
®

R14008.A

L64364
ATMizer® II+
ATM-SAR Chip

TECHNICAL
MANUAL

F e b r u a r y 2 0 0 1

ii

This document contains proprietary information of LSI Logic Corporation. The
information contained herein is not to be used by or disclosed to third parties
without the express written permission of an officer of LSI Logic Corporation.

Document DB14-000037-02, Second Edition (February 2001)
This document describes LSI Logic Corporation’s L64364 ATMizer® II+ ATM-SAR
Chip and will remain the official reference source for all revisions of this product
until rescinded by an update.

To receive product literature, visit us at http://www.lsilogic.com.

LSI Logic Corporation reserves the right to make changes to any products herein
at any time without notice. LSI Logic does not assume any responsibility or
liability arising out of the application or use of any product described herein,
except as expressly agreed to in writing by LSI Logic; nor does the purchase or
use of a product from LSI Logic convey a license under any patent rights,
copyrights, trademark rights, or any other of the intellectual property rights of
LSI Logic or third parties.

Copyright © 1995–2001 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT
The LSI Logic logo design, CoreWare, G10, MiniRISC, and ATMizer are
registered trademarks of LSI Logic Corporation. All other brand and product
names may be trademarks of their respective companies.

BD

Preface iii

Preface

This book is the primary reference and technical manual for the L64364
ATMizer® II+ ATM-SAR Chip. It contains a complete functional
description of the L64364 and includes complete physical and electrical
specifications for the L64364.

Audience

This book assumes that you have some familiarity with the concepts of
Asynchronous Transfer Mode (ATM), data communications,
microprocessors, and related support devices. The people who benefit
from this book are:

• Engineers and managers who are evaluating the L64364 for possible
use in ATM applications.

• Engineers who are designing the L64364 into a system.

• Software developers writing software for the L64364.

Organization

This book has the following chapters:

• Chapter 1, Introduction , provides an overview of the ATMizer II+
ATM-SAR Chip and lists its features.

• Chapter 2, Functional Overview , describes the ATMizer II+ chip on
a functional block level.

• Chapter 3, Signal Descriptions , lists and describes all of the
input/output signals of the ATMizer II+ chip.

• Chapter 4, ATM Processing Unit , describes the architecture,
instruction set, registers, cache memory, memory map, interrupts,
exceptions, and boot procedures for the ATM Processing Unit.

iv Preface

• Chapter 5, Enhanced DMA , describes the data structures used by
the EDMA, the EDMA commands, its registers, and its operation in
AAL0 and AAL5 modes.

• Chapter 6, ATM Cell Interface , describes the ATM cell size and
layout, the cell descriptor, registers, Cell Buffer Manager, receiver,
transmitter, Utopia polling schemes, and loopback mode for the ATM
Cell Interface.

• Chapter 7, Scheduler Unit , describes the Scheduler Unit’s modes of
operation, command execution, and registers.

• Chapter 8, Timer Unit , describes how the timer clocks are selected,
the timer registers, and time-out events.

• Chapter 9, PCI Interface , describes the PCI registers, master and
slave transactions, and how the ATMizer II+ chip balances bus
usage.

• Chapter 10, Secondary Bus Memory Controller , describes the
controller configuration, discusses bus performance considerations,
and describes the operation of the individual controllers.

• Chapter 11, System Clock , discusses clock selection and describes
its synthesis using a phase-locked loop.

• Chapter 12, JTAG Interface , describes the JTAG instructions
supported by the L64364 and the bit order of the L64364 boundary
scan chain.

• Chapter 13, Specifications , provides AC timing figures, electrical
requirements, pinout information, and package information for the
ATMizer II+ chip.

• Appendix A, Register Summary , provides a brief summary of all of
the registers in the ATMizer II+ chip and includes page number
references for their descriptions.

• Appendix B, The ATM Cell , describes the layout and fields in the
ATM cell header and the AAL5 trailer.

• Appendix C, Glossary of Abbreviations , lists the abbreviations
used in the manual and defines them.

Preface v

Related Publications

LSI Logic’s MiniRISC® CW4011 Superscalar Microprocessor Core
Technical Manual, Order No. C14040

ATM Forum - Utopia Level 1 and Level 2, V1.0, af-phy-0039.00

PCI Local Bus Specification 2.1

IEEE 1149.1, Standard Test Access Port and Boundary Scan Architecture

Conventions Used in This Manual

The following signal naming conventions are used throughout this manual:

• Signal names are in uppercase characters. Active-LOW signals have
a lowercase “n” at the end of the signal name (for example, RESETn)
while active-HIGH signals do not.

• Multiple control signals such as external interrupts are grouped (for
example, EXT_INTn[5:0]), but they are treated as control signals.

• Signal names, commands, and register bits and fields are courier.

• All CW4011 core and CW4011 shell interface signals are
unidirectional.

The word assert means to drive a signal true or active. The word
deassert means to drive a signal false or inactive. The word set means
to change a bit (in registers, descriptors, etc.) from logical 0 to logical 1.
The word clear means to change a bit from 1 to 0.

Hexadecimal numbers are indicated by the prefix “0x”—for example,
0x32CF. Binary numbers are indicated by the prefix “0b”—for example,
0b0011.0010.1100.1111. The hexadecimal form is used as much as
possible for all numbers with four or more bits.

The L64364 requires over 100 internal and external registers. These are
described in the appropriate chapters and sections. Register references
in other sections of the manual are followed by the page number of their
description in parenthesis. In addition, Appendix A lists the registers by
functional area, includes their addresses, and provides page number
references to their descriptions.

vi Preface

Contents vii

Contents

Chapter 1 Introduction
1.1 Overview 1-1
1.2 Functional Description 1-2
1.3 Features 1-3

Chapter 2 Functional Overview
2.1 Major Functional Units 2-1
2.2 ATM Processing Unit (APU) 2-3
2.3 Enhanced DMA (EDMA) 2-3
2.4 ATM Cell Interface (ACI) 2-4
2.5 Scheduler and Timer Units 2-5
2.6 PCI Interface 2-5
2.7 Endian Considerations 2-6
2.8 Secondary Bus Memory Controller (SBC) 2-7
2.9 Other Features 2-7

Chapter 3 Signal Descriptions
3.1 I/O Signals Summary 3-1
3.2 PCI Interface 3-4
3.3 Secondary Memory Interface 3-8
3.4 Utopia Interface 3-10
3.5 Clocks and Utility Signals 3-15
3.6 APU Signals 3-17
3.7 Serial EPROM Interface 3-18
3.8 JTAG Test Interface 3-19
3.9 Power and Ground Pins 3-20

viii Contents

Chapter 4 ATM Processing Unit
4.1 APU Overview 4-1

4.1.1 Block Diagram 4-2
4.1.2 Features 4-3

4.2 APU Architecture 4-3
4.2.1 CW4011 Core 4-4
4.2.2 Cache and External Interface 4-6
4.2.3 CW4011 Pipeline 4-6

4.3 APU Instruction Set Summary 4-10
4.3.1 Instruction Set Formats 4-13
4.3.2 Load and Store Instructions 4-14
4.3.3 Computational Instructions 4-17
4.3.4 Jump and Branch Instructions 4-24
4.3.5 Trap Instructions 4-28
4.3.6 Special Instructions 4-29
4.3.7 Coprocessor Instructions 4-29
4.3.8 System Control Coprocessor (CP0) Instructions 4-30
4.3.9 Cache Maintenance Instructions 4-31
4.3.10 APU and CW4011 Instruction Set Extensions 4-31
4.3.11 ATMizer II+ Instruction Set Extensions 4-42

4.4 CP0 Data Manipulation Registers 4-49
4.4.1 Rotate Register (23) 4-49
4.4.2 Circular Mask Register (24) 4-49

4.5 Cache Memory 4-50
4.5.1 Cache States 4-50
4.5.2 Address and Cache Tags 4-52
4.5.3 D-Cache Scratch-Pad RAM Mode 4-53
4.5.4 I-Cache RAM Mode 4-54
4.5.5 Cache Instructions 4-55

4.6 Exceptions 4-59
4.6.1 R3000 Exception Compatibility Mode 4-61
4.6.2 Exception Handling Registers 4-62
4.6.3 CW4011 Exceptions 4-80

4.7 Memory Map 4-95
4.7.1 Operating Modes 4-95
4.7.2 ATMizer II+ Chip Memory Map 4-96
4.7.3 Hardware Registers Map 4-98

Contents ix

4.7.4 ATMizer II+ Chip Primary and
Secondary Port Access 4-98

4.8 Interrupts 4-101
4.8.1 External Nonvectored Interrupts 4-101
4.8.2 External Vectored Interrupt Sources 4-103
4.8.3 Enabling Vectored Interrupts 4-106
4.8.4 Vectored Interrupt Processing 4-107
4.8.5 Status Checking 4-108
4.8.6 Coprocessor Condition Signals 4-112

4.9 CW4011 OCA Bus Accesses 4-112
4.10 Bus Watchdog Timers 4-112

4.10.1 SC Bus Watchdog Timer 4-113
4.10.2 OCA Bus Watchdog Timer 4-113
4.10.3 APU Priority Register 4-114
4.10.4 APU_Error Register 4-115
4.10.5 OCA Error Register 4-117

4.11 Boot Procedures 4-118
4.11.1 Boot Location 4-118
4.11.2 Serial Interface Boot Sequence 4-119
4.11.3 Cell Buffer Memory Boot Sequence 4-119
4.11.4 Secondary EPROM Boot Sequence 4-119
4.11.5 APU Access to Serial EPROM 4-119

Chapter 5 Enhanced DMA
5.1 Overview 5-1
5.2 Data Structures 5-5

5.2.1 VC Descriptor Structure 5-6
5.2.2 Buffer Descriptor 5-16

5.3 EDMA Commands 5-21
5.3.1 RxCell Command 5-23
5.3.2 TxCell Command 5-24
5.3.3 Buff Command 5-25
5.3.4 Move Command 5-28
5.3.5 TxConClose/RxConClose Command 5-32
5.3.6 Checking Status 5-32
5.3.7 Buffer Completion 5-35

5.4 Data Structure Locations 5-43

x Contents

5.4.1 VC Descriptors Address Calculation 5-44
5.4.2 Buffer Descriptors 5-46
5.4.3 Buffer Payload 5-48

5.5 Register Descriptions 5-49
5.5.1 EDMA Control Register 5-52
5.5.2 EDMA Error Mask Register 5-53
5.5.3 EDMA Bus Error Register 5-56

5.6 AAL5 Mode Operation 5-57
5.6.1 Transmit Cell Processing Requests 5-57
5.6.2 Receive Cell Processing Requests 5-59
5.6.3 Free Buffers 5-60
5.6.4 Big Endian and Little Endian 5-61

5.7 AAL0 Mode Operation 5-62

Chapter 6 ATM Cell Interface
6.1 ACI Overview 6-2
6.2 Cell Size and Layout 6-4
6.3 Cell Descriptor 6-5
6.4 Memory-Mapped ACI Registers 6-9

6.4.1 ACI_Ctrl Register 6-10
6.4.2 ACI_FreeList Register 6-12
6.4.3 ACI_TxTimer Register 6-13
6.4.4 ACI_TxSize Register 6-14
6.4.5 ACI_TxLimit and ACI_RxLimit Registers 6-14
6.4.6 ACI_RxMask Register 6-14
6.4.7 ACI_Free Register 6-14
6.4.8 ACI_RxRead Register 6-15
6.4.9 ACI_TxWrite Register 6-15
6.4.10 ACI_RxCells and ACI_TxCells Registers 6-16
6.4.11 ACI_Error Register 6-16
6.4.12 ACI_RxSize Register 6-17
6.4.13 ACI_BadHEC Register 6-17
6.4.14 ACI_ClearBytes Register 6-18
6.4.15 ACI_FreeCount Register 6-18

6.5 Cell Buffer Manager 6-18
6.5.1 Cell Buffer Initialization 6-19
6.5.2 Requesting and Releasing a Free Cell Location 6-19

Contents xi

6.5.3 Inserting and Removing Cells from the ACI FIFO 6-20
6.5.4 Setting and Checking FIFO Sizes 6-21

6.6 ACI Receiver 6-21
6.6.1 ACI Receiver Operations 6-22
6.6.2 Receive FIFO Status 6-23
6.6.3 Receive Priority Scheme 6-23
6.6.4 HEC Processing 6-24
6.6.5 CRC10 Verifications 6-24
6.6.6 Utopia Parity Checking 6-25

6.7 ACI Transmitter 6-25
6.7.1 ACI Transmitter Operations 6-25
6.7.2 Transmit FIFO Status 6-26
6.7.3 Idle Cell Generation 6-26
6.7.4 PHY Port Selection and Port Polling 6-27
6.7.5 HEC Generation 6-27
6.7.6 CRC10 Generation 6-28
6.7.7 ACI Transmitter Time-Out 6-28
6.7.8 Utopia Parity Generation 6-28

6.8 Polling Scheme 6-29
6.9 Loopback Mode 6-29
6.10 Utopia Interface 6-30

6.10.1 Utopia Clocks 6-30
6.10.2 Unused Pins 6-30

Chapter 7 Scheduler Unit
7.1 Scheduler Overview 7-1
7.2 Priority Mode Operation 7-3

7.2.1 Example of Priority Mode Operation 7-3
7.2.2 Service Command 7-5
7.2.3 Schedule Command 7-6
7.2.4 Tic Command 7-8

7.3 Flat Mode Operation 7-8
7.3.1 Example of Flat Mode Operation 7-8
7.3.2 Service Command 7-9
7.3.3 Schedule Command 7-10
7.3.4 Tic Command 7-11

7.4 Calendar Switching 7-11

xii Contents

7.5 Command Execution 7-13
7.6 Register Descriptions 7-14

7.6.1 Scheduler Control Register 7-15
7.6.2 Calendar Size Register 7-15
7.6.3 SCD_Now Register 7-15
7.6.4 SCD_Serv, SCD_Sched, and

SCD_Tic Registers 7-16
7.6.5 SCD_HeadSel Register 7-16
7.6.6 SCD_Err Register 7-16
7.6.7 SCD_Class0–5 Registers 7-17
7.6.8 Calculating a VC Descriptor Address 7-18
7.6.9 Calculating a Calendar Table Address 7-19

Chapter 8 Timer Unit
8.1 Introduction 8-1
8.2 Timer Clock Selection 8-3

8.2.1 TM_ClockSel Register 8-4
8.2.2 TM_ClockSel2 Register 8-4

8.3 Time-Out Events 8-5

Chapter 9 PCI Interface
9.1 PCI Interface Overview 9-1
9.2 PCI Configuration Space Registers 9-4

9.2.1 Vendor ID Register 9-6
9.2.2 Device ID Register 9-6
9.2.3 Command Register 9-7
9.2.4 Status Register 9-8
9.2.5 Revision ID Register 9-10
9.2.6 Class Code Register 9-10
9.2.7 Cache Line Size Register 9-11
9.2.8 Latency Timer Register 9-11
9.2.9 Header Type Register 9-12
9.2.10 Base Address Register 1 9-12
9.2.11 Base Address Register 2 9-13
9.2.12 Subsystem Vendor ID Register 9-15
9.2.13 Subsystem ID Register 9-15
9.2.14 Interrupt Line Register 9-16

Contents xiii

9.2.15 Interrupt Pin Register 9-16
9.2.16 Minimum Grant Register 9-17
9.2.17 Maximum Latency Register 9-17
9.2.18 TRDY_Timer Register 9-18
9.2.19 Retry_Timer Register 9-18
9.2.20 Configuration Target Operation 9-19
9.2.21 Configuration Master Operation 9-20

9.3 Primary Port Registers 9-21
9.3.1 XPP_Ctrl Register 9-22
9.3.2 PP_Ctrl Register 9-24
9.3.3 Primary Port Slave Prefetch Register 9-25
9.3.4 Primary Port Error Register 9-27
9.3.5 Primary Port Error Address Register 9-29

9.4 PCI Slave Transactions 9-29
9.4.1 Mailbox 9-30
9.4.2 PCI Slave Write Timing 9-32
9.4.3 PCI Slave Read Timing 9-34
9.4.4 PCI Slave Errors 9-36

9.5 PCI Master Transactions 9-36
9.5.1 PCI Master Write Timing 9-37
9.5.2 Master Write Errors 9-39
9.5.3 PCI Master Read Timing 9-40
9.5.4 Master Read Errors 9-43

9.6 Balancing Bus Usage 9-44
9.6.1 Master Write 9-44
9.6.2 Master Read 9-45
9.6.3 Slave Write 9-45
9.6.4 Slave Read 9-46

Chapter 10 Secondary Bus Memory Controller
10.1 Overview 10-2
10.2 SBC Configuration 10-3

10.2.1 SP_Ctrl Register 10-4
10.2.2 Secondary Bus Clock Control Register 10-6

10.3 Secondary Bus Performance Considerations 10-11
10.4 SDRAM Controller 10-14

10.4.1 SDRAM Connections 10-14

xiv Contents

10.4.2 SDRAM Controller Configuration 10-16
10.4.3 SDRAM Initialization 10-19
10.4.4 SDRAM Refresh 10-20
10.4.5 Secondary Bus Time-Out 10-22
10.4.6 SDRAM Command Summary 10-23
10.4.7 SDRAM Read Transfer 10-23
10.4.8 SDRAM Write Transfer 10-24

10.5 SSRAM Controller 10-25
10.5.1 SSRAM Read Transfers 10-27
10.5.2 SSRAM Write Transfers 10-27

10.6 32-Bit SRAM/EPROM Controller 10-28
10.6.1 32-Bit SRAM/EPROM Read Transfer 10-28
10.6.2 32-Bit SRAM Write Transfers 10-29
10.6.3 32-Bit SRAM/EPROM SB_RDYn Timing 10-30

10.7 PHY Controller 10-32
10.7.1 PHY Read Transfers 10-32
10.7.2 PHY Write Transfers 10-33
10.7.3 PHY SB_RDYn Timing 10-34

10.8 8-Bit SRAM/EPROM Controller 10-36
10.8.1 8-Bit SRAM/EPROM Read Transfers 10-36
10.8.2 8-Bit SRAM/EPROM Write Transfers 10-37
10.8.3 8-Bit SRAM/EPROM SB_RDYn Timing 10-38

10.9 External Bus Masters 10-40
10.10 Error Reporting 10-41

Chapter 11 System Clock
11.1 System Clock Options 11-1
11.2 Clock Synthesis 11-2
11.3 Design Considerations 11-4

Chapter 12 JTAG Interface
12.1 JTAG Instructions 12-1

12.1.1 BYPASS Instruction 12-2
12.1.2 SAMPLE/PRELOAD Instruction 12-2
12.1.3 EXTEST Instruction 12-2
12.1.4 HI-Z Instruction 12-3

12.2 Boundary Scan Chain Order 12-3

Contents xv

Chapter 13 Specifications
13.1 AC Timing 13-1
13.2 Electrical Requirements 13-10

13.2.1 I/O Pad Drivers and Receivers 13-10
13.2.2 I/O Level Requirements 13-13

13.3 Pin Summary 13-14
13.4 Package Information 13-15

Appendix A Register Summary

Appendix B The ATM Cell
B.1 ATM Cell Structure B-1
B.2 The AAL5 Trailer B-3

Appendix C Glossary of Abbreviations

Customer Feedback

Figures
2.1 L64364 Functional Block Diagram 2-2
3.1 I/O Signals (Utopia Master) 3-2
3.2 I/O Signals (Utopia Slave) 3-3
4.1 APU Block Diagram 4-2
4.2 CW4011 Block Diagram 4-5
4.3 CW4011 Instruction Pipeline 4-7
4.4 Instruction Formats 4-14
4.5 Byte Specifications for Loads/Stores 4-15
4.6 Rotate Register 4-49
4.7 CMask Register 4-49
4.8 I-Cache and D-Cache State Diagram 4-51
4.9 D-Cache Write Back State Diagram 4-52
4.10 Cache Address Format 4-53
4.11 Tag RAM Access Format 4-54
4.12 Cache Instruction Format 4-55
4.13 Tag Test Mode Format 4-59

xvi Contents

4.14 DCS Register 4-63
4.15 Count Register 4-64
4.16 Compare Register 4-65
4.17 Status Register (R4000 Mode) 4-65
4.18 Status Register (R3000 Mode) 4-68
4.19 Cause Register 4-71
4.20 EPC Register 4-73
4.21 PRId Register 4-73
4.22 CCC Register 4-74
4.23 LLAdr Register 4-77
4.24 BPC Register 4-78
4.25 BDA Register 4-78
4.26 BPCM Register 4-78
4.27 BDAM Register 4-79
4.28 Error EPC Register 4-79
4.29 Cold Reset Exception 4-81
4.30 Warm Reset, NMI Exceptions 4-81
4.31 Common Exceptions 4-82
4.32 Debug Exception 4-82
4.33 External Vectored Interrupt Exception 4-83
4.34 CW4011 Virtual Memory Map 4-96
4.35 APU_AddrMap Register 4-99
4.36 Primary Port Address Formation 4-100
4.37 Secondary Address Formation for Exception Vectors 4-101
4.38 APU_VIntEnable Register 4-106
4.39 APU_VIntBase Register Format 4-107
4.40 APU Status Register Format 4-108
4.41 APU_SCbus_Watchdog Register 4-113
4.42 APU_OCAbus_Watchdog Register 4-114
4.43 APU_Priority Register 4-115
4.44 APU_Error Register 4-115
4.45 OCA_Err Register 4-117
5.1 EDMA Processors 5-2
5.2 Virtual Connection and Buffer Descriptors 5-5
5.3 Virtual Connection Descriptor 5-7
5.4 VC Descriptor Control Field 5-11
5.5 BuffPres and ConAct Bits Timing 5-13
5.6 VCD_RxCtrl Usage 5-14

Contents xvii

5.7 Buffer Descriptor 5-16
5.8 Buffer Descriptor Control Field 5-19
5.9 EDMA Request & Completion Queues 5-21
5.10 EDMA_RxCell Register Format 5-23
5.11 EDMA_TxCell Register Format 5-25
5.12 EDMA_Buff Register Format 5-26
5.13 EDMA_MoveSrc and EDMA_MoveDst Register Format 5-28
5.14 EDMA_MoveCount Register 5-29
5.15 EDMA_MoveCount2 Register 5-31
5.16 Tx/RxConClose Command Format 5-32
5.17 EDMA_Status Register 5-33
5.18 Primary Completion Queue 5-36
5.19 Auxiliary Completion Queue 5-36
5.20 Buffer Status Bits 5-37
5.21 TX/RX_EDMA_VCD_Base Register 5-44
5.22 VC Descriptor Address Calculation for PCI Memory 5-45
5.23 VC Descriptor Address Calculation for Local or

Cell Buffer Memory 5-46
5.24 Buffer Descriptor Address Calculation 5-46
5.25 EDMA_BFD_FBase Register 5-47
5.26 EDMA_BFD_LBase Register 5-47
5.27 EDMA_Ctrl Register 5-52
5.28 EDMA_ErrMask Register 5-54
5.29 EDMA_BusErr Register 5-56
5.30 Byte Swapping 5-62
5.31 VC Descriptor Control Fields (AAL0 Mode

Uses CRC32 Field) 5-63
6.1 ACI Block Diagram 6-3
6.2 Cell Layout 6-5
6.3 Cell Descriptor Format 6-5
6.4 ACI_Ctrl Register 6-10
6.5 ACI_Free List Register 6-13
6.6 ACI_TxTimer Register Format 6-13
6.7 ACI_TxWrite Register 6-16
6.8 ACI_BadHEC Register 6-17
7.1 VC Descriptor Format (Word 0) 7-3
7.2 Scheduler Calendar Table in Priority Mode 7-3
7.3 Priority Mode - Calendar Table 7-4

xviii Contents

7.4 Priority Mode - Calendar Table 7-5
7.5 Service Command Return Value 7-6
7.6 SCD_Sched Register Format 7-6
7.7 Format of SCD_HeadSel Register 7-7
7.8 Priority Mode - Calendar Table 7-7
7.9 Flat Mode - Calendar Table after Schedule Command 7-8
7.10 Flat Mode - Calendar Table after Tic Command 7-9
7.11 Flat Mode - Calendar Table with SCD_HeadSel0 Bit Set 7-10
7.12 Format of the SCD_CalSwitch Register 7-11
7.13 Flat Mode - Calendar Table 0 7-12
7.14 Flat Mode - Calendar Table 1 7-12
7.15 Scheduler Control Register Format 7-15
7.16 SCD_Err Register 7-17
7.17 SCD_Class0–5 Registers Format 7-17
7.18 VC Descriptor Address Computations 7-18
7.19 Calendar Table Address Computations 7-19
8.1 Timer Clock Selection Registers Format 8-3
9.1 PCI Interface Block Diagram 9-3
9.2 PCI Configuration Space Registers 9-5
9.3 Vendor ID Register 9-6
9.4 Device ID Register 9-6
9.5 Command Register 9-7
9.6 Status Register 9-8
9.7 Revision ID Register 9-10
9.8 Class Code Register 9-10
9.9 Cache Line Size Register 9-11
9.10 Latency Timer Register 9-11
9.11 Header Type Register 9-12
9.12 Base Address Register 1 9-12
9.13 Base Address Register 2 9-13
9.14 Subsystem Vendor ID Register 9-15
9.15 Subsystem ID Register 9-15
9.16 Interrupt Line Register 9-16
9.17 Interrupt Pin Register 9-16
9.18 Minimum Grant Register 9-17
9.19 Maximum Latency Register 9-17
9.20 TRDY_Timer Register 9-18
9.21 Retry_Timer Register 9-18

Contents xix

9.22 Configuration Space Read 9-20
9.23 Configuration Space Write 9-20
9.24 XPP_Ctrl Register 9-22
9.25 PP_Ctrl Register 9-24
9.26 PP_SlavePFtch Register 9-26
9.27 PP_Err Register 9-27
9.28 PP_ErrAddr Register 9-29
9.29 Mailbox Registers 9-31
9.30 Slave Write Timing 9-33
9.31 Slave Write Stop Timing 9-33
9.32 Parity Error Timing 9-34
9.33 PCI Slave Read Timing 9-35
9.34 Master Write Timing 9-37
9.35 Master Write Stop Timing 9-38
9.36 PCI Master Read Timing 9-41
9.37 Master Read Stop Timing 9-42
9.38 Master Read Error Timing 9-42
10.1 SP_Ctrl Register 10-4
10.2 SB Clock Relationships 10-7
10.3 Secondary Bus Clock Control Register 10-7
10.4 Effects of SB_DCLK Delay Register 10-9
10.5 Effects of SB_CLKO Delay Register 10-11
10.6 SP_SDRAM Register 10-16
10.7 SDRAM Mode Register 10-19
10.8 SP_Refresh Register 10-20
10.9 SDRAM Refresh Timing 10-22
10.10 SDRAM Read Timing 10-24
10.11 SDRAM Write Timing 10-25
10.12 SSRAM Read Timing 10-27
10.13 SSRAM Write Timing 10-28
10.14 SRAM Read Timing 10-29
10.15 SRAM Write Timing 10-30
10.16 32-Bit SRAM/EPROM Read Timing with SB_RDYn 10-31
10.17 32-Bit SRAM/EPROM Write Timing with SB_RDYn 10-31
10.18 PHY Read Timing 10-33
10.19 PHY Write Timing 10-34
10.20 PHY Read Timing with SB_RDYn 10-35
10.21 PHY Write Timing with SB_RDYn 10-35

xx Contents

10.22 8-Bit SRAM/EPROM Read Timing 10-37
10.23 8-Bit SRAM Write Timing 10-38
10.24 8-Bit SRAM/EPROM Read Timing with SB_RDYn 10-39
10.25 8-Bit SRAM/EPROM Write Timing with SB_RDYn 10-39
10.26 Secondary Bus Grant Timing 10-40
10.27 SB_Err Register 10-41
10.28 SB_ErrAddr Register 10-42
11.1 Clock Selection and Synthesis Circuit 11-2
11.2 Phase-Locked Loop 11-3
11.3 PLL Supply Filtering 11-4
13.1 Output Signal Timing Reference Points 13-1
13.2 Input Signal Timing Reference Points 13-2
13.4 240-pin PQUAD (NL) Mechanical Drawing 13-17
B.1 The ATM Cell Layout at the UNI B-1
B.2 The AAL5 Trailer Layout B-3

Tables
2.1 Big/Little Endian Mapping 2-6
4.1 APU Instruction Set Summary 4-10
4.2 Load and Store Instructions Summary 4-16
4.3 Load and Store Instruction Summary–MIPS II

ISA Extensions 4-17
4.4 ALU Immediate Instruction Summary 4-18
4.5 Three-Operand, Register Type-Instruction Summary 4-19
4.6 Shift Instruction Summary 4-20
4.7 Multiply/Divide Instruction Summary 4-21
4.8 Execution Time of Multiply and Divide Instructions 4-21
4.9 Instruction Set Extensions 4-22
4.10 CW4011 ISA Extensions Summary 4-23
4.11 APU Rate Instruction Extensions 4-24
4.12 Jump Instruction Summary 4-25
4.13 Branch Instruction Summary 4-26
4.14 Branch-Likely Instruction Summary–MIPS II

ISA Extensions 4-27
4.15 Trap Instruction Summary–MIPS II ISA Extensions 4-28
4.16 Special Instruction Summary 4-29
4.17 Coprocessor Instruction Summary 4-29
4.18 CP0 Instruction Summary 4-30

Contents xxi

4.19 CP0 Instruction Extension Summary 4-30
4.20 Cache Maintenance Instruction Summary 4-31
4.21 D-Cache Write-Back Mode 4-51
4.22 Cache Control Bits 4-56
4.23 TAG and INV Encoding 4-58
4.24 APU Exceptions 4-60
4.25 CP0 Exception Processing Registers 4-62
4.26 Exception Codes 4-72
4.27 Exception Vector Base Addresses 4-84
4.28 Exception Vector Offset Addresses 4-84
4.29 Exception Priority Order 4-85
4.30 Segment Properties 4-96
4.31 ATMizer II+ Chip Memory Map 4-97
4.32 ATMizer II+ Chip Hardware Register Map 4-98
4.33 Nonvectored Interrupt Sources 4-102
4.34 Vectored Interrupt Sources 4-104
4.35 Coprocessor Condition Signals 4-112
4.36 Boot Sequence 4-118
5.1 EDMA Commands 5-3
5.2 VC Descriptor Fields 5-8
5.3 VC Descriptor Control Bits 5-12
5.4 Buffer Descriptor Fields 5-16
5.5 Buffer Descriptor Control Bits 5-19
5.6 BFS_BuffFree, BFS_BuffLarge, and

BFS_FreeSel Encoding 5-27
5.7 Tx Completion Queue Messages 5-42
5.8 Rx Completion Queue Messages 5-42
5.9 Buff Completion Queue Messages 5-43
5.10 EDMA Memory Mapped Registers 5-49
6.1 Cell Size 6-4
6.2 Memory Mapped ACI Registers 6-9
7.1 Scheduler Registers 7-14
8.1 Timer Unit Registers 8-2
9.1 PCI FIFO’s 9-4
9.2 ATMizer II+ Chip External Memory Map 9-30
10.1 16 Mbyte Secondary Bus Memory Map 10-3
10.2 64 Mbyte Secondary Bus Memory Map 10-3
10.3 SBC Clocks per Data Word 10-13

xxii Contents

10.4 SBC Transfer Lead-Off Cycles 10-13
10.5 ATMizer II+ Chip to SDRAM Interconnections 10-15
10.6 SDRAM Command Summary 10-23
10.7 SSRAM Configurations 10-26
10.8 SSRAM Interconnections 10-26
10.9 Secondary Bus to PHY Device Connections 10-32
11.1 Loop Filter Components 11-3
12.1 JTAG Instruction Register Encoding 12-2
12.2 L64364 Boundary Scan Chain 12-3
13.1 PCI Interface Timing 13-2
13.2 Secondary Bus Timing 13-5
13.3 Utopia Interface Transmit Timing 13-6
13.4 Utopia Interface Receive Timing 13-8
13.5 Miscellaneous Timing 13-9
13.6 I/O Pad Drivers and Receivers 13-10
13.7 DC Characteristics 13-13
13.8 L64364 Pin Summary 240 Pin Alphabetical Pin List 13-15
13.9 PQUAD Electrical and Thermal Data 13-17

L64364 ATMizer II+ ATM-SAR Chip 1-1

Chapter 1
Introduction

This chapter introduces the LSI Logic L64364 Application Specific
Standard Product (ASSP) and includes the following sections:

• Section 1.1, “Overview,” page 1-1

• Section 1.2, “Functional Description,” page 1-2

• Section 1.3, “Features,” page 1-3

1.1 Overview

The L64364 Application-Specific Standard Product is a highly integrated
ATM Segmentation and Reassembly (SAR) engine optimized for
inter-networking applications. PX80 is an 80 MHz speed grade
ATMizer II+ and PX100 is a 100 MHz speed grade ATMizer II+. The
L64364 is the third generation device within the LSI Logic ATMizer
product family and offers important enhancements over the previous
L64363 chip.

