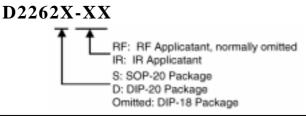


REMOTE CONTROL ENCODER D2262

DESCRIPTION

The D2262 is a remote control encoder paired with D2272 utilizing CMOS technology. It encodes data and address pins into a serial coded waveform suitable for RF or IR modulation. D2262 has a maximum of 12-bits of tri-state address pins providing up to 531,441(or 3^{12}) address codes; thereby, drastically reducing any code collision and unauthorized code scanning possibilities.

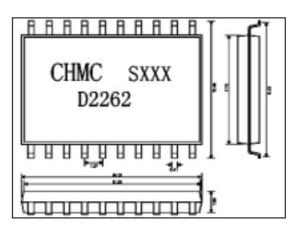

FEATURE

- Low power consumption and very high noise immunity
- Up to 12 tri-state code address pins or 6 data pins
- Wide operating voltage range (Vcc=4V ~ 15V)
- Single resistor oscillator
- Latch or Momentary output type

APPLICATION

- Home/automation security system
- Remote control toys or for industrial use
- Remote control fan
- Garage door controller

ORDERING INFORMATION

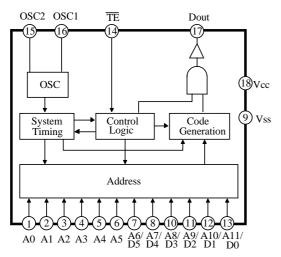


SXXX

D2262

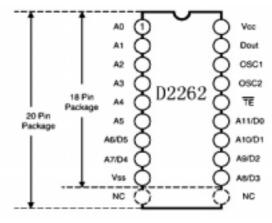
CHMC

1



SOP-20

1/9


D2262

BLOCK DIAGRAM

PIN DESCRIPTION

PIN CONNECTION

Pin No.		Pin Name	I/O	Description					
18 PIN	20 PIN		1/0	Description					
1~6	1~6	A0~A5		tri-state pins are det determine the encod	s No. 0~5. These six ected by D2262 to ed waveform bit 0 ~bit 5. to "0", "1", "f"(floating).				
7~8 10~13	7~8 12~15	A6/D5~A11/D0	Ι	Code Address pins No.6~11/data pins No.5~0. These six tri-state pins are detected by D2262 to determine the encoded waveform bit 6 ~bit 11.When these pins are used as address pins, they can be set to"0", "1", "f". When they are used as data pins , they can be set only to "0", "1".					
14	16	TE	Ι	Transmission Enable. Active Low Signal. D2262 outputs the encoded waveform to DOUT when this pins is pulled to LOW.					
15	17	OSC1	0	Oscillator Pin No.1	A resistor connected between these two pins				
16	18	OSC2	Ι	Oscillator Pin No.2	determine the fundamental frequency of D2262.				
17	19	DOUT	0	serially outputted to	Data Output Pin. The encoded waveform is erially outputted to this pin. When D2262 is ot transmitting, DOUT outputs low(Vss) oltage.				
18	20	Vcc		Positive Power Supp	ly				
9	9	Vss		Negative Power Sup	ply				
	10~11	NC		Not Connected					

SHAOXING SILICORE TECHNOLOGY CO.,LTD www. Silicore. com. cn CHMC

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	-0.3~16.0	V
Input Voltage	Vi	-0.3~Vcc+0.3	V
Output Voltage	Vo	-0.3~Vcc+0.3	V
Maximum Power Dissipation(Vcc=12V)	Pa	300	mW
Operating Temperature	Topr	-20~+70	°C
Storage Temperature	Tstg	-40~+125	°C

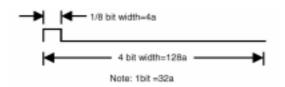
ELECTRICAL CHARACTERISTICS

(Unless otherwise specified: Ta=25°C, Vcc=12V)

