Single 400MHz Fixed Gain Amplifier #### **Features** - Gain selectable (+1, -1, +2) - $400MHz 3dB BW (A_V = 1, 2)$ - 9mA supply current - Single and dual supply operation, from 5V to 10V - Available in 5-pin SOT23 package - Triple (EL5396C) available - 200MHz, 4mA product available (EL5197C, EL5397C) ### **Applications** - Video Amplifiers - Cable Drivers - RGB Amplifiers - Test Equipment - Instrumentation - Current to Voltage Converters ### **Ordering Information** | Part No | Package | Tape & Reel | Outline # | |--------------|---------|-------------|-----------| | EL5196CW | SOT-23 | - | MDP0038 | | EL5196CW-T7 | SOT-23 | 7 in | MDP0038 | | EL5196CW-T13 | SOT-23 | 13 in | MDP0038 | | EL5196CS | SO-8 | - | MDP0027 | | EL5196CS-T7 | SO-8 | 7 in | MDP0027 | | EL5196CS-T13 | SO-8 | 13 in | MDP0027 | ### **General Description** The EL5196C is a fixed gain amplifier with a bandwidth of 400MHz, making these amplifiers ideal for today's high speed video and monitor applications. The EL5196C features internal gain setting resistors and can be configured in a gain of +1, -1 or +2. The same bandwidth is seen in both gain-of-1 and gain-of-2 applications. For applications where board space is critical, the EL5196C is offered in the 5-pin SOT23 package, as well as an 8-pin SO. The EL5196C operates over the industrial temperature range of -40°C to +85°C. ## **Pin Configurations** **September 19, 2001** ^{*} This pin must be left disconnected ## Absolute Maximum Ratings $(T_A = 25^{\circ}C)$ Values beyond absolute maximum ratings can cause the device to be prematurely damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied. Supply Voltage between V_S+ and V_S Maximum Continuous Output Current Operating Junction Temperature 125°C Power Dissipation See Curves Pin Voltages $V_{S^-} = 0.5 \text{V to } \sqrt{s} + +0.5 \text{V}$ Storage Temperature $-65^{\circ}\text{C to } +150^{\circ}\text{C}$ Operating Temperature $-40^{\circ}\text{T to } +85^{\circ}\text{C}$ Lead Temperature 260°C #### Important Note: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_L = T_C = T_A$ #### **Electrical Characteristics** V_S + = +5V, V_{S^*} = -5V, R_L = 150 Ω , T_A = 25 $^{\circ}$ C unless otherwise specified. | Parameter | Description | Conditions | Min | Тур | Max | Unit | |-------------------------------|--|--|-------|----------------------|---------|--------| | AC Performa | ince | | | | | | | BW | -3dB Bandwidth | $A_V = +1$ | | 400 | | MHz | | | | $A_V = -1$ | | 400 | | MHz | | | | $A_V = +2$ | | 400 | | MHz | | BWI | 0.1dB Bandwidth | | | 35 | | MHz | | SR | Slew Rate | $V_O = -2.5 \text{V to } +2.5 \text{V}, A_V = +2$ | 2500 | 2900 | | V/µs | | ts | 0.1% Settling Time | $V_{OUT} = -2.5V \text{ to } +2.5V, AV = -1$ | | 9 | | ns | | e _n | Input Voltage Noise | | | 3.8 | | nV/√Hz | | i _n - | IN- input current noise | | | 25 | | pA/√Hz | | i _n + | IN+ input current noise | | | 55 | | pA/√Hz | | dG | Differential Gain Error [1] | $A_V = +2$ | | 0.035 | | %c | | dP | Differential Phase Error [1] | $A_V = +2$ | | 0.04 | | - | | DC Performa | nce | | | | | ~ | | V _{OS} | Offset Voltage | | -15 | 1 | 15 | mV | | T_CV_{OS} | Input Offset Voltage Temperature Coefficient | Measured from T _{MIN} to T _{MAX} | | 5 | | μV/°C | | AE | Gain Error | $V_O \approx -3V \text{ to } +3V$ | -2 | 1.3 | 2 | % | | R _F R _G | Internal R _F and R _G | | 320 | 400 | 480 | Ω | | Input Charac | teristics | | | | | | | CMIR | Common Mode Input Range | | ±3V | ±3.3V | | V | | +I _{IN} | + Input Current | | -120 | 40 | 120 | μA | | -I _{IN} | - Input Current | | -40 | 4 | 40 | μA | | R _{IN} | Input Resistance | at I _N + | | 27 | | kΩ | | C _{IN} | Input Capacitance | | | 0.5 | | pF | | Output Chara | acteristics | | | server in the second | 14 2 44 | | | v_0 | Output Voltage Swing | $R_L = 150\Omega$ to GND | ±3.4V | ±3.7V | | V | | | | $R_L = 1K\Omega$ to GND | ±3.8V | ±4.0V | | V | | I _{OUT} | Output Current | $R_L = 10\Omega$ to GND | 95 | 120 | | mA | | Supply | | | | | | | | Is _{ON} | Supply Current | No Load, V _{IN} = 0V | 8 | 9 | 10.5 | mA | | PSRR | Power Supply Rejection Ratio | DC, $V_S = \pm 4.75V$ to $\pm 5.25V$ | 55 | 75 | | dB | | -IPSR | - Input Current Power Supply Rejection | DC, $V_S = \pm 4.75V$ to $\pm 5.25V$ | -2 | | 2 | μA/V | ^{1.} Standard NTSC test, AC signal amplitude = 286mV_{P,P}, f = 3.58MHz ## Single 400MHz Fixed Gain Amplifier # **Typical Performance Curves** ## Single 400MHz Fixed Gain Amplifier DC Input Voltage DC Input Voltage ## **Typical Performance Curves** #### Small Signal Step Response Frequency (MHz) #### Settling Time vs Settling Accuracy #### Transimpedance (Rol) vs Temperature ## Single 400MHz Fixed Gain Amplifier ## **Typical Performance Curves** #### Positive Output Swing vs Temperature for Various Loads #### Output Current vs Temperature #### Supply Current vs Temperature #### Negative Output Swing vs Temperature for Various Loads #### Slew Rate vs Temperature ## Single 400MHz Fixed Gain Amplifier ## **Typical Performance Curves** ## **Pin Descriptions** | EL5196C
