



www.ti.com

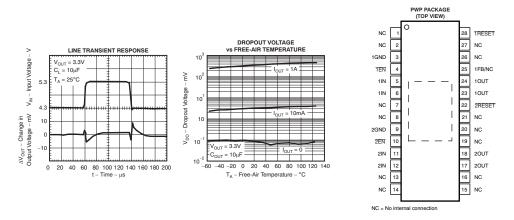
SLVS209H-JULY 1999-REVISED AUGUST 2008

# DUAL-OUTPUT LOW-DROPOUT VOLTAGE REGULATORS

### FEATURES

- Dual Output Voltages for Split-Supply Applications
- Output Current Range of 0mA to 1.0A per Regulator
- 3.3V/2.5V, 3.3V/1.8V, and 3.3V/Adjustable Output
- Fast-Transient Response
- 2% Tolerance Over Load and Temperature
- Dropout Voltage Typically 350mV at 1A
- Ultra-low 85µA Typical Quiescent Current
- 1µA Quiescent Current During Shutdown
- Dual Open-Drain Power-On Reset with 200ms
   Delay for Each Regulator
- 28-Pin PowerPAD<sup>™</sup> TSSOP Package
- Thermal Shutdown Protection for Each Regulator

### DESCRIPTION


The TPS767D3xx family of dual voltage regulators offers fast transient response, low dropout voltages and dual outputs in a compact package and incorporating stability with  $10\mu$ F low ESR output capacitors.

The TPS767D3xx family of dual voltage regulators is designed primarily for DSP applications. These devices can be used in any mixed-output voltage application, with each regulator supporting up to 1A. Dual active-low reset signals allow resetting of core-logic and I/O separately.

Because the PMOS device behaves as a low-value resistor, the dropout voltage is very low (350mV typically at an output current of 1A for the TPS767D325) and is directly proportional to the output current. Additionally, since the PMOS pass element is a voltage-driven device, the quiescent current is very low and independent of output loading (typically 85µA over the full range of output current, 0mA to 1A). These two key specifications yield a significant improvement in operating life for battery-powered systems. This LDO family also features a sleep mode; applying a TTL high signal to EN (enable) shuts down the regulator, reducing the quiescent current to 1µA at  $T_1 = +25^{\circ}C$ .

The RESET output of the TPS767D3xx initiates a reset in microcomputer and microprocessor systems in the event of an undervoltage condition. An internal comparator in the TPS767D3xx monitors the output voltage of the regulator to detect an undervoltage condition on the regulated output voltage.

The TPS767D3xx is offered in 1.8V, 2.5V, and 3.3V fixed-voltage versions and in an adjustable version (programmable over the range of 1.5V to 5.5V). Output voltage tolerance is specified as a maximum of 2% over line, load, and temperature ranges. The TPS767D3xx family is available in a 28-pin PWP TSSOP package. They operate over a junction temperature range of -40°C to +125°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPAD is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.



### SLVS209H-JULY 1999-REVISED AUGUST 2008

www.ti.com



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

| AVAILABLE C | PTIONS <sup>(1)</sup> |
|-------------|-----------------------|
|-------------|-----------------------|

| DEVICE     | REGULATOR 1 V <sub>OUT</sub> (V) | REGULATOR 2 V <sub>OUT</sub> (V) |
|------------|----------------------------------|----------------------------------|
| TPS767D301 | Adjustable (1.5V – 5.5V)         | 3.3V                             |
| TPS767D318 | 1.8V                             | 3.3V                             |
| TPS767D325 | 2.5V                             | 3.3V                             |

(1) For the most current specifications and package information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

### **ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>**

Over operating temperature range (unless otherwise noted).

