Magnetic Pattern Recognition Sensors

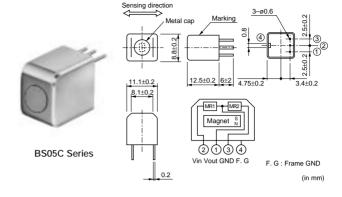
muRata

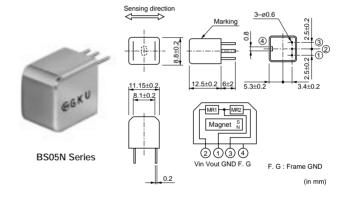
Standard Compact Type

■ Features (BS05C Series)

- 1. High sensitivity and excellent gap characteristics.
- 2. Output voltage is independent of scanning speed.
- 3. Compact size and light weight make them ideal for downsizing.
- 4. Longer product life is given to BS05C series with a specially hard metal cover.
- BS05C1HGCA has superior noise immunity against induced noise originated from motors and transformers.

■ Applications


- 1. Bank note validator
- 2. Magnetic ink document reader
- 3. Magnetic card reader
- 4. Magnetic gear detector


■ Features (BS05N Series)

- 1. High sensitivity and excellent gap characteristics.
- 2. Output voltage is independent of scanning speed.
- Compact size and light weight make them ideal for downsizing.
- 4. Low cost is achieved by BS05N1 series due to its simple structure.
- BS05N1HGAA has superior noise immunity against induced noise originated from motors and transformers.
- 6. BS05N1NFAA can decrease the influences when a detection body has a location deviation because detection width is wide with 6 mm.

■ Applications

- 1. Bank note validator
- 2. Magnetic ink document reader
- 3. Magnetic card reader
- 4. Magnetic gear detector

Part Number	Supply Voltage (V)	Total Resistance (k ohm)	Output Voltage (mVrms)	Test Method	Detection Width (mm)	Resolution (mm)	Operating Temperature Range (°C)
BS05C1HFAA	5	0.5 to 6	400 min.	Test Method A	3	0.75	-20 to 60
BS05C1HGCA	5	0.5 to 6	235 to 405	Test Method A	3	0.75	-20 to 60
BS05N1HFAA	5	0.5 to 6	400 min.	Test Method A	3	0.75	-20 to 60
BS05N1HGAA	5	0.5 to 6	235 to 405	Test Method A	3	0.75	-20 to 60
BS05N1NFAA	5	0.6 to 6	330 min.	Test Method B	6	0.87	-20 to 60

■ Test Method A

- 1. Amplifier's gain is set to 1,100 at the frequency of 60 Hz. Fig. 1 shows the detail of amplifier.
- 2. DUT is set in the test fixture as shown in Fig. 2.
- 3. AC current of 100mArms is applied to the copper wire.
- 4. Amplifier's output voltage is read with DMM while DUT is slowly moved along the guide rail.

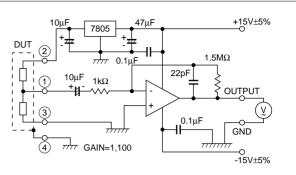


Fig. 1 Amplifier for Output Voltage Measurement

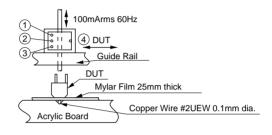


Fig. 2 Test Fixture for Output Voltage Measurement

■ Test Method B

- 1. Amplifier's gain is set to 1,100 at the frequency of 60 Hz. Fig. 1 shows the detail of amplifier.
- 2. DUT is set in the test fixture as shown in Fig. 2.
- 3. AC current of 100mArms is applied to the copper wire.
- 4. Amplifier's output voltage is read with DMM while DUT is slowly moved along the guide rail.

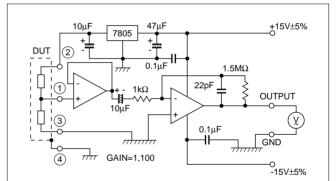


Fig. 1 Amplifier for Output Voltage Measurement

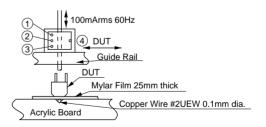


Fig. 2 Test Fixture for Output Voltage Measurement