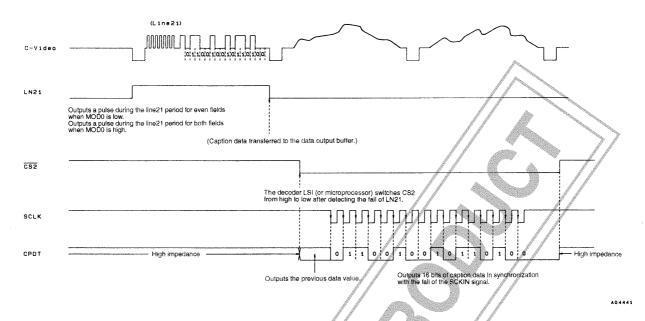
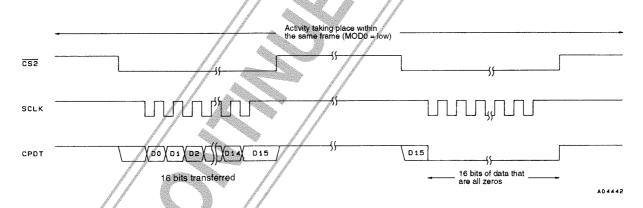




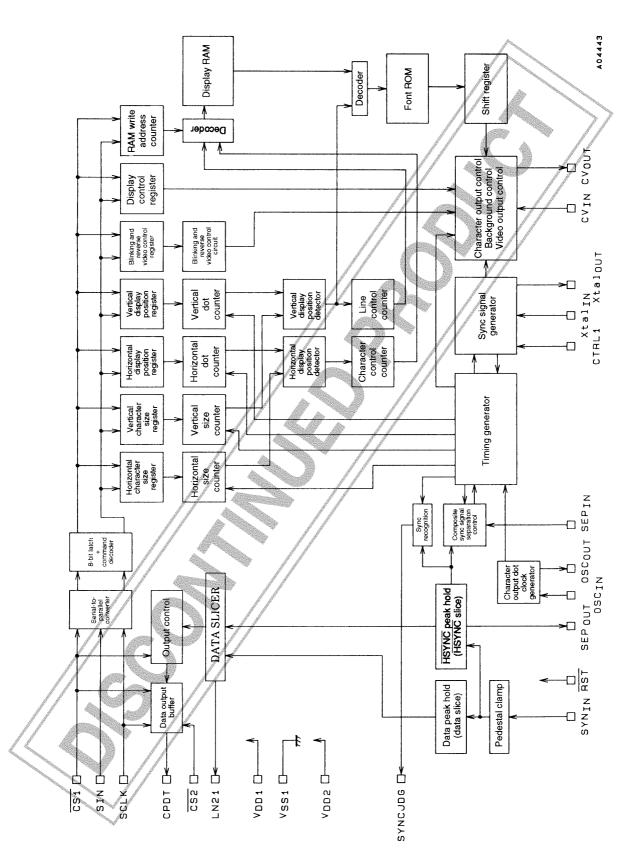
Figure 1 OSD Serial Data Input Timing


LC74725, 74725M

Note: When closed caption character data is extracted in NTSC-TV mode (MOD0 is high), the control microprocessor can determine whether the current field is an odd field or an even field by checking the signal level output by the SYNC_{JDC} pin (when SEL0 is high) at the point it detects the rise of the LN21 signal.

Figure 4 LC74725/M to Decoder LSI (or Microprocessor) Caption Data Transfer Technique 1 (This is the basic usage mode for these LSIs.)

Caption data transfer to the data output buffer is synchronized with the falling edge of the pulse output from LN21. Therefore, the following software processing is required if the decoder LSI (or microprocessor) does not detect the fall of LN21.


When MOD0 is low, since the data is output to the data buffer once (during the even field) in a single frame, the decoder LSI (or microprocessor) must perform the transfer control operation at least twice per frame (about 32 ms). When the transfer control operation is performed twice in the same frame, the second CPDT 16 bits of output data are all zeros. Therefore, the microprocessor must determine that the data for the next frame had not been transferred to the output buffer in this case.

Note: The LC74725 hardware will not transfer data to the output buffer while CS2 is low. Therefore the decoder LSI (or microprocessor) must restore CS2 from the low level to the high level after completing a data transfer control cycle.

This transfer technique (technique 2) cannot be used in NTSC-TV mode, i.e., when MOD0 is high.

Figure 5 LC74725/M to Decoder LSI (or Microprocessor) Caption Data Transfer Technique 2 (When a port to detect the fall of LN21 cannot be allocated in the decoder LSI (or Microprocessor).)

