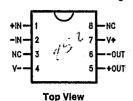
DP24H80/μA24H80 Winchester Disk Servo Preamplifier

General Description

The DP24H80/ μ A24H80 provides termination, gain, and impedance buffering for the servo read head in Winchester disk drives. It is a differential input, differential output design with fixed gain of approximately 100. The bandwidth is guaranteed greater than 30 MHz.

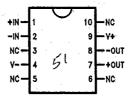

The internal design of the DP24H80/ μ A24H80 is optimized for low input noise voltage to allow its use in low input signal level applications. It is offered in 8-lead DIP, 10-lead flatpak, or SO-8 package suitable for surface mounting.

Features

- Low input noise voltage
- Wide power supply range (8V to 13V)
- Internal damping resistors (1.3 kΩ)
- Direct replacement for SSi 101A, with improved performance

Connection Diagrams

8-Lead DIP and SO-8 Package


TL/F/9408-1

Ceramic DIP † Order Number μΑ24H80RC ‡ See NS Package Number J08A

Molded Surface Mount † Order Number μΑ24H80SC ‡ See NS Package Number M08A

Molded DIP † Order Number μΑ24H80TC ‡ See NS Package Number N08E

10-Lead Ceramic Flatpak

Top View

TL/F/9408-2

† Order Number µA24H80FC ‡ See NS Package Number F10B

Pin Descriptions

Name	Description of Functions				
V+	Positive Differential Supply with Respect to V-				
V-	Negative Differential Supply with Respect to V+				
+IN	Positive Differential Input				
-IN	Negative Differential Input				
+OUT	Positive Differential Output				
-OUT	Negative Differential Output				
NC	No Connection				

† For most current order information, contact your local sales office.

‡ For current package information, contact product marketing

15V

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range Ceramic DIP and Flatpak Molded DIP and SO-8

-65°C to +175°C -65°C to +150°C

Operating Temperature Range

0°C to +70°C

Lead Temperature Ceramic DIP and Flatpak

(Soldering, 60 seconds) Molded DIP and SO-8 (Soldering, 10 seconds)

300°C 265°C Internal Power Dissipation (Notes 1 & 2)

8L-Ceramic DIP 1.30W 8L-Molded DIP 0.93W T-52-38 SO-8 0,81W 10L-Flatpak 0.79W

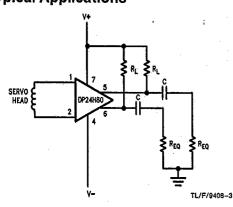
Supply Voltage **Output Voltage**

15V Differential Input Voltage ±10V Note 1: $T_{J\,MAX}=150^{\circ}\mathrm{C}$ for the Molded DIP and SO-8, and 175°C for the Ceramic DIP and Flatpak.

Note 2: Ratings apply to ambient temperature at 25°C, Above this temperature, derate the 8L-Ceramic DIP at 8.7 mW/°C, the 8L-Molded DIP at 7.5

mW/°C, the SO-8 at 6.5 mW/°C, and the Flatpak at 5.3 mW/°C.

Electrical Characteristics TA = 25°C, VCC = 8V to 13.2V, unless otherwise noted


Symbol	Parameter	Conditions	Min	Тур	Max	Units
G	Gain (Differential) (Note 4)	$R_p = 130\Omega, V_{CC} = 12V$	- 80	100	120	
		$R_p = 130\Omega, V_{CC} = 12V$ $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$	70		130	
BW	Bandwidth (3.0 dB) (Note 2)	$V_{l} = 0.5 \text{mV}_{p-p}$	30	65		MHz
RI	Input Resistance		1040	1300	1560	Ω
CI	Input Capacitance		-	3		рF
VI	Input Dynamic Range (Differential)	$R_p = 130\Omega, V_{CC} = 12V$	3			mV _{p-p}
ls	Supply Current	V _{CC} = 12V		20	25	mA
ΔVO	Output Offset (Differential)	$R_p = 130\Omega, R_S = 0\Omega$			200	mW
Vn	Equivalent Input Noise (Notes 2 & 3)	$R_s = 0\Omega$, BW = 4 MHz		1.5	2	μ۷
PSRR	Power Supply Rejection Ratio (Note 1)	$H_{S} = 0\Omega, f = 5 \text{ MHz}$	55	70		d₿
ΔG/ΔV	Gain Sensitivity (Supply)	$R_p = 130\Omega$, $\Delta V_{CC} = \pm 10\%$	-		±0.5	%/V
ΔG/ΔT	Gain Sensitivity (Temp)	$R_p = 130\Omega$, $T_A = 25^{\circ}C$ to $+70^{\circ}C$		-0.1		%/°C
CMR	Common Mode Rejection (Note 1) (Input)	f = 5 MHz	60	75		dB

Note 1: Tested at DC, guaranteed at frequency.

Note 2: Guaranteed, but not tested in production. Note 3: Equivalent input noise (additional specification);

Unit Condition BW = 15 MHz2 μV nV/√Hz 1.0 8W = 15 MHz2

Typical Applications

Note 1: Leads shown for 8-lead DIP.

Note 2: Req is equivalent load resistance.

RL + Req

Note 4: $G = 0.77 R_p$ Where $R_p = value$ from Note 3 (above) in ohms.