|                                                                         | TPS767D3xx                    | UNIT |  |
|-------------------------------------------------------------------------|-------------------------------|------|--|
| Input voltage range, V <sub>1IN</sub> , V <sub>2IN</sub> <sup>(2)</sup> | -0.3 to +13.5                 | V    |  |
| Enable voltage range, $V_{\overline{1EN}}$ , $V_{\overline{2EN}}$       | –0.3 to V <sub>IN</sub> + 0.3 | V    |  |
| Output voltage range, V <sub>1OUT</sub> , V <sub>2OUT</sub>             | -0.3 to +7.0                  | V    |  |
| RESET voltage range, V <sub>IRESET</sub> , V <sub>2RESET</sub>          | -0.3 to +16.5                 | V    |  |
| Peak output current                                                     | Internally limited            |      |  |
| ESD rating, HBM                                                         | 2                             | kV   |  |
| Continuous total power dissipation                                      | See Dissipation Ratings tal   | ble  |  |
| Operating junction temperature range, T <sub>J</sub>                    | -40 to +125                   | °C   |  |
| Storage temperature range, T <sub>stg</sub>                             | -65 to +150                   | °C   |  |

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network terminal ground.

## POWER DISSIPATION RATINGS

| PACKAGE            | AIR FLOW<br>(CFM) | T <sub>A</sub> ≤ +25°C<br>POWER RATING | DERATING FACTOR<br>ABOVE t <sub>a</sub> = +25°C | T <sub>A</sub> = +70°C<br>POWER RATING | T <sub>A</sub> = +85°C<br>POWER RATING |
|--------------------|-------------------|----------------------------------------|-------------------------------------------------|----------------------------------------|----------------------------------------|
| PWP <sup>(1)</sup> | 0                 | 3.58 W                                 | 35.8 mW/°C                                      | 1.97 W                                 | 1.43 W                                 |
| PVVP               | 250               | 5.07 W                                 | 50.7 mW/°C                                      | 2.79 W                                 | 2.03 W                                 |

(1) This parameter is measured with the recommended copper heat sink pattern on a 4-layer PCB, 1oz. copper on 4-in × 4-in ground layer. For more information, refer to TI technical brief literature number SLMA002.

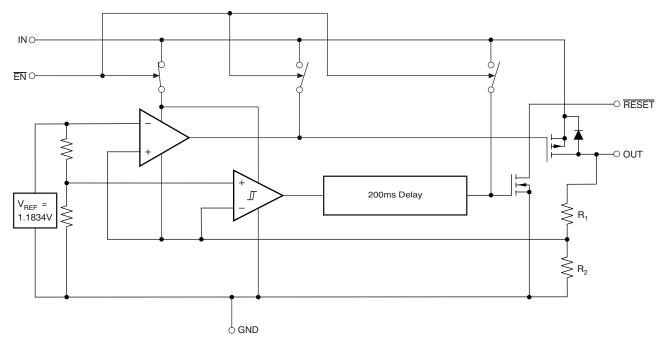
**TEXAS NSTRUMENTS** 

SLVS209H-JULY 1999-REVISED AUGUST 2008

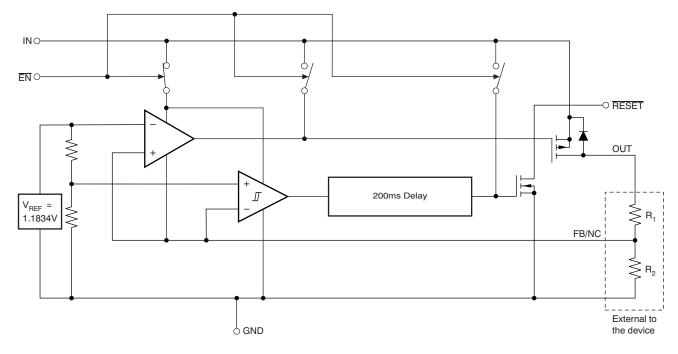
#### www.ti.com

### **ELECTRICAL CHARACTERISTICS**


Over operating temperature range ( $T_J = -40^{\circ}C$  to +125°C),  $V_{IN} = V_{OUT(nom)} + 1V$ ,  $I_{OUT} = 1mA$ ,  $V_{\overline{EN}} = 0V$ , and  $C_{OUT} = 10\mu$ F, unless otherwise noted. Adjustable channels are set to  $V_{OUT} = 3.3V$ . Typical values are at  $T_J = 25^{\circ}C$ .