A primary feature of the ATMizer product family is the flexibility offered
by the ATM Processing Unit (APU), which is based on an embedded
MIPS processor. The APU allows you to modify device behavior by
downloading new code to accommodate changes in ATM standards,
particularly enhancements and adaptations of flow control algorithms. A
specific set of hardware functional blocks, including a complete SAR
controller, support the APU. These blocks off-load repetitive data
manipulation tasks from the APU, allowing it to achieve full-duplex,
155 Mbits/s performance levels.

The L64364 is currently implemented in the LSI Logic G10®-p
0.35-micron CMOS process and is available in a 240-pin PQUAD
package.

1-2 Introduction

1.2 Functional Description

The L64364 is designed to provide 155 Mbits/s of full-duplex operation
while performing segmentation and reassembly of ATM Adaptation
Layer 5 (AAL5) CS-PDUs. A specialized hardwired AAL5 SAR engine,
called the Enhanced DMA (EDMA), assists the MIPS-based ATM
Processing Unit in segmentation and reassembly tasks and memory
management functions.

Although the EDMA is responsible for all basic segmentation and
reassembly functions, it operates under full control of the APU. The APU
is responsible for traffic management, host messaging, and any other
upper layer tasks. As an option, the advanced functions of the hardwired
units may be switched-off to give the APU full control of all operations.
However, this will impact overall performance.

The ATM Processing Unit is based upon the LSI Logic MIPS II
compatible CW4011 MiniRISC® microprocessor core. The processor
delivers 160 MIPS peak (110 MIPS sustained) when operating at 80 MHz
and 200 MIPS peak (138 MIPS sustained) when operating at 100 MHz.
The APU instruction set is extended with ATM specific instructions to
enhance performance. These instructions accelerate the cell rate
calculations for Available Bit Rate (ABR) services by allowing direct
arithmetic operations (add, subtract, and multiply) on rates expressed as
ATM Forum floating point 15-bit numbers.

Scheduling and policing of different ATM Quality of Service (QoS)
connections can be achieved efficiently with the help of the integrated
hardware Scheduler that supports six priority classes. The Scheduler
uses calendar tables to create arbitrary traffic schemes to a limit of 64 K
Virtual Connections (VCs).

The primary interface for the device is a 33 MHz, 32-bit wide, PCI Bus.
As the bus master, the L64364 is able to autonomously access control
and data structures located in the system memory. As a bus slave, the
device provides transparent access to local memory, internal Cell Buffer
Memory (CBM), and internal hardware registers for external PCI Bus
masters. The PCI interface implements four separate FIFOs to maximize
the performance of simultaneous read/write operations as bus master or
slave.

Features 1-3

The L64364 integrates a memory controller that provides a glueless
interface for asynchronous SRAMs, synchronous SRAMs, and
synchronous DRAMs that are used for local memory; it can also serve
as an interface to external physical layer devices such as framers. The
memory controller allows APU booting from parallel, byte-wide EPROMs
and from serial EPROMs.

The device includes a JTAG controller and boundary scan logic to
simplify board-level tests.

1.3 Features

Key features of the L64364 are:

• Supports full-duplex, OC-3 (155 Mbits/s) rate.

• Processes AAL1, AAL3/4, and AAL5 protocol layers.

• Includes scatter/gather EDMA, which supports fragmented and
unaligned host data buffers.

• 64 K Virtual Connections.

• Supports operation and management functions.

• Supports a maximum of six traffic types.

• Supports all flow control algorithms, including the ATM Forum
rate-based scheme.

• Provides flexible ATM cell header translation mechanism.

• Performs error monitoring, statistics gathering, host messaging, and
diagnostics.

• 33 MHz, 32-bit, PCI 2.1 compliant interface bus.

• 50 MHz, 8-bit, Utopia Level 2 compliant interface bus.

1-4 Introduction

L64364 ATMizer II+ ATM-SAR Chip 2-1

Chapter 2
Functional Overview

This chapter provides an overview of the L64364 ATMizer II+ chip
functional units. Separate sections summarize the features of each
functional unit. Subsequent chapters in this manual provide more
detailed descriptions of each unit.

This chapter contains the following sections:

• Section 2.1, “Major Functional Units,” page 2-1

• Section 2.2, “ATM Processing Unit (APU),” page 2-3

• Section 2.3, “Enhanced DMA (EDMA),” page 2-3

• Section 2.4, “ATM Cell Interface (ACI),” page 2-4

• Section 2.5, “Scheduler and Timer Units,” page 2-5

• Section 2.6, “PCI Interface,” page 2-5

• Section 2.7, “Endian Considerations,” page 2-6

• Section 2.8, “Secondary Bus Memory Controller (SBC),” page 2-7

• Section 2.9, “Other Features,” page 2-7

2.1 Major Functional Units

As shown in Figure 2.1, the L64364 includes the following major
functional units:

• Enhanced DMA (EDMA)

• ATM Processing Unit (APU)

• Scheduler Unit

• Timer Unit

• ATM Cell Interface (ACI)

2-2 Functional Overview

• Primary Port Interface

• PCI Interface

• Secondary Port and Bus Memory Controller (SBC)

• Cell Buffer Memory (CBM)

• Separate APU Instruction and Data Caches/RAM

• JTAG Controller

• Clock Phase-Locked Loop (PLL)

Figure 2.1 L64364 Functional Block Diagram

Secondary Bus
Memory Controller

Primary Port

Secondary Port

8 Kbytes
Instruction

Cache

4 Kbytes
Cell Buffer
Memory

ATM
Cell

Interface

Scheduler TimerEnhancedATM

Clock
PLL

Local BusPCI Bus

Utopia Bus

Processing
Unit DMA UnitUnit

4 Kbytes
Data

Cache

PCI Interface

REF
CLK
In

CLK
Out

ATM Processing Unit (APU) 2-3

2.2 ATM Processing Unit (APU)

The APU is based on the CW4011 MiniRISC Core. APU features include
the following:

• MIPS II MiniRISC Processor with ATM specific extensions.

• 160 native MIPS peak, 110 native MIPS sustained at 80 MHz and
200 native MIPS peak, 138 native MIPS sustained at 100 MHz.

• Custom floating point processor for ATM rate calculations.

• 8 Kbytes Instruction Cache implemented in two sets. Each set
configurable as cache or RAM.

• 4 Kbytes Data Cache implemented in two sets. Each set configurable
as cache or RAM.

• APU boot options include external serial EPROM, external byte-wide
EPROM, or host download to the ATMizer’s Cell Buffer Memory.

• Messaging mailbox for host-to-ATMizer APU communications.

2.3 Enhanced DMA (EDMA)

The EDMA is a complete ATM Adaptation Layer 5 Segmentation and
Reassembly (AAL5 SAR) engine with hardware assists for other AALs.
The EDMA autonomously performs SAR tasks, freeing the APU for
scheduling and user value add functions. EDMA features include the
following.

• AAL5 SAR engine capable of sustained 155 Mbytes/s cell
throughput.

• Hardware support for AAL1 and AAL3/4 SAR functions.

• Scatter/gather DMA support for fragmented or misaligned host data
buffers.

• Support for 64 K Virtual Connections (practical limit set by external
memory).

• Support for 64 K payload buffers (practical limit set by external
memory).

2-4 Functional Overview

• Independent Transmit, Receive, Buffer, and Move engines optimize
memory bandwidth utilization.

• Optional byte swapping to support little endian hosts.

• Programmable cell length of 53–65 bytes.

• Optional cell header insertion/deletion.

• CRC-32 generation/checking for AAL5.

• UU/CPI support for AAL5.

• DMA Move command supports packet transfers from PCI to
Secondary Memory.

• Insertion and extraction of congestion notification, EFCI and CLP, on
a per-cell or per-CS-PDU basis.

2.4 ATM Cell Interface (ACI)

The ACI consists of a Utopia, Multi-PHY, eight-bit interface, and the Cell
Buffer Manager. The Cell Buffer Manager maintains a transmit FIFO,
receive FIFO, and error FIFO within the 4 Kbyte Cell Buffer Memory
(CBM). ACI features include:

• ATM Forum Utopia Level 2, Version 1.0 compliant interface
configurable as either master or slave.

• Supports cell-level handshaking per ATM Forum Utopia Level 2,
Version 1.0.

• 50 MHz maximum Utopia Tx_Clk , Rx_Clk rate.

• Multi-PHY polling configurable as round-robin or fixed priority.

• Multi-PHY polling configurable as direct (4 slave devices maximum)
or multiplexed (24 slave devices maximum).

• Cell FIFO size configurable up to 4 Kbytes.

• Optional HEC generation and checking.

• CRC-10 generation and checking for AAL3/4.

• Optional idle cell insertion.

• Cell loopback.

• Optional Utopia parity generation and checking.

Scheduler and Timer Units 2-5

• Utopia transmit timer to prevent blocking by unresponsive slave in
Multi-PHY applications.

2.5 Scheduler and Timer Units

The Scheduler block provides hardware support for traffic scheduling
algorithms. The Timer block consists of one 32-bit Time Stamp Counter
and 8 general-purpose timers used to support other traffic shaping or
maintenance functions. Specific features include:

• Traffic scheduling on a per-VC basis (64 K VCs maximum).

• Support for up to six priorities in traffic scheduling queues.

• Scheduler maintains Scheduler Calendar table in external secondary
memory or internal CBM.

• Eight, 8-bit, cascadable, general-purpose timers with optional clock
source including external clock.

• A 32-bit Time Stamp Counter with optional clock source including
external clock.

2.6 PCI Interface

The PCI Interface is designed for write-optimized systems architected for
either cell or packet transfers over the PCI Bus. A high performance
bridge allows the PCI host to burst transmit packets to secondary
memory (slave write). The EDMA bursts receive packets to the PCI after
reassembly in secondary memory (master write). Master read and slave
read transfers are also supported. PCI Interface features include:

• PCI Protocol conforms to PCI Local Bus Specification, Revision 2.1.

• 33 MHz, 32-bit PCI Bus support.

• Four independent PCI FIFOsMaster Read, Master Write and Slave
Write FIFOs are each 128 bytes; Slave Read FIFO is 32 bytes.

• ATMizer II+ chip’s CBM, Messaging Mailbox, and internal hardware
registers mapped to PCI memory space.

• Secondary Memory (16 or 64 Mbytes) mapped to PCI memory
space.

2-6 Functional Overview

2.7 Endian Considerations

The ATMizer II+ chip operates internally in big endian mode. The
ATMizer II+ chip’s external buses, however, are little endian format.
Internal master requests to the external PCI Bus and local Secondary
Bus (SB) are mapped such that the internal masters see the buses as
big endian resources. Similarly, external PCI host (little endian) requests
to the ATMizer II+ chip’s internal and SB resources are mapped such that
the PCI host sees little endian resources.

This is done to facilitate the transfer of word-based control structures
between big and little endian domains. In both endians, word addresses
point to the same 32-bit word (data[31:0]). This allows big and little
endian masters to manipulate control structures with respect to their own
domains. There is no need for byte swapping the control structures or
translating pointers to control structures.

Table 2.1 shows how internal big endian and external little endian
requests map to the ATMizer II+ chip’s three available memory
resources: Cell Buffer Memory, PCI Bus, and Secondary Bus.

To facilitate the transfer of byte-based buffer payload data between big
and little endian masters, the EDMA can swap data-byte positions within
a data word to preserve the data byte’s address in both endian domains.
This applies to data transferred using the EDMA RxCell , TxCell , and
Move commands. For the RxCell and TxCell commands, it is controlled
by the EDMA_ByteSwapbit in the EDMA_Ctrl register (page 5-53). For the
Move command, it is controlled by the LEndian bit EDMA_MoveCount2
register (page 5-31). See Section 5.6.4, “Big Endian and Little Endian,”
for more detail on EDMA byte swapping.

Table 2.1 Big/Little Endian Mapping

Internal Request
(Big Endian)

External PCI Host
(Little Endian)

CBM
(Big Endian)

PCI
(Little Endian)

SB
(Little Endian)

data[31:24], be[0] data[31:24], be[3] data[31:24], be[0] data[31:24], be[3] data[31:24], be[3]

data[23:16], be[1] data[23:16], be[2] data[23:16], be[1] data[23:16], be[2] data[23:16], be[2]

data[15:8], be[2] data[15:8], be[1] data[15:8], be[2] data[15:8], be[1] data[15:8], be[1]

data[7:0], be[3] data[7:0], be[0] data[7:0], be[3] data[7:0], be[0] data[7:0], be[0]

Secondary Bus Memory Controller (SBC) 2-7

2.8 Secondary Bus Memory Controller (SBC)

The SBC provides access to external memory used for APU instructions
and SAR/scheduling data structures. The SBC is also used to access
byte-wide EPROM for APU boot and as the management interface for
external PHY devices. SBC features include:

• 64 Mbytes maximum memory space.

• Memory controllers for asynchronous SRAM, synchronous SRAM,
synchronous DRAM, EPROM, and peripheral devices.

• Arbitration support for external secondary bus master.

2.9 Other Features

The L64364 ATMizer II+ chip also supports the following features:

• IEEE 1149.1 compliant boundary scan.

• Full scan with greater than 99% stuck-at fault coverage in
manufacturing test.

• Phase-locked loop to double the frequency of either the 33 MHz PCI
clock input or a 40 MHz maximum SYS clock input to use as an
internal system clock.

2-8 Functional Overview

L64364 ATMizer II+ ATM-SAR Chip 3-1

Chapter 3
Signal Descriptions

This chapter describes the primary input and output signals for the
L64364 and includes the following sections:

• Section 3.1, “I/O Signals Summary,” page 3-1

• Section 3.2, “PCI Interface,” page 3-4

• Section 3.3, “Secondary Memory Interface,” page 3-8

• Section 3.4, “Utopia Interface,” page 3-10

• Section 3.5, “Clocks and Utility Signals,” page 3-15

• Section 3.6, “APU Signals,” page 3-17

• Section 3.7, “Serial EPROM Interface,” page 3-18

• Section 3.8, “JTAG Test Interface,” page 3-19

• Section 3.9, “Power and Ground Pins,” page 3-20

3.1 I/O Signals Summary

Figure 3.1 illustrates the L64364 input and output signals when using the
Utopia master mode. Figure 3.2 illustrates the L64364’s input and output
signals when using the Utopia slave mode. The differences are in the
Utopia interface and are noted in the signal descriptions following the
figures. Those descriptions are grouped into the interfaces shown in the
figures.

Signal names for LOW-active signals terminate in lower case “n,”
whereas HIGH-active signals and clocks do not. All signals are
synchronous to the rising edge of their respective clocks unless specified
as asynchronous in the signal descriptions.

Refer to Chapter 13 for PQUAD pinout information.

3-2 Signal Descriptions

Figure 3.1 I/O Signals (Utopia Master)

RX_SOC

PCI
Interface

PCI_CLK
PCI_RSTn

PCI_AD[31:0]

PCI_CBEn[3:0]
PCI_PAR

PCI_FRAMEn
PCI_IRDYn

PCI_TRDYn
PCI_STOPn
PCI_IDSEL

PCI_DEVSELn
PCI_REQn
PCI_GNTn

PCI_PERRn
PCI_SERRn

PCI_INTn

Secondary
Bus

Utopia
Interface

TX_DATA[7:0]

TX_SOC
TX_ENBn
TX_CLK
TX_PRTY
TX_ADDR[4:0]
TX_CLAV[3:0]

RX_DATA[7:0]

RX_ENBn
RX_CLK
RX_PRTY
RX_ADDR[4:0]
RX_CLAV[3:0]

SYS_INTn[1:0]
SYS_BOOT[1:0]
SYS_PSTALLn

SE_ACK
SE_DI

JTAG
Interface

Serial
EPROM
Interface

APU
Signals

L64364

SYS_NMIn

SYS_CPCOND

SE_CLK

SB_D[31:0]

SB_A[21:2]

SB_WEn[3:0]

SB_OEn[3:0]

SB_CLKO

SB_PCSn[4:0]

SB_RDYn

SB_REQn

SB_GNTn

JTAG_TCLK
JTAG_TDI

JTAG_TDO
JTAG_TM

JTAG_TRSTn
TEST_EN
SCAN_EN

SYS_CLK_PCI
SYS_CLK
SYS_PLL
PLL_IDDTn
PLL_LP2
TM_CLK
SYS_OE

Clocks

PLLVSS
PLLVDD
PLLAGND

I/O Signals Summary 3-3

Figure 3.2 I/O Signals (Utopia Slave)

RX_SOC

PCI
Interface

PCI_CLK
PCI_RSTn

PCI_AD[31:0]

PCI_CBEn[3:0]
PCI_PAR

PCI_FRAMEn
PCI_IRDYn

PCI_TRDYn
PCI_STOPn
PCI_IDSEL

PCI_DEVSELn
PCI_REQn
PCI_GNTn

PCI_PERRn
PCI_SERRn

PCI_INTn

Secondary
Bus

Utopia
Interface

TX_DATA[7:0]

TX_SOC
TX_ENBn
TX_CLK
TX_PRTY
TX_ADDR[4:0]
TX_CLAV0

RX_DATA[7:0]

RX_ENBn
RX_CLK
RX_PRTY
RX_ADDR[4:0]
RX_CLAV0

SYS_INTn[1:0]
SYS_BOOT[1:0]
SYS_PSTALLn

SE_ACK
SE_DI

SYS_CLK_PCI
SYS_CLK
SYS_PLL
PLL_IDDTn
PLL_LP2
TM_CLK
SYS_OE

JTAG
Interface

Clocks

Serial
EPROM
Interface

APU
Signals

L64364

SYS_NMIn

SYS_CPCOND

SE_CLK

SB_D[31:0]

SB_A[21:2]

SB_WEn[3:0]

SB_OEn[3:0]

SB_CLKO

SB_PCSn[4:0]

SB_RDYn

SB_REQn

SB_GNTn

JTAG_TCLK
JTAG_TDI

JTAG_TDO
JTAG_TM

JTAG_TRSTn

TEST_EN
SCAN_EN

PLLVSS
PLLVDD
PLLAGND

3-4 Signal Descriptions

3.2 PCI Interface

The L64364 supports bus master and slave transfers on the PCI
Interface. The PCI Interface conforms to PCI Local Bus Specification 2.1.
Details of PCI Interface functionality are described in Chapter 9.

The PCI Bus is defined as little endian, which means that:

• byte address 0 is the address of the least significant byte (LSB) of
the 32-bit PCI data word which is the data byte on PCI_AD[7:0].

• byte address 3 is the address of the most significant byte (MSB) of
the 32-bit PCI data word which is the data byte on PCI_AD[31:24].

PCI Interface signal descriptions are provided below.

PCI_CLK PCI Clock Input
PCI_CLK is a 33 MHz clock that provides timing for all
transactions on the PCI Bus. All PCI input signals, except
PCI_RSTn, are sampled on the rising edge of PCI_CLK.

PCI_RSTn PCI Reset Input
PCI_RSTn is an asynchronous signal that resets PCI
specific registers, state machines, and signals to an initial
state. All PCI Interface signals are held 3-stated when
PCI_RSTn is asserted. This signal is also the master reset
for the L64364. Deasserting PCI_RSTn causes the APU
to initiate the boot process. Refer to Section 4.11, “Boot
Procedures,” for further information.

PCI_RSTn is asserted to internal control logic
asynchronously but deassertion is synchronized to the
system clock. When the PLL is used, PCI_CLK or
SYS_CLKshould be stable for three clock periods before
PCI_RSTn is deasserted.

PCI_AD[31:0] PCI Address and Data Bus Bidirectional
The PCI’s 32-bit addresses and 32-bit data are
multiplexed on PCI_AD[31:0] . The address phase is the
clock cycle in which PCI_FRAMEnis asserted. During the
address phase, PCI_AD[31:0] contains a physical
memory address.

The LSB of the 32-bit data word is transferred on
PCI_AD[7:0] , and the MSB is transferred on

PCI Interface 3-5

PCI_AD[31:24] . Write data is stable when PCI_IRDYn is
asserted and read data is stable when PCI_TRDYn is
asserted.

PCI_CBEn[3:0]
PCI Bus Commands and Data Byte
Enables Bidirectional
The PCI Bus commands and data byte enables are
multiplexed on PCI_CBEn[3:0] . During the address
phase, PCI_CBEn[3:0] contains the bus commands,
some of which are shown in the following table.

During the data phase, PCI_CBE[3:0] contains the byte
enables. PCI_CBE[0] enables data writes on
PCI_AD[7:0] , the LSB, and PCI_CBE[3] enables data
writes on PCI_AD[31:24] , the MSB.

PCI_PAR PCI_Parity Bidirectional
PCI_PAR is set or reset to create even parity for the
36-bits that include PCI_AD[31:0] and PCI_CBEn[3:0] . If
the total number of 1’s (bits set to logic one) on
PCI_AD[31:0] and PCI_CBEn[3:0] is odd, PCI_PAR is set
to 1; otherwise, it is reset to 0.

PCI_FRAMEn PCI Cycle Frame Bidirectional
PCI_FRAMEnis asserted by the current master to indicate
the beginning and duration of an access. PCI_FRAMEnis
asserted to indicate the start of a bus transaction. Bus
transfers continue while PCI_FRAMEnis asserted and they
terminate when PCI_FRAMEnis deasserted. When the
L64364 deasserts PCI_FRAMEn, it drives it high for one
clock cycle and then 3-states it in the following cycles.

PCI_CBEn[3:0] Command Type

0x6 Memory Read

0x7 Memory Write

0xA Configuration Read

0xB Configuration Write

0xC Memory Read Multiple

0xE Memory Read Line

0xF Memory Write and Invalidate

3-6 Signal Descriptions

PCI_IRDYn PCI Initiator Ready Bidirectional
The initiator, which is the current bus master, asserts
PCI_IRDYn to indicate when there is valid data on
PCI_AD[31:0] during a write cycle, or to indicate that it
is ready to accept data from PCI_AD[31:0] during a read
cycle. A data phase (transfer) is completed on any clock
cycle where both PCI_IRDYn and PCI_TRDYn are
asserted. Wait cycles are inserted until both PCI_IRDYn
and PCI_TRDYn are asserted. When the L64364
deasserts PCI_IRDYn , it drives it high for one clock cycle
and then 3-states it in the following cycles.

PCI_TRDYn PCI Target Ready Bidirectional
The target, which is the current bus slave, asserts
PCI_TRDYn to indicate when there is valid data on
PCI_AD[31:0] during a read cycle, or to indicate that it is
ready to accept data from PCI_AD[31:0] during a write
cycle. The data phase of a transfer completes on any
clock cycle when both PCI_IRDYn and PCI_TRDYn are
asserted. The L64364 inserts wait cycles until both
PCI_IRDYn and PCI_TRDYn are asserted. When the
L64364 deasserts PCI_TRDYn, it drives it high for one
clock cycle and then 3-states it in the following cycles.

PCI_STOPn PCI Stop Bidirectional
The target asserts PCI_STOPn to stop the current data
transfer. As a master, the L64364 terminates the data
transfer when PCI_STOPn is asserted. As a slave, the
L64364 asserts PCI_STOPn under the following
conditions:

• PCI Slave Write FIFO is full.

• PCI Slave Read FIFO is empty.

When the L64364 deasserts PCI_STOPn, it drives it high
for one clock cycle and then 3-states it in the following
cycles.

PCI_IDSEL PCI Initialization Device Select Input
PCI_IDSEL is a chip select which is input to the L64364
during configuration read and configuration write cycles
(bus command = 0b1010 or ob1011).

PCI Interface 3-7

PCI_DEVSELn
PCI Device Select Bidirectional
The target, whose address was specified in the address
phase of the current transfer, asserts PCI_DEVSELn. As a
target, the L64364 asserts PCI_DEVSELn two clock cycles
after the PCI Bus master asserts PCI_FRAMEn(medium
DEVSEL timing). When the L64364 deasserts
PCI_DEVSELn, it drives it high for one clock cycle and then
3-states it in the following cycles.

As a master, the L64364 aborts the transfer if
PCI_DEVSELn is not asserted within six clock cycles after
PCI_FRAMEnis asserted.

PCI_REQn PCI Request 3-State Output
The L64364 asserts PCI_REQn to request a master
transfer on the PCI Bus.

PCI_GNTn PCI Grant Input
The current bus master asserts PCI_GNTn to indicate to
the L64364 when bus ownership is granted. After the
L64364 detects PCI_GNTn, it asserts PCI_FRAMEnon the
next PCI clock and then initiates the bus transfer.

PCI_PERRn PCI Parity Error Bidirectional
PCI_PERRn indicates data parity errors have occurred.
During a master read or slave write, the L64364 asserts
PCI_PERRnwithin two clock cycles after detecting a parity
error. In both cases, it asserts PCI_PERRn for one clock
cycle. PCI_PERRn is asserted for more than one clock
cycle if multiple parity errors occur on burst transactions.
When the L64364 deasserts PCI_PERRn, it drives it high
for one clock cycle and then 3-states it during the
following cycles.

During a master write, the L64364 checks for parity errors
by monitoring PCI_PERRn from the target. If the target
asserts PCI_PERRn during a master write, the L64364
interrupts the APU.

PCI_SERRn PCI System Error Open Drain Output
The L64364 asserts PCI_SERRn when a parity error is
detected on PCI_AD[31:0] and PCI_CBE[3:0] during the
address phase of a transfer.

3-8 Signal Descriptions

PCI_INTn PCI Interrupt Open Drain Output
L64364 asserts PCI_INTn when the Transmit Messaging
Mailbox is not empty and the interrupt is enabled in the
Primary Port Control register. Refer to Section 9.3.1,
“XPP_Ctrl Register,” for additional information.

3.3 Secondary Memory Interface

The Secondary Memory Interface directly controls access to
synchronous DRAM, asynchronous SRAM, synchronous SRAM, and
some physical layer devices. Refer to Chapter 10 for information about
secondary memory configurations and bus functionality.

The interface signals are defined as follows:

SB_D[31:0] Secondary Data Bus Bidirectional
SB_D[31:0] is a 32-bit wide data bus which provides
access to secondary memory. The byte-wide EPROM
and all peripheral devices connect to local memory
through SB_D[31:24] .

SB_A[21:2] Secondary Bus Address Output
SB_A[21:2] is a 20-bit wide bus for addressing SSRAM,
SRAM, SDRAM, EPROM, and peripheral devices. The
table below shows the SB_A mapping to these various
devices.

SB_WEn[3:0] Secondary Bus Write Enables Output
SB_WEn[3:0] are byte write enables for the 32-bit
Secondary Bus. The Secondary Bus is defined as little

SB_A[n] SSRAM EPROM PHY SDRAM

SB_A[21] A19 A19 A19 RAS

SB_A[20] A18 A18 A18 CAS

SB_A[19] A17 A17 A17 not used

SB_A[18] A16 A16 A16 not used

SB_A[17] A15 A15 A15 not used

SB_A[16] A14 A14 A14 not used

SB_A[15] A13 A13 A13 A13

SB_A[14] A12 A12 A12 A12

SB_A[13:2] A[11:0] A[11:0] A[11:0] A[11:0]

Secondary Memory Interface 3-9

endian. SB_WEn[3] enables write data on SB_D[31:24] ,
the MSB. SB_WEn[0] enables write data on SB_D[7:0] ,
the LSB. Byte-wide peripheral devices must connect to
SB_WEn[0] . Write enables for specific devices are
assigned as in the following table.

SB_OEn[3:0] Secondary Bus Output Enables Output
SB_OEn[3:0] are the output enables and/or address
controls of SSRAMS, SDRAMS, EPROMs, and
peripheral devices as defined in the following table.

SB_CLKO Secondary Bus Clock Output
SSRAM, and SDRAM use the SB_CLKOfor
synchronization. All address, data, and control signals to
and from SDRAM and SSRAM are synchronized to the
rising edge of SB_CLKO.

SB_WEn[n]

SSRAM
and 32-Bit
EPROM/
SRAM

8-Bit
EPROM/
SRAM Peripheral SDRAM

SB_WEn[3] WEn not used not used not used

SB_WEn[2] WEn not used not used not used

SB_WEn[1] WEn not used not used not used

SB_WEn[0] WEn WEn WEn WEn

SB_OEn[n] SSRAM
EPROM/
SRAM Peripheral SDRAM 1

SB_OEn[3] not used not used not used DQM (X8),
DQMU (X16),
DQM[3] (X32)

SB_OEn[2] not used not used not used DQM (X8),
DQML (X16),
DQM[2] (X32)

SB_OEn[1] not used ALE ALE DQM (X8),
DQMU (X16),
DQM[1] (X32)

SB_OEn[0] OEn OEn OEn DQM (X8),
DQML (X16),
DQM[0] (X32)

1. DQM is the LOW-active output enable for byte-wide
SDRAM. DQMU and DQML are the LOW-active byte
enables for the upper and lower bytes of a 16-bit SDRAM.