8-Pin SO | EL5196C
5-Pin
SOT23 | Pin Name | Function | Equivalent Circuit | | |---------------------|---------------------------|----------|---|--|--| | 1, 5 | | NC | Not connected | | | | 2 | 4 | IN- | Inverting input | IN+ D R _G R _F Circuit1 | | | 3 | 3 | IN+ | Non-inverting input | (See circuit 1) | | | 4 | 2 | VS- | Negative supply | | | | 6 | ı | OUT | Output | OUT OUT Circuit 2 | | | 7 | 5 | VS+ | Positive supply | | | | 8 | | NC | Not connected (leave this pin disconnected) | | | Single 400MHz Fixed Gain Amplifier ### **Applications Information** #### **Product Description** The EL5196C is a current-feedback operational amplifier that offers a wide -3dB bandwidth of 600MHz and a low supply current of 6mA per amplifier. The EL5196C works with supply voltages ranging from a single 5V to 10V and they are also capable of swinging to within 1V of either supply on the output. Because of their current-feedback topology, the EL5196C does not have the normal gain-bandwidth product associated with voltage-feedback operational amplifiers. Instead, its -3dB bandwidth to remain relatively constant as closed-loop gain is increased. This combination of high bandwidth and low power, together with aggressive pricing make the EL5196C the ideal choice for many low-power/high-bandwidth applications such as portable, handheld, or battery-powered equipment. For varying bandwidth needs, consider the EL5191C with 1GHz on a 9mA supply current or the EL5193C with 300MHz on a 4mA supply current. Versions include single, dual, and triple amp packages with 5-pin SOT23, 16-pin QSOP, and 8-pin or 16-pin SO outlines. # Power Supply Bypassing and Printed Circuit Board Layout As with any high frequency device, good printed circuit board layout is necessary for optimum performance. Low impedance ground plane construction is essential. Surface mount components are recommended, but if leaded components are used, lead lengths should be as short as possible. The power supply pins must be well bypassed to reduce the risk of oscillation. The combination of a $4.7\mu F$ tantalum capacitor in parallel with a $0.01\mu F$ capacitor has been shown to work well when placed at each supply pin. For good AC performance, parasitic capacitance should be kept to a minimum, especially at the inverting input. (See the Capacitance at the Inverting Input section) Even when ground plane construction is used, it should be removed from the area near the inverting input to minimize any stray capacitance at that node. Carbon or Metal-Film resistors are acceptable with the Metal-Film resistors giving slightly less peaking and bandwidth because of additional series inductance. Use of sockets, particularly for the SO package, should be avoided if possible. Sockets add parasitic inductance and capacitance which will result in additional peaking and overshoot. #### Capacitance at the Inverting Input Any manufacturer's high-speed voltage- or current-feedback amplifier can be affected by stray capacitance at the inverting input. For inverting gains, this parasitic capacitance has little effect because the inverting input is a virtual ground, but for non-inverting gains, this capacitance (in conjunction with the feedback and gain resistors) creates a pole in the feedback path of the amplifier. This pole, if low enough in frequency, has the same destabilizing effect as a zero in the forward openloop response. The use of large-value feedback and gain resistors exacerbates the problem by further lowering the pole frequency (increasing the possibility of oscillation.) The EL5196C has been optimized with a 375 Ω feedback resistor. With the high bandwidth of these amplifiers, these resistor values might cause stability problems when combined with parasitic capacitance, thus ground plane is not recommended around the inverting input pin of the amplifier. #### Feedback Resistor Values The EL5196C has been designed and specified at a gain of +2 with R_F approximately 375 Ω . This value of feedback resistor gives 300MHz of -3dB bandwidth at A_V =2 with 2dB of peaking. With A_V =-2, an R_F of 375 Ω gives 275MHz of bandwidth with 1dB of peaking. Since the EL5196C is a current-feedback amplifier, it is also possible to change the value of R_F to get more bandwidth. As seen in the curve of Frequency Response for Various R_F and R_G , bandwidth and peaking can be easily modified by varying the value of the feedback resistor Because the EL5196C is a current-feedback amplifier, its gain-bandwidth product is not a constant for different closed-loop gains. This feature actually