| PARAMETER                         |                                                                          | TEST CONDITIONS                                                                                            | MIN  | TYP  | MAX  | UNIT              |  |
|-----------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------|------|------|-------------------|--|
| V <sub>IN</sub>                   | Input voltage range, V <sub>1IN</sub> , V <sub>2IN</sub> <sup>(1)</sup>  |                                                                                                            | 2.7  |      | 10   | V                 |  |
|                                   | Adjustable V <sub>OUT</sub> range, V <sub>1OUT</sub> , V <sub>2OUT</sub> |                                                                                                            | 1.5  |      | 5.5  | V                 |  |
| V <sub>OUT</sub>                  | Accuracy, adjustable $V_{OUT}$ channels <sup>(1)</sup>                   | $V_{OUT} + 1V \le V_{IN} \le 5.5V;$<br>10 µA ≤ I <sub>OUT</sub> ≤ 1A                                       | -2.0 |      | +2.0 | %                 |  |
|                                   | Accuracy, fixed V <sub>OUT</sub> channels <sup>(1)</sup>                 | $V_{OUT} + 1V \le V_{IN} \le 10V;$<br>10 µA ≤ I <sub>OUT</sub> ≤ 1A                                        | -2.0 |      | +2.0 | %                 |  |
| $\Delta V_{OUT}\%/\Delta V_{IN}$  | Line regulation <sup>(1)</sup>                                           | $V_{OUT} + 1.0V \le V_{IN} \le 10V$                                                                        |      | 0.01 |      | %/V               |  |
| $\Delta V_{OUT}\%/\Delta I_{OUT}$ |                                                                          |                                                                                                            |      | 3    |      | mV                |  |
| V <sub>DO</sub>                   | Dropout voltage <sup>(2)</sup><br>( $V_{IN} = V_{OUT}$ (nom) - 0.1V)     | V <sub>OUT</sub> = 3.3V, I <sub>OUT</sub> = 1A                                                             |      | 350  | 575  | mV                |  |
| I <sub>CL</sub>                   | Output current limit, per LDO                                            | $V_{OUT} = 0V, T_{J} = +25^{\circ}C$                                                                       |      | 1.7  | 2    | А                 |  |
| I <sub>GND</sub>                  | Ground pin current, per LDO                                              | 10μA ≤ I <sub>OUT</sub> ≤ 1A                                                                               |      | 85   | 125  | μA                |  |
| I <sub>SHDN</sub>                 | Standby current, per LDO                                                 | $2.7V \le V_{IN} \le 10V, V_{EN} = V_{IN}$                                                                 |      | 1    | 10   | μA                |  |
| I <sub>FB</sub>                   | FB current input (Adjustable)                                            | V <sub>FB</sub> = 1.5V                                                                                     |      | 2    |      | nA                |  |
| PSRR                              | Power-supply ripple rejection                                            | f = 1kHz, C <sub>OUT</sub> = 10μF                                                                          |      | 60   |      | dB                |  |
| V <sub>N</sub>                    | Output noise voltage                                                     | $\begin{array}{l} BW=200Hz \text{ to } 100kHz, \ V_{OUT}=1.8V, \\ I_{C}=1A, \ C_{OUT}=10\mu F \end{array}$ |      | 55   |      | $\mu V_{RMS}$     |  |
| V <sub>EN(HI)</sub>               | High-level enable input voltage                                          | T <sub>J</sub> = +25°C                                                                                     | 2.0  |      |      | V                 |  |
|                                   |                                                                          | T <sub>J</sub> = +25°C                                                                                     |      |      | 0.8  | V                 |  |
|                                   |                                                                          | $V_{\overline{EN}} = 0V, T_{J} = +25^{\circ}C$                                                             | -1   | 0    | 1    | uА                |  |
| EN                                | Input current                                                            | $V_{EN} = V_{IN}, T_J = +25^{\circ}C$                                                                      | -1   |      | 1    |                   |  |
|                                   | Minimum input voltage for valid<br>RESET                                 | $I_{OUT(RESET)} = 300 \mu A$                                                                               |      | 1.1  |      | V                 |  |
|                                   | Trip threshold voltage                                                   | $V_{OUT}$ decreasing, $T_J = +25^{\circ}C$                                                                 | 92   |      | 98   | %V <sub>OUT</sub> |  |
| Deset                             | Hysteresis voltage                                                       | Measured at V <sub>OUT</sub>                                                                               |      | 0.5  |      | %V <sub>OUT</sub> |  |
| Reset                             | Output low voltage                                                       | $V_I = 2.7V, T_J = +25^{\circ}C,$<br>$I_{OUT(\overline{RESET})} = 1mA$                                     |      | 0.15 | 0.4  | V                 |  |
|                                   | Leakage current                                                          | V <sub>(RESET)</sub> = 7V, T <sub>J</sub> = +25°C                                                          |      |      | 1    | μA                |  |
|                                   | RESET time-out delay                                                     | $T_J = +25^{\circ}C$                                                                                       | 100  | 200  | 400  | ms                |  |
| T <sub>SD</sub>                   | Thermal shutdown temperature                                             |                                                                                                            |      | 150  |      | °C                |  |
| TJ                                | Operating junction temperature                                           |                                                                                                            | -40  |      | +125 | °C                |  |