System Block Diagram

Display Control Commands

Display control commands have an 8-bit format and are transferred using the serial input function. Commands consist of a command identification code in the first byte and command data in the following bytes. The following commands are supported.

- ① COMMAND0: Display memory (VRAM) write address setup command
- 2 COMMAND1: Display character data write command
- ③ COMMAND2: Vertical display start position and vertical character size setup command
- ④ COMMAND3: Horizontal display start position and horizontal character size setup command
- (5) COMMAND4: Display control setup command
- [®] COMMAND5: Display control setup command

									Å	97			//			
				First	byte						No.	Secon	d byte			
Command	Comm	and ide	ntificatio	n code		Da	ata 🥖	all a second	A PERSONAL PROPERTY AND A PERSON AND A PERSO		S.	Da	ata			
	7	6	5	4	3	2	1	0	7	6	5	A	3	2	1	0
COMMAND0 Set write address	1	0	0	0	V3	V2	V1	VO	0	0	0	H4	H3	H2	H1	H0
COMMAND1 Write character	1	0	0	1	0	0	0	0	at	0	¢5	c4	c3	c2	c1	c0
COMMAND2 Set vertical display start position and vertical character size	1	0	1	0	0	VS 20	0	VS 10	0	FS	VP 5	VP 4	VP 3	VP 2	VP 1	VP 0
COMMAND3 Set horizontal display start position and horizontal character size	1	0	1	1	EGP	HS 20	0	HS 10	0	LC	HP 5	HP 4	HP 3	HP 2	HP 1	HP 0
COMMAND4 Display control	1	1	0	0	TST MOD	RAM ERS	OSC STP	SYS RST	0	EGL	NON	EG	BK 1	BK 0	RV	DSP ON
COMMAND5 Synchronizing signal control	1	1	0	1	BCL	PH	RSN	INT	0	0	0	MUT	MOD 0	CTL 3	CTL 2	SEL 0

Display Control Command Table

Once written, the command identification code in the first byte is stored until the next first byte is written. However, when the display character data write command (COMMAND1) is written, the LC74725/M locks into the display character data write mode, and another first byte cannot be written.

When a high level is input to the $\overline{\text{CS}}$ pin, the $\overline{\text{LC74725}}/\text{M}$ is set to COMMAND0 (display memory write address setup mode).

① COMMAND0 (Display memory write address setup command)

First byte

	Basister		Register content	Noto
DA0 to DA7	Register name	State	Function	Note
7		1		
6		0	Command 0 identification code	
5	Ì	9	Set the display memory write address.	
4		9		
3	V3	0		
3		1		
2	V2	0		
2	VZ	1	Display memory row address (0 to 9 hexadecimal)	
1	V1	0	Display memory fow address (0 to 9 flexadecilital)	
I	1 V1 1	1		
0	V0	0		
0	v0	1		

Second byte

	D		Register content					
DA0 to DA7	Register name	State	Function	Note				
7	—	0	Second byte identification bit					
6	—	0						
5	_	0						
4	H4	0						
-	114	1						
3	H3	0						
5	110	1						
2	H2	0	Display memory column address (0 to 17 hexadecimal)					
	1.12	1						
1	H1	0	. // 🔍					
		1						
0	НО	0						
		1						
2 COMMAND1 (Display character data write setup command)								
First byte								

② COMMAND1 (Display character data write setup command)

First byte

5				
D404 D47			Register content	N .
DA0 to DA7	Register name	State	Function	Note
7	—	1		When this command is input, the
6	—	0	Command 1 identification code	LC74725/M locks into the display
5	—	0	Set up display character data write.	character data write mode until the CS1
4	—	1		pin goes high.
3	—	0		
2	—	0		
1	—	0		
0	—	0		
Second byte				

Second byte

	// · //		
DA0 to DA7	Register name	Register content	Note
DAO IO DAI	State		NOLE
7	at 0	Character attribute off	
		Character attribute on	
6	<u> </u>		
5	c5 0		
4	c4 0		
3	c3 0 1	Character code (00 to 3F hexadecimal)	
2	c2 0 1		
1	c1 0 1		
0	C0 0 1	_	

③ COMMAND2 (Vertical display start position and vertical character size setup command)

First byte

			Register content	1 march 1
DA0 to DA7	Register name	State	Function	Note
7	—	1		
6	—	0	Command 2 identification code	
5	—	1	Set the vertical display start position and vertical character size.	
4	—	0]	
3	—	0		
2	1/620	0	1H per dot	
2	VS20	1	2H per dot	Second line vertical character size
1	—	0	// *	
0	VS10	0	1H per dot	
0	VS10	1	2H per dot	First line vertical character size
Second byte				