3-10 Signal Descriptions

SB_PCSn[4:0]
Secondary Bus Page Chip Select Output
SB_PCSn[4:0] provide a chip select function for the five
pages that are configured in the Secondary Bus control
registers. Normally, these signals connect to the chip
select inputs of memory devices (either directly or
conditioned with address decode). Refer to Section 10.2,
“SBC Configuration,” for details.

SB_RDYn Secondary Bus Ready Input
SB_RDYnindicates valid input data is available on
SB_D[n] . This asynchronous input may be used instead
of the integrated wait state generator to time read and
write transfers to asynchronous SRAM, EPROM, and
peripheral devices.

SB_RDYnis sampled on the deasserting edge of
PCI_RSTn to determine the reset state of SB_Wait fields
in the SP_Ctrl Register. See section 10.2.1 on
page 10-4. If SB_RDYnis sampled HIGH, then the
SB_Wait fields reset to 0xE (14 wait states). If SB_RDYn
is sampled LOW, then the SB_Wait fields reset to 0xF
(SB_RDYnterminated).

SB_REQn Secondary Bus Request Input
SB_REQnasserted indicates an external master requests
Secondary Bus ownership. It is an asynchronous input.

SB_GNTn Secondary Bus Grant Output
The L64364 asserts SB_GNTnin response to SB_REQn.
Secondary Bus ownership is granted based on a
round-robin priority scheme between the PCI slave
interface and the L64364 master. All Secondary Bus sig-
nals, except SB_CLKOand SB_GNTn, are held 3-stated until
SB_REQnis deasserted.

3.4 Utopia Interface

The Utopia Interface conforms to the ATM Forum’s Utopia Level 2
Specification, Version 1.0. Data and control signals are bidirectional
since the L64364 can be configured as either a Utopia master or slave.
Utopia interface signals are described in the following paragraphs.

Utopia Interface 3-11

TX_DATA[7:0]
Transmit Cell Data Bidirectional
Master Mode (output)

TX_DATA[7:0] is the Utopia transmit cell data output from
the L64364 to one of the external Physical Layer (PHY)
devices. Transmit cells are output from the transmit FIFO
of the L64364.

Slave Mode (input)

TX_DATA[7:0] is the Utopia transmit cell data input from
an external Utopia master device. Cell data is input to the
receive FIFO of the L64364.

TX_SOC Transmit Start of Cell Bidirectional
Master Mode (output)

TX_SOCis output from the L64364 to indicate the first byte
of a cell. This signal pulses HIGH for one Utopia
transmit-clock cycle at the first byte of the cell header
when the cell length is 52 or 53 bytes. TX_SOCpulses
HIGH for one Utopia transmit-clock cycle at the first byte
of the prepended routing tag when the cell length
exceeds 53 bytes.

Slave Mode (input)

TX_SOCis input to the L64364 from the Utopia master to
indicate the first byte of a cell. A HIGH on this signal
when sampled with respect to the Utopia transmit clock
indicates the first byte of the cell header for 52–53 byte
cells or the first byte of the routing tag for 56–65 byte
cells.

TX_ENBn Transmit Enable Bidirectional
Master Mode (output)

The L64364 asserts TX_ENBnto designate valid transmit
cell data on TX_DATA[7:0] .

Slave Mode (input)

TX_ENBnis asserted by the Utopia master to the L64364
to designate valid transmit cell data on TX_DATA[7:0] .
Transmit cell data is sampled on the rising edge of
TX_CLKwhen TX_ENBnis asserted.

3-12 Signal Descriptions

TX_CLK Transmit Clock Input
TX_CLK is the ATM layer interface clock used to
synchronize transmit cell data transfers. TX_CLKhas a
maximum frequency of 50 MHz and is an input that is
independent of master or slave configuration.

TX_PRTY Transmit Parity Bidirectional
Master Mode (output)

TX_PRTYis set to logic 1 to signal odd parity over
TX_PRTYand TX_DATA[7:0] if the total number of 1’s in
TX_DATA[7:0] is even. It is reset to logic 0 if the total
number of 1’s in TX_DATA[7:0] is odd.

Slave Mode (input)

TX_PRTYis set or reset by the Utopia master to designate
odd parity on TX_DATA[7:0] as described for master
mode. If parity is enabled, the L64364 will interrupt the
APU to handle errored cells.

TX_ADDR[4:0]
Transmit Address Bidirectional
Master Mode (output)

TX_ADDR[4:0] is output to select the PHY device that is
the destination for the next transmit cell. The L64364
supports up to 24 PHY devices 0–23.

Slave Mode (input)

During polling by the Utopia master, the L64364 monitors
TX_ADDR[4:0] for its PHY device address, which is
programmed in the ACI Control register. The PHY device
address range is 0–30 in slave mode. L64364 asserts
TX_CLAV[0] whenever the Receive FIFO can accept a
transmit cell from the Utopia master and TX_ADDR[4:0]
matches its programmed PHY device address.

TX_CLAV[3:0]
Transmit Cell Available Bidirectional
Master Mode (input)

The L64364 monitors the TX_CLAV[3:0] signals to
determine if the target PHY device is capable of
accepting the next cell from the transmit FIFO. When
TX_CLAVis asserted, the transmit cell is transferred to the
PHY device on TX_DATA[7:0] . If TX_CLAVis not asserted
prior to the expiration of the L64364’s programmable

Utopia Interface 3-13

watchdog timer, the transmit cell is moved to an Error
FIFO and the APU is optionally interrupted for error
handling.

TX_CLAVdefinition is dependent on whether direct or
multiplexed polling is selected. In direct polling, up to four
PHY devices are supported and each one connects to
one of the TX_CLAV[3:0] inputs. Multiplexed polling uses
only the TX_CLAV[0] input. Up to 24 PHY devices will
then connect their TxCLAV outputs to TX_CLAV[0] .

Slave Mode (output)

The L64364, when selected by the Utopia master,
asserts TX_CLAV[0] if the Receive FIFO has room for at
least one cell. TX_CLAV[3:1] are not used.

RX_DATA[7:0]
Receive Cell Data Bidirectional
Master Mode (input)

RX_DATA[7:0] is the Utopia receive cell data input from
the PHY devices. Receive cell data is destined for the
receive FIFO of the L64364.

Slave Mode (output)

RX_DATA[7:0] is the Utopia receive cell data output from
the transmit FIFO of the L64364 to the Utopia master.

RX_SOC Receive Start of Cell Bidirectional
Master Mode (input)

RX_SOCis asserted to the L64364 at the first byte of the
cell. This signal pulses HIGH for one Utopia receive-clock
cycle at the first byte of the cell header when the cell
length is 52 or 53 bytes. RX_SOCpulses HIGH for one
Utopia receive-clock cycle at the first byte of the
prepended routing tag when the cell length exceeds
53 bytes.

Slave Mode (output)

The L64364 asserts RX_SOCto indicate the first byte of a
cell. A HIGH on this signal when sampled with respect to
the Utopia receive clock indicates the first byte of the cell
header for 52–53 byte cells or the first byte of the routing
tag for 56–65 byte cells.

3-14 Signal Descriptions

RX_ENBn Receive Enable Bidirectional
Master Mode (output)

After a PHY device is selected, the L64364 asserts
RX_ENBnto indicate it is ready to accept receive cell data.
In a single-PHY application, RX_ENBnremains asserted as
long as the receive FIFO is not full and the PHY device
has cells available. This enables back-to-back cell
reception. In a multi-PHY application, RX_ENBnremains
asserted as long as the receive FIFO is not full and a
higher priority PHY device does not assert its CLAVsignal.

Slave Mode (input)

The L64364 monitors the RX_ENBninput to determine
when the Utopia master is ready to receive cells from the
transmit FIFO. When selected by the Utopia master, the
L64364 uses RX_ENBnto enable the 3-state drivers on
RX_DATA[7:0] and RX_SOC, and then initiate the Utopia
receive cell transfer.

RX_CLK Receive Clock Input
RX_CLKis the ATM layer interface clock used to
synchronize receive cell data transfers. RX_CLKhas a
maximum frequency of 50 MHz and is an input that is
independent of master or slave configurations.

RX_PRTY Receive Odd Parity Bidirectional
Master Mode (input)

RX_PRTYis input to the L64364 by the PHY device to
designate odd parity. It is set to logic 1 when the total
number of 1’s in RX_DATA[7:0] is even and reset to 0 if
the number of 1’s in RX_DATA[7:0] is odd. If parity is
enabled, the L64364 interrupts the APU to handle errored
cells.

Slave Mode (output)

RX_PRTYis set or reset by the L64364 to designate odd
parity as described for master mode.

RX_ADDR[4:0]
Receive Address Bidirectional
Master Mode (output)

The L64364 places the address of the PHY device being
polled on RX_ADDR[4:0] . The L64364 supports up to
24 PHY devices 0–23.

Clocks and Utility Signals 3-15

Slave Mode (input)

During polling by the Utopia master, the L64364 monitors
RX_ADDR[4:0] for its PHY device address which is
programmed in the ACI Control register. The PHY device
address range is 0–30 in slave mode. When
RX_ADDR[4:0] matches the programmed PHY device
address, the L64364 asserts RX_CLAV[0] if the transmit
FIFO is not empty. The L64364 also asserts RX_CLAV[0]
if the PHY device address is zero and idle cell generation
is enabled.

RX_CLAV[3:0]
Receive Cell Available Bidirectional
Master Mode (input)

The L64364 monitors RX_CLAV[3:0] signals to determine
if the target PHY device has a receive cell available. When
the target PHY device asserts RX_CLAV, the L64364
asserts RX_ENBnto enable the receive cell transfer.

The definition of RX_CLAVdepends on whether direct or
multiplexed polling is selected. In direct polling, up to four
PHY devices are supported and each one connects to
one of the RX_CLAV[3:0] inputs. Multiplexed polling uses
only the RX_CLAV[0] input. Up to 24 PHY devices can
then connect their RxCLAVoutputs to RX_CLAV[0] .

Slave Mode (output)

The L64364, when selected by the Utopia master,
asserts RX_CLAV[0] if the transmit FIFO is not empty.
RX_CLAV[3:1] are not used.

3.5 Clocks and Utility Signals

This section defines the clocks, clock select signals, and miscellaneous
control signals. Refer to Chapter 11 for detailed information on clocks
and clock control signals.

SYS_CLK_PCI
PCI Clock Select Input
SYS_CLK_PCI, when HIGH, selects PCI_CLK as the
system clock source for the L64364. When SYS_CLK_PCI
is LOW, SYS_CLKis selected as the system clock source.

3-16 Signal Descriptions

SYS_CLK_PCI must be tied to power or ground and must
not change during the operation of the L64364.

SYS_CLK System Clock Input
SYS_CLKis the system clock input for the L64364. The
maximum clock frequency is for PX80 is 80 MHz and for
PX100 is 100 MHz.

SYS_PLL PLL Select Input
When SYS_PLL is HIGH, the clock selected by
SYS_CLK_PCI is multiplied by two in the internal phase-
locked loop before being used as the internal system
clock. When SYS_PLL is LOW, the selected clock is used
at its frequency. This signal must be tied to power or
ground and must not change during the operation of the
L64364 operation.

PLL_IDDTn PLL Operations Input
PLL_IDDTn enables manufacturing test of the internal
phase-locked loop. This pin must be tied to logic ground
(VSS) for normal operation.

PLL_LP2 PLL Loop Filter Input Input
The PLL_LP2 pin is a tap off the line connecting the PLL’s
phase detector charge pump output and VCO input. An
external loop filter, consisting of one resistor and two
capacitors, must be connected between this pin and the
PLLAGNDpin. See Figure 11.2 for configuration details.

PLLVSS PLL Ground
The PLL uses one reference ground pin isolated from all
other grounds.

PLLVDD PLL Power Input
The PLL uses one 3 V power pin isolated from all other
power lines.

PLLAGND PLL Analog Ground
A separate reference ground pin isolated from all other
grounds is provided for the analog section of the PLL.

TM_CLK Timer Reference Clock Input
The TM_CLKinput may be used as a reference clock for
the seven general-purpose timers or the Time Stamp
Counter. TM_CLKhas a maximum frequency of one-third
the internal system clock rate and may be asynchronous

APU Signals 3-17

to the system clock. Refer to Section 8.2, “Timer Clock
Selection,” for additional information.

SYS_OE System Output Enable Input
SYS_OE, when deasserted, 3-states all outputs of the
L64364.

3.6 APU Signals

The section summarizes the ATM Processing Unit’s (APU) external
signals.

SYS_NMIn System Nonmaskable Interrupt Input
This signal provides a nonmaskable interrupt to the APU.
When asserted, it causes the APU to unconditionally
execute the nonmaskable interrupt handler.

SYS_INTn[1:0]
System Interrupt Inputs
If vectored interrupts to the APU are enabled,
SYS_INTn[1] and SYS_INTn[0] cause vectored interrupts
5 and 4, respectively. SYS_INTn[1:0] are asynchronous,
level-sensitive inputs. They are resynchronized to the
L64364's system clock. SYS_INTn[1:0] must remain
asserted until the associated interrupt is acknowledged
by the interrupt service routine executed by the APU. For
information about vectored interrupts, their sources, and
how they are enabled, refer to Section 4.8, “Interrupts.”

SYS_BOOT[1:0]
System Boot Source Inputs
SYS_BOOT[1:0] select the boot source according to the
table below. SYS_BOOT[1:0] are sampled on the rising
edge (deassertion) of PCI_RSTn. Refer to Section 4.11,
“Boot Procedures,” for further information.

SYS_BOOT[1:0] Boot Source

0b00 Secondary Bus EPROM

0b01 Not Used

0b10 Cell Buffer Memory

0b11 Serial EPROM

3-18 Signal Descriptions

SYS_PSTALLn
System Pipeline Stalled Output
SYS_PSTALLnis asserted when the APU internal pipeline
is stalled. This signal is for system performance tuning.
Refer to Section 4.2.3, “CW4011 Pipeline,” for information
about APU pipeline functionality and performance
considerations.

SYS_CPCOND
System Coprocessor Condition Code Bit Input
This signal sets the state of the APU’s Coprocessor
Condition Code bit 0. This allows the APU to directly test
the status of external logic using Branch or Coprocessor
Condition instructions.

3.7 Serial EPROM Interface

The Serial EPROM Interface provides an optional APU boot source. This
section describes the Serial EPROM Interface signals.

SE_CLK Serial EPROM Clock Output
SE_CLKis the clock used to load boot code from the serial
EPROM. The SE_CLKfrequency is the internal system
clock frequency divided by 32. For example, if the L64364
system clock is 66 MHz, the SE_CLKwill be 2.06 MHz.

SE_DI Serial EPROM Data Input Input
SE_DI is the boot code from the serial EPROM. The code
is packed so the first bit out of the serial EPROM is the
least significant bit of byte 0 (the most significant byte).
Data on SE_DI is sampled on the rising edge of SE_CLK.

SE_ACK Serial EPROM Acknowledge Input
External logic asserts this signal to indicate when there
is valid serial EPROM data present on SE_DI. When the
external logic asserts SE_ACK, the L64364 captures the
data present on SE_DI on the rising edge of SE_CLK.

JTAG Test Interface 3-19

3.8 JTAG Test Interface

The JTAG Test Interface conforms to IEEE 1149.1, Standard Test Access
Port and Boundary Scan Architecture. The interface signals are
described in this section.

JTAG_TCLK JTAG Test Clock Input
JTAG_TCLKshifts the boundary scan register and has a
maximum frequency of 20 MHz.

JTAG_TDI JTAG Test Data Input Input
The test data input, JTAG_TDI, is sampled on the rising
edge of JTAG_TCLK.

JTAG_TDO JTAG Test Data Output Output
JTAG_TDOis the test data output of the boundary scan
register. The output data is synchronized to the falling
edge of JTAG_TCLK.

JTAG_TM JTAG Test Mode Input
JTAG_TMis the control input to the JTAG Test Access Port
controller.

JTAG_TRSTn JTAG Test Reset Input
JTAG_TRSTn, when asserted, resets the JTAG Test
Access Port controller.

TEST_EN Factory Test Enable Input
TEST_EN, when asserted, enables factory test. This signal
must be tied to ground during normal operation.

SCAN_EN Factory Scan Test Enable Input
SCAN_EN, when asserted, enables factory scan test
chains. This signal must be tied to ground during normal
operation.

3-20 Signal Descriptions

3.9 Power and Ground Pins

This section lists the power and ground pins. The number of power and
ground pins has been selected to provide reliable operation and HIGH
I/O signal integrity.

VSS Logic Ground
Thirteen pins are dedicated to reference ground for
internal chip logic.

VDD Logic Power Input
Twelve pins are dedicated to the 3.3 V supply voltage for
internal chip logic.

VSS2 I/O Ground
Nine pins are dedicated to reference ground for the I/O
pad ring.

VDD2 I/O Power
Nine pins are dedicated to powering the I/O pad ring.
Nominal voltage is 3.3 V.

VCC (+ 5 V) PCI Clamp Voltage Input
Seven pins provide voltage to the PCI input clamp
diodes. This voltage is the required 11 V overvoltage
specification of the PCI Local Bus Specification 2.1,
Section 4.2.1.3. No power dissipation is associated with
these pins. These pins sink current when the PCI inputs
are raised above 5 V.

L64364 ATMizer II+ ATM-SAR Chip 4-1

Chapter 4
ATM Processing Unit

This chapter describes the ATM Processing Unit (APU) and contains the
following sections:

• Section 4.1, “APU Overview,” page 4-1

• Section 4.2, “APU Architecture,” page 4-3

• Section 4.3, “APU Instruction Set Summary,” page 4-10

• Section 4.4, “CP0 Data Manipulation Registers,” page 4-49

• Section 4.5, “Cache Memory,” page 4-50

• Section 4.6, “Exceptions,” page 4-59

• Section 4.7, “Memory Map,” page 4-95

• Section 4.8, “Interrupts,” page 4-101

• Section 4.9, “CW4011 OCA Bus Accesses,” page 4-112

• Section 4.10, “Bus Watchdog Timers,” page 4-112

• Section 4.11, “Boot Procedures,” page 4-118

Important: Register bits and fields labeled “Reserved” are don’t cares.
Descriptor bits and fields labeled “Reserved” should not be
modified.

4.1 APU Overview

The APU is built on rgw LSI Logic MiniRISC CW4011 Superscalar
Microprocessor Core. The CW4011 is a member of the LSI Logic
MiniRISC family, the next generation of MIPS RISC products. LSI Logic
offers the CW4011 as a CoreWare® product for use in customer ASIC
designs. LSI Logic also embeds the CW4011 in Application-Specific
Standard Products (ASSPs), such as the L64364 ATMizer II+ chip. Refer

4-2 ATM Processing Unit

to the MiniRISC CW4011 Superscalar Microprocessor Core Technical
Manual, LSI Logic Order No. C14040, for information about the CW4011
not covered in this chapter.

4.1.1 Block Diagram

The APU block diagram is shown in Figure 4.1. In addition to the
CW4011 core, the APU contains the following building blocks:

• Direct-mapped or two-way set associative instruction cache
(8 Kbytes)

• Direct-mapped or two-way set associative data cache (4 Kbytes)

• A write back buffer for write back cache mode

• A floating-point multiplier unit for ATM ABR rate calculations

The APU also includes logic that allows initial program loading from a
serial EPROM, a byte-wide EPROM, or a host download to the ATMizer
CBM.

Figure 4.1 APU Block Diagram

CW4011
Core

Rate
Multiplier

APU Logic

SC Bus
Interface

M Bus* W Bus*

I-Cache
Set 0

I-Cache
Set 1

WriteBack

D-Cache
Set 0

D-Cache
Set 1

Buffer

Coprocessor
Interface

OCA Logic

OCA Bus
Interface

* Internal ATMizer II+ Busses

APU Architecture 4-3

4.1.2 Features

The APU has the following key features:

• Full MIPS II instruction set implementation (R4000 32-bit mode
compatible).

• Instruction set extensions to support ATM ABR calculations.

• Superscalar execution: two instructions per clock cycle.

• 32-bit memory and 64-bit cache interface.

• PX80 delivers 150 Dhrystone MIPS at 80 MHz and PX100 delivers
188 Dhrystone MIPS at 100 MHz.

• PX80, 160 native MIPS peak (110 native MIPS sustained) with
standard compiled MIPS code at 80 MHz and PX100, 200 native
MIPS peak (138 MIPS sustained) with standard compiled MIPS code
at 100 MHz.

• Integrated cache controllers with separate 8 Kbyte instruction and
4 Kbyte data cache.

4.2 APU Architecture

The APU is fully compatibility with both the R3000 and R4000 32-bit
instruction sets (MIPS I and MIPS II) but uses an updated hardware
architecture to provide higher absolute performance than any other
available MIPS solution. The APU also provides substantially better
instructions-per-clock performance than other MIPS processors. At the
same time, the hardware design remains compact compared to other
superscalar architectures.

The APU can issue and retire two instructions per cycle using a
combination of four independent execution units:

• The Arithmetic Logic Unit (ALU)

• The Load/Store/Add Unit (LSU)

• The Branch Unit

• The Rate Multiply Unit

4-4 ATM Processing Unit

The LSU can execute add and load immediate instructions (in addition
to load and store), making it possible for the L64364 to perform an add
instruction at the same time it executes another add or logical instruction.

All instructions, except multiply and divide, can be completed in a single
cycle.

Load instructions have a single hardware delay slot for loads that hit in
the cache, but the hardware interlocks on register conflicts so that a NOP
is required in the delay slot. On a load miss, the APU extends the
hardware conflict detection so that, if the load data is not required by
subsequent instructions in the pipeline, the CPU is not stalled. The
operation is called load scheduling. The APU supports store instructions
with both a write back cache and a write buffer.

The APU has an instruction prefetch queue and branch prediction logic
to boost branch performance so that correctly predicted branches are
retired with no penalty, and incorrectly predicted branches normally have
a penalty of just one cycle. The APU accomplishes branch prediction
with a simple hardware algorithm that has an accuracy of greater than
90% for most application code.

4.2.1 CW4011 Core

Figure 4.2 shows a block diagram of the CW4011 core. It includes the
following blocks:

• Ifetch Queue

• IDecode Unit

• Branch Unit

• Register File

• Load/Store/Add Unit (LSU)

• Integer Arithmetic Logic Unit (ALU)

• Floating-Point Rate Multiply Unit

• Bus Interface Unit (BIU)

• SC Bus Interface

• Coprocessor Interface

• System Control Coprocessor (CP0)

APU Architecture 4-5

The Ifetch Queue optimizes the supply of instructions to the
microprocessor, even across breaks (jumps and branches) in the
sequential flow of execution. The IDecode Unit decodes the instructions
from the Ifetch Queue; determines the actions required for the instruction
execution; and manages the Register File (RFile), LSU, ALU, and
Multiplier Units accordingly.

The Branch Unit is used when branch and jump instructions are
recognized within the instruction stream.

The Register File contains the APU's general purpose registers. It
supplies source operands to the execution units and handles the storage
of results to target registers.

Figure 4.2 CW4011 Block Diagram

Three units perform logical, arithmetic, and data-movement operations.
The Load/Store/Add Unit (LSU) manages loads and stores of data
values. Loads come from either the D-Cache or the SC Bus Interface in
the event of a D-Cache miss. Stores pass to the D-Cache and the

Ifetch Queue I-Cache

Coprocessor
Interface

Register File

Load/Store/Add Unit (LSU)
Integer ALU Rate MultiplyD-Cache

Write Buffer

Bus Interface Unit

Address Data

IDecode Unit Branch Unit

Control

SC Bus Interface

Internal Instruction Execution Bus x 2

64

32

CP0
Unit

Instruction Schedule
Unit (ISU)

32

64

OCA Bus

4-6 ATM Processing Unit

SC Bus Interface through the Write Buffer. The LSU also performs a
restricted set of arithmetic operations, including the addition of an
immediate offset as required in address calculations. The Integer ALU
Unit calculates the result of an arithmetic or logical operation. The Rate
Multiply Unit performs integer multiply/divide operations and floating point
operations in the format adopted by the ATM Forum for ABR calculations.

The Bus Interface Unit manages the flow of instructions and data
between the CW4011 core and the system using the SC Bus Interface.
The SC Bus Interface provides the main channel for communication
between the CW4011 core and the other functional blocks in the
ATMizer II+ chip.

The Coprocessor Interface provides the status of key ATMizer II+
resources. Coprocessor Condition codes are set for the following:

• CPCond3: EDMA RxCell Request Queue full

• CPCond2: EDMA TxCell Request Queue full

• CPCond1: EDMA Buffer Request Queue full

• CPCond0: SYS_CPCOND input to L64364 asserted

These conditions are used by the Branch on Coprocessor (BCzT and
BCzF) instructions described in Section 4.3.7, “Coprocessor Instructions.”
CPCond0 interrupts the CW4011.

4.2.2 Cache and External Interface

The instruction cache and controller are an integral part of the CW4011
Instruction Schedule Unit (ISU), and the data cache and controller are
an integral part of the LSU. The Write Buffer is also part of the LSU.

In addition, a simple memory interface unit, the BIU, provides the
interface to Primary Memory, Secondary Memory, and the ATMizer’s Cell
Buffer Memory and registers. The BIU presents a nonmultiplexed
interface with a 32-bit data bus and 32-bit address bus. A write back
buffer is provided to support write back mode to the data cache.

4.2.3 CW4011 Pipeline

As shown in Figure 4.3, the superscalar CW4011 has two, concurrent,
six-stage pipelines or slots—an even and an odd. The first three stages

APU Architecture 4-7

are labelled the instruction fetch phase, and the last three stages are
labelled the instruction execution phase.

Figure 4.3 CW4011 Instruction Pipeline

In general, the execution of a single CW4011 instruction consists of the
following stages:

1. IF (Instruction Fetch) – The CW4011 fetches the instruction during
this stage.

2. Q (Queuing) – Instructions may enter this conditional stage if they
deal with branches or register conflicts. An instruction that does not
cause a branch or register conflict is fed directly to the RD stage.

3. RD (Read) – During this stage, any required operands are read from
the Register File while the instruction is decoded.

4. EX (Execute) – All instructions are executed in this stage. In addition,
conditional branches are resolved and load/store address
calculations are performed during this stage.

5. CR (Cache Read) – In this stage, cache read operations are
performed for load and store instructions. Data is returned to the
register bypass logic at the end of the CR stage.

6. WB (Write Back) – Results are written into the Register File during
this stage.

Once it has accepted an instruction from the previous stage, each stage
holds the instruction for re-execution if the pipeline stalls.

EX CRRDQIF

Instruction Fetch Instruction Execution

WB

EX CRRDQIF WB

Even Pipeline

Odd Pipeline

4-8 ATM Processing Unit

4.2.3.1 Instruction Fetch and Scheduling Stages

The IF, Q, and RD stages fetch and issue two instructions per cycle to
the execute stage. For simplicity, the CW4011 fetches instructions as
doubleword aligned pairs (slot 0 and slot 1). In the instruction decode
stage, there is a two-instruction window. When only slot 0 can be
scheduled because slot 1 has a dependency, the window slides down
one instruction. In other words, although instructions are always fetched
as doubleword pairs, they are scheduled on single-word boundaries.

The Q stage executes branch instructions with minimal penalty. In
general, the CW4011 fills the Q stage whenever the RD stage has to
stall, which occurs fairly often for register conflicts, cache misses, and
resource conflicts. Filling the Q stage in this case allows the IF stage to
work ahead one cycle.

When a branch instruction type is encountered and the Q stage is active,
the branch is predicted to be taken and instruction fetching starts at the
branch address. At this point, the Q stage holds the next nonbranch
instructions to be executed. The branch target enters the RD stage,
bypassing the Q stage. When the branch instruction enters the Execute
stage, the branch condition is resolved. If the branch was correctly
predicted, the instructions in the Q stage are cancelled. If the branch was
incorrectly predicted, the branch target is cancelled. In this later case, the
nonbranch sequential instructions are taken from the Q stage, and the IF
stage is restarted at the nonbranch sequential stream. A different case
occurs when the branch instruction is in the odd instruction slot.

In general, a branch instruction that is correctly predicted from the even
slot with the Q stage full has no cycle penalty associated with it. In the
case where the branch is incorrectly predicted, the branch has a
one-cycle penalty.

If the branch instruction was in the odd slot, the branch delay slot
instruction always executes by itself and has no chance to fill the other
execution slot. For that reason, it may be advantageous if the software
assembler places branches in even word addresses.

The branch prediction logic must be capable of looking at two
instructions at a time, from either the Q latches or the RD latches,
depending on whether the Q stage is active. If one of the instructions is
a branch, the offset in that instruction is passed into a dedicated adder

APU Architecture 4-9

to calculate the branch address for the IF stage instruction fetch.
Because this is done speculatively, the nonbranch value of the Program
Counter (PC) is also saved for the possible restart of the sequential
instructions from the Q stage.

After an instruction pair passes into the RD stage, it is decoded and, at
the same time, the register source addresses are passed to the register
file so the operands can be read. Register dependencies and resource
dependencies are checked in this stage. If the instruction in slot 0 has
no dependency on a register or resource currently tied up by a previous
instruction, it is passed immediately into the EX stage where it forks to
the appropriate execution unit. The instruction in slot 1 may also be
dependent on a resource or register in slot 0, so it must be checked for
dependencies against both slot 0 and any previous unretired instruction.
If either instruction must be held in the RD stage and the Q stage is not
full, the IF stage is allowed to continue in order to fill the Q stage. If the
Q stage is full, then the Q and IF stages are frozen (stalled).

In the RD stage, register bypass opportunities are considered and the
bypass multiplexers control signals are set for potential bypass cases
from a previous instruction still in the pipeline.

4.2.3.2 Execute Stage

During instruction execution, a pair of instructions (or a single instruction
when there was a previous block) are individually passed to independent
execution units. Each execution unit receives its operands from the
register bypass logic and an instruction from the instruction scheduler.
Each instruction spends one run cycle in an execution unit. For ALU and
other single cycle instructions, the result is then fed to the
register/bypass unit for the CR stage.

4.2.3.3 Cache Read and Write Back Stages

For load and store instructions, the cache lookup occurs during the CR
stage. For load instructions, data is returned to the register/bypass unit
during the CR stage, including data loads to Coprocessor 0.

For all other instructions, CR and WB are holding stages used to hold
the result of the execute stage for write back to the register file.

4-10 ATM Processing Unit

4.3 APU Instruction Set Summary

The CW4011 instruction set with ATMizer II+ specific extensions is
summarized in this section. Table 4.1 summarizes the instruction set for
the APU. The APU supports both MIPS I and MIPS II instructions, and
also implements some additional CW4011-specific and APU-specific
instructions. All instructions are 32-bits long.

