MITSUBISHI ICs (AV COMMON) # M52684AP/FP/BFP SYNC SEPARATOR, HORIZONTAL AFC #### DESCRIPTION The M52684 is a semiconductor integrated circuit consisting of horizontal, vertical sync separator and horizontal AFC (Automatic Frequency Control) for TV and VCR applications. #### **FEATURES** - A small number of external components and no adjustment. - Employment of a horizontal count-down, requiring no H-Hold. - Capable of varying the timing and pulse width of VD OUT by external components. - Stable HD pulse is available from horizontal sync signal. #### **APPLICATION** TV, VTR #### RECOMMENDED OPERATING CONDITION | Supply voltage range | 4.5 ~ 5.5 V | |----------------------|-------------| | Rated supply voltage | 5.0 V | # ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, surge capacity = 200pF, unless otherwise noted) | Symbol | Parameter | Ratings | Unit | |--------------------|-----------------------|----------------------|------| | Vcc Supply voltage | | 6. 5 | V | | | | 1.2 (M52684AP) | w | | Pd | Power dissipation | 430 (M52684AFP, BFP) | mW | | Surge | Permissible surge | ±200 | V | | Торг | Operating temperature | -20~75 | ᠸ | | Tstg | Storage temperature | −40~125 | ొ | #### **ELECTRICAL CHARACTERISTICS** (Ta = 25°C, unless otherwise noted) | Symbol | Parameter | Test conditions | | | | | Limits | | | Unit | | | |------------|---|-----------------|-------|-----|----------|---------------|--------|----------------|-----------|-----------|-----------|-------------| | Symbol | Parameter | Test point | Input | 3 | 5 | SW3 SW14 Note | | Min. Typ. Max. | | Max. | 01111 | | | lcc | Circuit current | A1 | SG1 | _ | - | ON | 1 | | 6.5 | 8.0 | 10.0 | mA | | fн | Horizontal free run frequency | 8 | _ | _ | _ | ON | 2 | | 15.55 | 15.80 | 16.05 | kHz | | fp1 | Horizontal pull-in range 1 | 8 | SG2 | | _ | ON | 1 | 1 | 300 | 500 | - 1 | Hz | | fp2 | Horizontal pull-in range 2 | 8 | SG2 | _ | _ | ON | 1 | 2 | -2700 | 3500 | _ | Hz | | tн | Horizontal output pulse width | 8 | SG1 | _ | _ | ON | 1 | 3 | 3.5 (3.4) | 3.9 (3.8) | 4.3 (4.2) | μ8 | | Vнн | Maximum voltage of horizontal output | 8 | SG1 | _ | _ | ON | 1 | 4 | 3.9 | 4.2 | | > | | VHL | Minimum voltage of horizontal output | 8 | SG1 | | | ON | 1 | 5 | _ | 0 | 0.3 | > | | | 11-14-14 | 8 | SGI |] - | | ON. | | 6 | 1.7 | 2. 2 | 2.7 | μs | | tрн | orizontal output position | 14 | | | _ | ON | ' | 0 | (-1.2) | (-1.7) | (-2.2) | | | tv | Vertical output pulse width | 7 | SG1 | - | _ | ON | 1 | 7 | 0.2 | 0.3 | 0.4 | ms | | VvH | Maximum voltage of vertical output | 7 | SG1 | _ | _ | ON | 1 | 8 | 3.9 | 4. 2 | - | V | | VvL | Minimum voltage of vertical output | 7 | SG1 | _ | _ | ON | 1 | 9 | | 0 | 0.3 | V | | | Madiant a day day and a salding | 7 | SG1 | | | ON | 1 | 10 | 9 | 11 | 13 | | | tpv | Vertical output position | 14 | SGI | _ | - | ON | ' | 10 | 9 | '' | 13 | μ\$ | | | Manimum input current of SYNC separation 1 14 | | | | 201 | 2 | 11 | 10 | 40 | 100 | | | | Iss Ma | | 14 | _ | _ | _ | ON | 3 | '' | 10 | 40 | 100 | μA | | VsH | Maximum voltage of SYNC SEP output | 1 | SG1 | _ | _ | ON | 1 | 12 | 3.8 | 4.1 | | V | | VsL | Minimum voltage of SYNC SEP output | 1 | SG1 | | _ | ON | 1 | 13 | - | 0.75 | 1.0 | V | | V 5 | Pin ⁽⁵⁾ voltage | 5 | _ | _ | | ON | 2 | 1 | 2.2 | 2.5 | 2.8 | V | ^{*1 :} Symbol"-" denotes OPEN. #### **ELECTRICAL CHARACTERISTICS TEST METHOD** #### Note 1: Horizontal pull-in range 1 "fe1" - Increase the frequency of input signal so that