VOICE VIBRATION SENSORS The V2S200D is a high bandwidth, low-power specialized vibration sensor which improves voice call quality in noisy environments and windy conditions. It offers over 50dB acoustic isolation in noisy environments (bars, airports, windy outdoor spaces). The PDM interface facilitates seamless integration on a PDM bus together with a traditional PDM microphone and its port-less package makes it robust to particles and liquid ingress. Listen to the V2S200D difference on www.knowles.com/V2S. | | SENSOR | DESCRIPTION | SIZE | SNR* | 1% THD | CURRENT | | |----|--|--|----------------------------|--------------------------------|---|---------|--| | 28 | V2S200D
On flex:
KAS-700-0177
NEW | Voice Vibration
Sensor with
PDM output (| 3.30 ×
2.30 ×
0.93mm | 64.5 dB (A)
(BW=100Hz-4kHz) | 290μA @
768kHz
> 10g
700μA @
2.4MHz | | | | > | | | | , | | | | ^{*} SNR specs apply to normal mode. For low power mode specs, refer to the datasheet. ## **MEMS MICROPHONES** Knowles is the world leader in MEMS microphones across the Mobile, Ear, and IoT markets and has shipped close to 20 billion units to date. Design variables include ever-smaller sizes, lower profiles and mounting options, increased output capacities, and new digital audio options that eliminate analog noise. For manufacturers, surface mount designs eliminate off-line subassembly production costs. Our microphones have been used in applications from smart speakers and mobile phones to remote controls, automotive, laptops, smart home products, headphones and more. Let us help you choose the right microphone for your project. # DIGITAL (PDM) MICROPHONES | | MICROPHONE | DESCRIPTION | SIZE | SNR* | LFRO | 1% THD
10% THD* | CURRENT | | |---------|--|---|---|------------|------|------------------------------|---|-------| | | Hyperion
SPK18R1LM4H-1
NEW | High SNR,
low power,
low latency
for OTE | 4.00 ×
3.00 ×
1.20mm | 70.5 dB(A) | 21Hz | 125dBSPL
128dBSPL | 200μA
@ 768kHz
450μA
@ 2.4MHz | HO HO | | | Titan SPH18R1LM4H-1 On flex: KAS-700-0172 *CUSTOMER FAVORITE* | High SNR,
low power,
low latency for
TWS | 3.50 x
2.65 x
1.00mm [†] | 68.5 dB(A) | 30Hz | 123 dBSPL
129 dBSPL | 190µA
@ 768kHz
430µA
@ 2.4MHz | | | DIGITAL | Cameron SPW0690LM4H-1 On flex: KAS-700-0146 | Smallest and
Thinnest Digital | 3.10 x
2.50 x
0.85mm | 66.5 dB(A) | 45Hz | 118 dBSPL
135 dBSPL | 270μA
@ 768kHz
1000μA
@ 2.4MHz | | | | Cornell II
SPH0655LM4H-1
On flex:
KAS-700-0153
CUSTOMER FAVORITE | Superior 1% THD performance | 3.50 x
2.65 x
0.98mm | 66 dB(A) | 25Hz | 130.5 dBSPL
132.5 dBSPL | 260μA
@ 768kHz
1000μA
@ 2.4MHz | 10 | | | Luiso SPH0141LM4H-1 On flex: KAS-700-0157 | Entry tier digital | 3.50 x
2.65 x
0.98mm | 64 dB(A) | 45Hz | 108 dBSPL
121 dBSPL | 235µA
@ 768kHz
620µA
@ 2.4MHz | | [†] Also available in smaller package sizes. Please contact a Knowles representative. # **ANALOG MICROPHONES** | | MICROPHONE | DESCRIPTION | SIZE | SNR* | LFRO | 1% THD
10% THD* | CURRENT | | |--------|---|--|----------------------------|------------|-----------------|--------------------------|-------------------------------------|--| | | Raptor
SPK01A0LR5H-1
NEW | High SNR,
high AOP,
single-ended | 4.00 x
3.00 x
1.20mm | 72 dB(A) | 17Hz | 122 dBSPL
130 dBSPL | 175μΑ
@ 2.75V
180μΑ
@ 3.6V | | | | Falcon
SPH11C3LR5H-1
On flex:
KAS-700-0165 | Differential 1.8
and 2.7V | 3.50 x
2.65 x
1.00mm | 68.5 dB(A) | 32Hz,
18Hz † | 125 dBSPL
134 dBSPL | 67μA
@ 1.8V
200μA
@ 2.75V | | | ANALOG | Robin
SPV61A0LR5H-1
On flex:
KAS-700-0170
CUSTOMER FAVORITE | Single-ended
Tochi 2 upgrade | 2.75 x
1.85 x
0.90mm | 66 dB(A) | 35Hz | 130 dBSPL
133 dBSPL | 175µA
@ 2.75V | | | | Tochi 2
SPV21A0LR5H-1V
On flex:
KAS-700-0171 | Single-ended
Superior 1% THD
performance | 2.75 x
1.85 x
0.90mm | 64.5dB(A) | 35Hz | 132 dBSPL
134 dBSPL | 175µA
@ 2.75V | | | | Ford 2
SPV0142LR5H-1
On flex:
KAS-700-0155 | Single-ended | 2.75 x
1.85 x
0.90mm | 62.5 dB(A) | 85Hz | 110 dBSPL
124 dBSPL | 132μA
@ 1.8V | | ^{† 18}Hz LFRO variant also available (part number SPH21C3LR5H-1) # SPECIALTY MICROPHONES | | MICROPHONE | DESCRIPTION | SIZE | SNR* | LFRO | 1% THD
10% THD* | CURRENT | | |---------|---|--|----------------------------|----------|------|--------------------------|--|--| | DIGITAL | Marina
SPC18P8LM4H-1
On flex:
KAS-700-0159 | Slim Package
Bottom-Ported | 3.50 x
2.00 x
1.00mm | 65 dB(A) | 25Hz | 119 dBSPL
122 dBSPL | 260µA
@ 768kHz
865µA
@ 2.4MHz | | | | Baracus
SPG08P4HM4H-1
On flex:
KAS-700-0152
CUSTOMER FAVORITE | Slim Package
Top-Ported | 4.00 x
2.00 x
1.10mm | 64 dB(A) | 30Hz | 117 dBSPL
120 dBSPL | 290µA
@ 768kHz
715µA
@ 2.4MHz | | | | Crawford
SPH0645LM4H-1
On flex:
KAS-700-0137 | I ² S Output
digital
microphone | 3.50 x
2.65 x
0.98mm | 65 dB(A) | 45Hz | 110 dBSPL
120 dBSPL | 600μA
@ 3.072MHz | | $^{^{\}star}$ SNR and THD specs apply to normal mode. For low power mode specs, refer to the datasheet. #### DIGITAL (PDM) OR ANALOG MICROPHONES? PDM microphones have an integrated ADC and return oversampled PDM data at the supplied clock frequency. Advantages of PDM microphones include superior noise immunity, simpler PCB layout, typically better system SNR and lower overall power consumption. PDM microphones can greatly simplify system design if the processor or CODEC supports a PDM port. #### SIGNAL TO NOISE RATIO For far field applications like smart speakers, high SNR microphones result in superior audio pickup. ANC and transparency mode features in TWS need high SNR microphones for better user experience. When comparing analog to PDM microphones, reduce the analog SNR by ~1.5dB to account for the external ADC's noise contribution. #### ACOUSTIC OVERLOAD POINT (AOP) The AOP is the sound pressure level at 1kHz at which the total harmonic distortion is 10%. At this point, audio is heavily clipped and sounds very distorted. Microphones require a high AOP spec if they are subject to high sound levels (eg. close to loudspeakers, in-ear microphones in earbuds, outdoor applications exposed to wind noise). #### **ULTRASONIC APPLICATIONS** MEMS microphones inherently have a very usable ultrasonic response from 20kHz to 80kHz or more. The output of the u/s signal must be processed by an amp, CODEC, or ADC that can extract the needed frequencies, usually by using a higher sample rate and/or lower decimation rate. #### PORT LOCATION Bottom port microphones typically have better noise performance than an equivalent top port microphone. For this reason, bottom port microphones are preferred unless mechanical constraints dictate a top port microphone. #### SENSITIVITY OF PDM MICROPHONES Sensitivity of microphones is the reference output for 94dBSPL sound. Higher sensitivity implies more signal for a given sound. In PDM microphones, higher sensitivity does not imply higher performance because gain can simply be applied in the digital domain by multiplying the output code. Dynamic range is a better indicator of microphone performance. #### LOW FREQUENCY ROLL-OFF (LFRO) The LFRO is the -3dB point of the frequency response with respect to the sensitivity at 1kHz. A low LFRO is advantageous for bass frequency pickup and ANC, but it is more sensitive to wind noise and low frequency overload in a feedback ANC system. # MEMS VS. ELECTRET CONDENSER (ECM) MICROPHONES MEMS microphones are reflow capable SMT devices with stable performance under extreme conditions. They are resistant to power supply noise, humidity, and mechanical shock and vibration . Compared to ECMs, MEMS microphones have wide operating temperature and supply voltage ranges where sensitivity does not drift. # **EVALUATION KITS** #### **TEST FLEX PCBs** Knowles utilizes flex PCBs when testing microphones. We have a common size and interface such that flexes from any microphone can be used in various test fixtures. The only difference between the test boards of different microphones is the pinout and pad configuration. Once microphones are mounted on flex circuits or coupons, it is much easier to access the microphone signals. Testing a larger sample size of devices is facilitated if the flexes and coupons are inserted into an 8 position 0.5mm Kyocera connector (MPN 046288008000846). Example flex PCBs (Digital bottom port, Analog differential bottom port, Digital top port) ### FLEX-TO-COUPON ADAPTER Knowles uses an adapter to be able to use flex circuits with a 2x3 Sullins connector (MPN EBMO3DSEN-S243) or for convenient connection with flying wires. #### KCA2733 Flex-to-Coupon adapter AN18: Knowles Flex Circuits and Coupons for Testing: www.knowles.com/docs/default-source/default-document-library/an18-knowles-flex-circuit-and-coupons-for-testing_updated.pdf ## **EVALUATION BOARD "MUSKIE"** The Muskie microphone evaluation kit allows for simple and easy evaluation of Knowles SiSonic™ MEMS microphones. Muskie implements dual 6-pin Sullins connectors for stereo pairs of Analog/Differential microphones, Digital microphones, or I²S microphones. KAS-33100-0004 Evaluation platform 'Muskie' **User guide:** https://www.knowles.com/docs/default-source/model-downloads/kas-33100-0004-muskie-users-guide-rev28jun19.pdf?sfvrsn=262976b1_9 #### ADDITIONAL RESOURCES Datasheets: www.Knowles.com/SiSonic/Design-Guide: www.Knowles.com/SiSonic/Evaluation-Kits: www.Knowles.com/SiSonic/Evaluation-Kits Application notes: www.Knowles.com/SiSonic/Automotive Voice Vibration Sensor: www.knowles.com/v2s #### DISCLAIMER The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples given herein, any typical values stated herein and/or any information regarding the application of the device, Knowles Electronics, LLC hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. #### INFORMATION For further information on technology, delivery terms and conditions and prices, please contact a Knowles representative. © 2022, Knowles Electronics, LLC, Itasca, IL USA. All Rights Reserved. Knowles and the logo are trademarks of Knowles Electronics, LLC.