(1) Minimum  $V_{IN} = V_{OUT} + V_{DO}$  or 2.7V, whichever is greater. (2) Dropout voltage ( $V_{DO}$ ) is not measured for channels with  $V_{OUT(nom)} < 2.8V$  since minimum  $V_{IN} = 2.7V$ .


TEXAS INSTRUMENTS

www.ti.com





### FUNCTIONAL BLOCK DIAGRAM—Adjustable Version (one regulator channel)

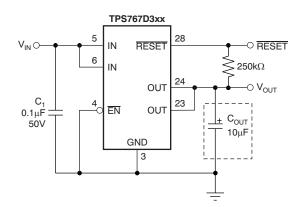


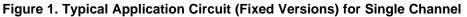
SLVS209H-JULY 1999-REVISED AUGUST 2008



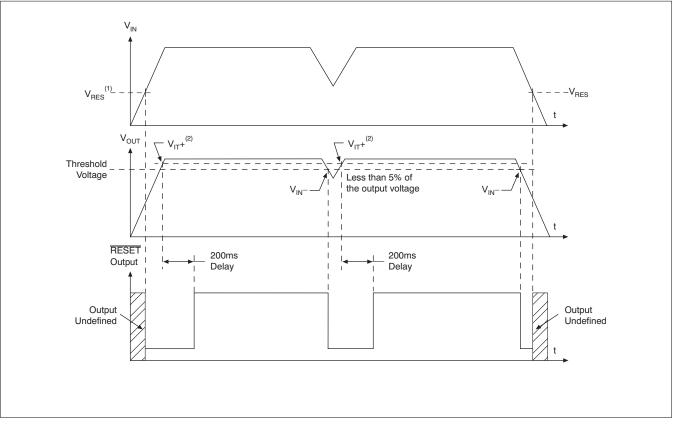
www.ti.com

#### PWP PACKAGE (TOP VIEW) 0 NC 1 28 1RESET 2 27 NC NC NC 1GND 3 26 1FB/NC 1EN 25 4 5 24 10UT 1IN 10UT 23 1IN 6 7 22 2RESET NC 21 NC NC 8 20 2GND 9 NC 2EN 10 19 NC 11 18 20UT 2IN 2IN 12 17 20UT NC 13 16 NC 14 15 NC NC


NC = No internal connection


### **TERMINAL FUNCTIONS**

| TERMINAL |                                                |                                                                                            |
|----------|------------------------------------------------|--------------------------------------------------------------------------------------------|
| NAME     | NO.                                            | DESCRIPTION                                                                                |
| 1GND     | 3                                              | Regulator #1 ground                                                                        |
| 1EN      | 4                                              | Regulator #1 enable                                                                        |
| 1IN      | 5, 6                                           | Regulator #1 input supply voltage                                                          |
| 2GND     | 9                                              | Regulator #2 ground                                                                        |
| 2EN      | 10                                             | Regulator #2 enable                                                                        |
| 2IN      | 11, 12                                         | Regulator #2 input supply voltage                                                          |
| 2OUT     | 17, 18                                         | Regulator #2 output voltage                                                                |
| 2RESET   | 22                                             | Regulator #2 reset signal                                                                  |
| 10UT     | 23, 24                                         | Regulator #1 output voltage                                                                |
| 1FB/NC   | 25                                             | Regulator #1 output voltage feedback for adjustable output; no connection for fixed output |
| 1RESET   | 28                                             | Regulator #1 reset signal                                                                  |
| NC       | 1, 2, 7, 8,<br>13–16, 19,<br>20, 21, 26,<br>27 | No internal connection                                                                     |