Table 4.1 APU Instruction Set Summary

Op Description Op Description

Arithmetic Instructions: ALU Immediate

ADDI Add Immediate ANDI AND Immediate

ADDIU Add Immediate Unsigned ORI OR Immediate

SLTI Set on Less Than Immediate XORI Exclusive OR Immediate

SLTIU Set on Less Than Immediate
Unsigned

LUI Load Upper Immediate

Arithmetic Instructions: Three-Operand, Register-Type

ADD Add SLTU Set on Less Than Unsigned

ADDU Add Unsigned AND AND

SUB Subtract OR OR

SUBU Subtract Unsigned XOR Exclusive OR

SLT Set on Less Than NOR NOR

Branch Likely Instructions 1

BEQL Branch on Equal Likely BGTZL Branch on Greater Than Zero Likely

BNEL Branch on Not Equal Likely BLTZL Branch on Less Than Zero Likely

BLEZL Branch on Less than or Equal to
Zero Likely

BLTZALL Branch on Less Than Zero And Link
Likely

BGEZL Branch on Greater than or Equal to
Zero Likely

BGEZALL Branch on Greater than or Equal to
Zero and Link Likely

(Sheet 1 of 4)

APU Instruction Set Summary 4-11

Cache Maintenance

FLUSHI Flush I-Cache FLUSHID Flush I-Cache and D-Cache

FLUSHD Flush D-Cache

Coprocessor Instructions

BCzT
(BCzTL)

Branch on Coprocessor z True
(Likely)

BCzF
(BCzFL)

Branch on Coprocessor z False
(Likely)

Jump and Branch Instructions

J Jump BLEZ Branch on Less than or Equal to Zero

JAL Jump And Link BGTZ Branch on Greater Than Zero

JR Jump Register BLTZ Branch on Less Than Zero

JALR Jump And Link Register BGEZ Branch on Greater than or Equal to
Zero

BEQ Branch on Equal BLTZAL Branch on Less Than Zero And Link

BNE Branch on Not Equal BGEZAL Branch on Greater than or Equal to
Zero And Link

Load/Store Instructions

LB Load Byte SH Store Halfword

LBU Load Byte Unsigned SW Store Word

LH Load Halfword SWL Store Word Left

LHU Load Halfword Unsigned SWR Store Word Right

LW Load Word LL1 Load Linked

LWL Load Word Left SC1 Store Conditional

LWR Load Word Right SYNC1 Sync

SB Store Byte

Table 4.1 APU Instruction Set Summary (Cont.)

Op Description Op Description

(Sheet 2 of 4)

4-12 ATM Processing Unit

Multiply/Divide Instructions

MULT Multiply MFHI Move From HI

MULTU Multiply Unsigned MFLO Move From LO

DIV Divide MTHI Move To HI

DIVU Divide Unsigned MTLO Move To LO

Other Computational Instructions 2

ADDCIU Add Circular Immediate SELSL Select and Shift Left

FFS Find First Set MIN Minimum

FFC Find First Clear MAX Maximum

SELSR Select and Shift Right SELRR Select and Rotate Right

Rate Instructions 3

RMUL Rate Multiply R2U Rate to Integer

RADD Rate Add U2R Integer to Rate

RSUB Rate Subtract

Shift Instructions

SLL Shift Left Logical SLLV Shift Left Logical Variable

SRL Shift Right Logical SRLV Shift Right Logical Variable

SRA Shift Right Arithmetic SRAV Shift Right Arithmetic Variable

Special Instructions

SYSCALL System Call BREAK Breakpoint

Table 4.1 APU Instruction Set Summary (Cont.)

Op Description Op Description

(Sheet 3 of 4)

APU Instruction Set Summary 4-13

4.3.1 Instruction Set Formats

Every instruction consists of a single word (32-bits) aligned on a word
boundary. As shown in Figure 4.4, there are three instruction formats:
I-type (immediate), J-type (jump), and R-type (register). The restricted
format approach simplifies instruction decoding. The compiler and
assembler can synthesize more complicated (and less frequently used)
operations and addressing modes.

System Control Coprocessor (CP0) Instructions

MTC0 Move To CP0 RFE Restore From Exception

MFC0 Move From CP0 WAITI 2 Wait for Interrupt

ERET Exception Return

Trap Instructions 1

TEQ Trap on Equal TLT Trap on Less Than

TEQI Trap on Equal Immediate TLTI Trap on Less Than Immediate

TGE Trap on Greater than or Equal TLTU Trap on Less Than Unsigned

TGEI Trap on Greater than or Equal
Immediate

TLTIU Trap on Less Than Immediate
Unsigned

TGEU Trap on Greater than or Equal
Unsigned

TNE Trap If Not Equal

TGEIU Trap on Greater than or Equal
Immediate Unsigned

TNEI Trap If Not Equal Immediate

1. MIPS II Instructions.
2. CW4011-specific instructions.
3. APU-specific instructions.

Table 4.1 APU Instruction Set Summary (Cont.)

Op Description Op Description

(Sheet 4 of 4)

4-14 ATM Processing Unit

Figure 4.4 Instruction Formats

I-Type (Immediate)

J-Type (Jump)

R-Type (Register)

4.3.2 Load and Store Instructions

The load and store instructions summarized in Table 4.2 are all I-type
instructions and move data between memory and general registers. The
only addressing mode directly supported in the base architecture is base
register plus 16-bit signed immediate offset.

The MIPS II extensions add the Load Linked and Store Conditional
instructions which support multiple processors, and the Sync instruction
which synchronizes loads and stores. The APU supports these
instructions. They are summarized in Table 4.3.

31 26 25 21 20 16 15 0

op rs rt immediate

31 26 25 0

op target

31 26 25 21 20 16 15 11 10 6 5 0

op rs rt rd shamt funct

op 6-bit operation code

rs 5-bit source register specifier

rt 5-bit target (source/destination register)

immediate 16-bit immediate, branch displacement,
or address displacement

target 26-bit jump target address

rd 5-bit destination register specifier

shamt 5-bit shift amount

funct 6-bit function field

APU Instruction Set Summary 4-15

The load/store instruction operation code (opcode) determines the
access type, which in turn indicates the size of the data item to be loaded
or stored. The bytes used within the addressed word can be determined
directly from the access type and the two low-order bits of the address
as shown in Figure 4.5. Note that certain combinations of access type
and low-order address bits can never occur; only the combinations
shown in Figure 4.5 are permissible.

Figure 4.5 Byte Specifications for Loads/Stores

Word

Access

0

Type

Address
Bytes Accessed

Big Endian
A1 A0

0 1 2 3

0 1 2

1 2 3

0 1

2 3

0

1

2

3

0

0 0

0 1

0 0

1 0

Byte

0 0

0 1

1 0

1 1

31 0

Low-Order

Bits:

Tribyte

Halfword

4-16 ATM Processing Unit

Table 4.2 Load and Store Instructions Summary

Instruction Format and Description

Load Byte LB rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed byte and load into rt.

Load Byte
Unsigned

LBU rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Zero-extend contents of addressed byte and load into rt.

Load Halfword LH rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed halfword and load into rt.

Load Halfword
Unsigned

LHU rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Zero-extend contents of addressed halfword and load into rt.

Load Word LW rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address,
and load the addressed word into rt.

Load Word
Left

LWL rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word left so that addressed byte is leftmost byte of a word. Merge
bytes from memory with contents of register rt and load result into register rt.

Load Word
Right

LWR rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word right so that addressed byte is rightmost byte of a word.
Merge bytes from memory with contents of register rt and load result into register rt.

Store Byte SB rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least-significant byte of register rt at addressed location.

Store Halfword SH rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store least-significant halfword of register rt at addressed location.

Store Word SW rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Store contents of register rt at addressed location.

(Sheet 1 of 2)

APU Instruction Set Summary 4-17

4.3.3 Computational Instructions

Computational instructions perform arithmetic, logical, and shift
operations on values in registers. Computational instructions occur in
both R-type (both operands are registers) and I-type (one operand is a
16-bit immediate) formats. There are six categories of computational
instructions:

• ALU Immediate instructions (see Table 4.4).

• 3-Operand, Register-Type instructions (see Table 4.5).

• Shift instructions (see Table 4.6).

Store Word
Left

SWL rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt right so that the leftmost byte of the word is in the posi-
tion of the addressed byte. Store word containing shifted bytes into word at
addressed byte.

Store Word
Right

SWR rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt left so that the rightmost byte of the word is in the posi-
tion of the addressed byte. Store word containing shifted bytes into word at
addressed byte.

Table 4.3 Load and Store Instruction Summary–MIPS II ISA Extensions

Instruction Format and Description

Load Linked LL rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed word and load into register rt.

Store Conditional SC rt, offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Conditionally store low-order word of register rt at address, based on whether the
load-link has been “broken.”

Sync SYNC
Complete all outstanding load and store instructions before allowing any new load
or store instruction to start.

Table 4.2 Load and Store Instructions Summary (Cont.)

Instruction Format and Description

(Sheet 2 of 2)

4-18 ATM Processing Unit

• Multiply/Divide instructions (see Table 4.7).

• Computational CW4011 Instruction Extensions (see Table 4.10).

• APU Rate Instruction Extensions (see Table 4.11).

Table 4.4 ALU Immediate Instruction Summary

Instruction Format and Description

Add Immediate ADDI rt, rs, immediate
Add 16-bit, sign-extended immediate to register rs and place 32-bit result in
register rt. Trap on two’s complement overflow.

Add Immediate
Unsigned

ADDIU rt, rs, immediate
Add 16-bit, sign-extended immediate to register rs and place 32-bit result in
register rt. Do not trap on overflow.

Set on Less Than
Immediate

SLTI rt, rs, immediate
Compare 16-bit, sign-extended immediate with register rs as signed 32-bit
integers. Result = 1 if rs is less than immediate; otherwise result = 0. Place
result in register rt.

Set on Less Than
Immediate
Unsigned

SLTIU rt, rs, immediate
Compare 16-bit, sign-extended immediate with register rs as unsigned 32-bit
integers. Result = 1 if rs is less than immediate; otherwise result = 0. Place
result in register rt.

AND Immediate ANDI rt, rs, immediate
Zero-extend 16-bit immediate , AND with contents of register rs, and place
result in register rt.

OR Immediate ORI rt, rs, immediate
Zero-extend 16-bit immediate , ORwith contents of register rs, and place result
in register rt.

Exclusive OR
Immediate

XORI rt, rs, immediate
Zero-extend 16-bit immediate , exclusive ORwith contents of register rs, and
place result in register rt.

Load Upper
Immediate

LUI rt, immediate
Shift 16-bit immediate left 16-bits. Set least-significant 16-bits of word to zeros.
Store result in register rt.

APU Instruction Set Summary 4-19

Table 4.5 Three-Operand, Register Type-Instruction Summary

Instruction Format and Description

Add ADD rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in register rd. Trap on
two’s complement overflow.

Add Unsigned ADDU rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in register rd. Do not
trap on overflow.

Subtract SUB rd, rs, rt
Subtract contents of registers rt from rs and place 32-bit result in register rd. Trap
on two’s complement overflow.

Subtract Unsigned SUBU rd, rs, rt
Subtract contents of registers rt from rs and place 32-bit result in register rd. Do
not trap on overflow.

Set on Less Than SLT rd, rs, rt
Compare contents of register rt to register rs (as signed, 32-bit integers). If
register rs is less than rt, rd = 1; otherwise, rd = 0.

Set on Less Than
Unsigned

SLTU rd, rs, rt
Compare contents of register rt to register rs (as unsigned, 32-bit integers). If
register rs is less than rt, rd = 1; otherwise, rd = 0.

AND AND rd, rs, rt
Bitwise ANDcontents of registers rs and rt and place result in register rd.

OR OR rd, rs, rt
Bitwise ORcontents of registers rs and rt and place result in register rd.

Exclusive OR XOR rd, rs, rt
Bitwise exclusive ORcontents of registers rs and rt and place result in register rd.

NOR NOR rd, rs, rt
Bitwise NORcontents of registers rs and rt and place result in register rd.

4-20 ATM Processing Unit

Table 4.6 Shift Instruction Summary

Instruction Format and Description

Shift Left Logical SLL rd, rt, shamt
Shift contents of register rt left by shamt bits, inserting zeros into low-order
bits. Place 32-bit result in register rd.

Shift Right Logical SRL rd, rt, shamt
Shift contents of register rt right by shamt bits, inserting zeros into high-order
bits. Place 32-bit result in register rd.

Shift Right
Arithmetic

SRA, rd, rt, shamt
Shift contents of register rt right by shamt bits, sign-extending the high-order
bits. Place 32-bit result in register rd.

Shift Left
Logical
Variable

SLLV rd, rt, rs
Shift contents of register rt left. Low-order 5-bits of register rs specify the
number of bits to shift. Insert zeros into low-order bits of rt and place 32-bit
result in register rd.

Shift Right
Logical
Variable

SRLV rd, rt, rs
Shift contents of register rt right. Low-order 5-bits of register rs specify the
number of bits to shift. Insert zeros into high-order bits of rt and place 32-bit
result in register rd.

Shift Right
Arithmetic
Variable

SRAV rd, rt, rs
Shift contents of register rt right. Low-order 5-bits of register rs specify the
number of bits to shift. Sign-extend the high-order bits of rt and place 32-bit
result in register rd.

APU Instruction Set Summary 4-21

The execution time of the multiply and divide instructions is shown in
Table 4.8.

The divide time is shortened to 17 cycles if the divisor has less than
16 significant bits.

In addition to the standard MIPS II instruction set, the CW4011
implements the instruction set extensions described in Table 4.9 to

Table 4.7 Multiply/Divide Instruction Summary

Instruction Format and Description

Multiply MULT rs, rt
Multiply contents of registers rs and rt as two’s complement values. Place 64-bit
results in special registers HI and LO.

Multiply Unsigned MULTU rs, rt
Multiply contents of registers rs and rt as unsigned values. Place 64-bit results
in special registers HI and LO.

Divide DIV rs, rt
Divide contents of registers rs and rt as two’s complement values. Place 32-bit
quotient in special register LO and 32-bit remainder in HI.

Divide Unsigned DIVU rs, rt
Divide contents of registers rs and rt as unsigned values. Place 32-bit quotient
in special register LO and 32-bit remainder in HI.

Move From HIGH MFHI rd
Move contents of special register HI to register rd.

Move From LOW MFLO rd
Move contents of special register LO to register rd.

Move To HIGH MTHI rd
Move contents of register rd to special register HI.

Move To LOW MTLO rd
Move contents of register rd to special register LO.

Table 4.8 Execution Time of Multiply and Divide Instructions

Operation Clocks

Multiply 17

Divide 17/34

4-22 ATM Processing Unit

provide greater application code performance. Table 4.10 and Table 4.11
provide further information on them.

Table 4.9 Instruction Set Extensions

Extension Description

ADDCIU Add circular immediate. Does an add immediate, modified
according to the value in the new CP0 register CMask. Useful in
addressing circular buffers. Important in DSP and other
applications that use circular buffers.

FFS/FFC Find first set/clear. Find first the set/clear bit in the source register,
and return the bit number to the destination register. Useful for
many applications such as interrupt handlers, floating point
emulation, and graphics.

MAX Maximum. The 32-bit signed contents of two general registers are
compared and the greater value is moved to the destination
register. This instruction is useful in ABR scheduling algorithms.

MIN Minimum. The 32-bit signed contents of two general registers are
compared and the lesser value is moved to the destination
register. This instruction is useful in ABR scheduling algorithms.

RMUL Rate Multiply. The floating point operands in two general registers
are multiplied and the result is stored in LO register. Floating point
numbers are expressed in ATM Forum format.

RADD Rate Add. The floating point operands in two general registers are
added and the result is stored in LO register. Floating point
numbers are expressed in ATM Forum format.

RSUB Rate Subtract. The difference of floating point operands is stored
in LO register. Floating point numbers are expressed in ATM
Forum format.

R2U Rate to integer conversion. Converts floating point number in ATM
Forum format to unsigned 32-bit integer.

SELRR Select and rotate right. Selects 32 bits from the 64-bit source
register pair and rotates the selected data right by the number of
bits specified in the new CP0 register ROTATE. Useful for data
alignment operation in graphics and in bit-field selection routines
for data transmission and compression applications.

U2R Integer to rate conversion. Converts 32-bit unsigned integer to
floating point number in ATM Forum format.

APU Instruction Set Summary 4-23

WAITI Wait for Interrupt. Halts the CPU in a power saving mode until one
of the hardware interrupt lines becomes active. Upon interrupt,
normal execution is resumed starting at the interrupt vector
address.

Table 4.9 Instruction Set Extensions (Cont.)

Extension Description

Table 4.10 CW4011 ISA Extensions Summary

Instruction Format and Description

Add Circular
Immediate

ADDCIU rt, rs, immediate
The 16-bit immediate is sign extended and added to the contents of general
register rs, with the result masked by the value in CP0 register CMask according
to the formula: rt = (rs & !EXP(CMask)) | ((rt + immed) & EXP(CMask)) .

Find First Set FFS rt, rs
Starting at the most significant bit in register rs, find the first bit which is set to a
one, and return the bit number in register rt. If no bit is set, return with bit 31 of
rt set to 1.

Find First Clear FFC rt, rs
Starting at the most significant bit in register rs, find the first bit which is cleared,
and return the bit number in register rt. If no bit is cleared, return with bit 31 of rt
set to 1.

Select and Shift
Right

SELSR rd, rs, rt
Using register rs and rd as a 64-bit register pair, and CP0 register ROTATE as the
shift count, shift the register pair rs || rt right the number of bits specified in
ROTATE, and place the least significant 32-bit value in result register rd.

Select and Shift
Left

SELSL rd, rs, rt
Using register rs and rd as a 64-bit register pair, and CP0 register ROTATE as the
shift count, shift the register pair rs || rt left the number of bits specified in
ROTATE, and place the most significant 32-bit value in result register rd.

Minimum MIN rd, rs, rt
The two’s complement values in registers rs and rt are compared and the smaller
value is stored in register rt.

Maximum MAX rd, rs, rt
The two’s complement values in registers rs and rt are compared and the larger
value is stored in register rt.

4-24 ATM Processing Unit

4.3.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program.
MIPS I jump and branch instructions always occur with a one-instruction
delay. That is, the instruction immediately following the jump or branch is
always executed while the target instruction is being fetched from
storage. There may be additional cycle penalties, depending on
circumstances and implementation, but the penalties are interlocked in
hardware. The MIPS II ISA extensions add the branch likely class of
instructions that operate exactly like their nonlikely counterparts, except
that when the branch is not taken, the instruction following the branch is
cancelled.

The J-type instruction format is used for both jump and jump-and-link
instructions for subroutine calls. In the J-type format, the 26-bit target
address is shifted left two bits and combined with the 4 high-order bits
of the current program counter to form a 32-bit absolute address.

The R-type instruction format, which takes a 32-bit byte address
contained in a register, is used for returns, dispatches, and cross-page
jumps.

Table 4.11 APU Rate Instruction Extensions

Instruction Format and Description

Rate Multiply RMUL rs, rt
The 15-bit floating point numbers in registers rs and rt are multiplied and the result
is stored in the 15 least significant bits of register LO.

Rate Add RADD rs, rt
The 15-bit floating point numbers in registers rs and rt are added and the result
is stored in the 15 least significant bits of register LO.

Rate Subtract RSUB rs, rt
The 15-bit floating point number in register rt is subtracted from the 15-bit floating
point number in register rs. The result is stored in register LO.

Rate to
Integer
Conversion

R2U rs
The 15-bit floating point value in register rs is converted to a 32-bit unsigned
integer. The result is stored in register LO.

Integer to Rate
Conversion

U2R rs
The 32-bit unsigned integer in register rs is converted into a 15-bit floating point
value. The result is stored in register LO.

APU Instruction Set Summary 4-25

Branches have 16-bit signed offsets relative to the program counter
(I-type). Jump-and-link and branch-and-link instructions save a return
address in register 31.

Table 4.12 summarizes the jump instructions, Table 4.13 summarizes the
branch instructions, and Table 4.14 summarizes the branch-likely
instructions.

Table 4.12 Jump Instruction Summary

Instruction Format and Description

Jump J target
Shift 26-bit target address left two bits, combine with four high-order bits of PC,
and jump to address with a one-instruction delay.

Jump and Link JAL target
Shift 26-bit target address left two bits, combine with four high-order bits of PC,
and jump to address with a one-instruction delay. Place address of instruction
following delay slot in Link register (R31).

Jump Register JR rs
Jump to address contained in register rs with a one-instruction delay.

Jump and Link
Register

JALR rs, rd
Jump to address contained in register rs with a one-instruction delay. Place address
of instruction following delay slot in rd.

4-26 ATM Processing Unit

Table 4.13 Branch Instruction Summary

Instruction Format and Description

Branch on Equal BEQ rs, rt, offset
Branch to target address1 if register rs is equal to register rt.

1. All branch-instruction target addresses are computed as follows: add address of instruction in delay
slot and the 16-bit offset (shifted left two bits and sign-extended to 32-bits). All branches occur
with a delay of one instruction.

Branch on Not Equal BNE rs, rt, offset
Branch to target address if register rs does not equal register rt.

Branch on Less than
or Equal to Zero

BLEZ rs, offset
Branch to target address if register rs is less than or equal to 0.

Branch on Greater
Than Zero

BGTZ rs, offset
Branch to target address if register rs is greater than 0.

Branch on Less Than
Zero

BLTZ rs, offset
Branch to target address if register rs is less than 0.

Branch on Greater
than or Equal to Zero

BGEZ rs, offset
Branch to target address if register rs is greater than or equal to 0.

Branch on Less Than
Zero And Link

BLTZAL rs, offset
Place address of instruction following delay slot in Link register (R31). Branch
to target address if register rs is less than 0.

Branch on Greater
than or Equal to Zero
and Link

BGEZAL rs, offset
Place address of instruction following delay slot in Link register (R31). Branch
to target address if register rs is greater than or equal to 0.

APU Instruction Set Summary 4-27

Table 4.14 Branch-Likely Instruction Summary–MIPS II ISA Extensions

Instruction Format and Description

Branch on Equal
Likely

BEQL rs, rt, offset
Branch to target address1 if register rs is equal to register rt.

1. All branch-instruction target addresses are computed as follows: add address of instruction in delay
slot and the 16-bit offset (shifted left two bits and sign-extended to 32-bits). All branches occur
with a delay of one instruction.

Branch on Not
Equal Likely

BNEL rs, rt, offset
Branch to target address if register rs does not equal register rt.

Branch on Less
than or Equal to
Zero Likely

BLEZL rs, offset
Branch to target address if register rs is less than or equal to 0.

Branch on Greater
Than Zero Likely

BGTZL rs, offset
Branch to target address if register rs is greater than 0.

Branch on Less
Than Zero Likely

BLTZL rs, offset
Branch to target address if register rs is less than 0.

Branch on Greater
than or Equal to
Zero Likely

BGEZL rs, offset
Branch to target address if register rs is greater than or equal to 0.

Branch on Less
Than Zero And
Link Likely

BLTZALL rs, offset
Place address of instruction following delay slot in Link register (R31). Branch
to target address if register rs is less than 0.

Branch on
Greater than or
Equal to Zero
and Link Likely

BGEZALL rs, offset
Place address of instruction following delay slot in Link register (R31). Branch
to target address if register rs is greater than or equal to 0.

4-28 ATM Processing Unit

4.3.5 Trap Instructions

Trap instructions are part of the MIPS II instruction set and provide
instructions that conditionally create an exception, based on the same
conditions tested in the branch instructions. (See Table 4.15.)

Table 4.15 Trap Instruction Summary–MIPS II ISA Extensions

Instruction Format and Description

Trap on Equal TEQ rs, rt
Trap if register rs is equal to register rt.

Trap on Equal
Immediate

TEQI rs, immediate
Trap if register rs is equal to the immediate value.

Trap on Greater
than or Equal

TGE rs, rt
Trap if register rs is greater than or equal to register rt.

Trap on Greater
Than or Equal
Immediate

TGEI rs, immediate
Trap if register rs is greater than or equal to the immediate value.

Trap on Greater
than or Equal
Unsigned

TGEU rs, rt
Trap if register rs is greater than or equal to register rt.

Trap on Greater
Than or Equal
Immediate Unsigned

TGEIU rs, immediate
Trap if register rs is greater than or equal to the immediate value.

Trap on Less Than TLT rs, rt
Trap if register rs is less than register rt.

Trap on Less Than
Immediate

TLTI rs, immediate
Trap if register rs is less than the immediate value.

Trap on Less Than
Unsigned

TLTU rs, rt
Trap if register rs is less than register rt.

Trap on Less Than
Immediate Unsigned

TLTIU rs, immediate
Trap if register rs is less than the immediate value.

Trap if Not Equal TNE rs, rt
Trap if register rs is not equal to rt.

Trap if Not Equal
Immediate

TNEI rs, immediate
Trap if register rs is not equal the immediate value.

APU Instruction Set Summary 4-29

4.3.6 Special Instructions

Special instructions cause an unconditional branch to the general
exception-handling vector. Special instructions are always R-type and are
summarized in Table 4.16.

4.3.7 Coprocessor Instructions

The CW4011 supports external (on-chip) coprocessors. In the ATMizer II+
chip, the Coprocessor Condition codes are used to monitor the EDMA
Request Queues full status (see Section 4.8.6, “Coprocessor Condition
Signals”). Table 4.17 summarizes the coprocessor instructions supported
by the APU.

Table 4.16 Special Instruction Summary

Instruction Format and Description

System Call SYSCALL
Initiates system call trap, immediately transferring control to exception handler.

Breakpoint BREAK
Initiates breakpoint trap, immediately transferring control to exception handler.

Table 4.17 Coprocessor Instruction Summary

Instruction Format and Description

Branch on
Coprocessor z
True (Likely)

BCzT offset, (BCzTL offset)
Compute a branch target address by adding address of instruction to the 16-bit
offset (shifted left two bits and sign-extended to 32-bits). Branch to the target
address (with a delay of one instruction) if coprocessor z’s condition line is true.
In the case of Branch Likely, the delay slot instruction is not executed when the
branch is not taken.

Branch on
Coprocessor z
False (Likely)

BCzF offset, (BCzFL offset)
Compute a branch target address by adding address of instruction to the 16-bit
offset (shifted left two bits and sign-extended to 32-bits). Branch to the target
address (with a delay of one instruction) if coprocessor z’s condition line is false.
In the case of Branch Likely, the delay slot instruction is not executed when the
branch is not taken.

4-30 ATM Processing Unit

4.3.8 System Control Coprocessor (CP0) Instructions

Coprocessor 0 instructions perform operations on the system control
coprocessor (CP0) registers to manipulate the exception-handling
facilities of the processor. Table 4.18 summarizes the CP0 instructions
and Table 4.19 shows the extension.

Table 4.18 CP0 Instruction Summary

Instruction Format and Description

Move To CP0 MTC0 rt, rd
Load contents of CPU register rt into CP0 register rd. This instruction has one
delay slot and should be followed by one no operation (NOP) instruction.

Move From CP0 MFC0 rt, rd
Load contents of CP0 register rd into CPU register rt. This instruction has one
delay slot and should be followed by one no operation (NOP) instruction.

Exception
Return

ERET
Load the PC from ErrorEPC (SR2 = 1:Error Exception) or EPC (SR2 = 0:
Exception) and clear ERL bit (SR2 = 1) or EXL bit (SR2 = 0) in the Status register.
SR2 is Status register bit[2].

Restore From
Exception

RFE
Restore previous interrupt mask and mode bits of the Status register into current
status bits. Restore old status bits into previous status bits.

Table 4.19 CP0 Instruction Extension Summary

Instruction Format and Description

Wait for
Interrupt

WAITI
Stops execution of instructions and places the processor into a power save
condition until a hardware interrupt or reset is received. This instruction must be
followed by two or more no operation (NOP) instructions.

APU Instruction Set Summary 4-31

4.3.9 Cache Maintenance Instructions

Cache Maintenance instructions are always I-type. Cache instructions
must be followed by three no operation (NOP) instructions. Table 4.20
summarizes these instructions.

4.3.10 APU and CW4011 Instruction Set Extensions

The new instruction set extensions, including the cache maintenance
instructions, are further defined in this section. They are listed in
alphabetical order, one instruction to a page.

Table 4.20 Cache Maintenance Instruction Summary

Instruction Format and Description

Flush I-Cache FLUSHI
Flush I-Cache. 256 stall cycles will be needed.

Flush D-Cache FLUSHD
Flush D-Cache. 256 stall cycles will be needed.

Flush I-Cache & D-Cache FLUSHID
Flush both I-Cache and D-Cache in 256 stall cycles.

WriteBack WB offset(base)
Write back a D-Cache line addressed by offset + GPR[base] .

4-32 ATM Processing Unit

ADDCIU Add with Circular Mask Immediate

Format

Syntax ADDCIU rt, rs, immediate

Description The immediate field of the instruction is sign-extended and added to the
contents of general register rs, the result of which is masked with the
expanded value in special register CMask according to the equation. The
CMask register is CP0 register number 24. Its valid bits are [4:0].

T: sign_extend_immed = (immediate 15) 16 || immediate 15..0
GPR[rt] = GPR[rs] 31..cmask || (GPR[rs] +
sign_extend_immed) cmask-1..0

Exceptions None

31 26 25 21 20 16 15 0

ADDCIU rs rt immediate

011100 rs rt immediate

APU Instruction Set Summary 4-33

FFC Find First Clear Bit

Format

Syntax FFC rd, rs

Description The contents of general register rs are examined starting with the most
significant bit. The bit number of the first clear bit is returned in general
register rd. If no bit is set, all ones are returned in rd.

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs 0 rd 0 FFC

000000 rs 0 rd 00000 001011

4-34 ATM Processing Unit

FFS Find First Set Bit

Format

Syntax FFS rd, rs

Description The contents of general register rs are examined starting with the most
significant bit. The bit number of the first set bit is returned in general
register rd. If no bit is set, all ones are returned in rd.

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs 0 rd 0 FFS

000000 rs 0 rd 00000 001010

APU Instruction Set Summary 4-35

FLUSHD FLUSH Data Cache

Format

Syntax FLUSHD

Description FLUSHDflushes all Data Cache lines and causes 256 clocks of stall
cycles regardless of the cache size. This instruction must be followed by
three no operation (NOP) instructions.

Note: Cache instructions only work on enabled cache sets. See
the IE0 , IE1 , DE0, and DE1 bits in the CCC register,
page 4-74.

Exceptions None

31 26 25 21 20 16 15 0

CACHE 0 FLUSHD 0

101111 00000 00010 0

4-36 ATM Processing Unit

FLUSHI FLUSH Instruction Cache

Format

Syntax FLUSHI

Description FLUSHI flushes all Instruction Cache lines and causes 256 clocks of stall
cycles regardless of the cache size. This instruction must be followed by
three no operation (NOP) instructions.

Note: Cache instructions only work on enabled cache sets. See
the IE0 , IE1 , DE0, and DE1 bits in the CCC register,
page 4-74.