synchronousness of the input signal of SG2 and output waveform of pin (3) pulls out. - Decrease the frequency of SG2. Measure f₁, which is the frequency of SG2 when the output waveform of pin (8) synchronizes. - C. fp1 = f1 fH (fi: horizontal free run frequency) #### Note 2: Horizontal pull-in range 2 "fp2" - Decrease the frequency of input signal so that synchronousness of the input signal of SG2 and output waveform of pin ® pulls out. - b. Increase the frequency of SG2. Measure f₂, which is the frequency of SG2 when the output waveform of pin ® synchronizes. - C. fp2 = f2 fH Note 3: Horizontal output pulse width " τ _H" Note 4: Maximum voltage of horizontal output "VHH" Note 5: Minimum voltage of horizontal output "Vis." Note 6: Horizontal output position " 7 PH" Note 7: Vertical output pulse width " τ v" Note 8: Maximum voltage of vertical output "Vvn" Note 9: Minimum voltage of vertical output "VvL" **1** 6249826 0021254 459 **11** ^{*2:} Figures in () are applicable to BFP. #### Note 10: Vertical output position", PV" # Note 11: Minimum input current of SYNC separation "Iss" - a. Set Is to 0 mA. - Increase Is and obtain Iss, which is the value of Is when the output of pin ① becomes approximately 4 V. Note 12: Maximum voltage of SYNC SEP output "V_{St}" Note 13: Minimum voltage of SYNC SEP output "V_{St}" #### INPUT SIGNAL | SG. NO | Signal | Standard SYNC signal | | | | | |--------|---|----------------------|---|--|--|--| | SG1 | Standard
SYNC signal | 63.5 μ s 0.2 VP P | SYNC signal of which horizontal period is $63.5 \mu s$, including vertical SYNC signal with a sync period of 16.7 ms | | | | | SG2 | SYNC signal
for measuring
horizontal pull
in frequency | 0.2 VP-P | Frequency-variable pulse signal with 90% duty | | | | #### **TEST CIRCUIT** #### TYPICAL CHARACTERISTICS AMBIENT TEMPERATURE Ta (°C) ## APPLICATION EXAMPLE Units Resistance : Ω Capacitance : F #### DESCRIPTION OF PIN | Pin No. | Name | Function | DC Voltage (V) | Peripheral circuit of pins | |-------------|----------------------------|--|-------------------------|----------------------------| | O | COMPOSITE
SYNC OUT | Csync output pin | with no input
(0.75) | \$ 20k
100 1 | | 3 | V SYNC
SEP REF
CONTI | By varying current flowing in to pin ③, VD OUT position changes. | 1V | \$500 \$500
777 | | 4 | V SYNC
SEP REF
CONTI | To be connected to pin $\center{3}$ for use under condition of a phase difference of 11 μ s between SYNC and VD OUT. | 5V | ₩ 8 k | | (5) | V SYNC
SEP REF
CONT2 | By varing the voltage applied to pin ⑤, the phase difference between SYNC and VD OUT changes. | 2.5V | 5 10k \$20k \$20k \$20k | | (6) | V SYNC
SEP
FILTER | Integrates composite sync signal by internal time constant and external capacitor. (waveform) | t with no input | 600
300
X
1k | | © | VD OUT | VD output | with no input
(4, 2) | ₹100
₹15k | # MITSUBISHI ICS (AV COMMON) M52684AP/FP/BFP # SYNC SEPARATOR, HORIZONTAL AFC ## **DESCRIPTION OF PIN (cont.)** | Pin No. | Name | Function | DC Voltage (V) | Peripheral circuit of pins | |-----------|------------|------------------|----------------|--| | (8) | но оит | HD output | with no input | \$100
\$5k | | 9 | AFC FILTER | _ | 2.5 | \$300
300
W—9 | | ① | H OSC IN 1 | <u>-</u> | 2.0 | 12k | | 10 | H OSC IN2 | _ | 2. 15 | 3.3k (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | | 13 | H OSC OUT | 32 fн output pin | 2. 35 | 100