Characteristics	Test conditions	Symbol	Min	Тур	Max	Unit
Supply Voltage		Vcc	3		15	V
Supply Current	Vcc=12V,OSC stops A0~A11 Open	Icc		0.02	0.3	μA
	Vcc=5V,VoH=3V		-3			mA
Dout Output driving Current	Vcc=8V,VoH=4V	Іон	-6			mA
	Vcc=12V,VoH=6V		-10			mA
	Vcc=5V, Vol=3V		2			mA
Dout Output sinking Current	Vcc=8V,Vol=4V	Iol	5			mA
	Vcc=12V,VoL=6V		9			mA

FUNCTIONAL DESCRIPTION

The D2262 encodes the code address and data set at $A0 \sim A5$ and $A6/D5 \sim A11/D0$ into a special waveform and outputs it to the Dout when TE is pulled to "0"(Low state). This waveform is fed to either the RF modulator or the IR transmitter for transmission. The Transmitted radio frequency or infrared ray is received by the RF demodulator or IR receiver and reshaped to the special waveform. D2272 is then used to decode the waveform and set the corresponding output pins. Thus completing a remote control encoding and decoding function.


1. RF OPERATION

Code Bits

A code bit is the basic component of the encoded waveform, and can be classified as either an AD(Address/Data) Bit or a SYNC(Synchronous) Bit.

An AD bit can be designated as bit"0", "1", or "f" if it is in low, high or floating state respectively. One bit waveform consists of two pulse cycles. Each pulse cycle has 16 oscillating time periods. For further details, please refer to the diagram below:

The Synchronous bit waveform is 4 bits long with 1/8 bit width pulse. Please refer to the diagram below:

Code word

A group of Code Bits is called a Code Word. A Code Word consists of 12 AD bits followed by one Sync Bit. The 12 AD bits are determined by the corresponding states of A0~A5 and A6/D5 ~ A11/D0 pins at the time of transmission. When Data Type of D2262 is used, the address bits will decrease accordingly. For example, in the 3 Data Type where the address has 9 bits, the transmitting format is:

	9 ad	ldress	bits			3 Dat	ta bits		Sync. Bit				
D2	D2262/D2272 has a maximum of 12 Address Bits including the 6 Address/Data bits.												
The following diagram shows				s the c	code bits	with the	ir corres	ponding	pins.				
A0	A1	A2	A3	A4	A5	A6/D5	A7/D4	A8/D3	A9/D2	A10/D1	A11/D2		

0 Date	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	Sync
1 Data	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	D0	Sync
2 Data	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	D1	D0	Sync
3 Data	A0	A1	A2	A3	A4	A5	A6	A7	A8	D2	D1	D0	Sync
4 Data	A0	A1	A2	A3	A4	A5	A6	A7	D3	D2	D1	D0	Sync
5 Data	A0	A1	A2	A3	A4	A5	A6	D4	D3	D2	D1	D0	Sync
6 Data	A0	A1	A2	A3	A4	A5	D5	D4	D3	D2	D1	D0	Sync

The Code Bits A0~A5 and A6/D5 ~ A11/D0 are determined by the states of A0 ~ A5 and A6/D5 ~A11/D0 pins. For example, when the A0 (pin 1) is set to "1"(Vcc), the code bit A0 is synthesized as "1 "bit. In the same manner, when it (A0 pin) is set to "0"(Vss) or left floating, the Code Bit A0 is synthesized as a "0 "or "f "bit respectively.


Code Frame

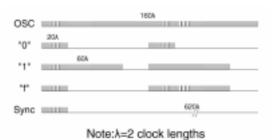
A Code Frame consists of 4 continuous code Words. When D2262 detects "0" on the $\overline{\text{TE}}$ (meaning, the $\overline{\text{TE}}$ is active "Low"), it outputs a Code frame at Dout. If $\overline{\text{TE}}$ is still active at the time the Code Frame transmission ends. D2262 outputs another Code Frame. It should be noted that the Code Frame is synthesized at the time of transmission.