Exceptions None

31 26 25 21 20 16 15 0

CACHE 0 FLUSHI 0

101111 00000 00001 0

APU Instruction Set Summary 4-37

FLUSHID FLUSH Instruction and Data Cache

Format

Syntax FLUSHID

Description FLUSHID flushes all Data and Instruction Cache lines and causes 256
clocks of stall cycles regardless of the cache size. This instruction must
be followed by three no operation (NOP) instructions.

Note: Cache instructions only work on enabled cache sets. See
the IE0 , IE1 , DE0, and DE1 bits in the CCC register,
page 4-74.

Exceptions None

31 26 25 21 20 16 15 0

CACHE 0 FLUSHID 0

101111 00000 00011 0

4-38 ATM Processing Unit

SELSL Select and Shift Left

Format

Syntax SELSL rd, rs, rt

Description The contents of general register rs and the contents of general register
rt are combined to form a 64-bit doubleword. The doubleword is shifted
left the number of bits specified in CP0 register ROTATE, and the upper
32-bits of the result are placed in general register rd. This ROTATE
register is CP0 register number 23, with valid bits [4:0].

T: s <- ROTATE 4..0
GPR[rd] <- GPR[rs] 31-s..0 || GPR[rt] 31..32-s

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 SELSL

000000 rs rt rd 00000 000101

APU Instruction Set Summary 4-39

SELSR Select and Shift Right

Format

Syntax SELSR rd, rs, rt

Description The contents of general register rs and the contents of general register
rt are combined to form a 64-bit doubleword. The doubleword is shifted
right the number of bits specified in CP0 register ROTATE, and the lower
32-bits of the result are placed in general register rd. This ROTATE
register is CP0 register number 23. Valid bits are [4:0].

T: s <- ROTATE 4..0
GPR[rd] <- GPR[rs] s-1..0 || GPR[rt] 31..s

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 SELSR

000000 rs rt rd 00000 000001

4-40 ATM Processing Unit

WAITI Wait for Interrupt

Format

Syntax WAITI

Description Execution of this instruction causes the main processor clock to stop and
halts all instruction execution. Execution resumes with reception of a
hardware interrupt, NMI, or reset exception. While in wait mode, the
processor is in a power saving mode, using very little current because
the clock is turned off to most of the circuitry.

WAITI must be followed by two or more no operation (NOP) instructions;
otherwise, the results are undefined.

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

COP0 0 0 0 WAITI

000000 10000 00000 00000 00000 100000

APU Instruction Set Summary 4-41

WB WriteBack Data Cache

Format

Syntax WB offset (base)

Description Eight words of the Data cache line addressed by offset + GPR[base]
are written back to memory if the line is dirty. Upper bits of offset +
GPR[base] are ignored. This instruction must be followed by three no
operation (NOP) instructions.

Exceptions None

31 26 25 21 20 16 15 0

CACHE base WB offset

101111 base 00100 offset

4-42 ATM Processing Unit

4.3.11 ATMizer II+ Instruction Set Extensions

This section defines the instruction set extensions that support available
bit rate (ABR) calculations.

MAX Maximum

Format

Syntax MAX rd, rs, rt

Description The contents of general register rs and the contents of general register
rt are compared with both operands treated as 32-bit signed values. The
maximum value is stored in general register rd.

Note: This instruction may be used to identify the maximum of
rate floating point numbers.

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 MAX

000000 rs rt rd 00000 101001

APU Instruction Set Summary 4-43

Min Minimum

Format

Syntax MIN rd, rs, rt

Description The contents of general register rs and the contents of general register
rt are compared with both operands treated as 32-bit signed values. The
minimum value is stored in general register rd.

Note: This instruction may be used to identify the minimum of rate
floating point numbers.

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 MIN

000000 rs rt rd 00000 101000

4-44 ATM Processing Unit

RADD Rate Addition

Format

Syntax RADD rs, rt

Description The 15 least significant bits of general register rs and the 15 least
significant bits of general register rt are added with both operands
treated as 15-bit floating point numbers. The result is stored in special
register LO. The 17 most significant bits of register LO are clear.

Exceptions IntRateExc exception is generated on floating point overflow or
underflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt 0 RADD MULT

000000 rs rt 0 00010 011000

APU Instruction Set Summary 4-45

RMUL Rate Multiply

Format

Syntax RMUL rs, rt

Description The 15 least significant bits of general register rs and the 15 least
significant bits of general register rt are multiplied with both operands
treated as 15-bit floating point numbers. The result is stored in special
register LO. The 17 most significant bits of register LO are clear.

Exceptions IntRateExc exception is generated on floating point overflow or
underflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt 0 RMUL MULT

000000 rs rt 0 00001 011000

4-46 ATM Processing Unit

RSUB Rate Subtraction

Format

Syntax RSUB rs, rt

Description The 15 least significant bits of general register rt are subtracted from the
15 least significant bits of general register rs with both operands treated
as 15-bit floating point numbers. The result is stored in special register
LO. The 17 most significant bits of register LO are clear.

Exceptions IntRateExc exception is generated on floating point overflow or
underflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt 0 RSUB MULT

000000 rs rt 0 00011 011000

APU Instruction Set Summary 4-47

R2U Rate to Integer Conversion

Format

Syntax R2U rs

Description The 15 least significant bits of general register rs are converted from the
rate floating point format to an unsigned 32-bit integer. The result is
placed in special register LO. The fractional portion of the floating point
number is truncated.

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs 0 0 R2U MULT

000000 rs 0 0 00100 011000

4-48 ATM Processing Unit

U2R Integer to Rate Conversion

Format

Syntax U2R rs

Description The 32-bit unsigned integer in general register rs is converted into the
rate floating point format. The result is stored in the 15 least significant
bits of special register LO. The 17 most significant bits of register LO are
clear.

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs 0 0 U2R MULT

000000 rs 0 0 00101 011000

CP0 Data Manipulation Registers 4-49

4.4 CP0 Data Manipulation Registers

The System Control Coprocessor (CP0) contains two registers that are
used by the CW4011 instruction set extensions for data manipulation
operations. They are the:

• Rotate Register (CW4011 register 23)

• CMask Register (CW4011 register 24)

The CP0 also includes registers that are used for exception handling. For
a description of these CP0 registers, see Section 4.6.2, “Exception
Handling Registers.”

4.4.1 Rotate Register (23)

Figure 4.6 shows the format of the Rotate register. The CW4011
instruction set extensions use the Rotate register. Specifically, the Select
and Shift Right (SELSR) instruction and the Select and Shift Left (SELSL)
instruction use the five-bit rotate value as the shift count. These instructions
are used for graphic’s data alignment operations and bit-field selection
routines required for data transmission and compression applications.

Figure 4.6 Rotate Register

4.4.2 Circular Mask Register (24)

Figure 4.7 shows the format of the CMask register. The CW4011
instruction set extensions use the Circular Mask (CMask) register. The
Load/Store (word/halfword/byte) with update circular instructions store a
value in the destination register and update the base address register
with the addition of base + offset, modified according to the five-bit value
contained in the CMask register. This capability is useful in DSP and
other applications that use circular buffers.

Figure 4.7 CMask Register

31 5 4 0

0 rotate[4:0]

31 5 4 0

0 cmask[4:0]

4-50 ATM Processing Unit

4.5 Cache Memory

The APU instruction cache and data cache include the following features:

• Direct mapped or two-way set associative is selectable for I-Cache
and D-Cache, respectively. A Least Recently Used (LRU) algorithm
is used for two-way set associative cache replacement.

• The I-Cache consists of two sets of 4 Kbytes (8 Kbytes total). The
D-Cache consists of two sets of 2 Kbytes (4 Kbytes total). Each set
is configurable as either direct-mapped or two-way set associative.

• For load and store instructions, the cache performs a tag check. The
physical address of the data is compared with the cache tag to
determine if there is a cache hit or miss.

• One cache line is 8 words (4 doublewords = 32 bytes = 256 bits).
Refill address ordering is wraparound from the missing address.

• Cache Write Back or Write Through operation can be selected with
the WBbit in the CCC register.

• The Cache RAM can be configured for use as a Scratch-Pad RAM.

4.5.1 Cache States

The I-Cache has two states. The D-Cache states depend on whether the
D-Cache is in Write-Through or Write-Back mode.

4.5.1.1 I-Cache and WriteThrough D-Cache States

The I-Cache and Write-Through mode of the D-Cache have two states,
Invalid and Valid Clean. Each cache line has a Validity (V) bit that
indicates whether the line is Invalid (V bit = 0) or Valid Clean (V bit = 1).
Initialization sets all cache lines to Invalid. This invalidation can be done
using a Cache Flush instruction (see page 4-55) or by setting the
Invalidate mode bit in the CCC register (see page 4-56).

Figure 4.8 shows the state diagram for the I-Cache and Write Through
D-Cache. The state of a cache line changes from Invalid to Valid Clean
when the line is refilled after a cache miss occurs. The cache state
remains Valid Clean until the line is invalidated by another Cache Flush
instruction (see page 4-55) or if the invalidate mode bit is set in the

Cache Memory 4-51

CCC register (see page 4-56 and Section 4.6.2.9, “Configuration and
Cache Control Register (16)”).

Figure 4.8 I-Cache and D-Cache State Diagram

4.5.1.2 Write Back D-Cache States

When the D-Cache operates in WriteBack mode, there are three states
for each cache line; Invalid, Valid Clean, and Valid Dirty. The V bit and
WBbit of each line indicate the state as shown in Table 4.21.

Figure 4.9 shows a state diagram of the D-Cache in Write-Back mode.

Load-Miss, then Refill

Invalidation
Load-Miss, Refill
Load-Hit
Store-Miss
Store-Hit

Invalid
Valid
Clean

Table 4.21 D-Cache Write-Back Mode

State V Bit WB Bit Condition

Invalid 0 X The cache line does not contain valid information.

Valid
Clean

1 0 The cache line includes valid information
consistent with memory.

Valid Dirty 1 1 The cache line includes valid information, but it is
not consistent with memory.

4-52 ATM Processing Unit

Figure 4.9 D-Cache Write Back State Diagram

A store-hit occurs when the Validity (V) bit is set and the Tag address in
the Tag RAM matches the physical address of the store data.

When a store-miss occurs, the store data is not written into the D-Cache,
and the state condition of the cache line is not changed. Instead, the
store data is written to the external Write Buffer. From the Write Buffer
the data is written to external main memory.

In the Write-Back mode, some lines, known as dirty lines, contain more
recent information than the main memory. Dirty line data can be written
back to main memory using the Write-Back Data Cache (WB) instruction
(refer to page 4-41).

One Write-Back Data Cache instruction can write back each line of both
sets in a two-way set associative configuration. The instruction does not
check the address for hit or miss. If the Write Back (WB) state bit for a
cache line is set, the line data is written back to main memory. Write back
requires several stall cycles to read the data from the D-Cache.

4.5.2 Address and Cache Tags

Figure 4.10 illustrates the format of an instruction or data address for
both direct and two-way set associative caches. The Cache Tag ID field
contains the physical tag address for this line of cache data. The Line
Number field provides the address of the cache line, which is an
eight-word block of cache data. The Word Offset field addresses one
word in the cache line.

Load-Miss, then RefillInvalidation

Store-Hit

Load-Miss, then Write Back

Invalidation

Load-Hit
Store-Miss
Store-Hit

Load-Miss, Refill
Load-Hit
Store-Miss

Valid
Clean

Valid
Dirty

Invalid

and Refill

Cache Memory 4-53

Figure 4.10 Cache Address Format

4.5.3 D-Cache Scratch-Pad RAM Mode

Either Data Cache Set 0 or Set 1 RAM can be configured as a local,
high-speed, Scratch-Pad RAM. An access to the Scratch-Pad RAM is a
local memory access without stall cycles. The Scratch-Pad RAM must be
located in a cacheable virtual address space. See Section 4.7.1,
“Operating Modes.” The desired address of the Scratch-Pad RAM must
be programmed into the cache Tag RAM (all locations) before enabling
Scratch-Pad RAM mode using the SRbits in the CCC register (see
Section 4.6.2.9, “Configuration and Cache Control Register (16)”).

To program a Data Tag RAM enter cache maintenance mode and isolate
the desired Tag RAM: CCC register IsC bit = 1, Inv bit = 0, Tag bit = 1
and desired DE1/DE0 bit = 1. The CCC register is accessed using the
mfc0 and mtc0 instructions (see Section 4.5.5.3, “Cache Maintenance”).
Once cache maintenance mode is entered, all load and store instructions
access the selected Tag RAM using the format shown in Figure 4.11.
Each line of the Tag RAM should be programmed with the same value.

Tag Data = location of the Scratch-Pad RAM (Address bits[31:
9+n])

HT = 0

V = 1 valid bit must be set

WB = 0

Tag locations are accessed on eight-word boundaries at the following
addresses:

0x0000 = tag location 0

0x0020 = tag location 1

0x0040 = tag location 2

0x0060 = tag location 3

0x0080 = tag location 4

31 9+n1

1. n = 2 for D-Cache and 3 for I-Cache

8+n 5 4 2 1 0

Cache Tag ID Line Number Word Offset Byte Offset

4-54 ATM Processing Unit

Once the Tag RAM has been programmed, Scratch-Pad RAM is enabled
by setting the corresponding DEbit = 0 and SRbit = 1 in the CCC register.

Figure 4.11 Tag RAM Access Format

If the D-Cache Scratch-Pad RAM is enabled, an access to the
Scratch-Pad RAM area is a local memory access without any stall cycle.

4.5.4 I-Cache RAM Mode

Set 1 of the APU I-Cache can be configured as an Instruction RAM by
setting the IR bit (26) in the CCC register (page 4-74) to one. This allows
you to lock a set of frequently used code into the Instruction Cache.

You cannot configure Instruction Cache Set 0 as Instruction RAM.
However, you can achieve the same effect by leaving both sets as true
caches, mapping code that should reside in an Instruction RAM into a
cacheable memory area, and mapping all other code into an
uncacheable area. For this to work, all cacheable code must be
contained within two 4 Kbyte blocks.

To configure Instruction Cache Set 1 as Instruction RAM, first program
its Tag RAM with the desired address and set the valid bit. The Tag RAM
is accessed in cache maintenance mode: CCC register IsC bit = 1, Inv
bit = 0, Tag bit = 1, and IE1 bit = 1. Once cache maintenance mode is
entered, all load and store instructions access the selected Tag RAM
using the format shown in Figure 4.11. Each line of the Tag RAM should
be programmed with the same value.

Then download the desired code to Instruction Cache Set 1 Data RAM.
The cache RAM is accessed in cache maintenance mode: CCC register
IsC bit = 1, Inv bit = 0, Tag bit = 0, and IE1 bit = 1. Once cache
maintenance mode is entered all load and store instructions access the
Set 1 Data RAM. You will need to toggle in and out of cache
maintenance mode to perform the download.

Once the Tag RAM and Data RAM have been programmed, Instruction
RAM mode is entered by setting CCC register bits IE1 = 1 and IR1 = 1.

31 9+n1

1. n = 2 for D-Cache and 3 for I-Cache

8+n 3 2 1 0

Tag Data HT V WB

Cache Memory 4-55

4.5.5 Cache Instructions

Figure 4.12 shows the cache instruction format.

Figure 4.12 Cache Instruction Format

CACHE Cache Instruction [31:26]
Specifies this is a Cache instruction type. The bit coding
is 0b101111.

Base Base Register [25:21]
Specifies the base address register to be used in the
effective address calculation.

Op Cache Operation Selection Code [20:16]
Bits [20:18] specify either cache flush or D-Cache Write
Back. For cache flush operation, bits [17,16] specify
which cache to flush (instruction, data, or both). For
write-back operation, bits [17,16] are ignored.

A cache flush operation invalidates all cache lines in
either the instruction or data cache or both. Bit encoding
is defined as follows:

Offset Offset Value [15:0]
The offset value is added to the contents of the base
register to generate the effective address.

4.5.5.1 Flush (All Cache Invalidation)

Execution of a cache instruction can invalidate all lines of the D-Cache
and/or I-Cache. Bits 16 and 17 of the instruction specify whether the
instruction is effective for the D-Cache, the I-Cache, or both caches. If
both bits 16 and 17 are zero, the instruction performs a No Operation

31 26 25 21 20 16 15 0

CACHE Base Op Offset

Op[4:0] Definition

0b00001 Flush instruction cache (CACHE_FLUSHI)

0b00010 Flush data cache (CACHE_FLUSHD)

0b00011 Flush instruction and data cache (CACHE_FLUSHID)

0b001XX Cache Write Back to data cache only

4-56 ATM Processing Unit

(NOP). The base register and the offset fields have no meaning in this
instruction.

Note: Cache instructions only work on enabled cache sets. See
the IE0 , IE1 , DE0, and DE1 bits in the CCC register,
page 4-74.

The instruction invalidates one cache line in one or more cache sets in
one clock cycle. The instruction starts in the WB pipeline stage, and the
pipeline stall request signal is asserted while the cache lines are being
invalidated. If the pipeline cancel signal is asserted, the invalidation is not
executed. The number of the invalidation cycles is always 256.

4.5.5.2 Write Back

Write Back is effective for the D-Cache only, so bits 16 and 17 of the
instruction are ignored. Bits[12:5] of the effective address, which is
offset + GPR[base] , specify the D-Cache line. One cache instruction
writes back both lines of the two-way set associative cache if the WBbit
is set in the Tag RAM.

If the WBbit is zero, a NOPis performed. Write Back is executed in the
WB pipeline stage and causes four stall cycles to read data from a dirty
line. The WBbits are cleared after the cache lines are written back.

4.5.5.3 Cache Maintenance

The CCC register cache control bits, shown in Table 4.22, can be used
for D-Cache and I-Cache maintenance and testing. (See page 4-74 for a
complete description of the CCC register.)

Table 4.22 Cache Control Bits

Bit(s) Function

IR11 Instruction RAM Enable (1)/Disable (0)

IE0 I-Cache Set 0 Enable (1)/Disable (0)

IE11 I-Cache Set 1 Enable (1)/Disable (0)

IS[1:0] I-Cache Size (00, 1 Kbyte; 01, 2 Kbytes; 10, 4 Kbytes; 11, 8 Kbytes)

DE02 D-Cache Set 0 Disable (1)/Enable (0)

DE12 D-Cache Set 1 Disable (1)/Enable (0)

Cache Memory 4-57

Maintenance Modes – The APU has three maintenance modes that
allow you to maintain and test the internal I-Cache and D-Cache. The
three modes are:

• Data Test

• Tag Test

• Invalidate

Preparation – Before entering any of the three modes, the processor
must be executing in kseg1 (noncacheable address space), then
interrupts must be disabled and the caches must be isolated
(IsC bit = 0). When the caches are isolated, load and store instructions
access the I-Cache and D-Cache.

DS[1:0] D-Cache Size (00, 1 Kbyte; 01, 2 Kbytes; 10, 4 Kbytes; 11, 8 Kbytes)

WB D-Cache Write Back (1)/Write Through......if TE bit = 1

SR02 D-Cache Set 0 Scratch-Pad RAM Enable (1)/Disable (0)

SR12 D-Cache Set 1 Scratch-Pad RAM Enable (1)/Disable (0)

IsC D-Cache/I-Cache Isolate Cache Mode Enable (1)/Disable (0)

TAG D-Cache/I-Cache Tag Test Mode Enable (1)/Disable (0)

INV D-Cache/I-Cache Invalidate Mode Enable (1)/Disable (0)

1. IRAM mode: IR1 = 1, IE1 = 1
2. SRAM mode: DE0 = 0. DE1 = 0, SR0 = 1, SR1 = 1

Table 4.22 Cache Control Bits

Bit(s) Function

4-58 ATM Processing Unit

To enable the cache maintenance mode, use the following procedure:

Step 1. Set up the CCC register.

Set the appropriate bits in the CCC register with IsC bit = 1.
This step is performed by executing an MTC0instruction. The
MTC0instruction has one delay slot. The instruction immediately
following the MTC0instruction should not be a load or store.

The IS0 , IS1 , DS0, and DS1 bits select the cache to access.
Only one cache should be enabled when performing loads.
Multiple caches may be enabled when performing stores. The
TAGand INV bits select the cache maintenance mode.
Table 4.23 lists the encoding for the two bits.

Step 2. Disable Interrupts.

Step 3. Clear the IE bit in the Status register (page 4-65, page 4-68) to
disable all interrupts. This operation is usually done
automatically because cache maintenance operations are done
in an exception handler (most commonly the reset handler). For
information about the Status register, refer to page 4-65 and
page 4-68.

Data Test Mode – In this mode, all loads and stores access the data
RAMs selected by the IE0 , IE1 , DE0, and DE1 bits. The effective lower
address bits of the load or store instruction specify the cache address.

Tag Test Mode – When the TAGbit is set to one, the APU is in Tag Test
mode. Load and store operations access the Tag RAMs. The tag bits
available for testing in the Tag Test mode are the Tag ID bits, Hit (HT) bit,
Validity (V) bit, and the Write Back (WB) bit. Note that the WBbit is present
only in D-Cache. The HT bit is ignored during a store operation. For a
load operation, the HT bit is set if a match occurs.

Table 4.23 TAG and INV Encoding

TAG INV Cache Maintenance Mode

0 0 Data Test

1 0 Tag Test

x 1 Invalidate

Exceptions 4-59

The Tag ID bits are written from or compared to the most significant bits
of the effective address (offset + GPR[base]).

A Tag RAM load operation returns the information shown in Figure 4.13.

Figure 4.13 Tag Test Mode Format

Invalidate Mode – When the INV bit is set to one, the APU is in
Invalidate mode. Because the caches contain random data on both warm
and cold starts, software must invalidate all lines in the I-Cache and
D-Cache. Executing store word instructions invalidates the addressed
cache line in the enabled cache(s). After reset, zeroes must be written
into all Tags for both sets of D-Cache and I-Cache.

4.6 Exceptions

When the CW4011 detects an exception, it suspends the normal
sequence of instruction execution. The processor then disables interrupts
and forces execution of a software handler located at a fixed address in
memory. (The External Vectored Interrupt Exception uses a separate
routine, the EVI handler, as described in Section 4.8.4, “Vectored
Interrupt Processing.”) The handler saves the context of the processor
and restores it after the handler services the exception condition.

When an exception occurs, CP0 loads the Exception Program Counter
(EPC) register (page 4-73) with a restart location where program
execution can resume after the exception has been serviced.

The restart location in the EPC register is the address of the instruction
that caused the exception or, if the instruction was executing in a branch
delay slot, it is the address of the branch instruction immediately
preceding the delay slot. The instruction causing the exception and all
the instructions following it in the pipeline are aborted.

31 10 9 3 2 1 0

TAG ID Not Used HT V WB

4-60 ATM Processing Unit

All events that can initiate exception processing are described in this
section and are listed in Table 4.24 below.

Table 4.24 APU Exceptions

Exception Cause

Cold Reset Deassertion of the CW4011 “cold reset” signal (PCI_RSTn pin or XPP_APU_Reset bit).

Warm Reset Assertion and deassertion of the WRESETnsignal.

NMI Assertion of the CW4011 NMI signal.

Address Error Attempt to load, fetch, or store an unaligned word, that is, a word or halfword at an
address not evenly divisible by four or two, respectively. Also caused by references
to an address with the most significant bit set while in user mode.

TBL Refill No TBL entry to match a reference to a mapped address space.

TBL Invalid Virtual address reference matches a TBL entry that is marked invalid.

TBL Modified Virtual address reference to memory during a store operation matches a TBL entry
that is marked valid but is not dirty or writable.

Bus Error Assertion of the CW4011 external “bus error” signal. (Refer to Watchdog Timer on
page 4-112 and Bus Error on page 4-88)

Integer
Overflow

Two’s complement overflow during an add or subtract.

Trap A Trap instruction results in a “true” condition.

System Call An attempt to execute the SYSCALLinstruction.

Breakpoint An attempt to execute the BREAKinstruction.

Reserved
Instruction

Execution of an instruction with an undefined or reserved major operation code (bits
[31:26]) or a SPECIAL instruction whose minor opcode (bits [5:0]) is undefined.

Interrupt Assertion of one of CW4011’s six hardware interrupt inputs, or by setting one of the
two software interrupt bits in the Cause register (page 4-71). Interrupts must be
enabled.

Ext Vectored
Interrupt

Assertion of an external vectored interrupt (refer to page 4-93).

Debug Detection of a program counter breakpoint, data address breakpoint, or trace.

Exceptions 4-61

The remaining sections of this chapter provide more detail on the
organization and operation of the CW4011 exception handling. The three
major topic areas are:

• R3000 Exception Compatibility Mode

• Exception Handling Registers

• CW4011 Exceptions

4.6.1 R3000 Exception Compatibility Mode

Although the CW4011 processor is based on the MIPS R4000
architecture, an R3000 style exception processing capability has been
added. This allows you to configure CP0 exception processing so
existing R3000 exception handling code runs on the CW4011 processor
with little or no modification.

This R3000 compatibility mode is under control of the compatibility bit
(bit 24) of the Configuration and Cache Control (CCC) register
(page 4-74). The compatibility bit is cleared (R4000 mode) upon a cold
reset exception. If R3000 mode operation is desired, bit 24 should be set
as part of the cold reset handler. Once placed in R3000 mode, the
processor should only be switched back to R4000 mode through the
initiation of another cold reset. When R3000 mode is enabled, the
behavior of the following areas is affected:

• Status Register

• Exception Handling Vectors

• Exception Return (RFEvs. ERET)

4.6.1.1 Status Register

The lower six bits of the Status register (page 4-65) are redefined to
implement the kernel/user mode and interrupt enable stack as defined by
the R3000 architecture.

4.6.1.2 Exception Handling Vectors

The exception handling vectors (base and offset) are remapped to those
specified by the R3000 architecture. The Exception Vectors are
discussed in detail later in this chapter.

4-62 ATM Processing Unit

4.6.1.3 Exception Return

When operating in R3000 compatibility mode, exception return is
accomplished using the RFEinstruction. If an attempt is made to use the
ERETinstruction, a Reserved Instruction exception will be recognized.

In the remainder of this chapter, the differences between standard
operation (R4000) and R3000 compatibility mode are indicated where
appropriate. In all other cases, operation for the two modes is identical.

4.6.2 Exception Handling Registers

This section describes the CP0 registers that are used in exception
processing. Software examines these registers, shown in Table 4.25,
during exception processing to determine the cause of an exception and
the state of the CPU at the time of the exception. Each of these registers
is described in detail in the sections that follow.

Table 4.25 CP0 Exception Processing Registers

Register Name
CP0 Register
Number

DCS (Debug Control and Status) 7

Count 9

Compare 11

Status 12

Cause 13

EPC (Exception Program Counter) 14

PRId (Processor Revision Identifier) 15

CCC (Configuration & Cache Control) 16

LLAdr (Load Linked Address) 17

BPC (Breakpoint Program Counter) 18

BDA (Breakpoint Data Address) 19

BPCM (Breakpoint PC Mask) 20

BDAM (Breakpoint Data Address Mask) 21

Error EPC 30

Exceptions 4-63

4.6.2.1 Debug Control and Status (DCS) Register (7)

The Debug Control and Status (DCS) register contains the enable and
status bits for the CW4011 debug facility. All bits have read/write access.
Figure 4.14 shows the format of the DCS register.

Figure 4.14 DCS Register

TR Trap Enable 31
When set, enables debug exception vector 0. When
cleared, cannot trap, but updates the debug status bits
with the debug event information.

UD User Mode Debug Enable 30
Not used in L64364.

KD Kernel Mode Debug Enable 29
When set, enables debug event detection in Kernel
mode.

TE Trace Event Enable 28
When set, enables trace event detection. A trace event is
a nonsequential fetch.

DW Data Write Enable 27
When set, enables data write at Breakpoint Data Address
(BDA) event detection (refer to page 4-78). The DAEbit
must also be set.

DR Data Read Enable 26
When set, enables data read at Breakpoint Data Address
event detection. The DAEbit must also be set.

DAE Data Address Enable 25
When set, enables data address breakpoint debug
events.

31 30 29 28 27 26 25 24 23 22 6 5 4 3 2 1 0

TR UD KD TE DW DR DAE PCE DE R T W R DA PC DB

Default Value & Read/Write Status

0x0000

R/W

4-64 ATM Processing Unit

PCE Program Counter Enable 24
When set, enables Program Counter breakpoint debug
events.

DE Debug Enable 23
When set, enables debugging. When cleared, disables
debugging.

R Reserved [22:6]
These bits should all be cleared to 0.

T Trace Event Detected 5
When set, indicates a trace event was detected.

W Write Reference Match 4
When set, indicates a write reference-matching
Breakpoint Data Address was detected.

R Read Reference Match 3
When set, indicates a read reference-matching
Breakpoint Data Address was detected.

DA Data Address Debug Detected 2
When set, indicates a data address debug was detected.

PC Program Counter Debug Detected 1
When set, indicates a Program Counter debug condition
was detected.

DB Debug Condition Detected 0
When set, indicates a debug condition was detected.

4.6.2.2 Count Register (9)

The Count register acts as a timer, incrementing at a constant rate. It
increments regardless of whether an instruction is executed, retried, or
any forward progress is made. The Count register increments at half the
maximum instruction issue rate.

The Count register is a read/write register that can be written to for
diagnostic purposes. Figure 4.15 shows its format.

Figure 4.15 Count Register

31 0

Count

Exceptions 4-65

4.6.2.3 Compare Register (11)

The Compare register, shown in Figure 4.16, can be set to generate a
timed interrupt. When the timer facility is enabled by the TMRbit (19) in
the CCC register (page 4-74) and the value of the Count register
(page 4-64) reaches the value written in the Compare register, interrupt
IP7 (bit 15) in the Cause register (page 4-71) is set, causing an interrupt
on the next execution cycle if the interrupt is enabled. Writing a value to
the Compare register clears the timer interrupt.

The Compare register is read/write in diagnostic mode and write-only in
normal operation.

Figure 4.16 Compare Register

4.6.2.4 Status Register (12) - R4000 Mode

The Status register is a read/write register that contains the operating
mode, interrupt enabling, and the diagnostic states of the processor.
There are two versions of the Status register; one for the R4000
compatibility mode of the CW4011 and one for the R3000 compatibility
mode. The compatibility mode is determined by the CMPbit (24) of the
CCC register (page 4-74).

The format of the R4000 version of the Status register is shown in
Figure 4.17.

Figure 4.17 Status Register (R4000 Mode)

31 0

Compare

31 28 27 23 22 21 20 19 16 15 10 9 8 7 6 5 4 3 2 1 0

CU R BEV R SR R INT SW R R KSU ERL EXL IE

Default Value & Read/Write Status

0xF 0x00 1 0 0 0x0 XXX1

1. X = undefined at reset.

X 0x0 X XX 1 X X

R/W

4-66 ATM Processing Unit

CU[3:0] Coprocessor Enables [31:28]
Each bit controls a coprocessor enable/disable function.
For the L64364, all four bits must be set, enabling all four
coprocessors.

R Reserved [27:23]
Not used in L64364. Clear this bit when writing to this
register.

