

RFFM4211

Wi-Fi Front End Module 2.4GHz to 2.5GHz

The RFFM4211 provides a complete integrated solution in a single front end module (FEM) for WiFi 802.11b/g/n/ac and Bluetooth® systems. The ultra-small form factor and integrated matching greatly reduces the number of external components and layout area in the customer applications. This simplifies the total front end solution by reducing the bill of materials, system footprint, and manufacturing cost. The RFFM4211 integrates a 2.5GHz power amplifier (PA), a low noise amplifier (LNA), a power detector coupler for improved accuracy, and a Single Pole 3-Throw (SP3T) switch. The device is provided in a 2.5mm x 2.5mm x 0.40mm 16-pin QFN package.

Functional Block Diagram

● rfmd ≫ RFFM4211

Package: QFN, 16-pin, 2.5mm x 2.5mm x 0.40mm

Features

- P_{OUT} = 19dBm 64QAM MCS7 HT20 at 3.0% (-30.5dB) Dynamic EVM
- P_{OUT} = 18.0dBm 256QAM MCS9 HT40 at 1.8% (-35.0dB) Dynamic EVM
- Input and Output Matched to 50Ω
- High Level of Integration

Applications

- Cellular Handsets
- Mobile Devices
- Tablets
- Consumer Electronics
- Gaming
- Netbooks/Notebooks
- TV/Monitors/Video

Ord	erina	Information
O i u	ci nig	mormation

RFFM4211SB	Standard 5-piece sample bag
RFFM4211SQ	Standard 25-piece bag
RFFM4211SR	Standard 100-piece reel
RFFM4211TR7	Standard 2500-piece reel
RFFM4211PCK-410	Fully assembled eval board w/ 5-piece sample bag

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

RF MICRO DEVICES[®] and RFMD[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

DS150107

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Supply Voltage (No RF Applied)	6	V
PA Enable Voltage	-0.5 to 5	VDC
DC Supply Current	500	mA
Operating Temperature Range	-40 to +85	°C
Storage Temperature	-40 to +150	°C
Maximum TX Input Power for 11b/g/n/ac (No Damage)	+12	dBm
Maximum Rx Gain Mode Input Power (No Damage)	+12	dBm
Moisture Sensitivity	MSL2	

RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this

Caution! ESD sensitive device.

Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, <1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Nominal Operating Parameters

Deremeter	Specification			Unit	Condition	
Parameter	Min	Тур	Max	Unit	Condition	
Compliance					802.11b, 802.11g, 802.11n, 802.11ac	
Operating Frequency	2.412		2.484	GHz		
Power Supply V _{cc}	3	3.3	3.6	V		
Control Voltage – High	2.8	3.1	Vcc	V	PA_EN, C_RX, C_BT, LNA_EN	
Control Voltage – Low		0	0.2	V		
Transmit (TX-ANT)					Vcc = 3.3V; Temp = 25°C; 50% Duty Cycle unless otherwise noted	
11ac Output Power	17	18		dBm		
	15.5	16.5		dBm	$T = -10^{\circ}C$ to 70°C, $V_{CC} = 3.0V$ to 3.6V	
11ac Dynamic EVM		1.5	1.8	%	256QAM HT40 at Rated Power	
		-36.5	-35.0	dB		
11n Output Power	18	19		dBm		
	16.5	17.5		dBm	$T = -10^{\circ}C$ to 70°C, $V_{CC} = 3.0V$ to 3.6V	
11n Dynamic EVM		2.5	3.0	%	64QAM HT20 / HT40 at Rated Power	
		-32.0	-30.5	dB		
Spectral Mask Margin		2		dB	Pout=20dBm; MCS0 HT20	
TX Port Return Loss	8	12		dB		
ANT Port Return Loss	10	18		dB		
Large Signal Gain	24	27	31	dB		
	22	27	32	dB	$T = -10^{\circ}C$ to 70°C, $V_{CC} = 3.0V$ to 3.6V	
Gain Flatness	-0.25	0	0.25	dB	20 MHz Channel - Small Signal	
Gain Flattless	-0.5	0	0.5	dB	Across Band - Small Signal	
		195	240	mA	Pout = 20dBm	
Operating Current		175	230	mA	Pout = 18dBm; T = -10°C to o70°C; V_{CC} = 3.0V to 3.6V	
		155	195	mA	Pout = 16dBm ; T= -10°C to 70°C; V_{CC} = 3.0V to 3.6V	
Quiescent Current		120	180		RF = OFF	
PA_EN Current		40	80	uA		

