Preliminary ## **High-Voltage EL Lamp Driver** ### **Ordering Information** | | | Package Options | | | | | | |--------|---------------|-----------------|------------|---------|--|--|--| | Device | Input Voltage | 8-Lead SO | 14-Lead SO | Die | | | | | HV8061 | 1.0V to 1.6V | HV8061LG | HV8061NG | HV8061X | | | | | HV8063 | 2.4V to 3.5V | HV8063LG | HV8063NG | HV8063X | | | | | F | е | a | t | u | r | е | S | |---|---|---|---|---|---|---|---| |---|---|---|---|---|---|---|---| | ☐ Processed with HVCMOS® technology | |-------------------------------------| | ☐ 0.9V to 3.5V supply voltage | | DC to AC conversion | | Output load range from 0 to 6nF | | Adjustable output lamp frequency | | ☐ Adjustable converter frequency | | ☐ Remote enable function | | | | | | | #### **Applications** | J | Pagers | |---|---------------------| | | Cellular phones | | | Watches | | | Remote control unit | | ٦ | Calculators | ### **Absolute Maximum Ratings** | Supply Voltage, V _{DD} | -0.5V to +4.5V | |---------------------------------|-----------------| | Operating Temperature Range | -40°C to +85°C | | Storage Temperature Range | -65°C to +150°C | #### Note #### **General Description** The Supertex HV8061 and HV8063 are high-voltage drivers designed for driving EL lamps of up to 3nF (6nF) for a 1V (3V) operation. The input supply voltage ranges are from 1.0V to 1.6V for HV8061 and 2.4V to 3.5V for HV8063. The devices use a single inductor and a minimum number of passive components. The maximum output voltage that can be applied to the EL lamp is ±55V. The 14-pin package has an ENABLE pin which activates the IC when ENABLE is high. The HV8061/HV8063 has two internal oscillators, a switching bipolar junction transistor (BJT), and a high-voltage EL lamp driver. The frequency for the switching BJT is set by an external resistor connected between the $R_{\text{sw-osc}}$ pin and the V_{DD} pin. The EL lamp driver frequency is set by an external resistor connected between the $R_{\text{EL-osc}}$ pin and the V_{DD} pin. An external inductor is connected between the L_x and V_{DD} pins. An external fast recovery diode is connected between the L_x and C_s pins with the anode connected to L_x . A $0.1\mu\text{F}$ storage capacitor is connected between C_s and ground. The EL lamp is connected between V_A and V_B . The switching BJT charges the external inductor and discharges it into the $0.1\mu F$ capacitor at C_s . The voltage at C_s will start to increase. Once the voltage at C_s reaches a nominal value of 50V, the switching BJT is turned off to conserve power. The outputs V_A and V_B are configured as an H bridge and are switching in opposite states to achieve 100V peak-to-peak across the EL lamp. ^{*}All voltages are referenced to GND. #### **Electrical Characteristics** **DC Characteristics** (Over recommended operating conditions unless otherwise specified, $T_A = 25^{\circ}C$) | Symbol | Parameter | | Min | Тур | Max | Units | Conditions | |---------------------|--|--------|-----|-----|-----|-------|--| | A _{DS(on)} | On-resistance of switching trans | sistor | | 10 | 12 | Ω | I = 50mA | | I _{DD} | V _{DD} supply current (excluding | HV8061 | | | 2 | mA | V _{DD} = 1.0V to 1.6V | | | inductor current) | HV8063 | | | 3.5 | mA | V _{DD} = 2.4V to 3.5V | | IDDQ | Quiescent V _{DD} supply current | HV8061 | | | 2 | μА | V _{DO} = 1.0V to 1.6V, ENABLE = LOW | | | | HV8063 | | 1 | 50 | μА | V _{DD} = 2.4V to 3.5V, ENABLE = LOW | | Vc _s | Max. output regulation voltage | | 45 | 50 | 55 | V | | | V _{A-B} | Max. differential output voltage across lamp | | 90 | 100 | 110 | V | | #### AC Characteristics (T_A =25°C) | Symbol | Parameter | | Min | Тур | Max | Units | Conditions | |-----------------|---|--------|-----|-----|-----|-------|---| | f _{EL} | V _{A-B} output drive frequency | HV8061 | | 160 | | Hz | $V_{DD} = 1.0V \text{ to } 1.6V,$ $R_{\text{sw-osc}}^{1} = 470k\Omega, R_{\text{EL-osc}}^{2} = 20M\Omega$ | | | | HV8063 | | 750 | | Hz | V_{DD} = 2.4V to 3.5V,
R_{sw-osc} = 330kΩ, R_{EL-osc} = 10MΩ | | f _{sw} | Switching transistor frequency | HV8061 | | 50 | | kHz | $V_{DD} = 1.0V \text{ to } 1.6V,$ $R_{\text{sw-osc}} = 470k\Omega, R_{\text{EL-osc}} = 20M\Omega$ | | | | HV8063 | | 120 | | kHz | V_{DD} = 2.4V to 3.5V,
$R_{\text{sw-osc}}$ = 330kΩ, $R_{\text{EL-osc}}$ = 10MΩ | | D ³ | Switching transistor duty cycle | | | 85 | | % | V _{DD} = 1.0V to 3.5V | # **Recommended Operating Conditions** | Symbol | Parameter | | Min | Тур | Max | Units | Conditions | |-----------------|--------------------------|--------|----------------------|-----|-----------------|-------|--------------------------------| | V _{DD} | Supply voltage | HV8061 | 1.0 | | 1.6 | V | | | | | HV8063 | 2.4 | | 3.5 | | | | EN-L | Logic input low voltage | HV8061 | 0 | | 0.3 | V | V _{DD} = 1.0V to 1.6V | | | | HV8063 | 0 | | 0.5 | V | V _{DD} = 2.4V to 3.5V | | EN-H | Logic input high voltage | HV8061 | 0.6 | | 2.1 | V | V _{DD} = 1.0V to 1.6V | | | | HV8063 | V _{DD} -0.5 | | V _{DD} | V | V _{DD} = 2.4V to 3.5V | | CL | Load capacitance | HV8061 | 0 | | 3 | nF | V _{DD} = 1.0V to 1.6V | | | | HV8063 | 0 | | 6 | nF | V _{DD} = 2.4V to 3.5V | | TA | Operating temperature | • | 0 | | 70 | °C | | - 1. R_{sw-osc} determines the converter switching frequency. 2. R_{EL-osc} determines the lamp frequency. 3. Guaranteed by design. # **Typical Application** | Device | V _{batt} | R _{sw-osc} | R _{EL·osc} | |--------|-------------------|---------------------|---------------------| | HV8061 | 17 | 470KΩ | 20MΩ | | HV8063 | 3V | 330KΩ | 10ΜΩ | ^{*} Suggested inductor manufacturer: MuRata Erie part # LQH4N102K04M00 (DC resistance < 25Ω). # **Pin Configurations**