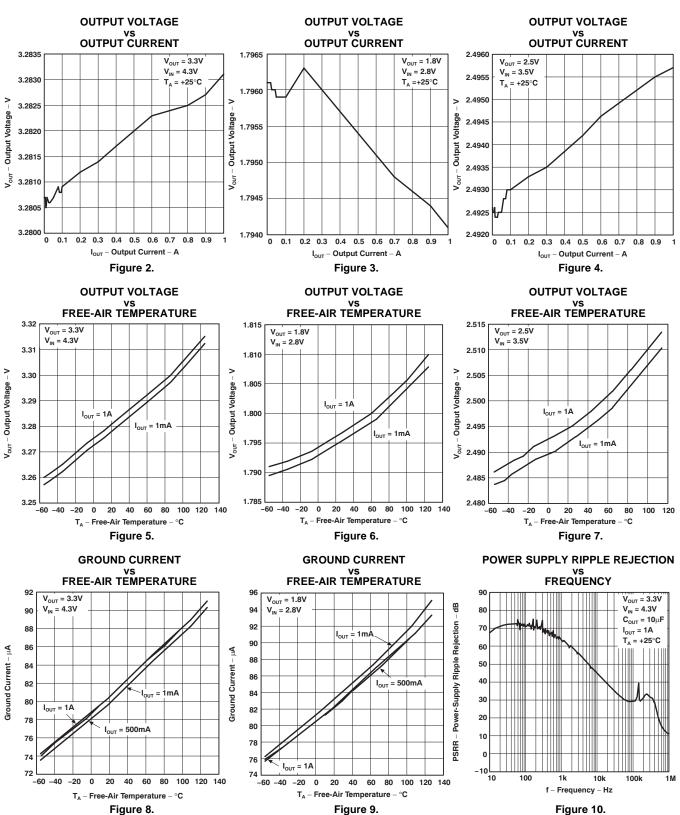



www.ti.com

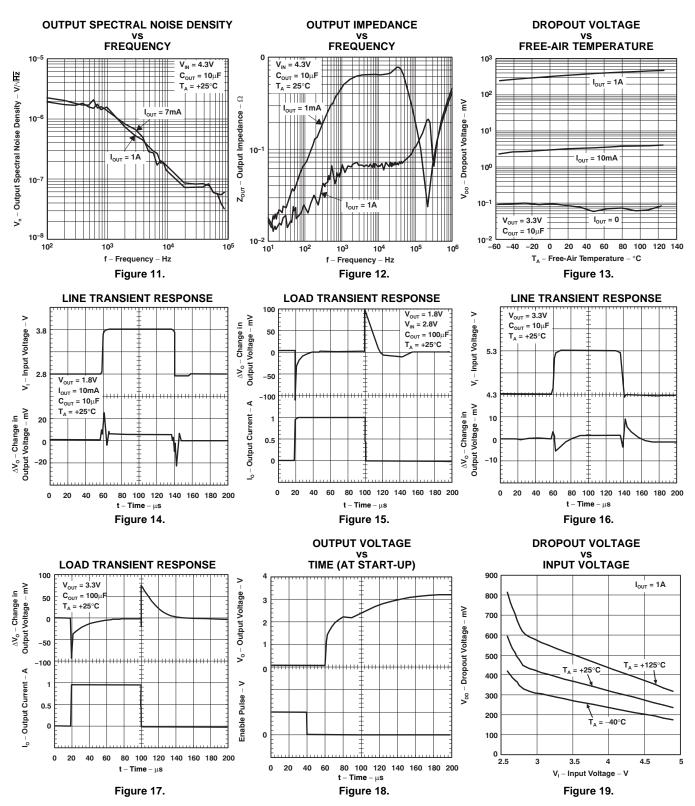




### TIMING DIAGRAM




- (1)  $V_{RES}$  is the minimum input voltage for a valid  $\overline{RESET}$ .
- (2)  $V_{\text{IT}}$  —Trip voltage is typically 5% lower than the output voltage (95%  $V_{\text{OUT}}).$