 RF Micro Devices Inc.
 7628 Thorndike Road, Greensboro, NC 27409-9421
 DS150107

 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.
 RF MICRO DEVICES® and RFMD® are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

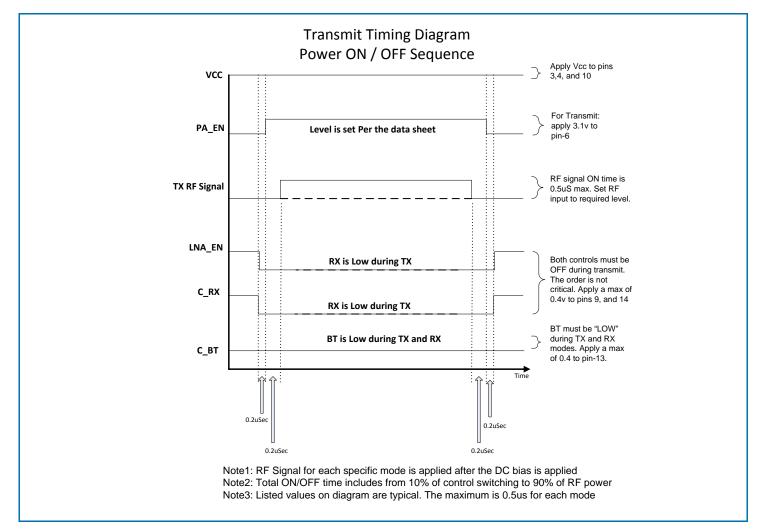
Deremeter	Specification			Unit	Condition		
Parameter	Min	Тур	Max	Unit	Condition		
Transmit (TX- ANT)continued					Vcc = 3.3V; Temp = 25°C; 50% Duty Cycle unless otherwise noted		
Second Harmonic		-10	-5	dBm/MHz	Pout = 22dBm ; T= -10°C to 70°C; V _{cc} = 3.0V to 3.6V, 11b 1Mbps		
Third Harmonic		-40	-25	dBm/MHz	Pout = 22dBm, $T = -10$ C to 70 C, $v_{CC} = 3.00$ to 3.60, T15 Twisps		
Power Detector Voltage (idle)	0.28	0.33	0.38	V	Pout = 0dBm (No RF)		
	0.70	0.80	0.90		Pout = 16dBm		
Power Detector Voltage	0.80	0.90	1.0	V	Pout = 18dBm		
	0.9	1.0	1.15	V	Pout = 22dBm		
Variation from 0-360° load pull	-1.5		1.5	dB	3:1 VSWR		
ANT-RX Isolation	30	32		dB	TX mode		
Transmit (TX-ANT) Low Power Mode					Vcc = 3.3V; Temp = 25°C; 50% Duty Cycle unless otherwise noted		
11ac Output Power	10.0	12.0		dBm			
11ac Dynamic EVM		1.5	1.8	%	256QAM HT40 at Rated Power		
		-36.5	-35.0	dB			
11n Output Power	12	14		dBm			
11n Dynamic EVM		2.5 -32.0	3 -30.5	% dB	64QAM HT20 / HT40 at Rated Power		
Spectral Mask Margin		2		dB	Pout=14dBm; MCS0 HT20		
Operating Current		130	150	mA	P _{OUT} = 12dBm		
		140	160	mA	P _{OUT} = 14dBm		
V _{MODE} Control Line Current		300	500	μA			
Large Signal Gain	23	26	30	dB			
Gain flatness	-0.5		0.5	dB	Over 80MHz BW		
Receive (ANT-RX)					Vcc = 3.3V; Temp = 25°C; CW, unless otherwise noted		
Gain	13	15	17	dB	Small signal		
	12	15	18	dB	T= -10°C to 70°C ; V_{CC} = 3.0V to 3.6V		
RX Gain Flatness	-0.25	0	0.25	dB	Over any 20 MHz BW		
Gain flatness	-0.5	0	0.5	dB	Across band		
Noise Figure		2.5	3	dB			
		2.5	3.7	dB	T= -10°C to 70°C ; V_{CC} = 3.0V to 3.6V		
RX Port Return Loss	6	7		dB			
ANT Port Return Loss	3	4		dB			
Input P1dB	-8	-4		dBm			
Current Consumption	7	10	13.5	mA			
	6	10	14.5	mA	T= -10°C to 70°C; V_{CC} = 3.0V to 3.6V		
RX Shutdown Isolation	25	28		dB			
LNA_EN Control Current	30	250	500	uA			
LNA Turn On Time		200	500	nS			
Bluetooth TX/RX					Vcc = 3.3V; Temp = 25°C; CW; unless otherwise noted		
Insertion Loss		0.7	1.0	dB			
		0.7	1.2	dB	Temp = -10°C to 70°C, V _{CC} = 3.0V to 3.6V		
Input P1dB	23	27		dBm			
BT Port Return Loss	12	18		dB			
ANT Port Return Loss	12	18		dB			