10k | #### **DESCRIPTION OF PIN (cont.)** | Pin No. | Name | Function | DC Voltage (V) | Peripheral circuit of pins | |---------|----------|----------------------------------|----------------|----------------------------| | 130 | SYNC SEP | Composite video signal input pin | 2.8 | 1k | #### PRECAUTIONS FOR APPLICATIONS How to Change Vertical Output Position - 1. Usually pins 3 and 4 are short-circuited. - By varying the current flowing in to pin ③, the vertical output position changes. To change the current, change the resistance at pin ③ by inserting a resistor between Vcc and pin ③. - Apply a DC voltage to pin 6. The reference voltage for vertical sync separation will vary changing the vertical output position. Note: When letting the vertical output position change, the vertical output pulse width also changes simultaneously. Characteristic Changes caused by Variation of External Constant - Graph 1 shows the phase difference between SYNC OUT and VD OUT occurring when varying the current flowing in at pin 3. - Graph 2 shows the phase difference between SYNC OUT and VD OUT occurring when varying the voltage applied to pin ⑤. #### SPECIAL PARTS | Part name | Model code | Manufacturer | |--------------------|-----------------------------------|----------------------| | Ceramic oscillator | CSB500F9 (PAL)
CSB503F34(NTSC) | Murata Mfg. Co., Ltd | How to Determine External Constant at Pin (4) #### 1. Operation of M52684 Sync separation is performed by comparing the input at pin (4) with the internal reference voltage. When the input at pin (4) is equal to or lower than the reference voltage (2.8 V) and the flowing current is equal to or larger than the minimum input current of SYNC separation, the output of pin (1) will be Hi level. - 2. Function of External Element - a) The external circuit consists of R₁, R₂, C₁, and C₂ as shown in Fig. 1. - b) R2 defines current IS of pin [®] flowing during sync signal period. R1 and R2 set sync separation level VTH. C1 defines the time constant C1∗R2. **GRAPH1** c) R₁ and C₁ function as a battery that absorbs the DC voltage difference between the input V_{IN} and the input at pin (4). This circuit becomes stationary at a point where the power charged during the Ts period equals the power discharged during other periods. - d) R₂ and C₂ make up a low-pass filter and attenuate noise. - 3. How to Determine the Constant Regarding the input signal, make settings for the DC voltage V_{IN} so that V_{TH} is equal to or lower than V_{REF} (2.8 V).If V_{TH} is higher than V_{REF} , sync separation becomes impossible, so that care should be taken. Assume that the input signal has the following waveform. Fig. 2 Let VTH be 0.51 V in order to avoid the effect of burst signal. $$R_2 = \frac{VIH - VS}{Is}$$ Although the limit of IS is 10 to 100 $\,\mu$ A, choose 200 $\,\mu$ A for Is taking into consideration fluctuation of input signals and the weak electric field. $$R_2 = \frac{0.08}{200 \ \mu A} = 400 \ \Omega$$ Given the stationary state, R_1 is determined by the following expression. R₁ = $$\frac{V_{REF} - V_{TH}}{I_S} \times \frac{(T - T_S)}{T_S} = \frac{2.75 - 0.51}{200} \times \frac{(63.5 - 4.5)}{4.5}$$ = 147 kΩ C₁ is determined from the value of R₁, making the time constant become larger than the vertical period. In practice, V_{TH} is checked using a two-event oscilloscope for comparing the waveform of pin \$ with the input waveform. If some problem occurs from using R_1 and R_2 obtained by theoretical expressions, choose an optimum value for R_1 , reading the oscilloscope.