Texas INSTRUMENTS

www.ti.com

SLVS209H-JULY 1999-REVISED AUGUST 2008



**TYPICAL CHARACTERISTICS** 



### **TYPICAL CHARACTERISTICS (continued)**

8



www.ti.com



www.ti.com

SLVS209H-JULY 1999-REVISED AUGUST 2008

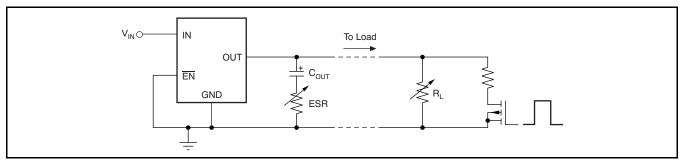
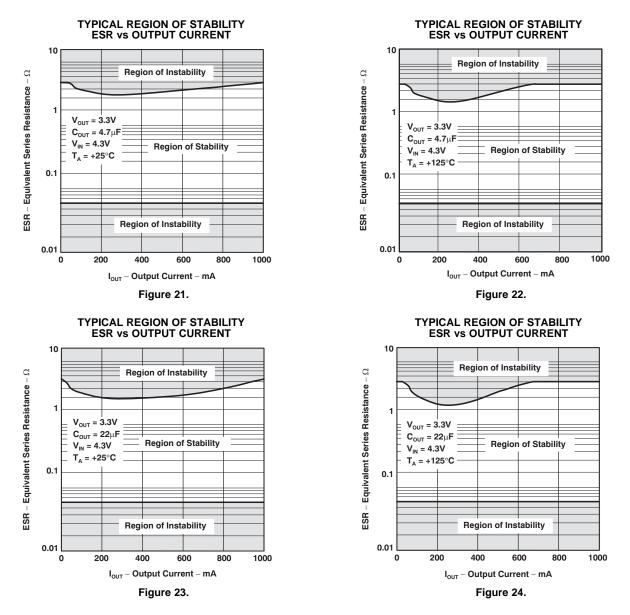




Figure 20. Test Circuit for Typical Regions of Stability (Figure 21 through Figure 24) (Fixed Output Options)

Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any resistance added externally, and PWB trace resistance to  $C_{OUT}$ .





#### SLVS209H-JULY 1999-REVISED AUGUST 2008

### **APPLICATION INFORMATION**

The features of the TPS767D3xx family (low-dropout voltage, ultra low quiescent current, power-saving shutdown mode, and a supply-voltage supervisor) and the power-dissipation properties of the TSSOP PowerPAD package have enabled the integration of the dual LDO regulator with high output current for use in DSP and other multiple voltage applications. Figure 25 shows a typical dual-voltage DSP application.

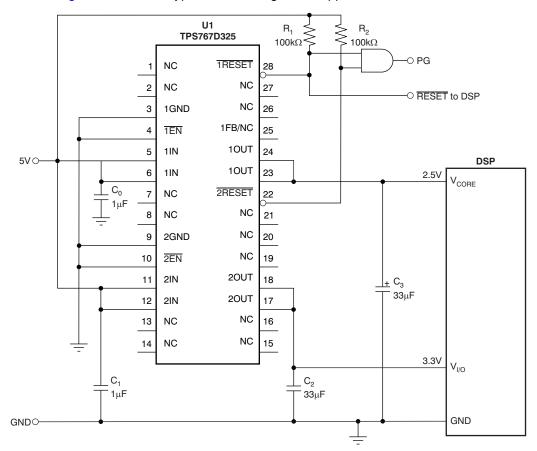



Figure 25. Dual-Voltage DSP Application

DSP power requirements include very high transient currents that must be considered in the initial design. This design uses higher-valued output capacitors to handle the large transient currents.