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS150107

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

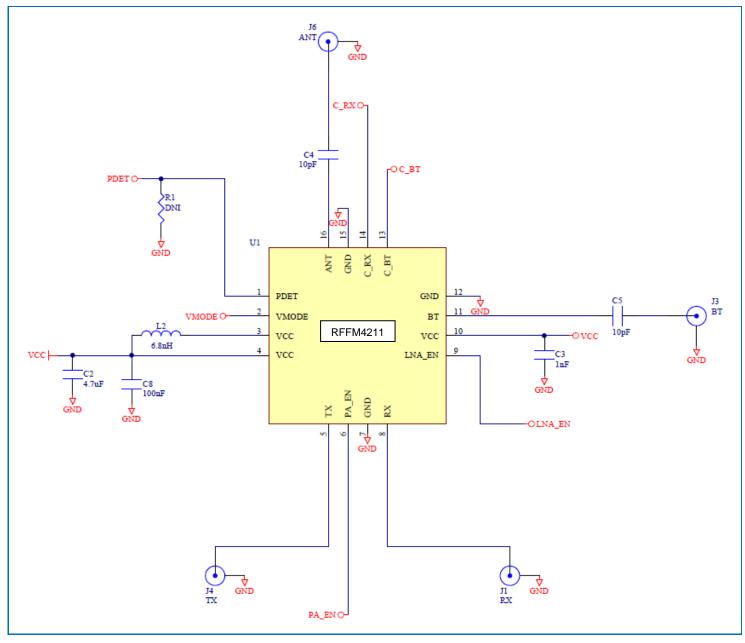
Parameter	Specification			Unit	Condition			
Farameter	Min	Тур	Max	Onic	Condition			
General Specifications								
Switch Control Current-High-Each Line		5	60	μA				
Switch Control Current-Low-Each Line		0.5	1	μA				
Switching Speed		100	300	ns				
ESD-Human Body Model		1000		V				
ESD-Charge Device Model		1000		V				
PA + TX Switch Turn-On Time		200	500	ns	10% to 90%			
			12	dBm	Into 50Ω , V _{CC} = 3.3V, 25°C			
Maximum Input Power			12	dBm	6:1 VSWR, V _{CC} = 3.3V, 25°C			
			5	dBm	10:1 VSWR, V _{CC} = 3.3V, 25°C			
Ruggedness 10: ⁻		1 VSWR		At typical operating conditions				
Leakage Current-PA	0 0.5 10		μA	V _{cc} = 3.3V, RF OFF, All control lines floating				

Switch Control Logic Truth Table


PA_EN	LNA_EN	C_RX	C_BT	VMode
Low	Low	Low	Low	Low
High	Low	Low	Low	Low
High	Low	Low	Low	High
Low	High	High	Low	Low
Low	Low	Low	High	Low
	Low High High Low	Low Low High Low High Low Low High	LowLowLowHighLowLowHighLowLowLowHighHigh	LowLowLowHighLowLowHighLowLowLowHighLowLowHighHigh

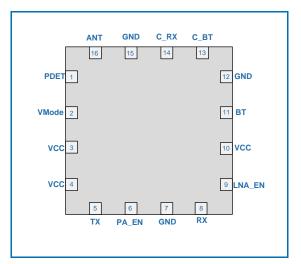
Notes:

- PA_EN and TX switch control are tied together internally.
- High = 2.8 to V_{CC} . Low = 0V to 0.2V.

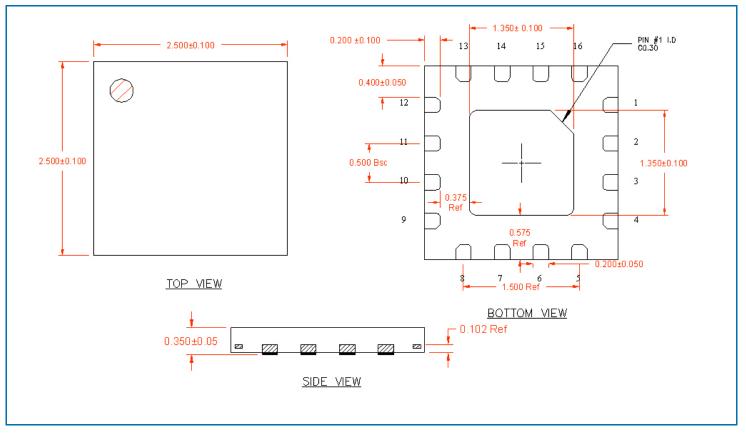


Timing Diagram

Applications Schematic


Note: L2 it's optional but recommended for best performance.

DS150107

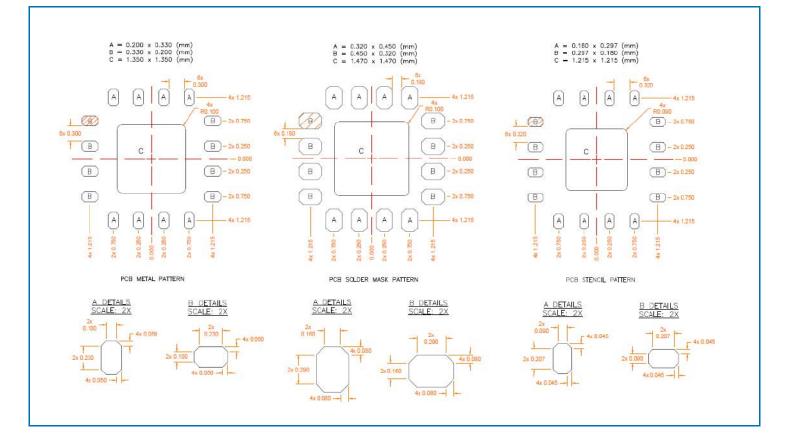

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Pin Out

Package Drawing

Notes

1. Shaded area represents Pin 1 locations


RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. DS150107

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFFM4211

PCB Patterns

Pin Names and Descriptions

Pin	Name	Description
1	PDET	Power detector voltage for the TX path. May need external series R/shunt C to adjust voltage level to filter RF noise.
2	VMODE	High/Low power mode control signal. VMODE can be low or floating for nominal conditions (high power mode). Applying 2.8V or greater to this pin enables low power mode.
3	VCC	Supply voltage for the output stage of the PA. See applications schematic for biasing and bypassing components.
4	VCC	Supply voltage for the first stage of the PA. See applications schematic for biasing and bypassing components.
5	тх	RF input port for the 802.11b/g/n PA. Input is matched to 50Ω . This pin is DC blocked internally.
6	PA_EN	Bias voltage for the PA. This pin also controls the TX switch of the SP3T. See logic table for proper settings.
7	GND	This pin is not connected internally and can be left floating or connected to ground.
8	RX	RF output port for the 802.11b/g/n LNA. Port is matched to 50Ω . This pin is DC blocked internally.
9	LNA_EN	Control voltage for the LNA. See logic table for proper settings.
10	VCC	Supply voltage for the LNA. See applications schematic for biasing and bypassing components.
11	BT	RF bidirectional port for Bluetooth®. Input is matched to 50Ω. An external DC block is required.
12	GND	This pin is not connected internally and can be left floating or connected to ground.
13	C_BT	Bluetooth® switch control pin. See logic table for proper settings.
14	C_RX	Receive switch control pin. See logic table for proper settings.
15	GND	This pin is not connected internally and can be left floating or connected to ground.
16	ANT	RF bidirectional antenna port matched to 50Ω . An external DC block is required.
Pkg Base	GND	The backside of the package should be connected to the ground plane through a short path, i.e., PCB vias under the device are recommended.