Single Resistor Oscillator

The Build-in oscillator circuitry of D2262 allows a precision oscillator to be constructed by connecting an external resistor between OSC1 and OSC2 pins. For D2272 to decode correctly the received waveform, the oscillator frequency of D2272 must be 2.5 ~8 times that of transmitting D2262. The typical oscillator frequency with various resistor values for both D2262 and D2272 are shown below:

Suggested Oscillator resistor values are shown below:

D2262	D2272
4.7ΜΩ	820KΩ
3.3MΩ	680KΩ
1.2MΩ	200ΚΩ


SHAOXING SILICORE TECHNOLOGY CO.,LTD www. Silicore. com. cn CHMC

2. IR OPERATION

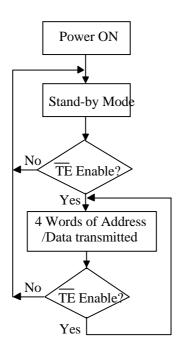
In the IR Type of operation, the functions are similar to the above descriptions except for the output waveform that has a carrier frequency of 38kHz. Details are as follow.

Code Bits

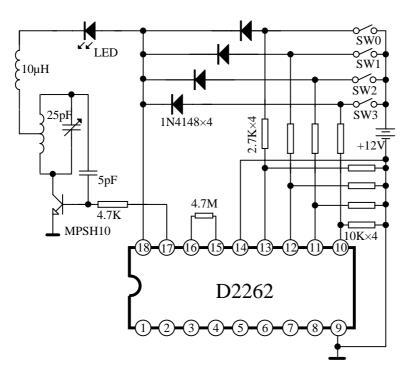
The Code Bits are further modulated with a 38kHz carrier frequency and can be "0", "1 " or "f " bit. Their waveform are shown below:

Code Word

A Code Word is made up of code bits and the format is the same as that of the RF Code Word.

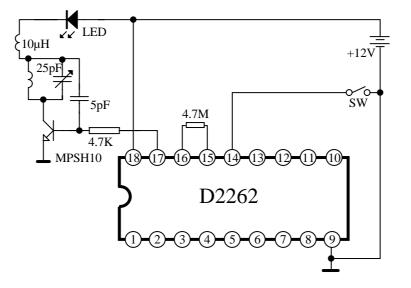

Code Frame

Likewise, a Code Frame is made up of Code Words and the format is the same as that of RF type of operation.

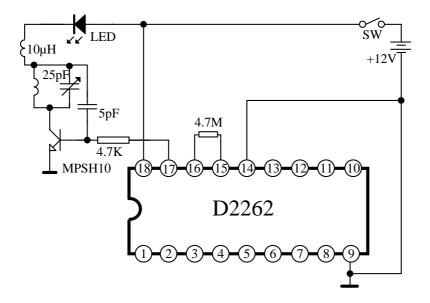

Oscillator

The oscillator frequency for the IR type of operation is twice the carrier frequency. Thus, the oscillator frequency should be kept at 76kHz. A 430k~470kW oscillator resistor between OSC1 and OSC2 pins is recommended. It should be noted that the carrier is a 50% duty cycle frequency.

OPERATION FLOW CHART

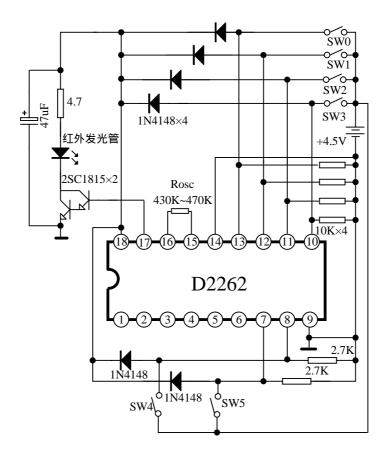


APPLICATION CIRCUIT



UHF Band 4 Data Transmitter circuit is recommended

SHAOXING SILICORE TECHNOLOGY CO.,LTD www. Silicore. com. cn CHMC



UHF Band Address-only (0 data) Transmitter Circuit is recommended

UHF Band Address-only(0 data) Zero-stand-by Transmitter Circuit is recommended

Infrared Ray 6-data circuit. Adjust Rosc to get 38kHz carrier pulse at Dout pin is recommended