### **DEVICE OPERATION**

The TPS767D3xx features very low quiescent current, which remain virtually constant even with varying loads. Conventional LDO regulators use a pnp pass element, the base current of which is directly proportional to the load current through the regulator ( $I_B = I_C/\beta$ ). Close examination of the data sheets reveals that these devices are typically specified under near no-load conditions; actual operating currents are much higher as evidenced by typical quiescent current versus load current curves. The TPS767D3xx uses a PMOS transistor to pass current; because the gate of the PMOS is voltage driven, operating current is low and invariable over the full load range. The TPS767D3xx specifications reflect actual performance under load condition.

Another pitfall associated with the pnp pass element is its tendency to saturate when the device goes into dropout. The resulting drop in  $\beta$  forces an increase in I<sub>B</sub> to maintain the load. During power-up, this translates to large start-up currents. Systems with limited supply current may fail to start up. In battery-powered systems, it means rapid battery discharge when the voltage decays below the minimum required for regulation. The TPS767D3xx quiescent current remains low even when the regulator drops out, eliminating both problems.



#### www.ti.com

The TPS767D3xx family also features a shutdown mode that places the output in the high-impedance state (essentially equal to the feedback-divider resistance) and reduces quiescent current to under  $2\mu$ A. If the shutdown feature is not used, EN should be tied to ground. Response to an enable transition is quick; regulated output voltage is typically re-established in 120 $\mu$ s.

### MINIMUM LOAD REQUIREMENTS

The TPS767D3xx family is stable even at zero load; no minimum load is required for operation.

### FB-PIN CONNECTION (ADJUSTABLE VERSION ONLY)

The FB pin is an input pin to sense the output voltage and close the loop for the adjustable option. The output voltage is sensed through a resistor divider network as is shown in Figure 26 to close the loop. Normally, this connection should be as short as possible; however, the connection can be made near a critical circuit to improve performance at that point. Internally, FB connects to a high-impedance, wide-bandwidth amplifier and noise pickup feeds through to the regulator output. Routing the FB connection to minimize/avoid noise pickup is essential. In fixed output options, this pin is not connected.

### EXTERNAL CAPACITOR REQUIREMENTS

An input capacitor is not required; however, a ceramic bypass capacitor (0.047pF to  $0.1\mu F$ ) improves load transient response and noise rejection when the TPS767D3xx is located more than a few inches from the power supply. A higher-capacitance electrolytic capacitor may be necessary if large (hundreds of milliamps) load transients with fast rise times are anticipated.

Like all low dropout regulators, the TPS767D3xx requires an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance value is  $10\mu$ F and the ESR (equivalent series resistance) must be between  $60m\Omega$  and  $1.5\Omega$ . Capacitor values of  $10\mu$ F or larger are acceptable, provided the ESR is less than  $1.5\Omega$ . Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described previously.

When necessary to achieve low height requirements along with high output current and/or high ceramic load capacitance, several higher ESR capacitors can be used in parallel to meet the previous guidelines.

### PROGRAMMING THE TPS767D301 ADJUSTABLE LDO REGULATOR

The output voltage of the TPS767D301 adjustable regulator is programmed using an external resistor divider as shown in Figure 26. The output voltage is calculated using:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R_1}{R_2}\right)$$

(1)

Resistors  $R_1$  and  $R_2$  should be chosen for approximately  $40\mu$ A divider current. Lower-value resistors can be used but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase the output voltage error.

The recommended design procedure is to choose  $R_2 = 30.1 \text{ k}\Omega$  to set the divider current at 40µA and then calculate R<sub>1</sub> using:

$$R_{1} = \left(\frac{V_{OUT}}{V_{REF}} - 1\right) \times R_{2}$$

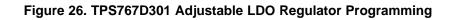
$$(2)$$

$$R_{1} = \left(\frac{V_{OUT}}{V_{REF}} - 1\right) \times R_{2}$$

$$(2)$$

$$R_{1} = \left(\frac{V_{OUT}}{V_{REF}} - 1\right) \times R_{2}$$

$$(2)$$


$$R_{1} = \left(\frac{V_{OUT}}{V_{OUT}} - 1\right) \times R_{2}$$

$$R_{1} = \left(\frac{V_{OUT}}{V_{OUT}} - 1\right) \times R_{2}$$

$$(2)$$

$$R_{1} = \left(\frac{V_{OUT}}{V_{OUT}} - 1\right) \times R_{2}$$

$$R_{1} = \left(\frac{V_{OUT}}{V_{OUT}} - 1\right) \times R_{2$$



### **RESET INDICATOR**

The TPS767D3xx features a RESET output that can be used to monitor the status of the regulator. The internal comparator monitors the output voltage: when the output drops to 95% (typical) of its regulated value, the RESET output transistor turns on, taking the signal low. The open-drain output requires a pullup resistor. If not used, it can be left floating. RESET can be used to drive power-on reset circuitry or as a low-battery indicator.