Second byte

DA0 to DA7	Register name	State	Register content Function	Note
		Slale	FUICIUII	1
7		0	Second byte identification bit	
6	FS	0	Crystal oscillator frequency: 2fsc	
0	15	1	Crystal oscillator frequency: 4fsc	
5	VP5	0	If VS is the vertical display start position then:	
5	(MSB)	1	$VS = H \times (2\Sigma 2^{n}VP_{n}^{c})$	
4	VP4	0	H: the horizontal synchronization pulse period	
4		1	HSYNC	
3	VP3	0		
5		1	VS VS	The vertical display start position is set by the 6 bits VP0 to VP5.
2	VP2	0		The weight of bit 1 is 2H.
2	VIZ	1		
1	VP1	0	ON HS	
· ·	v. 1	1	Character display area	
0	VP0	9		
0	(LSB)	1	A04444	
		M. M.		

(COMMAND3 (Horizontal display start position and horizontal character size setup command)

First byte

DA0 to DA7	Register name		Register content	Note
DAU IO DA7		State	Function	Note
7		1		
6		0	Command 3 identification code	
5		1	Set the horizontal display start position and horizontal character size.	
4		1 and the second		
	EGP	9	Correction: off	Border specification when the horizontal
	o cor		Correction: on	double character size is used
2	HS20	0	1 Tc per dot	Second line horizontal character size
2		1	2 Tc per dot	
1	X	0		
0	HS10	0	1 Tc per dot	First line horizontal character size
		1	2 Tc per dot	

Second byte

			Register content	
DA0 to DA7	Register name	State	Function	Note
7	—	0	Second byte identification bit	
C	1.0	0	An LC oscillator is used for the dot clock.	Selects the dot clock used in horizontal
6	LC	1	A crystal oscillator is used for the dot clock.	character display.
5	HP5	0		
5	(MSB)	1		/ / >>>
4	HP4	0		
	1164	1		
3	HP3	0	If HS is the horizontal start position then:	
0		1	$HS = Tc \times (2\sum_{n=0}^{\infty} 2^{n}HP_{n})$	The horizontal display start position is set by the 6 bits HP0 to HP5.
2	HP2	0	Tc: Period of the oscillator connected to OSCIN/OSCOUT in	The weight of bit 1 is 2Tc.
-		1	operating mode.	
1	HP1	0		
		1		V //
0	HP0	0		1 //
0	(LSB)	1		
D COMM	AND4 (Display	ontro	l setup command)	

© COMMAND4 (Display control setup command)

First byte

	6	Register content				
DA0 to DA7	Register name	State	Function	Note		
7	—	1				
6	—	1	Command 4 identification code			
5	—	0	Display control setup			
4	—	0				
3	TSTMOD	0	Normal operating mode	This bit must be zero.		
3		1	Test mode			
2	RAMERS	0		The RAM erase operation requires about		
Z		1	Erase display RAM (set to 3F hexadecimal)	500 μ s (It is executed in the DSPOFF state.)		
1	OSCSTP	1 OSCETD		0	Do not stop the crystal oscillator and LC oscillator circuits.	Valid when character display is off in
'		A A	Stop the crystal oscillator and LC oscillator circuits.	external synchronization mode.		
0	SYSRST	0		Reset occurs when the CS1 pin is low, and		
		1	Reset all registers and turn the display off.	the reset is cleared when CS1 goes high.		
	li li					

Second byte

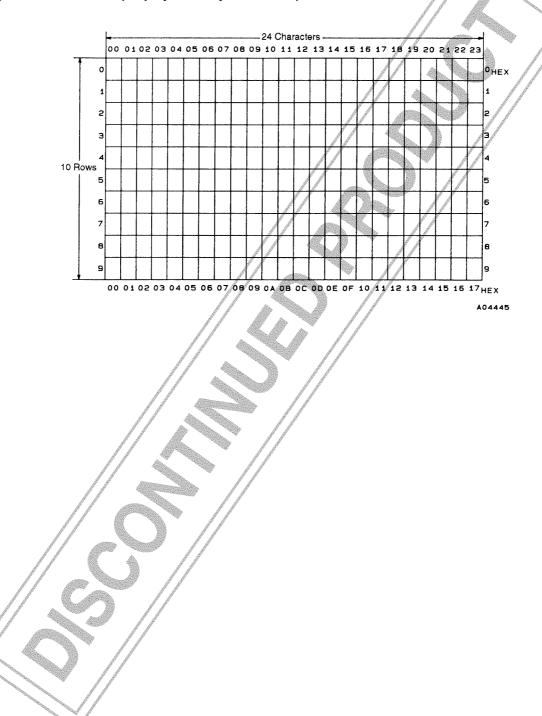
DA0 to DA7	Register name		Register content	Note
		State	Function	
7	(/ -@`	0	Second byte identification bit	
6	EGL	0	Border level 0 (V _{BK0})	Switches the border level
0	LGL	1	Border level 1 (V _{BK1})	Switches the bolder level
5	NON	0	Interlaced (262.5H per field)	Switches between interlaced and
	NEW .	A	Noninterlaced (263H per field)	noninterlaced
	EG	0	Border off	
-	2	1	Border on	
3	вк1	0	Blinking period: about 0.5 s	Switches the blinking period.
5	BRI	1	Blinking period: about 1.0 s	Switches the billiking period.
2	вко	0	Blinking off	When blinking is specified for reversed characters, the blinking will be between
2	BRO	1	Blinking on	normal character and reversed character display.
1	RV	0	Reverse (character reversing) off	
		1	Reverse (character reversing) on	
0	DSPON	0	Character display off	
	DSPON	1	Character display on	

© COMMAND5 (Display control setup command)

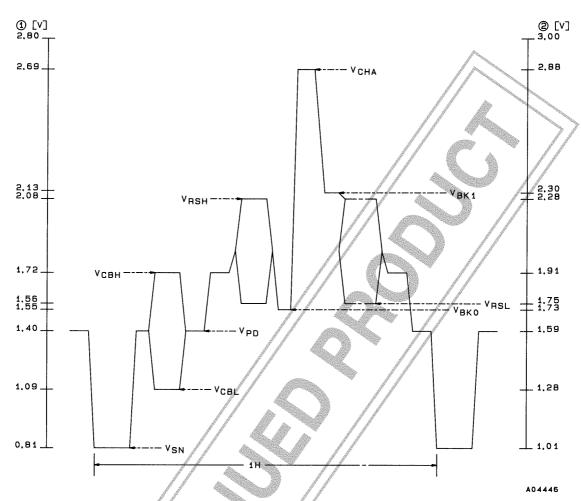
First byte

	Register name		Register content	Note	
DA0 to DA7		State	Function		
7	_	1			
6	_	1	Command 5 identification code		
5	_	0	Synchronizing signal control settings		
4	_	1		i 🔊 🔨 //	
3	BCL	0	Background color present	Only valid in internal synchronization	
3	BCL	1	No background color (only the background level is set)	mode	
_	РН	0	Green background	Background color switching (Only valid in NTSC mode)	
2		1	Blue background	(In PAL-M mode, only blue is available a the background color.)	
		0	External synchronizing signal detection control. Off	External synchronizing signal detection control. Determines when the signal goe	
1	RSN	1	External synchronizing signal detection control: On	from detected to undetected, and from undetected to detected.	
0	INT	0	External synchronization	Switches between external and internal	
0		1	Internal synchronization	synchronization	
Second byte				l ^a	

Second byte

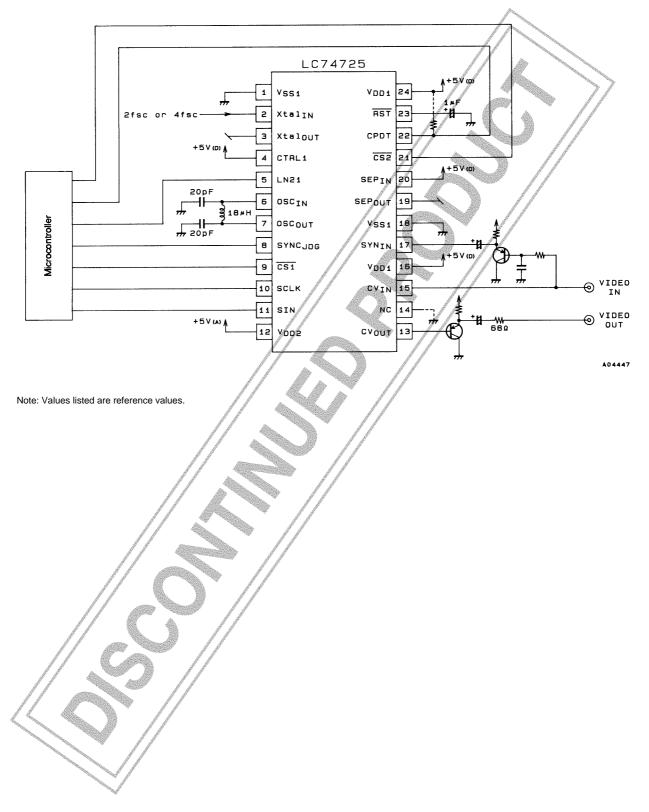

			Register content	
DA0 to DA7	Register name	State	Function	Note
7	_	0	Second byte identification bit	
6	_	0		
5	—	0		
4	MUT	0	Normal output	Switches ()/
4		1	CV_{IN} is cut and CV_{OUT} is fixed at the pedestal level.	Switches CV _{OUT} .
3	MOD0	0	Even field line 21 data extraction (VCR)	Switches line 21 data extraction
3		1	Both even and odd field line 21 data extraction (NTSC-TV)	operation.
	CTL3	0	Internal V separation used.	
2		1	Internal V separation not used.	 Switches V separation usage.
1	CTL2	9	NTSC	Switches between generation of NTSC
		1	PAL-M	and PAL-M signals.
0	SELO	0 🔌	External synchronizing signal detection output signal	Switches SVNC (pip 21) output
	SEL0	1	O/E signal	 Switches SYNC_{JDG} (pin 21) output.

Note: The register states are all set to zero when the LC74725/M is reset with the $\overline{\text{RST}}$ pin.

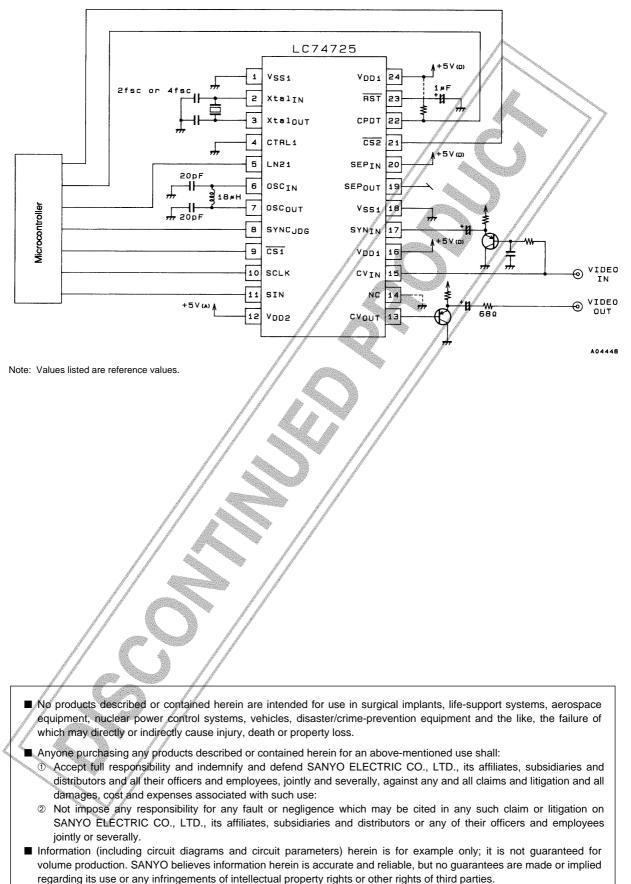

Display Screen Structure

The display consists of 10 lines of 24 characters each and thus up to 240 characters can be displayed. Enlarging the size of the characters reduces the number of characters that can be displayed to under 240 characters. Display memory addresses are specified as row (0 to 9 decimal) and column (0 to 23 decimal) addresses.

Display Screen Structure (display memory addresses)


CV_{OUT} Output Level Waveform ($V_{DD}2 = 5.00 \text{ V}$)

	/		St II
	Output level	Output voltage 1 [V]	Output voltage 2 [V]
V _{CHA} :	Character	2.69	2.88
V _{RSH} :	Background color high	2.08	2.28
V _{CBH} :	Color burst high	1.72	1.91
V _{RSL} :	Background color low	1.56	1.75
V _{BK1} :	Border	2.13	2.30
V _{BK0} :	Border	1.55	1.73
V _{PD} :	Pedestal	1.40	1.59
V _{CBL} :	Color burst low	1.09	1.28
V _{SN} :	Sync	0.81	1.01
	11 M 10000-000000 1000	3 11	


V_{DD}2 = 5.00 V

Application Circuit Examples (Connected to a Y/C1 chip)

1. External system clock input

2. Crystal oscillator clock generation

This catalog provides information as of December, 1997. Specifications and information herein are subject to change without notice.