allows the EL5196C to maintain about the same -3dB bandwidth. As gain is increased, bandwidth decreases slightly while stability increases. Since the loop stability is improving with higher closed-loop gains, it becomes possible to reduce the value of R_F below the specified 375Ω and still retain stability, resulting in only a slight loss of bandwidth with increased closed-loop gain. # **Supply Voltage Range and Single-Supply Operation** The EL5196C has been designed to operate with supply voltages having a span of greater than 5V and less than 10V. In practical terms, this means that the EL5196C will operate on dual supplies ranging from $\pm 2.5V$ to $\pm 5V$. With single-supply, the EL5196C will operate from 5V to 10V. As supply voltages continue to decrease, it becomes necessary to provide input and output voltage ranges that can get as close as possible to the supply voltages. The EL5196C has an input range which extends to within 2V of either supply. So, for example, on ±5V supplies, the EL5196C has an input range which spans ±3V. The output range of the EL5196C is also quite large, extending to within 1V of the supply rail. On a ±5V supply, the output is therefore capable of swinging from -4V to +4V. Single-supply output range is larger because of the increased negative swing due to the external pull-down resistor to ground. #### Video Performance For good video performance, an amplifier is required to maintain the same output impedance and the same frequency response as DC levels are changed at the output. This is especially difficult when driving a standard video load of 150Ω , because of the change in output current with DC level. Previously, good differential gain could only be achieved by running high idle currents through the output transistors (to reduce variations in output impedance.) These currents were typically comparable to the entire 6mA supply current of each EL5196C amplifier. Special circuitry has been incorporated in the EL5196C to reduce the variation of output impedance with current output. This results in dG and dP specifications of 0.015% and 0.04° , while driving 150Ω at a gain of 2. Video performance has also been measured with a 500Ω load at a gain of +1. Under these conditions, the EL5196C has dG and dP specifications of 0.03% and 0.05° , respectively. #### **Output Drive Capability** In spite of its low 6mA of supply current, the EL5196C is capable of providing a minimum of ± 120 mA of output current. With a minimum of ± 120 mA of output drive, the EL5196C is capable of driving 50Ω loads to both rails, making it an excellent choice for driving isolation transformers in telecommunications applications. #### **Driving Cables and Capacitive Loads** When used as a cable driver, double termination is always recommended for reflection-free performance. For those applications, the back-termination series resistor will decouple the EL5196C from the cable and allow extensive capacitive drive. However, other applications may have high capacitive loads without a back-termination resistor. In these applications, a small series resistor (usually between 5Ω and 50Ω) can be placed in series with the output to eliminate most peaking. The gain resistor (R_G) can then be chosen to make up for any gain loss which may be created by this additional resistor at the output. In many cases it is also possible to simply increase the value of the feedback resistor (R_F) to reduce the peaking. #### **Current Limiting** The EL5196C has no internal current-limiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device. #### **Power Dissipation** With the high output drive capability of the EL5196C, it is possible to exceed the 150°C Absolute Maximum junction temperature under certain very high load current conditions. Generally speaking when R_L falls below about 25 Ω , it is important to calculate the maximum junction temperature $(T_{\rm JMAX})$ for the application to determine if power supply voltages, load conditions, or package type need to be modified for the EL5196C to remain in the safe operating area. These parameters are calculated as follows: $$T_{\mathsf{JMAX}} = T_{\mathsf{MAX}} + (\theta_{\mathsf{JA}} \times \mathsf{n} \times \mathsf{PD}_{\mathsf{MAX}})$$ ## Single 400MHz Fixed Gain Amplifier #### Where: - T_{MAX} = Maximum Ambient Temperature - θ_{JA} = Thermal Resistance of the Package - n = Number of Amplifiers in the Package - PD_{MAX} = Maximum Power Dissipation of Each Amplifier in the Package PD_{MAX} for each amplifier can be calculated as follows: $$PD_{MAX} = (2 \times V_S \times I_{SMAX}) + \left[(V_S - V_{OUTMAX}) \times \frac{V_{OUTMAX}}{R_L} \right]$$ #### Where: - V_S = Supply Voltage - I_{SMAX} = Maximum Supply Current of 1A - V_{OUTMAX} = Maximum Output Voltage (Required) - R_L = Load Resistance