## **REGULATOR PROTECTION**

The TPS767D3xx PMOS-pass transistor has a built-in back-gate diode that safely conducts reverse currents when the input voltage drops below the output voltage (for example, during power-down). Current is conducted from the output to the input and is not internally limited. When extended reverse voltage is anticipated, external limiting may be appropriate.

The TPS767D3xx also features internal current limiting and thermal protection. During normal operation, the TPS767D3xx limits output current to approximately 1.7A. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds +150°C (typ), thermal-protection circuitry shuts it down. Once the device has cooled below +130°C (typ), regulator operation resumes.



2)



www.ti.com

### POWER DISSIPATION AND JUNCTION TEMPERATURE

Specified regulator operation is assured to a junction temperature of +125°C; the maximum junction temperature should be restricted to +125°C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation,  $P_Dmax$ , and the actual dissipation,  $P_D$ , which must be less than or equal to  $P_Dmax$ .

The maximum-power-dissipation limit is determined using the following equation:

$$P_{\rm D}\max = \frac{T_{\rm J}\max - T_{\rm A}}{R_{\rm \Theta JA}}$$
(3)

Where:

- T<sub>J</sub>max is the maximum allowable junction temperature.
- $R_{\theta JA}$  is the thermal resistance junction-to-ambient for the package, that is, 28°C/W for the 28-terminal PWP with no airflow.
- T<sub>A</sub> is the ambient temperature.

The regulator dissipation is calculated using:

$$\mathsf{P}_{\mathsf{D}} = \left(\mathsf{V}_{\mathsf{IN}} - \mathsf{V}_{\mathsf{OUT}}\right) \times \mathsf{I}_{\mathsf{OUT}}$$

Power dissipation resulting from quiescent current is negligible. Excessive power dissipation will trigger the thermal protection circuit.

(4)

SLVS209H-JULY 1999-REVISED AUGUST 2008

# **Revision History**

| Changes from Revision F (February 2008) to Revision G |                                                                              |   |  |
|-------------------------------------------------------|------------------------------------------------------------------------------|---|--|
| •                                                     | Changed Corrected symbol for FB current in <i>Electrical Characteristics</i> | 3 |  |



www.ti.com

### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products                    |                        | Applications                  |                                   |
|-----------------------------|------------------------|-------------------------------|-----------------------------------|
| Amplifiers                  | amplifier.ti.com       | Audio                         | www.ti.com/audio                  |
| Data Converters             | dataconverter.ti.com   | Automotive                    | www.ti.com/automotive             |
| DLP® Products               | www.dlp.com            | Communications and<br>Telecom | www.ti.com/communications         |
| DSP                         | dsp.ti.com             | Computers and<br>Peripherals  | www.ti.com/computers              |
| Clocks and Timers           | www.ti.com/clocks      | Consumer Electronics          | www.ti.com/consumer-apps          |
| Interface                   | interface.ti.com       | Energy                        | www.ti.com/energy                 |
| Logic                       | logic.ti.com           | Industrial                    | www.ti.com/industrial             |
| Power Mgmt                  | power.ti.com           | Medical                       | www.ti.com/medical                |
| Microcontrollers            | microcontroller.ti.com | Security                      | www.ti.com/security               |
| RFID                        | www.ti-rfid.com        | Space, Avionics & Defense     | www.ti.com/space-avionics-defense |
| RF/IF and ZigBee® Solutions | www.ti.com/lprf        | Video and Imaging             | www.ti.com/video                  |
|                             |                        | Wireless                      | www.ti.com/wireless-apps          |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated