MP87L92 March 1998-3 Low Voltage CMOS 12-Bit High-Speed Analog-to-Digital Converter with Serial Logic Interface Port **FEATURES** • 3.3 V Operation • 12-Bit ADC with DNL = ± 1 LSB, INL = ± 2 LSB Sampling Frequency 1 MHz (typ) Rail-to-Rail Input Range V_{REF} Range: 1.5 V to V_{DD} • CMOS Low Power: 25 mW (typ) Spaced Ladder Taps for Non-Linear Transfer Function Creation · Binary and Two's Complement Digital Output Mode Serial Port Underflow Outputs • Precision Aperture Output Latch-Up Proof • ESD Protection: 2000 V Minimum **APPLICATIONS** Instrumentation • DAS Radar Medical Imaging Ultrasound · Broadcast and Studio Video Magnetic Resonance Signal Acquisition Digital Oscilloscopes · Spectrum Analysis · Digital Radio #### **GENERAL DESCRIPTION** The MP87L92 is a 12-bit 2-step high speed Analog-to-Digital Converter with DNL = ± 1 LSB and INL = ± 2 LSB. The MP87L92 contains an internal track and hold which allows for analog input signals as fast as 1 MHz and can convert signals at a 1 MSPS rate. The MP87L92 operates with a single supply at +3.3 V. Separate pins for reference ladder terminals and power supplies allow flexibility for various $A_{IN}, \Delta V_{REF}$, and power supply ranges. Data is presented at the output port every clock cycle after a 2.5 cycle pipeline delay. The digital output port is equipped with a serial data port. LINV and MINV enable binary and 2's complement data formatting. Through the 6 ladder tap pins, transfer function adjustment, linearity, and speed enhancement can be accommodated. #### **ORDERING INFORMATION** | Package
Type | Temperature
Range | Part No. | DNL
(LSB) | INL
(LSB) | |-----------------|----------------------|-----------|--------------|--------------| | SOIC | -40 to +85°C | MP87L92AS | ±1 | ±3 | | PDIP | -40 to +85°C | MP87L92AN | ±1 | ±3 | #### SIMPLIFIED BLOCK DIAGRAM #### **PIN CONFIGURATIONS** See Packaging Section for Package Dimensions ## **PIN OUT DEFINITIONS** | PIN NO. | NAME | DESCRIPTION | | | |---------|-----------------|---|--|--| | 1 | R5 | Ref. Resistor Ladder Tap (5/16 V _{REF}) | | | | 2 | AGND | Analog Ground | | | | 3 | V _{IN} | Analog Input | | | | 4 | AV_DD | Analog Positive Supply | | | | 5 | R8 | Ref. Resistor Ladder Tap (1/2 V _{REF}) | | | | 6 | R12 | Ref. Resistor Ladder Tap (3/4 V _{REF}) | | | | 7 | R4 | Ref. Resistor Ladder Tap (1/4 V _{REF}) | | | | 8 | V_{RB} | Negative Reference | | | | 9 | V_{RT} | Positive Reference | | | | 10 | AV_DD | Analog Positive Supply | | | | 11 | AV_DD | Analog Positive Supply | | | | 12 | AGND | Analog Ground | | | | 13 | AGND | Analog Ground | | | | 14 | MINV | Invert MSB (Active High) | | | | 15 | LINV | Invert LSB (Active High) | | | | 16 | UFW | Underflow Bit | | | | 17 | N/C | No Connection | | | | 18 | SDO | Serial Data Out | | | | 19 | DV_DD | Digital Positive Supply | | | | 20 | DGND | Digital Ground | | | | 21 | SCLK | Serial Clock | | | | 22 | Aperture | Aperture Delay Sync | | | | 23 | CLK | Clock | | | | 24 | PLOAD | Serial Shift Register Data Load | | | | 25 | N/C | No Connection | | | | 26 | N/C | No Connection | | | | 27 | R7 | Ref. Resistor Ladder Tap (7/16 V _{REF}) | | | | 28 | R9 | Ref. Resistor Ladder Tap (9/16 V _{REF}) | | | ## **ELECTRICAL CHARACTERISTICS TABLE** Unless Otherwise Specified: V_{DD} = 3 V, FS = 500 kHz (50% Duty Cycle), V_{RT} = 3.0 V, V_{RB} = AGND, TA = 25°C | | | | 25°C | | | | |--|---------------------------------|-----------------------|------|--------------|------------|--| | Parameter | Symbol | Min | Тур | Max | Units | Test Conditions/Comments | | KEY FEATURES | | | | | | | | Resolution | | 40 | | | Bits | | | | FS | 12 | 4 | | MHz | | | Maximum Sampling Rate | F5 | 0.5 | 1 | | IVIHZ | | | ACCURACY ¹ | | | | | | | | Differential Non-Linearity | DNL | | | <u>+</u> 1 | LSB | | | Integral Non-Linearity | INL | | | <u>+</u> 3 | LSB | Best Fit Line | | | | | | | | (Max INL – Min INL)/2 | | Zero Scale Error | EZS | | +20 | | LSB | | | Full Scale Error | EFS | | -20 | | LSB | | | REFERENCE VOLTAGES | | | | | | | | Positive Ref. Voltage | V _{REF(+)} | 2.0 | | AV_DD | V | | | Negative Ref. Voltage | VREF(+)
V _{REF(-)} | AGND | | ~ VDD | v | | | Differential Ref. Voltage ³ | VREF(-)
V _{REF} | 2.0 | | AV_DD | v | | | Ladder Resistance | VREF
R _L | | 550 | ייי טט | Ω | | | ANALOG INPUT | | | | | | | | | | | | | | | | Input Bandwidth (-3 dB) ⁴ | BW | | 5 | | MHz | | | Input Voltage Range | V_{IN} | V _{REF(-)} | | $V_{REF(+)}$ | V p-p | | | Input Capacitance Sample ⁵ | C _{IN} | | 50 | | pF | | | Input Capacitance Convert ⁵ | | | 8 | | pF | | | Aperture Delay from Clock | t _{AP} | | 30 | | ns | | | Aperture Delay from Aperture | t _{AP} | | 0 | | ns | Aperture pin load 5 pF | | Signal | | | | | | Measured at 50% point | | DIGITAL INPUTS | | | | | | | | Logical "1" Voltage | V_{IH} | 2,5 | | | l v | | | Logical "0" Voltage | V _{IL} | | | 0.5 | Ιv | | | Leakage Currents ⁶ | IN | | | | | V _{IN} =DGND to DV _{DD} | | CLK, OE1, OE2, MINV, LINV | 1114 | | 10 | | μΑ | 1111 - 111 - 155 | | Input Capacitance | | | 5 | | pF | | | Clock Timing | | | = | | ' | | | Clock Period | Ts | 1000 | | | ns | | | Rise & Fall Time ⁷ | t _R , t _F | | 15 | | ns | | | "High" Time | t _{PWH} | 500 | | | ns | | | "Low" Time | t _{PWL} | 500 | | | ns | | | Duty Cycle | **- | | 50 | | % | | | Serial Register Timing | | | | | | | | Shift Clock Period | t _{SC} | 80 | | | ns | | | Shift Clock to Data Delay | t _{SD} | | 30 | | ns | | | Minimum Pulse Width PLOAD | t _S | | 50 | | ns | | | Clock↑ to PLOAD↓ For | t _{CP} | | 0 | | ns | | | Valid D11 | 01- | | | | | | | DIGITAL OUTPUTS | | | | | | C _{OUT} =15 pF | | Laginal "d" Valtage | | DV 0.5 | | | | | | Logical "1" Voltage | V _{OH} | DV _{DD} -0.5 | | 0.5 | V | $I_{LOAD} = 1 \text{ mA}$ | | Logical "0" Voltage | V _{OL} | | | 0.5 | \ \ | I _{LOAD} = 1 mA | | Tristate Leakage | loz | | 1 | | μ A | V _{OUT} =DGND to DV _{DD} | | Data Valid Delay ² | t _{DL} | | 100 | | ns | I | #### **ELECTRICAL CHARACTERISTICS TABLE (CONT'D)** | | | | 25° C | | | | |--|------------------------------------|-----|----------|-----------|---------|--------------------------| | Parameter | Symbol | Min | Тур | Max | Units | Test Conditions/Comments | | POWER SUPPLIES ⁸ (Tmin to Tmax) | | | | | | | | Operating Voltage (AV _{DD} , DV _{DD})
Current (AV _{DD} + DV _{DD}) | V _{DD}
I _{DD} | 3 | 3.3
8 | 3.6
12 | V
mA | | | AC PARAMETERS | | | | | | | | Signal Noise Ratio | SNR | | 66 | | dB | | #### Notes: - ¹ Tester measures code transitions by dithering the voltage of the analog input (V_{IN}). The difference between the measured and the ideal code width (V_{REF}/4096) is the DNL error. The INL error is the maximum distance (in LSBs) from the best fit line to any transition voltage. Accuracy is a function of the sampling rate (FS). - 2 Guaranteed. Not tested. - 3 Specified values guarantee functionality. Refer to other parameters for accuracy. - 4 -3 dB bandwidth is a measure of performance of the A/D input stage (S/H + amplifier). Refer to other parameters for accuracy within the specified bandwidth. - 5 Switched capacitor analog input requires driver with low output resistance. - 6 All inputs have diodes to DV_{DD} and DGND. Input(s) LINV and MINV have internal pull down(s). Input DC currents will not exceed specified limits for any input voltage between DGND and DV_{DD}. - 7 Condition to meet aperture delay specifications (t_{AP}, t_{AJ}). Actual rise/fall time can be less stringent with no loss of accuracy. - 8 AGND & DGND pins are connected through the silicon substrate. #### Specifications are subject to change without notice ## ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)^{1, 2, 3} | V _{DD} to GND | Storage Temperature65 to +150°C | |--|--| | V _{RT} & V _{RB} | Lead Temperature (Soldering 10 seconds) +300°C | | V _{IN} V _{DD} +0.5 to GND -0.5 V | Package Power Dissipation Rating @ 75°C | | All Inputs | PDIP, SOIC | | All Outputs | Derates above 75°C 14mW/°C | #### Notes: - Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. - ² Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will protect the device from short transients outside the supplies of less than 100mA for less than 100µs. 3 V_{DD} refers to AV_{DD} and DV_{DD} . GND refers to AGND and DGND. Figure 1. MP87L92 Timing Diagram Figure 2. DNL Measurement Figure 3. INL Error Calculation ### **UFW: Underflow (Output)** This signal indicates when the Analog Input (V_{IN}) goes outside the V_{RB} range, and is normally at a low logic level. When $V_{IN} < V_{RB}$, UFW will go high and the data bits will show negative full scale (i.e. all 0's if MINV & LINV are low). #### SDO: Serial Data Output After the internal shift register is updated using the \overline{PLOAD} signal, the SDO pin outputs the A/D result starting with the MSB (which appears just after the \overline{PLOAD} strobe). Each bit is output on the rising edge of SCLK. #### SCLK: Serial Data Port Clock The SCLK controls the output of the serial port through SDO. SDO is updated on every rising edge of SCLK. The PLOAD signal will override the SCLK signal. #### **PLOAD** Serial data port shift register load: When $\overline{\text{PLOAD}}$ is low (i.e. level triggered not edge triggered), the current parallel data will be loaded into the shift register. $\overline{\text{PLOAD}}$ overrides SCLK. When $\overline{\text{PLOAD}}$ is high, the data can be shifted out through the SDO pin with SCLK. T_©M Figure 4. Serial Port Timing Chart PHASE = 1 #### **APERTURE: Aperture Delay Sync (output)** This signal is high when the internal sample/hold function is sampling $V_{\rm IN}$, and goes low when it is in the hold mode (when the ADC is comparing the stored input value to the reference ladder). The value of $V_{\rm IN}$ at the high to low transition of APERTURE is the value that will be digitized. A system can monitor this signal and adjust the CLK to accurately synchronize the sampling point to an external event. | MINV
LINV | 0 | 0
1 | 1
0 | 1 1 | |---|--------------------------------------|--------------------------------------|----------------------------|---| | V _{RT} ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' V _{IN} mid scale | 111 11
111 10
100 01
100 00 | 100 00
100 01
111 10
111 11 | 011 11
011 10
 | 000 00
000 01
1
011 10
011 11 | | '
'
'
'
V _{RB} | 011 11
 | 000 00
 | 111 11
100 01
100 00 | 100 00
1
111 10
111 11 | | | binary | inverted
2's complement | 2's complement | inverted
binary | Table 1. Output Data Format Truth Table #### MINV & LINV: Digital Output Format (inputs) These signals control the format of the digital output data bits DB0 – DB11. Normally both pins are held low so the data is in straight binary format (all 0's when $V_{IN} \! = \! V_{RB}$; all 1's when $V_{IN} \! = \! V_{RT}$). If MINV is pulled high then the MSB (DB11) will be inverted. If LINV is pulled high then the LSBs (DB0 – DB10) will be inverted. The OFW and UFW bits are not affected by these signals MINV & LINV are meant to be static digital signals. If they are to change during operation they should only change when the CLK is low (assuming PHASE is high; if PHASE is low then these signals should only change when CLK is high). Changing MINV and/or LINV on the wrong phase of the CLK will not hurt anything, but the effects on the digital outputs will not be seen until the output latch of the output register is enabled. MINV and LINV have internal pull down devices. Please see the simplified logic circuit (Figure 5.) Figure 5. MINV, LINV Simplified Logic Circuit ### V_{IN} Analog Input This part has a switched capacitor type input circuit. This means that the input impedance changes with the phase of the input clock. $V_{\rm IN}$ is sampled at the high to low clock transition. The diagram (Figure 6.) shows an equivalent input circuit. Figure 6. Equivalent Input Circuit #### Reference Ladder Taps These taps connect to every sixteenth point along the reference ladder; R4 is 4/16th up from $V_{RB},\,R7$ is 7/16ths up from $V_{RB},\,N0$ normally R4, R8 and R12 should have 0.1 microfarad capacitors to GND; this helps reduce the INL errors by stabilizing the reference ladder voltages. These taps can also be used to alter the transfer curve of the ADC. The internal interconnect resistance from the pin to the ladder is less than 3Ω for the even numbered taps, (i.e. R4,R6, etc.) and is approximately 10Ω for the odd numbered taps. Alternating the transfer curve may be desirable to make the probability of codes for a certain range of V_{IN} be enhanced or minimized Sometimes this is referred to as probability density function shaping, or histogram shaping. For Log shapes, the MP8790 is ideal since it provides 16 segments. 0.8 V maximum per tap is recommended for applications above 85°C. #### **APPLICATION NOTES** V_{IN} signals should not exceed AV_{DD} +0.5V or go below AGND -0.5V. All pins have internal protection diodes that will protect them from short transients (<100 μ s) outside the supply range. AGND and DGND pins are connected internally through the P-substrate. DC voltage differences between these pins will cause undesirable internal substrate currents. The power supply (V_{DD}) and reference voltage (V_{RT}& V_{RB}) pins should be decoupled with $0.1\mu F$ and $10\mu F$ capacitors to AGND, placed as close to the chip as possible. The digital outputs should not drive long wires or buses. The capacitive coupling and reflections will contribute noise to the conversion. At least three of the reference tap pins (R4, R8, R12) should be decoupled with $0.1\mu F$ to $1\mu F$ capacitors. This will help stabilize the internal reference voltages thus reducing any INL errors. The reference tap pins (R1-R16) can be used to create piecewise linear transfer functions. By forcing custom voltages on these pins, a 16-segment transfer function can be made. See *Figure 7*. Only the Ladder detail shown. Figure 7. A/D with Programmed Ladder Control for Creating a Piecewise Linear Transfer Function ## PERFORMANCE CHARACTERISTICS Graph 1. I_{DD} vs. FS Graph 2. DNL Error Plot