BEV Exception Vector 22
Controls the location of general exception vectors. When
cleared, the location is normal (0x8000.0000). When set,
the location is the bootstrap (0xBFC0.0000). See
Section 4.6.3.3, “Exception Vector Locations.”

R Reserved 21
Not used in L64364. Clear this bit when writing to this
register.

SR Soft Reset 20
When set, this bit indicates that a soft reset has occurred.

R Reserved [19:16]
Not used in L64364. Clear this bit when writing to this
register.

INT[5:0] Hardware Interrupt Mask [15:10]
When set, enables the corresponding hardware interrupt.
When cleared, disables the hardware interrupt.

SW[1:0] Software Interrupt Mask [9:8]
When set, enables the corresponding software interrupt.
When cleared, disables the software interrupt.

R Reserved [7:6]
Not used in L64364. Clear this bit when writing to this
register.

R Reserved 5
Not used in the L64364.

KSU[1:0] Base Mode [4:3]
These two bits are encoded to specify either kernel mode
(0b00) or user mode (0b10). All other bit combinations
are reserved.

Exceptions 4-67

ERL Error Level 2
When set, the error level is enabled. When cleared, the
error level is disabled.

EXL Exception Level 1
When set, the exception level is enabled. When cleared,
the exception level is disabled.

IE Interrupt Enable 0
When set, interrupts are enabled. When cleared,
interrupts are disabled.

Interrupt Enable – Interrupts are enabled when all of the following
conditions are true:

• IE (Interrupt Enable) = 1.

• EXL (Exception Level) = 0.

• ERL (Error Level) = 0.

If these conditions are met, interrupts are recognized according to the
setting of the INT and SWmask bits.

Processor Modes – CW4011 processor mode definitions are as follows:

• The processor is in User mode when KSUis equal to 0b10, and EXL
and ERL are cleared.

• The processor is in Kernel mode when KSUis equal to 0b00, or either
EXL or ERL is set.

Kernel Address Space Access – Access to the Kernel address space
is allowed only when the processor is in Kernel mode, that is:

• KSUis equal to 0b00, or either EXL or ERL is set.

User Address Space Access – Access to the User address space is
always allowed.

Cold Reset – The contents of the Status register are undefined after a
cold reset, except for the following bits:

• ERL and BEVare set.

4-68 ATM Processing Unit

Warm Reset – The contents of the Status register are unchanged by
warm reset, except for the following bits:

• ERL, BEV, and SRbits are set.

4.6.2.5 Status Register (12) - R3000 Mode

The Status register is a read/write register that contains the operating
mode, interrupt enabling, and the diagnostic states of the processor.
There are two versions of the Status register; one for the R4000
compatibility mode of the CW4011 and one for the R3000 compatibility
mode. The compatibility mode is determined by the CMPbit (24) of the
CCC register (page 4-74).

The format of the R3000 version of the Status register (CCC[24] = 1) is
shown in Figure 4.18.

Figure 4.18 Status Register (R3000 Mode)

CU[3:0] Coprocessor Enables [31:28]
Each bit controls a coprocessor enable/disable function.
For the L64364, all four bits must be set, which enables
all four coprocessor inputs.

R Reserved [27:23]
Not used in L64364. Clear this bit when writing to this
register.

BEV Exception Vector 22
Controls the location of general exception vectors. When
cleared, the location is normal (0x8000.0000); when set,
the location is the bootstrap (0xBFC0.0000). See
Section 4.6.3.3, “Exception Vector Locations.”

31 28 27 23 22 21 20 19 16 15 10 9 8 7 6 5 4 3 2 1 0

CU R BEV R SR R INT SW R KUo IEo KUp IEp KUc IEc

Default Value & Read/Write Status

0b1111 All Zeroes 0 All Zeroes 00

R/W

Exceptions 4-69

R Reserved 21
Not used in L64364. Clear this bit when writing to this
register.

SR Soft Reset 20
When set, this bit indicates that a soft reset has occurred.

R Reserved [19:16]
Not used in L64364. Clear this bit when writing to this
register.

INT[5:0] Hardware Interrupt Mask [15:10]
When set, enables the hardware interrupt mask; when
cleared, disables the hardware interrupt mask.

SW[1:0] Software Interrupt Mask [9:8]
When set, enables the software interrupt mask. When
cleared, disables the software interrupt mask.

R Reserved [7:6]
Not used in L64364. Clear this bit when writing to this
register.

KUo Kernel/User Mode (old) 5
This bit shows the old base operating mode of the
CW4011 core. Setting it to one indicates User mode.
Clearing the bit to zero indicates Kernel mode. The bit is
part of a three-bit stack that indicates old, previous, and
current modes.

IEo Interrupt Enable (old) 4
When set, interrupts were enabled; when cleared, the
interrupts were disabled.

KUp Kernel/User Mode (previous) 3
This bit shows the previous base operating mode of the
CW4011 core. Setting it to one indicates User mode.
Clearing the bit to zero indicates Kernel mode. The bit is
part of a three-bit stack that indicates old, previous, and
current modes.

IEp Interrupt Enable (previous) 2
When set, interrupts were enabled; when cleared,
interrupts were disabled.

4-70 ATM Processing Unit

KUc Kernel/User Mode (current) 1
This bit shows the current base operating mode of the
CW4011 core. Setting it to one indicates User mode.
Clearing the bit to zero indicates Kernel mode. The bit is
part of a three-bit stack that indicates old, previous, and
current modes.

IEc Interrupt Enable (current) 0
When set, interrupts are enabled; when cleared,
interrupts are disabled.

Interrupt Enable – Interrupts are enabled when IEc is set. Interrupts
are recognized according to the state of the INT and SWmask bits. The
IEo /IEp /IEc bits form a three-level stack showing the old, previous, and
current interrupt enable settings.

Processor Modes – The CW4011 processor is in User mode when KUc
is set and in Kernel mode when KUc is cleared. The KUo/KUp/KUc bits
form a three-level stack showing the old, previous, and current processor
state settings.

Kernel Address Space Access – Access to the Kernel address space
is allowed only when the processor is in Kernel mode.

Warm Reset – The contents of the Status register are unchanged by
warm reset, except for the following bits:

• BEVand SRbits are set.

• KUo/IEo <- KUp/IEp <- KUc/IEc <- 0/0.

Exception Processing – When an exception is recognized, both the KU
and IE bits are “pushed” deeper into the stack with KUc and IEc cleared
(i.e., KUo/IEo <- KUp/IEp <- KUc/IEc <- 0/0).

When a Return From Exception (RFE) instruction is executed, the values
are “popped” off the stack with KUc/IEc being set to their previous values
(i.e., KUc/IEc <- KUp/IEp <- KUo/IE0).

4.6.2.6 Cause Register (13)

The Cause register (described in Figure 4.19 and the paragraphs
following it) is a read/write register. It contains information, such as the
cause of the most recent exception.

Exceptions 4-71

Figure 4.19 Cause Register

BD Branch Delay 31
When set, this bit indicates that the last exception was
taken in a branch delay slot.

BT Branch Taken 30
If the Branch Delay bit is set, then the BTbit indicates that
a branch was taken when set, and the branch was not
taken when cleared.

CE[1:0] Coprocessor Exception [29:28]
These bits specify the coprocessor unit number that was
referenced when a Coprocessor Unusable Exception is
taken.

R Reserved [27:16]
Not used in the L64364. Clear this bit when writing to this
register.

IP[7:2] Interrupt Pending [15:8]
When set, these bits indicate that an External
Nonvectored Interrupt is pending, e.g., bit 15 set
indicates that IP7 is pending.

IP[1:0] Software Interrupt Pending [9:8]
When set, these bits indicate that a software Interrupt is
pending.

R Reserved 7
Not used in L64364. Clear this bit when writing to this
register.

31 30 29 28 27 16 15 10 9 8 7 6 2 1 0

BD BT CE R IP[7:2] IP1 IP0 R ExcCode R

Default Value & Read/Write Status

0x000 0x00 0 0x0

Read Only R/W Read Only

4-72 ATM Processing Unit

ExcCode[4:0] Exception Code [6:2]
This 5-bit code specifies the cause of the last exception.
The exception codes and their descriptions are provided
in Table 4.26.

R Reserved [1:0]
Not used in the L64364. Clear this bit when writing to this
register.

All bits in the register, with the exception of the IP[1:0] bits, are read
only. The IP[1:0] bits are used for software interrupts.

Table 4.26 Exception Codes

Exception
Code Value Mnemonic Description

0x00 Int Interrupt

0x01 MOD TLB Modification exception

0x02 TLBL TLB exception (load or instruction fetch)

0x03 TLBS TLB exception (store)

0x04 AdEL Address error exception (load or instruction fetch)

0x05 AdES Address error exception (store)

0x06 Bus Bus error exception

0x07 – Reserved

0x08 Sys Syscall exception

0x09 Bp Breakpoint exception

0x0A RI Reserved instruction exception

0x0B CpU Coprocessor unusable exception

0x0C Ov Arithmetic overflow exception

0x0D Tr Trap exception

0x0E – Reserved

0x0F FPE Floating-point exception

0x10–0x1F – Reserved

Exceptions 4-73

4.6.2.7 Exception Program Counter Register (14)

The Exception Program Counter (EPC) register, shown in Figure 4.20, is
a read-write register that contains the address where processing
resumes after an exception has been serviced. For synchronous
exceptions, the EPC register contains either:

• The virtual address of the instruction that was the direct cause of the
exception, or

• The virtual address of the branch or jump instruction (when the
instruction is in a branch delay slot, and the Branch Delay (BD) bit in
the Cause register is set) immediately preceding the instruction that
caused the exception.

Bits 1 and 0 of the register must be cleared.

Figure 4.20 EPC Register

4.6.2.8 Processor Revision Identifier Register (15)

The Processor Revision Identifier (PRId) register, shown in Figure 4.21,
is a 32-bit, read-only register that contains information identifying the
implementation and revision level of the CPU.

Figure 4.21 PRId Register

The low-order byte (bits [7:0]) of the PRId register is interpreted as a
CPU unit revision number and the second byte (bits[15:8]) is interpreted
as a CPU unit implementation number. The contents of the high-order
halfword of the register are reserved.

The revision number is a value of the form y.x, where y is a major
revision number in bits [7:4] and x is a minor revision number in bits [3:0].

Note: The revision number can distinguish some chip revisions.
However, LSI Logic does not guarantee that changes to this

31 2 1 0

Exception Program Counter 0x0

31 16 15 8 7 0

All Zeroes Implementation Number Revision Number

4-74 ATM Processing Unit

chip will be reflected in the PRId register, or that changes
to the revision number reflect real chip changes. For this
reason, these values are not listed and software should not
rely on the revision number in the PRId register to
characterize the chip.

4.6.2.9 Configuration and Cache Control Register (16)

The Configuration and Cache Control (CCC) register allows software to
configure various modules in the CW4011 design (for example, the BIU
and Cache Controllers). Figure 4.22 shows the format of the CCC
register.

Figure 4.22 CCC Register

R Reserved [31:29]
These bits are not used in the L64364 and must be
cleared.

EWP External Write Priority 28
This bit defines SC Bus arbitration priority between data
reads and writes in the 4-level write buffer. Clearing EWP
gives higher priority to data read requests, if the read
address does not match any of the write addresses in the
write buffer. Setting EWP gives higher priority to data
writes.

31 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R EWP R ISR1 EVI CMP IIE DIE MUL MAD TMR BGE IE0 IE1

Default Value & Read/Write Status

All Zeroes 0 1 1 1

Read/Write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IS[1:0] DE0 DE1 DS[1:0] IPWE IPWS[1:0] TE WB SR0 SR1 IsC TAG INV

Default Value & Read/Write Status

10 01 0 0

Read/Write

Exceptions 4-75

R Reserved 27
This bit is not used in the L64364 and must be cleared.

ISR1 Instruction RAM Enable 26
When set with IE1 , I-Cache bank 1 operates as
Instruction RAM.

EVI External Vectored Interrupt Enable 25
When set, enables external vectored interrupts; when
cleared, disables external vectored interrupts.

CMP R3000 Compatibility Mode 24
When set, this bit enables the R3000 compatibility mode;
when cleared, this bit disables R3000 compatibility mode.

IIE I-Cache Invalidate Request 23
Not used by the L64364. Can be set or cleared.

DIE D-Cache Invalidate Request 22
Not used by the L64364. Can be set or cleared.

MUL Floating-Point Multiply Unit Enable 21
When set, enables the hardware Floating-Point Multiply
Unit; when cleared, disables the hardware Floating-Point
Multiply Unit. This bit must be set to enable rate
calculations in the L64364.

MAD Multiplier Accumulate Extension Enable 20
When this bit and MULbit are set, it enables the
accumulate extensions; when cleared, disables the
accumulate extensions. Not used in the L64364. This bit
must be cleared.

TMR Timer Facility Enable 19
When set, enables the timing facility. When the value of
the Count register (page 4-64) reaches the value written
in the Compare register (page 4-65), interrupt IP7 (bit 15)
in the Cause register (page 4-71) is set causing an
interrupt on the next execution cycle if the interrupt is
enabled. When TMRis cleared, it disables the timing
facility and IP7 is used for external nonvectored
interrupt 5 (IntPCIErr).

BGE Bus Grant Enable 18
Not used by the L64364. Can be set or cleared.

4-76 ATM Processing Unit

IE0 Instruction Cache Set 0 Enable 17
When set, enables I-Cache Set 0; when cleared, disables
I-Cache Set 0.

IE1 Instruction Cache Set 1 Enable 16
When set, enables I-Cache Set 1; when cleared, disables
I-Cache Set 1. See also IR1 bit.

IS[1:0] Instruction Cache Set Size [15:14]
Sets the size of the I-Cache enabled by bits 17 and 16.
In the L64364, these bits must be set to 0b10 to set the
I-Cache size to 4 Kbytes.

DE0 Data Cache Set 0 Enable 13
When set, enables D-Cache Set 0; when cleared,
disables D-Cache Set 0.

DE1 Data Cache Set 1 Enable 12
When set, enables D-Cache Set 1; when cleared,
disables D-Cache Set 1.

DS[1:0] Data Cache Set Size [11:10]
These bits set the size of the D-Cache enabled by bits 13
and 12. In the L64364, these bits must be set to 0b01 to
set the D-Cache size to 2 Kbytes.

IPWE Internal Page Write Enable 9
The L64364 does not make use of the CW4011's page
decode logic. The state of this bit is ignored.

IPWS[1:0] Internal Page Write Size [8:7]
Normally, if the IPWEbit (bit 9) is set, then the IPWSbits
set the internal page write size. The size can be set to 1,
2, 4, or 8 Kbytes with the values of 0b00, 0b01, 0b10, or
0b11, respectively. The L64364 does not make use of the
CW4011's page decode logic. The settings in this field
are ignored.

TE Translation Buffer Enable 6
When set, this bit enables the Translation Buffer; when
cleared, it disables the Translation Buffer. Clear this bit
when writing to this register.

WB Write Through/Write Back Cache Select 5
For cache addresses not mapped by the Translation
Buffer, this bit selects either the Write-Through or

Exceptions 4-77

Write-Back cache operation. Setting this bit enables
cache writeback; clearing this bit enables cache write
through.

SR0 Scratch-Pad RAM Mode Select 4
When set, this bit configures the Set 0 D-Cache as a
Scratch-Pad RAM. When cleared, this bit enables the
D-Cache mode for Set 0. DC0must be cleared for
Scratch-Pad RAM mode.

SR1 Scratch-Pad RAM Mode Select 3
When set, this bit configures the Set 1 D-Cache as a
Scratch-Pad RAM. When cleared, this bit enables the
D-Cache mode for Set 1. DC1must be cleared for
Scratch-Pad RAM mode.

IsC Isolate Cache Mode 2
When this bit is set, APU stores go to the cache but do
not propagate to external memory.

TAG Tag Test Mode 1
When set, load and store operations access the Tag
RAMs and can be used for Tag RAM testing. When
cleared, the Tag Test mode is disabled. See page 4-58
for more information.

INV Cache Invalidate Mode 0
Set this bit to invalidate the cache contents. Used only for
cache diagnostic and debug operations.

4.6.2.10 Load Linked Address Register (17)

The Load Linked Address (LLAdr) register, shown in Figure 4.23, is a
read/write register that contains the physical address (PAddr[31 :2]) read
by the most recent Load Linked instruction. This register is used only for
diagnostic purposes and serves no function during normal operation.

The LLAdr register is physically located in the LSU. The CP0 must send
read/write signals to the LSU when the value is to be read or written.

Figure 4.23 LLAdr Register

31 2 1 0

PAddr[31:2] 0x0

4-78 ATM Processing Unit

4.6.2.11 Breakpoint Program Counter Register (18)

The Breakpoint Program Counter (BPC) register, shown in Figure 4.24,
is a read/write register that software uses to specify a Program Counter
breakpoint.

The BPC register is used in conjunction with the Breakpoint PC Mask
register, described on page 4-78.

Figure 4.24 BPC Register

4.6.2.12 Breakpoint Data Address Register (19)

The Breakpoint Data Address (BDA) register (Figure 4.25) is a read/write
register that software uses to specify a virtual data address breakpoint.

The BDA register is used in conjunction with the Breakpoint Data
Address Mask register, described on page 4-79.

Figure 4.25 BDA Register

4.6.2.13 Breakpoint PC Mask Register (20)

The Breakpoint Program Counter Mask (BPCM) register (see
Figure 4.26) is a read/write register that masks bits in the BPC register.
A one in any bit in the BPCM register indicates that the CW4011
compares the corresponding bit in the BPC register for Program Counter
(debug) exceptions. Values of zero in the mask indicate that the CW4011
does not check the corresponding bits in the BPC register.

Figure 4.26 BPCM Register

31 2 1 0

Breakpoint Program Counter 0x0

31 0

Breakpoint Data Address

31 2 1 0

Breakpoint Program Counter Mask 0x0

Exceptions 4-79

4.6.2.14 Breakpoint Data Address Mask Register (21)

The Breakpoint Data Address Mask (BDAM) register, shown in
Figure 4.27, is a read/write register that masks bits in the BDA register.
A one in any bit in the BDAM register indicates that the CW4011
compares the corresponding bit in the BDA register for data address
(debug) exceptions. Values of zero in the mask indicate that the CW4011
does not check the corresponding bits in the BDA register.

Figure 4.27 BDAM Register

4.6.2.15 Error Exception Program Counter Register (30)

The Error Exception Program Counter (Error EPC) register, shown in
Figure 4.28, is similar to the EPC register (page 4-73). It stores the PC
on cold cleared, warm cleared, and NMI exceptions. The read/write Error
EPC register contains the virtual address at which instruction processing
resumes after servicing the interrupt. The address may be either:

• the virtual address of the first instruction terminated by the exception,
or

• the virtual address of the branch or jump instruction immediately
following the terminated instruction when the terminated instruction
is in a branch delay slot.

There is no branch delay slot indication for the Error EPC register.

Figure 4.28 Error EPC Register

31 0

Breakpoint Data Address Mask

31 2 1 0

Error EPC 0x0

4-80 ATM Processing Unit

4.6.3 CW4011 Exceptions

This section describes each of the CW4011 exceptions, including their
cause, handling, and servicing.

4.6.3.1 Exception Handling Overview

To handle an exception, the processor saves the current operating state,
enters Kernel mode, disables interrupts, and forces execution of a
handler at a fixed address. To resume normal operation, the operating
state must be restored and interrupts enabled.

When an exception occurs, the EPC register (page 4-73) is loaded with
the restart location at which execution can resume after servicing the
exception. The EPC register contains the address of the instruction
associated with the exception. Or, if the instruction was executing in a
branch delay slot, the EPC register contains the address of the branch
instruction that immediately preceded the exception.

R4000 Mode Exception Handling – This is the default mode after a
cold reset. The CW4011 processor uses the following mechanisms for
saving and restoring the operating mode and interrupt status:

• A single interrupt enable bit (IE), which is located in the Status
register (page 4-65).

• An exception level (normal, exception), the EXL bit in the Status
register.

• An error level (normal, error), the ERL bit in the Status register.

Interrupts are enabled by setting the IE bit and clearing both the EXLand
ERL bits.

R3000 Mode Exception Handling – The R3000 mode of operation is
simpler than the R4000 mode. The current processor operating state is
always defined by the KUc bit (0 = Kernel, 1 = User). The basic
mechanism for saving and restoring the operating state of the processor
is the Kernel/User (KU) and Interrupt Enable (IE) stack located in the
bottom six bits of the Status register (page 4-68.)

When responding to an exception, the previous mode bits (KUp/IEp) are
saved in the old mode bits (KUo/IEo). The current mode bits (KUc/IEc)

Exceptions 4-81

are saved in the previous mode bits. Then the current mode bits are both
cleared.

After exception processing has completed, the saved state is restored
through the use of the RFE instruction. It causes the previous mode bits
to be copied back into the current mode bits and the old mode bits to be
copied back into the previous mode bits. The old mode bits are left
unchanged.

Processing Exceptions – Figure 4.29 through Figure 4.33 depict the
basic set of actions taken for each of the major CW4011 exception
classes.

Figure 4.29 Cold Reset Exception

Figure 4.30 Warm Reset, NMI Exceptions

Random <- TLBENTRIES - 1
Wired <- 0
CCC <- 0 32

DCS <- 0 32

ErrorPC <- PC
SR <- 0 4 || SR 27..23 || 1 || 0 || 0 || SR 19..3 || 1 || SR 1..0
PC <- 0xBFC0 0000

ErrorPC <- PC
if (CCC 24 = 0) then
 SR <- SR 31..23 || 1 || 0 || 1 || SR 19..3 || 1 || SR 1..0
else
 SR <- SR 31..23 || 1 || 0 || 1 || SR 19..6 || SR 3..0 || 0 2

endif
PC <- 0xBFC0 0000

4-82 ATM Processing Unit

Figure 4.31 Common Exceptions

Figure 4.32 Debug Exception

Cause <- BD || BT || CE || 0 12 || Cause 15..8 || 0 || ExcCode
|| 0 2

if ((CCC 24 = 1) | (SR 1 = 0)) then
 EPC <- PC
endif
if (CCC 24 = 0) then
 SR <- SR 31..2 || 1 || SR 0
else
 SR <- SR 31..6 || SR 3..0 || 0 2

endif
if (SR 22 = 1) then
 if (CCC 24 = 0) then
 PC <- 0xBFC0 0200 + vector offset
 else
 PC <- 0xBFC0 0100 + vector offset
 endif
else
 PC <- 0x8000 0000 + vector offset
endif

DCS <- DCS 31..6 || T || W || R || DA || PC || DB
Cause <- BD || BT || Cause 29..0
if ((CCC 24 = 1) | (SR 1 = 0)) then
 EPC <- PC
endif
if (CCC 24 = 0) then
 SR <- SR 31..2 || 1 || SR 0
else
 SR <- SR 31..6 || SR 3..0 || 0 2

endif
if (SR 22 = 1) then
 if (CCC 24 = 0) then
 PC <- 0xBFC0 0200 + vector offset
 else
 PC <- 0xBFC0 0100 + vector offset
 endif
else
 PC <- 0x8000 0000 + vector offset
endif

Exceptions 4-83

Figure 4.33 External Vectored Interrupt Exception

4.6.3.2 Precision of Exceptions

Exceptions are logically precise. The instruction that causes an exception
and all those that follow it are aborted, generally before committing any
state, and can be re-executed after servicing the exception. When the
instructions that follow an exception are killed, the exceptions associated
with those instructions are also killed. This means that exceptions are not
taken in the order detected but in instruction fetch order.

In some cases, the characteristics of the pipeline staging cannot
guarantee that all states in the processor and associated system remain
completely unchanged because of the possibility of not completely
executing instructions that follow the exception. Examples of these state
changes are:

• Instructions may be read from memory and loaded into the
instruction cache.

• The multiply/divide registers (HI and LO) may have been altered by
a MULT/MULTU, DIV/DIVU, or MTHI/MTLOinstruction.

Normally, the above effects can be ignored because enough of the
machine state is restored to allow execution to successfully resume after
servicing the exception.

4.6.3.3 Exception Vector Locations

The Cold Reset and NMI exceptions are always vectored to location
0xBFC0.0000. Addresses for other exceptions are a combination of a
vector offset and a base address, which is determined by the BEVbit of

Cause <- BD || BT || Cause 29..0
if ((CCC 24 = 1) | (SR 1 = 0)) then
 EPC <- PC
endif
if (CCC 24 = 0) then
 SR <- SR 31..2 || 1 || SR 0
else
 SR <- SR 31..6 || SR 3..0 || 0 2

endif
PC <- EXVAp 31..2 || 0 2

4-84 ATM Processing Unit

the Status register (page 4-65 and page 4-68). Table 4.27 shows the
vector base addresses and Table 4.28 shows the vector offsets.

The virtual memory address from the table above may be further
remapped to different physical addresses using the APU_ExcMapfield in
the APU_AddrMap register (page 4-99).

Exception vectors are stored in Secondary EPROM when the BEVbit is set.

Table 4.27 Exception Vector Base Addresses

BEV
R4000 Mode
(CCC[24] = 0)

R3000 Mode
(CCC[24] = 1)

0 0x8000.0000 0x8000.0000

1 0xBFC0.0200 0xBFC0.0100

Table 4.28 Exception Vector Offset Addresses

Exception
R4000 Mode
(CCC[24] = 0)

R3000 Mode
(CCC[24] = 1)

TLB Refill 0x00 0x00

Debug 0x040 0x040

All Others 0x180 0x080

Exceptions 4-85

4.6.3.4 Exception Priorities

While more than one exception can occur for a single instruction, only
the highest priority exception is reported. Table 4.29 shows the priority
order of the exceptions with Cold Reset having the highest priority.

4.6.3.5 Cold Reset Exception

The Cold Reset exception occurs when the PCI_RSTn signal is asserted
and then deasserted or the XPP_APU_RESETbit in the XPP_Ctrl register
(page 9-22) is set and then cleared. This exception is not maskable.

The CPU provides a special interrupt vector (0xBFC0.0000) for the Cold
Reset exception. The reset vector resides in unmapped and uncached
CPU address space, so the hardware need not initialize the Translation
Lookaside Buffer or the cache to handle the exception. The processor
can fetch and execute instructions while the caches and virtual memory
are in an undefined state.

The contents of all registers in the CPU are undefined when the Cold
Reset exception occurs except for the following:

• In the Status register (page 4-65 and page 4-68), the Cu[3:0] and
SRbits are cleared and the ERLand BEVbits are set. Other bits are
undefined.

Table 4.29 Exception Priority Order

Exception

Cold Reset

NMI

Address Error - Instruction Fetch

Bus Error

Integer Overflow, Trap, System Call, Breakpoint

Reserved Instruction, Floating-Point Error, Coprocessor Unusable

Address Error - Data Access

External Vectored Interrupt

Debug

4-86 ATM Processing Unit

• The Wired register is initialized to 0x00.

• The Random register is initialized to the value of its upper bound, 0x1F.

Note: Refer to the LSI Logic MiniRISC CW4011 Superscalar
Microprocessor Core Technical Manual for a description of
the Wired and Random registers.

The Cold Reset exception is serviced by initializing all processor
registers, coprocessor registers, caches, and the memory system.
Servicing is accomplished by performing diagnostic tests, and by
bootstrapping the operating system.

4.6.3.6 Nonmaskable Interrupt Exception

The Nonmaskable Interrupt (NMI) exception occurs in response to the
falling edge of the SYS_NMIn signal. As the name implies, the NMI
exception is not maskable and occurs regardless of the settings of the
EXL, ERL, and IE bits in the Status register (page 4-65).

The reset exception vector (0xBFC0.0000) is also used for this exception.
The reset vector resides in unmapped and uncached CPU address
space, so the hardware need not initialize the TLB or the cache to handle
the NMI interrupt. The SRbit of the Status register (page 4-65 and
page 4-68) is set to differentiate the NMI exception from a Cold Reset
exception.

Because an NMI could occur in the midst of another exception, in
general it is not possible to continue program execution after servicing
an NMI.

Unlike the Cold Reset exception but like other exceptions, the NMI
exception is taken only at instruction boundaries. The state of the caches
and memory system are preserved by this exception.

The contents of all registers in the CPU, except for the following, are
preserved when the NMI exception occurs.

• The Error EPC register (page 4-79), which contains the restart
Program Counter.

• The BEVand SRbits of the Status register (page 4-65 and
page 4-68), which are set.

Exceptions 4-87

• R4000 mode, in which the ERLbit in the Status register (page 4-65)
is set.

• R3000 mode, in which KUo/IEo <- KUp/IEp <- KUc/IEc <- 0/0 in the
Status register (page 4-68).

The NMI exception is serviced by saving the current processor state for
diagnostic purposes and reinitializing the system in a manner similar to
that of the Cold Reset exception.

4.6.3.7 Address Error Exception

The Address Error exception occurs when an attempt is made to:

• Load, fetch, or store a word that is not aligned on a word boundary.

• Load or store a halfword that is not aligned on a halfword boundary.

• Load or store a doubleword that is not aligned on a doubleword
boundary.

The Address Error exception is not maskable and it uses the common
exception vector.

The ExcCode field in the Cause register (page 4-71) specifies the
exception cause. For example, when it contains the code AdEL (0x04), it
means a data load or instruction fetch caused the exception. If the
ExcCode field contains AdES (0x05), it means a data store operation
caused the exception.

When the Address Error exception occurs, the BadVAddr register retains
the virtual address that was not properly aligned or that attempted to
access protected address space. The contents of the VPNfield of the
Context and EntryHi registers are undefined, as are the contents of the
EntryLo register.

Note: Refer to the LSI Logic MiniRISC CW4011 Superscalar
Microprocessor Core Technical Manual for descriptions of
the BadVAddr, Context, EntryHi, and EntryLo registers.

The EPC register (page 4-73) points to the instruction that caused the
exception unless this instruction is in a branch delay slot. If the
instruction is in a branch delay slot, the EPC register points to the
preceding branch instruction, and the BDbit of the Cause register
(page 4-71) is set.

4-88 ATM Processing Unit

The process executing at the time should be handed a “segmentation
violation” signal. This error is usually fatal to the process that was
executing when the exception occurred.

4.6.3.8 Bus Error Exception

The Bus Error exception occurs when signaled by the ATMizer II+ chip
for events such as bus time-out and bus parity errors. This exception is
not maskable.

In the CW4011, bus errors are asynchronous events with respect to CPU
instruction processing (much like an NMI). This means that there is no
attempt to identify the instruction that caused the error.

The common exception vector is used for this exception. The ExcCode
field in the Cause register (page 4-71) is set to Bus (0x06).

The EPC register (page 4-73) points to the first instruction for which
processing did not complete unless the instruction is in a branch delay
slot. If the instruction is in a branch delay slot, the EPC register points to
the preceding branch instruction and the BDbit of the Cause register
(page 4-71) is set.

The physical address where the fault occurred is not available to the
exception handler. The process executing at the time of the exception
must be handed a “bus error” signal, which is usually fatal.

4.6.3.9 Integer Overflow Exception

The Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD,
DADDI, or DSUBI instruction results in a two’s complement overflow. This
exception is not maskable.

The common exception vector is used for this exception. The ExcCode
field in the Cause register (page 4-71) is set to OV(0x0C).

The EPC register (page 4-73) points to the instruction that caused the
exception unless the instruction is in a branch delay slot. If the instruction
is in a branch delay slot, the EPC register points to the preceding branch
instruction and the BDbit of the Cause register is set.

The process executing at the time of the exception is handed an integer
overflow signal. This error is usually fatal to the current process.

Exceptions 4-89

4.6.3.10 Trap Exception

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI,
TGEUI, TLTI , TLTUI , TEQI, or TNEI instruction results in a TRUE
condition. This exception is not maskable.

The common exception vector is used for this exception. The ExcCode
field in the Cause register (page 4-71) is set to Tr (0x0D).

The EPC register (page 4-73) points to the instruction that caused the
exception unless the instruction is in a branch delay slot. If the instruction
is in a Branch Delay slot, the EPC register points to the preceding branch
instruction and the BDbit of the Cause register is set.

The process executing at the time of the exception is handed a trap
signal. This error is usually fatal.

4.6.3.11 System Call Exception

The System Call exception occurs on an attempt to execute the SYSCALL
instruction. This exception is not maskable.

The common exception vector is used for this exception. The ExcCode
field in the Cause register (page 4-71) is set to Sys (0x08).

The EPC register (page 4-73) points to the SYSCALLinstruction that
caused the exception unless this instruction is in a branch delay slot. If
in a branch delay slot, the EPC register points to the preceding branch
instruction and the BDbit of the Cause register is set.

When this exception occurs, control is transferred to the applicable
system routine. To resume execution, the routine must restart instruction
execution after the SYSCALLinstruction. This restart address can be
computed using the EPC register along with the BDand BT bits held in
the Cause register.

• If (BD= 0) then Restart_PC = EPC+ 4

• If ((BD= 1) and (BT = 0)) then Restart_PC = EPC+ 8

• If ((BD= 1) and (BT = 1)) then Restart_PC = Branch Target Address

It is up to the exception handler to obtain the Branch Target Address from
the prior branch when the SYSCALLinstruction resides in a Branch Delay
slot.

4-90 ATM Processing Unit

4.6.3.12 Breakpoint Exception

The Breakpoint exception occurs during an attempt to execute the BREAK
instruction. This exception is not maskable.

The common exception vector is used for this exception. The ExcCode
field in the Cause register (page 4-71) is set to Bp (0x09).

The EPC register (page 4-73) points to the BREAKinstruction that caused
the exception unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points to the
preceding branch instruction and the BDbit of the Cause register is set.

When the Breakpoint exception occurs, control is transferred to the
applicable system routine. Additional distinctions can be made from the
unused bits of the BREAKinstruction (bits [25:6]) by loading the contents
of the instruction to which the EPC register points (a value of four must
be added to the EPC register to locate the instruction if it resides in a
Branch Delay slot).

To resume execution, the routine must restart instruction execution after
the BREAKinstruction. The restart address can be computed using the
EPC register along with the BDand BT bits held in the Cause register.

• If (BD= 0), then Restart_PC = EPC+ 4

• If ((BD= 1) and (BT = 0)) then Restart_PC = EPC+ 8

• If ((BD= 1) and (BT = 1)), then Restart_PC = Branch Target Address

The exception handler must obtain the Branch Target Address from the
prior branch when the BREAKinstruction resides in a Branch Delay slot.

4.6.3.13 Reserved Instruction Exception

The Reserved Instruction exception occurs when an attempt is made to
execute an instruction whose major opcode (bits [31:26]) are undefined,
or a SPECIAL instruction whose minor opcode (bits [5:0]) are undefined.
This exception also occurs on a REGIMMinstruction whose minor opcode
(bits [20:16]) are undefined. This exception is not maskable.

The common exception vector is used for this exception. The ExcCode
field in the Cause register (page 4-71) is set to Reserved Instruction
(0x0A).

Exceptions 4-91

The EPC register (page 4-73) points to the instruction that caused the
exception unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points to the
preceding branch instruction, and the BDbit of the Cause register is set.

The Reserved Instruction exception can be used to trap to the emulation
routines for instructions not supported in the CW4011 instruction set.
Once emulation has been completed, execution can be resumed using
the EPC register (page 4-73) along with the BDand BT bits held in the
Cause register (page 4-70).

• If (BD= 0), then Restart_PC = EPC+ 4

• If ((BD= 1) and (BT = 0)), then Restart_PC = EPC+ 8

• If ((BD= 1) and (BT = 1)), then Restart_PC = Branch Target Address

The exception handler must obtain the Branch Target Address from the
prior branch when the instruction receiving a Reserved Instruction
exception resides in a Branch Delay slot.

If there is no emulation routine, the process executing at the time of the
exception should be given an illegal instruction signal. This error is
usually fatal.

4.6.3.14 Floating-Point Exception

A floating-point coprocessor is not included in the L64364. Erroneous
floating-point accesses will result in this exception. The common
exception vector is used for this exception. The ExcCode field in the
Cause register (page 4-71) is set to FPE (0x0F).

The contents of the Floating-Point Control Status register (inside CP1)
indicate the cause of this exception.

The EPC register (page 4-73) points to the first instruction for which
processing did not complete unless this instruction is in a Branch Delay
slot. If the instruction is in a Branch Delay slot, the EPC register points
to the preceding branch instruction, and the BDbit of the Cause register
is set.

This exception is cleared by clearing the appropriate bit in the
Floating-Point Control Status register. For an unimplemented instruction
exception, the Kernel should emulate the instruction. For other

4-92 ATM Processing Unit

exceptions, the Kernel should pass the exception to the user process that
caused the exception.

4.6.3.15 Coprocessor Unusable Exception

The Coprocessor Unusable exception occurs when an attempt is made
to execute a coprocessor instruction for either:

• A corresponding coprocessor unit that has not been marked usable,
or

• CP0 instructions when the unit has not been marked usable and the
process is executing in User mode.

This exception is not maskable.

The common exception vector is used for this exception. The ExcCode
field in the Cause register (page 4-71) is set to CPU(0x0B). The contents
of the CEfield in the Cause register specifies which coprocessor was
attempting to be referenced.

The EPC register (page 4-73) points to the instruction that caused the
exception unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points to the
preceding branch instruction, and the BDbit of the Cause register is set.

Results are one of the following:

• If the process is entitled to access, the coprocessor is marked usable
and the corresponding user state is restored.

• If the process is entitled to access the coprocessor, but the
coprocessor does not exist or has failed, interpretation of the
coprocessor instruction is possible.

• If the process is not entitled to access the coprocessor, the process
executing at the time should be given an Illegal/Privileged Instruction
signal. This error is usually fatal.

4.6.3.16 Interrupt Exception

The Interrupt exception occurs when one of the eight interrupt conditions
is asserted. The significance of these interrupts is dependent upon the
specific system implementation. Each of the eight interrupts can be
masked by clearing the corresponding bit in the INT (Interrupt Mask) field

Exceptions 4-93

of the Status register (page 4-65 and page 4-68). All eight interrupts can
be masked at once by clearing the IE bit of the Status register.

The common exception vector is used for this exception. The ExcCode
field in the Cause register (page 4-71) is set to Int (0x00).

The IP field of the Cause register indicates the current interrupt requests.
More than one of the bits can be set simultaneously. If an interrupt is
asserted and then deasserted before this register is read, then none of
the bits are set.

The EPC register (page 4-73) points at the first instruction for which
processing did not complete unless this instruction is in a Branch Delay
slot. If the instruction is in a Branch Delay slot, the EPC register points
at the preceding branch instruction and the BDbit of the Cause register
is set as an indication.

If the interrupt is caused by one of the two software generated
exceptions, the interrupt condition is cleared by clearing the
corresponding Cause register bit.

If the interrupt is hardware generated, the interrupt condition is cleared
by correcting the condition that caused the interrupt signal to be asserted.

4.6.3.17 External Vectored Interrupt Exception

The CW4011 implements an external vectored interrupt interface, which
consists of the following:

• An interrupt input (EXViNTn)

• Interrupt vector virtual address input (EXVAp[31 :2])

• Interrupt accepted output (EXVAEn)

The signals must be asserted/deasserted synchronously to the rising
edge of the system clock. This interrupt class can be enabled/disabled
by setting/clearing the EVI bit in the CCC register (page 4-74).

An External Vectored Interrupt exception occurs when EXViNTn is
asserted. The significance of the interrupt is dependent upon the specific
system implementation. The interrupt can be disabled by clearing the
IE (R3000 = IEc) bit of the Status register (page 4-65 and page 4-68).

4-94 ATM Processing Unit

The virtual address specified by EXVAp[31 :2] is used to specify the
target exception handling routine. The EXVAp[31 :2] address must be
provided by an interrupt controller in the L64364 (see Section 4.8.2,
“External Vectored Interrupt Sources,” page 4-103). The EXViNTn and
EXVAp[31 :2] inputs must be held stable and valid until the exception is
accepted, as indicated by the assertion of the EXVAEnoutput for one cycle.

The EPC register (page 4-73) points to the first instruction for which
processing did not complete unless this instruction is in a branch delay
slot. If the instruction is in a Branch Delay slot, the EPC register points
to the preceding branch instruction and the BDbit of the Cause register
(page 4-71) is set as an indication.

The interrupt condition can be cleared in the user-defined interrupt
controller by either:

• detecting the assertion of the interrupt accepted output (EXVAEn), or

• by correcting the condition that caused the interrupt signal (EXViNTn)
to be asserted.

4.6.3.18 Debug Exception

The Debug exception occurs when a debug condition (read/write access
at Breakpoint Data Address, read access at Breakpoint Program
Counter, Trace) is detected by the CP0. The Debug Control and Status
(DCS) register (page 4-63) specifies which event was detected.

R4000 Mode – Maskable by setting the EXL bit in the Status register
(page 4-65). When set, a debug event does not cause an exception trap
even if the TE bit in the DCS register (page 4-63) is set. However, the
status bits of the DCS register are updated to indicate an event was
recognized.

R3000 Mode – Not maskable.

The Debug exception vector is used to handle this exception.

The Debug exception is a debugging aid. Typically, the exception handler
transfers control to a debugger, which allows you to examine the
situation. To continue, the debug exception condition must be disabled to
execute the faulting instruction and then re-enabled.

Programmer’s Notes:

Memory Map 4-95

1. The T (Trace Event Detected) bit in the DCS register (page 4-63) is
set whenever a branch instruction is encountered regardless of
whether the branch is actually taken or not. However, if the debug
exception trap is enabled (TR bit in the DCS register set), an
exception is recognized only if the branch is actually taken and the
target instruction is executed.

2. The PCbit in the DCS register is set whenever the target address of
a branch falls within the specified PC address range (BPC, BPCM)
regardless of whether the branch is actually taken or not. However,
if the Debug exception trap is enabled, an exception is recognized
only if the branch actually is taken and the target instruction is
executed.

4.7 Memory Map

This section describes the ATMizer II+ chip memory map from the APU
perspective. The CW4011 Core uses a 32-bit address and has an
address space of 4 Gigabytes.

Although the CW4011 Core supports a Memory Management Unit
(MMU) with a Translation Lookaside Buffer (TLB) for virtual to physical
address translation, the MMU is not implemented in the ATMizer II+ chip.

4.7.1 Operating Modes

The CW4011 Core operates in either a kernel mode or in a user mode,
and the address mapping is different in each mode.

In the user mode, the CW4011 has a single uniform address space
(kuseg) of 2 Gigabytes available. All memory references in the user mode
must have the MSB of the effective address cleared. In the kernel mode,
the address space is divided into four regions as shown in Figure 4.34.

4-96 ATM Processing Unit

Figure 4.34 CW4011 Virtual Memory Map

Without an MMU, the differences between the four memory segments
concern the memory mapping and whether the segment is cacheable.
Three MSBs of the effective address are used to identify a segment.
Note that both kseg0 and kseg1 are mapped to the same physical
address. This feature allows access to a memory location in the first
512 Mbytes with cache enabled (kseg0) or not (kseg1).

Table 4.30 shows the properties of the four memory segments. In the
following description, the virtual address is the address that is used by
the programmer, while the physical address is the address present on
the APU Bus.

The ATMizer II+ chip must use the APU in the kernel mode, because all
internal and external resources are mapped on kernel segments.

4.7.2 ATMizer II+ Chip Memory Map

All ATMizer II+ chip bus masters (EDMA, APU, and Scheduler) can
access internal resources, such as the Cell Buffer Memory or hardware

kuseg

kseg0

kseg1

kseg2

0x0000 0000

0x8000 0000

0xA000 0000

0xC000 0000

0x2000.0000

PhysicalVirtual

Table 4.30 Segment Properties

Segment Size Virtual Address Physical Address Cacheable Mode

kuseg 2 Gigabytes 0x0000.0000 0x0000.0000 Yes User/Kernel

kseg0 512 Mbytes 0x8000.0000 0x0000.0000 Yes Kernel

kseg1 512 Mbytes 0xA000.0000 0x0000.0000 No Kernel

kseg2 1 Gigabyte 0xC000.0000 0xC000.0000 Yes Kernel

Memory Map 4-97

registers. They can access external resources through the Primary and
Secondary Ports. The memory map shown in Table 4.31 is common to
all bus masters. The Secondary Bus size can optionally be increased to
64 Mbytes by the APU.

The APU Data RAM and the APU Instruction RAM are not shown in the
memory map; only the APU can access these two memories. The
mapping of the APU Data RAM and the APU Instruction RAM is
specified at initialization by setting the Tag memories to appropriate
values. This is further explained in Section 4.5.3, “D-Cache Scratch-Pad
RAM Mode,” and Section 4.5.4, “I-Cache RAM Mode.”

Cycles initiated on an internal bus by either the APU, EDMA, or
Scheduler to an undefined memory location terminate with a bus error.

APU exception vectors are located at virtual address 0xBFC0.0000. The
1 Mbyte space starting at that address may be remapped to the Cell
Buffer Memory or the Secondary Port so that the ATMizer II+ chip may
boot from either location. The Cell Buffer Memory code can be loaded
either from the serial interface (i.e., the contents of the serial EPROM)
or from a host on the PCI Bus after a reset.

Table 4.31 ATMizer II+ Chip Memory Map

Resource Size
Virtual Base
Address

Physical Base
Address

Cache
able Access

Secondary Port 16/64 Mbytes 0x8000.0000 0x0000.0000 Yes APU

Primary Port 128 Mbytes 0x8800.0000 0x0800.0000 Yes APU

Secondary Port 16/64 Mbytes 0xA000.0000 0x0000.0000 No All1

Primary Port 128 Mbytes 0xA800.0000 0x0800.0000 No All1

Cell Buffer Memory 16 Kbytes 0xB000.0000 0x1000.0000 No All1

Hardware registers 4 Kbytes 0xB800.0000 0x1800.0000 No APU

Exception vectors 1 Mbyte 0xBFC0.0000 0xXXX0.00002 No APU

1. Map for APU, EDMA and Scheduler
2. Depending on APU_Boot and APU_ExcMapbits, see Section 4.6, “Exceptions.”

4-98 ATM Processing Unit

4.7.3 Hardware Registers Map

As shown in Table 4.32, the ATMizer II+ chip hardware register base
address is 0x1800.000 (virtual 0xB800.0000). The table provides the
base address for registers located in functional modules. The offsets for
individual registers are provided in the chapters that describe the
respective registers and in Appendix A.

The APU cache memories are not accessible to the external bus
masters; the hardware registers are accessible to the external bus
masters. The PCI configuration registers are accessible to the APU as
well. They are in the address range 0xB800.0900–0xB800.0944. The
APU has full read/write access to these registers and accesses them in
the big endian format.

4.7.4 ATMizer II+ Chip Primary and Secondary Port Access

The ATMizer II+ chip internal bus masters (APU, EDMA, and Scheduler)
directly access external devices through either the PCI or Secondary Bus
Controller. The address space on the PCI is 128 Mbytes and, together
with Cell Buffer Memory and hardware registers, results in an internal
address bus with bits[28:0]. Address bits [28:27] define whether the
operation is a Primary or Secondary Port access or an internal access
(Cell Buffer Memory or hardware registers).

Table 4.32 ATMizer II+ Chip Hardware Register Map

Module
Virtual Base
Address

Physical Base
Address Size (Bytes)

EDMA 0xB800.0000 0x1800.0000 256

ACI 0xB800.0100 0x1800.0100 256

Scheduler 0xB800.0200 0x1800.0200 128

Timer 0xB800.0280 0x1800.0280 128

APU 0xB800.0300 0x1800.0300 256

Primary Port 0xB800.0400 0x1800.0400 256

SBC 0xB800.0800 0x1800.0800 1 K

PCI Configuration
registers

0xB800.0900 0x1800.0900 256

Memory Map 4-99

The APU_AddrMap register, shown in Figure 4.35, holds the most
significant bits of an address for an ATMizer II+ chip access through the
Primary or Secondary Port. These bits extend the external address buses
to 32-bits. The register is located at memory address 0xB800.0300.

Figure 4.35 APU_AddrMap Register

APU_Reset APU Reset 31
The APU_Reset bit is set when the hardware PCI_RSTn
signal is asserted. All hardware modules remain in an
idle state as long as this bit is set. The APU should
initialize all hardware registers and memory resident data
structures before clearing the APU_Reset bit. The APU
can set the bit during operations, effectively performing a
software reset.

The EDMA, ACI, Scheduler, and Timer registers and
most APU registers are cleared on the first clock cycle
after APU_Reset is set. The registers are then
programmed to their default values and held in that state
until APU_Reset is cleared. APU_Reset should be cleared
before cell commands are issued to the EDMA.

If either the SC Bus or OCA Bus watchdog times out
while APU_Reset is set, a boot fault condition is entered
(see the XPP_BootFault bit on page 9-23).

APU_Boot APU Boot Code Location [30:29]
The APU_Boot bits are copied from SYS_BOOT[1:0]
signals when PCI_RSTn is deasserted. The bits specify
where the exception vector virtual address 0xBFC0.0000
is mapped. This is further described in Section 4.11.1,
“Boot Location.” The APU can change these bits during
run time, since it can write to the APU_AddrMap register.

31 30 29 28 27 26 21 20 16 15 10 9 7 6 0

APU_
Reset

APU_
Boot

APU_W
Reset

CBM_on
_SCBus R APU_PriMSB APU_IntAck R APU_ExcMap

Reset Value & Read/Write Status

0b1 SYS_Boot
[1:0] 0x0000.0000

R/W

4-100 ATM Processing Unit

APU_WReset
PCI Host Warm Reset 28
The APU_WResetbit is set to indicate that the last reset
was due to an XPP_APU_WRest.

CBM_on_SCBus
CBM Accesses on SC Bus 27
This bit is set to indicate when the CBM is accessed over
the SC Bus and cleared when the CBM is accessed over
the OCA Bus.

Note: Signed halfword and byte accesses to the CBM over the
OCA Bus are not supported. Unsigned accesses of all
sizes are supported.

R Reserved [26:21]
Not used in the L64364.

APU_PriMSB
Primary Port Address MSB [20:16]
The 5-bit wide field, APU_PriMSB, is concatenated with
the 25-bit wide internal address to form a 32-bit wide
external address (bits[1:0] are don’t cares) on the
Primary Port. The mapping is illustrated in Figure 4.36.
Wait until all accesses to the port are completed before
updating this field.

Figure 4.36 Primary Port Address Formation

APU_IntAck[5:0]
APU Interrupt Acknowledge [15:10]
The 6-bit field, APU_IntAck , resets the corresponding bit
of the nonvectored interrupts described in Section 4.8.1,
“External Nonvectored Interrupts.” Pending interrupts are
cleared by setting the corresponding bit in the

04 0122628

2262731

APU_PriMSB Internal Address

P_A[31:2]

P_BE[3:0]
0

(decoded)

3

00

27

Interrupts 4-101

APU_IntAck field. The APU Cause register (page 4-70),
contains the status of nonvectored interrupts.

R Reserved [9:7]
Not used in the L64364.

APU_ExcMap
Exception Vector Address MS Bits [6:0]
The exception vector space located at virtual address
0xBFC0.0000 may be further remapped using the
APU_ExcMapfield as shown in Figure 4.37. This space is
mapped to the Secondary Port when the APU_Boot field
(refer to page 4-118) is 0b00.

Figure 4.37 Secondary Address Formation for Exception Vectors

4.8 Interrupts

The CW4011 processor used in the ATMizer II+ chip supports three
types of interrupt signals:

• Cold/warm resets (CRESETnand WRESETnsignals) and nonmaskable
interrupts (NMIn signal)

• External interrupts (EXiNTn[5 :0])

• External vectored interrupts (EXiNTn)

4.8.1 External Nonvectored Interrupts

The CW4011 Processor has six nonvectored Interrupts. These interrupts
are used internally in the L64364 to process catastrophic events.

Internal Address

S_BE[3:0]
0

(decoded)

1FC

0121928 206 0

223 320 19

APU_ExcMap

S_A[23:2]

APU_Boot = 0b00

34

4-102 ATM Processing Unit

Table 4.33 lists and defines the nonvectored interrupts. See also
Section 4.6, “Exceptions.”

Nonvectored interrupts are serviced by three registers. The interrupts are
reported using the IP field (bits [15:10]) of the CW4011 Cause register,
individually enabled/disabled using the Int field (bits [15:10]) of the
CW4011 Status register, and cleared using the APU_IntAck field
(bits [15:10]) of the APU_AddrMap register.

Although nonvectored interrupts are cleared by setting the corresponding
APU_IntAck bit in the APU_AddrMap register, this only clears the
interrupt and not the error condition. Bad data (parity error) or bad
pointers (address error) may still exist in the system.

4.8.1.1 IntPCIErr

Sets when a target abort, master abort, or data parity error occurs on
the PCI Bus.

4.8.1.2 IntSBErr

Sets on an SB_RDYntime-out or when an access is attempted to:

• a Secondary Memory page that is not enabled.

Table 4.33 Nonvectored Interrupt Sources

Name Number

IP Bit in
Cause
Reg.1

CW4011
Status
Reg. Bit 2 Description

IntPCIErr 5 7 15 PCI abort or parity error

IntSBErr 4 6 14 Secondary Bus error

IntRateExc 3 5 13 Rate calculation exception or
OCA Bus time-out

IntRxMbxOvr 2 4 12 Receive Mailbox overflow

IntSCD_BusErr 1 3 11 Scheduler bus error

IntEDMA_BusErr 0 2 10 EDMA bus error

1. See page 4-71.
2. See page 4-65.

Interrupts 4-103

• an address greater than 16 Mbytes (0x0100.0000) or 64 Mbytes
(0x0400.0000). See Section 4.7.2, “ATMizer II+ Chip Memory Map.”

4.8.1.3 IntRateExc

Sets when a rate instruction (rmul , rsub , or radd) result cannot be
expressed in the target format or the OCA watchdog timer times out. The
cause of this interrupt can be determined by reading the
OCAbus_TimeOut bit in the APU_Error register, which is set when the
OCA watchdog timer times out.

4.8.1.4 IntRxMbxOvr

Sets when a PCI master attempts to write to a full Receive Mailbox FIFO.
The write data is dropped and the IntRxMbxOv r interrupt is asserted to
the APU. The interrupt is cleared by reading the Receive Mailbox.

4.8.1.5 IntSCD_BusErr and IntEDMA_BusErr

Set when a bus error is asserted during a Scheduler or EDMA bus cycle.
Since these modules are not capable of handling bus errors, the
exception is passed to the APU. To clear the interrupt, set the
corresponding APU_IntAck bit in the APU_AddrMap register (page 4-99).

Note: When EDMA_BusErr is signaled, the EDMA module will no
longer process any requests since its control structures
may have been corrupted. This condition can only be
cleared by asserting APU_Reset .

When SCD_BusErr is signaled, the Scheduler module will
not reliably complete any further scheduler commands.
This condition can only be cleared by asserting APU_Reset .

4.8.2 External Vectored Interrupt Sources

The ATMizer II+ chip integrates an interrupt controller to efficiently
support external vectored interrupts. Possible sources of vectored
interrupts are listed in Table 4.34. Interrupt number 15 has the highest

4-104 ATM Processing Unit

priority and interrupt number 0 has the lowest priority. The interrupts are
level sensitive. (See also Section 4.3.7, “Coprocessor Instructions.”)

4.8.2.1 IntEDMA_ComplFull

This condition occurs when either the EDMA TxCell, RxCell, or Buff
Processor Completion Queue is full. The status of which completion
queue is full is indicated in the APU_Status register. The EDMA
processors are stalled when they attempt to write to a full completion
queue. The corresponding interrupt is cleared when the Tx, Rx, or Buff
Completion Queue is read.

4.8.2.2 IntACI_RxFull

This condition occurs when the ACI Receiver requests a free cell location
from the Cell Buffer Manager and there is none available or the ACI

Table 4.34 Vectored Interrupt Sources

Name Number 1

1. APU Status register interrupt bit numbers and APU_VIntEnable register bit
numbers match the interrupt numbers shown here.

Description

IntEDMA_ComplFull 15 TxCell, RxCell or Buff Completion Queue
is full

IntACI_RxFull 14 ACI Receive FIFO full

IntRxMbx 13 Receive Mailbox FIFO nonempty

IntMove_Compl 12 Move complete

IntEDMA_RxCompl 11 RxCell Completion Queue nonempty

IntACI_RxThrld 10 ACI Receive FIFO exceeds threshold

IntEDMA_TxCompl 9 TxCell Completion Queue nonempty

IntEDMA_BuffCompl 8 Buff Completion Queue nonempty

IntACI_Err 7 Tiimeout, parity, or short-cell error

IntACI_TxThrld 6 ACI Transmit FIFO drops below threshold

IntExt[1:0] 5–4 External interrupt inputs (user-defined)

IntTim[3:1] 3–1 Timers 3–1 time-out

IntTim[0] 0 Timer 8 time-out

Interrupts 4-105

Receiver FIFO is full. The ACI Receiver FIFO is full when the number of
cells in the FIFO exceeds the value programmed in the ACI_RxSize
register. The ACI Receiver stops cell reception at that time, resulting in
possible cell loss due to the physical device buffer overflow. The interrupt
is cleared when the ACI Receiver resumes normal operations, that is,
when free cells become available or the FIFO holds less than ACI_RxSize
cells. Refer to Section 6.6, “ACI Receiver,” for ACI Receiver operation.

4.8.2.3 IntRxMbx

This interrupt is set when the Mailbox Receive FIFO (Primary Port
master to APU) holds one or more messages and is cleared when the
FIFO is empty.

4.8.2.4 IntMove_Compl

This interrupt is set whenever the ComStatus field of the
EDMA_MoveCount register or the ComStatus2 field of the
EDMA_MoveCount2 register has a nonzero value. Note that, to clear a
bit in the ComStatus field, a ‘1’ must be written to the bit position. Refer
to Section 5.3.4, “Move Command,” for more details on this register.

4.8.2.5 IntEDMA_RxCompl, IntEDMA_TxCompl, and IntEDMA_BuffCompl

These interrupts are set when the corresponding EDMA processor
completion queue holds one or more completion messages. The APU
should drain the completion queues at a sufficiently high rate to avoid
EDMA processor stalls. The interrupts are cleared when the
corresponding completion queues are emptied.

4.8.2.6 IntACI_RxThrld

The interrupt is set when the number of cells in the ACI Receive FIFO
exceeds the value programmed in the ACI_RxLimit register. The interrupt
is cleared when the number of cells drops below the programmed
threshold.

4.8.2.7 IntACI_TxThrld

The interrupt is set when the number of cells in the ACI Transmit FIFO
drops below the value programmed in the ACI_TxLimit register and is
cleared when the FIFO size exceeds the programmed threshold.

4-106 ATM Processing Unit

4.8.2.8 IntACI_Error

The interrupt is set whenever there is a time-out error on the ACI
Transmit, or a parity error or short-cell error on the ACI Receive.

4.8.2.9 IntExt[1:0]

These are the inputs to the L64364 for user-defined external interrupts.

4.8.2.10 IntTim[3:0]

An enabled timer time-out event generates a corresponding
IntTim[3:0] interrupt (see Section 8.1, “Introduction” and Section 8.3,
“Time-Out Events”). The timer interrupts are cleared when the APU
writes to the TM_Clear register. IntTim[3:1] are set when the general
purpose Timers 3 to 1, respectively, reach time-out. IntTim[0] is set
when Timer 8 reaches time-out.

4.8.3 Enabling Vectored Interrupts

The vectored interrupts must be globally enabled by setting the EVI bit
in the APU CCC register (page 4-74).

Each interrupt listed in Table 4.34 may also be individually enabled using
the APU_VIntEnable register located at memory address 0xB800.030E.
The register bits are assigned to interrupts in the same order or the
interrupt priority in Table 4.34. Setting a bit in the register enables the
corresponding interrupt and clearing a bit disables (masks) the interrupt.
Figure 4.38 shows the format of the register.

Figure 4.38 APU_VIntEnable Register

The APU_VIntEnable register is cleared at system reset.

15 0

VInt15Enable–VInt0Enable

Default Value & Read/Write Status

0x0000

R/W

Interrupts 4-107

To generate interrupts 0–3, time-out events must be enabled by setting
the appropriate bits of the TM_Enable register (see Table 8.1).

4.8.4 Vectored Interrupt Processing

When an enabled vectored interrupt is asserted, the external vectored
interrupt exception is generated and the processor starts executing the
EVI handler routine. The routine address is a combination of the
APU_VIntBase register (shown in Figure 4.39 and located at address
0xB800.0310) and the interrupt number as follows:

TargetAddr[31:7] = APU_VIntBase[24:0]
TargetAddr[6:3] = IntNum
TargetAddr[2:0] = 0

Figure 4.39 APU_VIntBase Register Format

R Reserved [31:25]
Not used in the L64364.

APU_VIntBase [24:0]
APU_VIntBase[24:0] = Base_Address[31:0] >> 7 and
Base_Address is on a 64 byte boundary, that is,
bits [6:0] = 0.

In typical applications, the target address of the external vectored
interrupt exception is located in a high-speed memory, such as the APU
Scratch-Pad Data RAM or Cell Buffer Memory and contains an absolute
jump to the desired handler routine as shown in the example below:

j ComplFullHandler
nop
j RxFifoFullHandler
nop
j MboxFullHandler
etc....

31 25 24 0

R APU_VIntBase

Default Value & Read/Write Status

0x00.0000

R/W

4-108 ATM Processing Unit

4.8.5 Status Checking

The APU Status register, shown in Figure 4.40, can be used to check the
status of real-time events. Bits [15:0] of the register store the status of
the external vectored Interrupts and bits [31:16] store additional events.
It is a read-only register and is located at address 0xB800.0314. All bits
are cleared at APU_Reset .

Figure 4.40 APU Status Register Format

TxMbxFull Tx Mailbox FIFO Full 31
The TxMbxFull bit is set when the Mailbox Transmit FIFO
(APU to Primary Port) is full.

R Reserved [30:28]
Not used in the L64364.

NowBusy Now Command in Process 27
The NowBusy bit is set when the Scheduler is busy
executing a now command.

TicBusy Tic Command in Process 26
The TicBusy bit is set when the Scheduler is busy
executing a tic command.

31 30 28 27 26 25 24 23 20 19 18 17 16

TxMbxFull R NowBusy TicBusy SchedBusy ServBusy R

EDMA_
Buff-

Compl-
Full

EDMA_
Rx-

Compl-
Full

EDMA_
Tx-

Compl-
Full

Watch-
dog

Default Value & Read/Write Status

0x0000

Read Only

15 14 13 12 11 10 9 8 7 6 5 4 3 0

EDMA_
ComplFull

ACI
RxFull RxMbx Move_

Compl
EDMA_

RxCompl
ACI_Rx-

Thrld

EDMA_
Tx-

Compl

EDMA
_Buff-
Compl

ACI_Err ACI_Tx
-Thrld IntExt IntTim

Default Value & Read/Write Status

0x0000

Read Only

Interrupts 4-109

SchedBusy Sched Command in Process 25
The SchedBusy bit is set when the Scheduler is busy
executing a sched command.

ServBusy Serv Command in Process 24
The ServBusy bit is set when the Scheduler is busy
executing a serv command.

R Reserved [23:20]
Not used in the L64364.

EDMA_BuffComplFull
Buff Completion Queue Full 19
The EDMA_BuffComplFull bit is set when the Buff
Completion queue is full. This bit is cleared when the
completion queue is not full.

EDMA_RxComplFull
Rx Completion Queue Full 18
The EDMA_RxComplFull bit is set when the Rx
Completion queue is full. This bit is cleared when the
completion queue is not full.

EDMA_TxComplFull
Tx Completion Queue Full 17
The EDMA_TxComplFull bit is set when the Tx
Completion queue is full. This bit is cleared when the
completion queue is not full.

Watchdog SC Bus Watchdog Timer Time-Out 16
The Watchdog bit is set when the SC Bus watchdog timer
expires and the current APU Bus transaction is
terminated by the bus error. The bit can only be cleared
by toggling the APU_Reset bit in the APU_AddrMap
register (page 4-99).

EDMA_ComplFull
Tx, Rx, or Buff Completion Queue Full 15
The EDMA_ComplFull bit is set when either the Tx, Rx, or
Buff Completion Queue Full interrupt occurs. It is cleared
when the interrupt clears.

ACI_RxFull No Free Cells Available 14
The ACI_RxFull bit is set when an IntACI_RxFull
interrupt occurs indicating that the ACI Receiver
requested a free cell location from the Cell Buffer

4-110 ATM Processing Unit

Manager and there is none available, or the number of
cells in the ACI_Receive FIFO is above the value in the
ACI_RxSize register. It is cleared when the interrupt
clears. This bit is also set when the ACI_RxSize register
(page 6-17) and ACI_RxCells register (page 6-16) are
both zero.

RxMbx Rx FIFO Not Empty 13
The RxMbx bit is set when an IntRxMbx interrupt occurs
indicating that the Mailbox Receive FIFO holds one or
more messages (Primary Port master to APU). It is
cleared when the interrupt clears.

Move_Compl Move Complete 12
The Move_Compl bit is set when a move completion
occurs. It is cleared when the interrupt clears.

EDMA_RxCompl
RxCell Completion Queue Not Empty 11
The EDMA_RxComplbit is set when an IntEDMA_RxCell
interrupt occurs indicating that the RxCell completion
queue holds one or more completion messages. It is
cleared when the interrupt clears.

ACI_RxThrld Rx FIFO over Threshold 10
The ACI_RxThrld bit is set when an IntACI_Rx interrupt
occurs indicating that the number of cells in the ACI
Receive FIFO exceeds the value programmed in the
ACI_RxLimit register (page 6-9). It is cleared when the
interrupt clears.

EDMA_TxCompl
TxCell Completion Queue Not Empty 9
The EDMA_TxComplbit is set when an IntEDMA_RxCell
interrupt occurs indicating that the TxCell completion
queue holds one or more completion messages. It is
cleared when the interrupt clears.

EDMA_BuffCompl
Buffer Completion Queue Not Empty 8
The EDMA_BuffCompl bit is set when an IntEDMA_Buff
interrupt occurs indicating that the EDMA buffer
completion queue holds one or more completion
messages. It is cleared when the interrupt clears.

Interrupts 4-111

ACI_Err Error FIFO Interrupt 7
The ACI_Err bit is set when an IntACI_Error interrupt
occurs indicating that the ACI Error FIFO holds one or
more cells. It is cleared when the interrupt clears.

ACI_TxThrld Tx FIFO Low Interrupt 6
The ACI_TxThrld bit is set when an IntACI_Tx interrupt
occurs indicating that the number of cells in the ACI
Transmit FIFO dropped below the value programmed in
the ACI_TxLimit register (page 6-9). It is cleared when
the interrupt clears.

IntExt External Interrupt [5:4]
The IntExt bits are set to indicate that an external,
user-defined interrupt is input to the L64364 on its
SYS_INT[1:0] interrupt lines; bit 5 for line 1 and bit 4 for
line 0. The bits are cleared when the interrupts clear.

IntTim Internal Timer Interrupt [3:0]
The IntTim bits are set when an IntTime[3:0] interrupt
occurs indicating that general-purpose Timer 3, 2, 1, or
8, respectively, timed out. The bits are cleared by writing
a logic 1 to the corresponding bits in the TM_Clear
register (page 8-2).

To assure that the APU_IntTim[3:0] bits set when a
time-out occurs, time-out events must be enabled by
setting the appropriate bits in the TM_Enable register.

Bits [15:0] shows the status of the individual vectored interrupt conditions
independent of the setting of the APU_VIntEnable register. The
APU_VIntEnable register controls interrupt delivery to the APU but not
interrupt reporting in the APU Status register (page 4-108). Time-out
registering must be enabled by setting the appropriate bits of the
TM_Enable register (page 8-2) for the bits APU_Status[3:0] to be set in
case of a time-out event.

There is no way to directly clear the individual bits of the APU Status
register (page 4-108) other than asserting APU_Reset . The interrupt
conditions that set the bits must be cleared. For instance to clear the
APU_ACI_RxFull status bit, the condition that caused the IntACI_RxFull
interrupt must be cleared. A cell must be processed and returned to the
free cell list. If the interrupt is enabled, its interrupt handling routine
forces the cleared condition. Even though an interrupt is masked, its
status bit is set when the interrupt condition occurs, and does not clear

4-112 ATM Processing Unit

until the interrupt condition is normally cleared (without the intervention
of the interrupt handler).

4.8.6 Coprocessor Condition Signals

The EDMA Request Queue status bits of the APU Status register
(page 4-108) are also available as Coprocessor Condition signals.
Table 4.35 lists and defines these signals. CpCond0 is available as input
pin SYS_CPCOND. (See also Section 4.3.7, “Coprocessor Instructions.”)

4.9 CW4011 OCA Bus Accesses

The OCA Bus of the CW4011 core, instead of the SC Bus, is used to
access the on-chip register space and the Cell Buffer memory. This
interface allows on-chip modules to be accessed at the Cache Read
(CR) stage of the pipeline without going through an SC Bus transaction.
Note that a read access on the CW4011 SC Bus has at least a
three-clock penalty due to the Bus Interface Unit, and a write access is
done through a four-deep write buffer. Thus, if on-chip modules can
respond in one cycle, there is no penalty for a read or write cycle.

Note: The CW4011 is the only bus master for the OCA Bus.
Instructions cannot be fetched through the OCA Bus.

4.10 Bus Watchdog Timers

Since the APU can gain access to internal modules over the SC Bus and
the OCA Bus, watchdog timers are implemented for transactions on both
buses.

Table 4.35 Coprocessor Condition Signals

Signal Status Bit Description

CpCond3 EDMA_RxCellFull RxCell command queue is full

CpCond2 EDMA_TxCellFull TxCell command queue is full

CpCond1 EDMA_BuffFull Buffer command queue is full

CpCond0 APU_ExtStat SYS_CPCOND input pin

Bus Watchdog Timers 4-113

4.10.1 SC Bus Watchdog Timer

The ATMizer II+ chip has an 8-bit watchdog timer for APU transactions.
A programmable initial count value for the timer is loaded into the
APU_SCbus_Watchdog register (Figure 4.41) when the APU starts a bus
transaction. The timer decrements on each system clock pulse or when
a general-purpose timer time-out occurs. When the watchdog timer
reaches 0, the current APU transaction is terminated by a bus error. This
register is located at memory address 0xB800.0306.

Figure 4.41 APU_SCbus_Watchdog Register

APU_SC_WatchSel[2:0]
SC Bus Watchdog Clock Select [15:13]
The APU_SC_WatchSel field selects the input clock. Value
0b000 selects the system clock, while values 0b001
through 0b111 select the time-out event of the
corresponding general-purpose timer.

R Reserved [12:8]
Not used in the L64364.

APU_SC_WatchInit[7:0]
SC Bus Watchdog Initialization [7:0]
The APU_SC_WatchInit field is used to specify the
watchdog timer initialization value. An initialization value
of 0x00 disables the watchdog timer.

4.10.2 OCA Bus Watchdog Timer

This timer takes care of the time-out events on the OCA Bus. The
operation is similar to the APU_SCbus_Watchdog register and is shown
in Figure 4.42. This register is located at memory address 0xB800.031A.

15 13 12 8 7 0

APU_SC_WatchSel R APU_SC_WatchInit

Default Value & Read/Write Status

0x0 0x00 0xFF

R/W

4-114 ATM Processing Unit

Figure 4.42 APU_OCAbus_Watchdog Register

APU_OCA_WatchSel[2:0]
OCA Bus Watchdog Clock Select [15:13]
The APU_OCA_WatchSel field selects the input clock.
Value 0b000 selects the system clock, while values
0b001 through 0b111 select the time-out event of the
corresponding general-purpose timer.

R Reserved [12:8]
Not used in the L64364.

APU_OCA_WatchInit[7:0]
OCA Bus Watchdog Initialization [7:0]
The APU_OCA_WatchInit field is used to specify the
watchdog timer initialization value. An initialization value
of 0x00 disables the watchdog timer.

4.10.3 APU Priority Register

This 8-bit register implements a timer service. It maintains a stable value
and does not change. The value in the APU_SC_WatchInit field of the
APU_SCbus_Watchdog register is always compared with the value in
this register. Once the value in the APU_SC_WatchInit field equals the
APU_Priority register value, APU priority is raised and the APU is
granted the next access to the requested bus. Note that this comparison
is not enabled until a nonzero value is written to the APU_Priority
register. The initialization value of this register is 0x00 and it is located
at memory address 0xB800.031F.

15 13 12 8 7 0

APU_OCA_WatchSel R APU_OCA_WatchInit

Default Value & Read/Write Status

0x0 0x00 0xFF

R/W

Bus Watchdog Timers 4-115

Figure 4.43 APU_Priority Register

4.10.4 APU_Error Register

The APU_Error register is used to determine the cause of a bus error
due to an APU access and to determine the status of the nonvectored
interrupts. The register is located at address 0xB800.0320. The format
of the register is shown in Figure 4.44.

Figure 4.44 APU_Error Register

R Reserved [31:16]
Not used in the L64364.

IntPCIErr PCI Error Interrupt 15
Sets when a target abort, master abort, or data parity
error occurs on the PCI Bus.

IntSBErr SB Error Interrupt 14
• Sets when a Secondary Memory page is not enabled.

• Sets when an address greater than 16 Mbytes
(0x0100.0000) or 64 Mbytes (0x0400.0000). See
Section 4.7.2, “ATMizer II+ Chip Memory Map.”

• SB_RDYntimes out on an enabled memory page.

7 0

APU_Priority

Default Value & Read/Write Status

0x00

R/W

31 16 15 14 13 12 11 10 9 4 3 2 1 0

R
Int
PCI
Err

Int
SB
Err

Int
Rate-

ExcErr

IntRx
Mbx-
Ovr

IntSCD_
BusErr

IntEDMA_
BusErr R Boot_

Fault
Addr_
Error

OCAbus_
TimeOut

SCbus_
TimeOut

Default Value & Read/Write Status

0x00 0x0 0x0

Read Only Read
Only R/W

4-116 ATM Processing Unit

IntRateExcErr
Rate Exception Error Interrupt 13
Sets when a rate instruction (rmul , rsub , or radd) result
cannot be expressed in the target format or the OCA
watchdog timer times out. The cause of this interrupt can
be determined by reading the OCAbus_TimeOut bit in the
APU_Error register, which is set when the OCA watchdog
timer times out.

IntRxMbxOvr Rx Mailbox Overflow Interrupt 12
Sets when a PCI master attempts to write to a full
Receive Mailbox FIFO. The write data is dropped and the
IntRxMbxOv r interrupt is asserted to the APU. The
interrupt is cleared by reading the Receive Mailbox.

IntSCD_BusErr
SCD Bus Error Interrupt 11
This bit sets when a bus error is asserted during a
Scheduler bus cycle. Since the Scheduler is not capable
of handling bus errors, the exception is passed to the
APU. To clear the interrupt, a ‘1’ must be written to the
corresponding APU_IntAck bit position in the
APU_AddrMap register (page 4-99).

IntEDMA_BusErr
EDMA Bus Error Interrupt 10
This bit is set when a bus error is asserted during an
EDMA bus cycle. Since the EDMA is not capable of
handling bus errors, the exception is passed to the APU.
To clear the interrupt, a ‘1’ must be written to the
corresponding APU_IntAck bit position in the
APU_AddrMap register (page 4-99).

R Reserved [9:4]
Not used in the L64364.

Boot_Fault Boot Fault 3
This bit follows the XPP_BootFault bit in the XPP_Ctrl
register (see page 9-23).

Addr_Error Address Error 2
This bit is set when the APU attempts an access to an
undefined address. It is cleared by writing a 1 to the bit
position.

Bus Watchdog Timers 4-117

OCAbus_TimeOut
OCA Bus Watchdog Timer Time-Out 1
Sets when the OCA Bus watchdog timer times out.
Cleared by writing a 1 to the bit position.

SCbus_TimeOut
SC Bus Watchdog Timer Time-Out 0
Sets when the SC Bus watchdog timer times out. Cleared
by writing a 1 to the bit position.

4.10.5 OCA Error Register

The OCA_Err register is a 32-bit register used to indicate the cause of
the OCA watchdog time-out. The register is located at memory address
0xB800.0380. Figure 4.45 shows the format of the register.

Figure 4.45 OCA_Err Register

VLD Valid Data in Register 31
This bit is set when the OCA_Err register captures data
pertaining to an OCA Bus time-out. Once this bit is set,
it must be cleared by writing a ‘1’ to it for the register to
capture new time-out data.

R Reserved [30:29]
The L64364 does not use these bits.

MSTR OCA Bus Time-Out Master 28
When this bit is set, an external PCI host was the OCA
Bus master that caused OCA Bus time-out. When this bit
is cleared, the APU was the master that caused the OCA
Bus time-out.

R/W Read/Write Access Indicator 27
When this bit is set, the OCA Bus time-out occurred on
a read access. When cleared, the time-out occurred on a
write access.

31 30 29 28 27 26 25 12 11 0

VLD R MSTR R/W CBM R ErrAddr

Default Values & Read/Write Status

0x0 0x0 0x000

R/W Read Only

4-118 ATM Processing Unit

CBM CBM Access Indicator 26
When this bit is set, the OCA Bus time-out occurred on
a Cell Buffer Memory access. When cleared, the time-out
occurred on a hardware register access.

R Reserved [25:12]
The L64364 does not use these bits.

ErrAddr[11:0] Error Address [11:0]
This field contains the CBM/hardware register address
that was accessed when the OCA Bus timed out.

4.11 Boot Procedures

The ATMizer II+ chip APU may boot from Secondary Memory or Cell
Buffer Memory (CBM). Two modes for booting from CBM are provided.
The first mode permits a PCI master to download the boot code into
CBM. In the second mode, the L64364 boot logic copies the boot code
from an external device (e.g., a serial EPROM) using the serial interface
to CBM.

4.11.1 Boot Location

The APU_Boot bits in the APU_AddrMap register (page 4-99) are copied
from the SYS_BOOT[1:0] pins when the PCI_RSTn signal is deasserted.
They determine where the 1 Mbyte exception vector space, starting at
virtual address 0xBFC0.0000, is remapped as shown in Table 4.36.

Table 4.36 Boot Sequence

SYS_BOOT[1:0]
APU_Boot[1:0] Boot Location

Physical Boot
Address

0b00 Secondary Port 0x0000.0000

0b01 Not used –

0b10 Cell Buffer Memory 0x1000.0000

0b11 Cell Buffer Memory/Serial Interface1

1. Boot code read from Serial Interface and copied to CBM

0x1000.0000

Boot Procedures 4-119

4.11.2 Serial Interface Boot Sequence

If SYS_BOOT[1:0] is 0x0B11 when the PCI_RSTn signal is deasserted, the
serial interface is used to copy the first 256 bytes from a serial device to
the CBM. When the copy is completed, the APU begins the execution of
the cold reset exception handler from the CBM. At this point, the CBM
contains a maximum of 64 valid instructions. The exception handler could
choose to jump to a different boot location or continue downloading boot
code from the serial device using the APU_SRL register.

An APU read of the APU_SRL register retrieves the next 32-bit word
from the serial device. Certain board- or program-specific information
may be stored in these locations and retrieved during normal bootup. The
APU_SRL register is located at memory address 0xB800.0308.

4.11.3 Cell Buffer Memory Boot Sequence

If SYS_BOOT[1:0] is 0b10 when the PCI_RSTn signal is deasserted, the
boot exception address 0xBFC0.0000 is mapped to CBM address 0. The
APU begins the execution of the Cold Reset exception handler from CBM
when the XPP_APU_Reset bit in the XPP_Ctrl register (page 9-22) is
cleared. The external PCI bus master must download the boot code into
CBM before clearing the XPP_APU_Reset bit.

4.11.4 Secondary EPROM Boot Sequence

If SYS_BOOT[1:0] is 0b00 when the PCI_RSTn signal is deasserted, the
boot exception address 0xBFC0.0000 is mapped to physical address
0x0000.0000 which is the byte-wide EPROM page of secondary memory.
Secondary Bus Control register (page 10-11) initializes to support
EPROM access times of 250 ns.

4.11.5 APU Access to Serial EPROM

This feature enables the APU to access serial EPROM, regardless of the
Boot mode selected for the APU. Thus, the APU_SRL register can
always be used to access a 32-bit word from serial EPROM, irrespective
of the SYS_BOOT[1:0] value.

4-120 ATM Processing Unit

L64364 ATMizer II+ ATM-SAR Chip 5-1

Chapter 5
Enhanced DMA

This chapter explains the operation of the EDMA. It includes the following
sections:

• Section 5.1, “Overview,” page 5-1

• Section 5.2, “Data Structures,” page 5-5

• Section 5.3, “EDMA Commands,” page 5-21

• Section 5.4, “Data Structure Locations,” page 5-43

• Section 5.5, “Register Descriptions,” page 5-49

• Section 5.6, “AAL5 Mode Operation,” page 5-57

• Section 5.7, “AAL0 Mode Operation,” page 5-62

Important: Register bits and fields labeled “Reserved” are don’t cares.
Descriptor bits and fields labeled “Reserved” should not be
modified.

5.1 Overview

The Enhanced DMA can perform autonomously all SAR related functions
on AAL5 CS-PDUs, including creating and extracting the AAL5 CS-PDU
trailer. The EDMA also provides significant hardware support for other
AALs.

The EDMA is partitioned into four independent processors that can
operate in parallel. The four processors, illustrated in Figure 5.1, are the
TxCell, RxCell, Buff, and Move Processors.

5-2 Enhanced DMA

Figure 5.1 EDMA Processors

The TxCell and RxCell Processors execute transmit and receive cell
commands. The Buff Processor handles buffer management and
executes buff commands. The Move Processor is a DMA engine able
to transfer data between the Primary and the Secondary Ports.

All processors receive commands from the APU. The Move Processor
can also receive commands from the Buff Processor or from the RxCell
Processor.

Table 5.1 lists the EDMA processor commands.

PCI Interface Secondary Bus
Memory Controller

Primary Port Secondary Port

4 Kbytes
Cell Buffer
Memory

ATM
Cell

Interface

Clock
PLL

Local BusPCI Bus

Utopia Bus

Buff
Processor

Move
Processor

TxCell
Processor

RxCell
Processor

EDMA

Scheduler
Unit

Timer
Unit

ATM
Processing

Unit

I/D-Caches

Overview 5-3

The APU controls the operation of the EDMA using hardware registers
and memory resident data structures. A write operation to an EDMA
hardware register results from a command placed in one of the four
EDMA request queues. The TxCell, RxCell, and Buff Processor Request
Queues are each four entries deep, while the Move Processor Request
Queue is two entries deep. The EDMA processors retrieve commands
from their request queues and execute them in order. When a specific
action is required from the APU following the completion of a command,
the EDMA places a message in one of the three EDMA completion
queues. The request and completion queues allow the APU and the
EDMA to operate in parallel and to do so without either one stalling while
waiting for the other to complete an operation.

A TxCell or RxCell command contains a Virtual Connection (VC)
Descriptor Number of a virtual connection that needs to be serviced and
an address of a cell in Cell Buffer Memory. For the receive direction, this
is the address of a received cell; for the transmit direction, it is an
address of a free location where a cell can be built.

The EDMA computes the address of the VC Descriptor (VCD), reads it
to retrieve the necessary information, transfers the data between the
source and destination addresses, and updates the VCD. For cells in the
transmit direction, the EDMA TxCell Processor optionally can place the

Table 5.1 EDMA Commands

Processor Command Description

TxCell TxCell ConNum, aCell Transmit a cell from Connection
ConNum using Cell Buffer Memory
location aCell

RxCell RxCell ConNum, aCell Receive a cell from Connection
ConNum using Cell Buffer Memory
location aCell

TxConClose TxConClose ConNum Clear VCD_ConOpen for Tx

RxConClose RxConClose ConNum Clear VCD_ConOpen for Rx

Buff Buff BuffNum Attach a buffer BuffNum to a
Connection Descriptor or a free list

Move Move aSrc, aDst,
Nbytes

Move Nbytes of data from source
address aSrc to Destination address
aDst

5-4 Enhanced DMA

cell in the Transmit FIFO. In that case, for the AAL5 CS-PDU continuation
cells, the EDMA performs all the necessary functions and the APU does
not need to perform any actions following the transfer completion.

For the AAL5 End-Of-Message (EOM) cells, the APU typically needs to
perform housekeeping functions, such as informing the host about the
CS-PDU transfer completion. To enable that task, the EDMA TxCell and
RxCell Processors store the Buffer Number of the just completed buffer
data in the EDMA Transmit or Receive Completion Queue.

The EDMA supports CS-PDUs located in noncontiguous areas of
memory (scatter-gather operation). Payload byte alignment is not
required for correct operation since the EDMA aligns the bytes during
data transfer.

To speed-up buffer management, the EDMA autonomously walks
through a linked list of Buffer Descriptors (BFDs). Buffer Numbers of
completely processed buffers are returned to the EDMA Transmit or
Receive Completion Queues, while the Buffer Numbers of buffers to be
processed are retrieved from the EDMA Buffer Request Queue and
attached to the end of a linked list of buffers.

For the receive direction, the EDMA maintains twelve lists of free buffers,
six pairs of Small and Large Free Buffer Lists. Buffer Numbers are taken
from a Free Buffer List as required. However, more sophisticated buffer
memory management schemes can be implemented if the APU provides
free buffers attached to a VC Descriptor in advance. The EDMA always
attempts to use existing buffers before taking one from a Free Buffer List.

VC Descriptors are identified using Connection Numbers. To form the
descriptor address, the EDMA adds the Connection Table Base Address
(register programmable) to the Connection Number multiplied by the
descriptor size. The EDMA supports up to 64 K VC Descriptors. Similarly,
to compute Buffer Descriptor addresses, the EDMA adds the Buffer Table
Base Address to the Buffer Number multiplied by the Buffer Descriptor
size. The EDMA supports up to 64K Buffer Descriptors.

For both VC and Buffer Descriptors, descriptor number 0 is reserved for
EDMA internal usage and must not be used.

Data Structures 5-5

5.2 Data Structures

The EDMA uses two data structures to process receive and transmit
cells. The VC Descriptor stores control information about a virtual
connection and is typically created when a connection is established. A
Buffer Descriptor stores control information about buffer data and is
attached to the VC Descriptor when buffer data is segmented or
reassembled.

A CS-PDU payload can be placed in one or more buffers. The
BFD_BuffCont bit located in the control field of a Buffer Descriptor
indicates that the CS-PDU payload is continued in a following buffer,
pointed to by the NextBFD field in the Buffer Descriptor. The NextBFD field
contains the Buffer Number of the following buffer. This field does not
need to be initialized. The EDMA builds the Buffer Descriptor chain in the
order of the processed buff commands.

Figure 5.2 provides an example of the EDMA data structures with two
CS-PDUs. One (called CS-PDU 1) is split between buffers A and B, while
the other (called CS-PDU 2) is stored completely in buffer C.

Figure 5.2 Virtual Connection and Buffer Descriptors

VC
Descriptor Buffer

Descriptor A

Buffer
Data A

Buffer
Data B

Buffer
Data C

Buffer
Descriptor B

Buffer
Descriptor C

BuffSize BuffSize BuffSizeCellHdr

Crc32

CS-PDU 1 CS-PDU 2

CurrBFD

TailBFD

5-6 Enhanced DMA

CS-PDU payloads are queued for segmentation on a given virtual
connection by attaching the corresponding Buffer Descriptors to the tail
of the buffer list. The EDMA’s Buff Processor performs this operation
when it receives a buff command from the APU. When buffer data
segmentation is completed, the TxCell Processor places the Buffer
Number in the EDMA Transmit Completion Queue and removes it from
the buffer list by advancing the list head pointer.

The RxCell Processor reassembles CS-PDU payloads in buffers. When
the APU instructs the RxCell Processor to reassemble a cell belonging
to a virtual connection, the processor checks if there is enough space in
the buffer to store the cell payload. If there is not enough space, the
processor returns the current buffer to the Receive Completion Queue
and attempts to use a buffer following the current one on the linked list.
In case there is no buffer following the current one, the RxCell Processor
attaches a buffer from one of the six Small or Large Free Buffer Lists to
the VC Descriptor. The free buffer list used is defined by the VCD_RxCtrl
bits in the VCD Control field of the VCD. The VCD structure is described
in the next section.

If the APU wants to control the memory management, it can provide
buffer numbers for the RxCell Processor in advance. The EDMA always
attempts to use existing buffers before linking a new one from a Free
Buffer List. This arrangement supports both elaborated buffer
management using the APU and a simple, but fast, EDMA (hardware)
controlled scheme.

5.2.1 VC Descriptor Structure

As shown in Figure 5.3, the structure of a VC Descriptor differs slightly
between the transmit and receive directions. For both transmit and
receive, the descriptor occupies eight words and must be aligned on a
32-byte boundary.

Data Structures 5-7

Figure 5.3 Virtual Connection Descriptor

Although all the individual fields of a VC Descriptor are described below,
the APU does not need to access these fields during normal operation.
A VC Descriptor must be initialized by the APU when a connection is
established and before the first cell is processed. After initialization, the
EDMA manages the descriptor autonomously.

5.2.1.1 VC Descriptor Fields

Table 5.2 provides information about the individual fields in the VC
Descriptor. The text that follows the table provides additional information
about each field.

The Init column specifies the initialization value the APU must store in
the VC Descriptor before the first cell is received or transmitted over the
VC. A Yes in the Init column means the APU must place an appropriate
value in that field. A 0 in the Init column means the APU must initialize

31 19 18 16 15 8 7 0

0 (Tx) Reserved Class NextVCD

0 (Rx) pBuffData.PCI

4 VCD_Ctrl Nbytes

8 pBuffData

12 Crc32

16 (Tx) CellHdr

16 (Rx) TimeStamp

20 BuffSize PayldLen

24 TailBFD NextBFD

28 CurrBFD VCD_UU Reserved

5-8 Enhanced DMA

that field to zero. A dash (–) in the Init column means an initialization
value is not relevant (that is, it is don’t care).

Reserved Tx Word 0 [31:19]
Do not modify these bits.

Class VC Priority Class Tx Word 0 [18:16]
This field stores the priority class of the connection. This
field is used and maintained by the Scheduler. The
EDMA does not access this field. Connections that do not
use the Scheduler can use this field for another purpose.

Table 5.2 VC Descriptor Fields

Field Name Init Addr Dir
Size
(Bits) Description

Reserved – – 13 Reserved for future use

Class Yes 0x01 Tx 3 VC priority class

NextVCD 0 0x02 Tx 16 Next VC in a linked list

pBuffData.PCI – 0x00 Rx 32 pBuffData in PCI for Rx buffers

VCD_Ctrl Yes 0x04 Tx/Rx 16 Control bits described in Table 5.3

Nbytes 0 0x06 Tx/Rx 16 Number of bytes left in the buffer

pBuffData – 0x08 Tx/Rx 32 Pointer to the buffer data

Crc32 – 0x0C Tx/Rx 32 Partial CRC32 value

CellHdr Yes 0x10 Tx 32 ATM cell header

TimeStamp – 0x10 Rx 32 Last time when the connection was serviced

BuffSize – 0x14 Rx 16 Size of the current buffer

PayldLen – 0x16 Tx/Rx 16 Total number of bytes in the CS-PDU payload

TailBFD 0 0x18 Tx/Rx 16 Tail of the list of Buffer Descriptors

NextBFD 0 0x1A Tx/Rx 16 Next Buffer Number

CurrBFD 0 0x1C Tx/Rx 16 Current Buffer Number

VCD_UU 0 0x1E Tx/Rx 8 AAL5 User-to-User indication

Reserved – – 8 Reserved for future use

Data Structures 5-9

NextVCD Next VC Descriptor Tx Word 0 [15:0]
The Scheduler uses this field to chain VC Descriptors in
a linked list. This field is used and maintained by the
Scheduler. The EDMA does not access this field.
Connections that do not use the Scheduler can use this
field for another purpose.

pBuffData.PCI
Pointer to Buffer Data in PCI Rx Word 0 [31:0]
The EDMA uses this field in the Rx VCD to hold the PCI
address of the buffer in Buffer Copy mode.

VCD_Ctrl VC Descriptor Control Word 1 [31:16]
This field stores the control bits of the VC Descriptor. See
Section 5.2.1.2, “VC Descriptor Control Field.”

Nbytes Number of Bytes Word 1 [15:0]
This field represents the number of bytes in the current
buffer to be processed.

For the transmit direction, the Nbytes field indicates the
number of bytes still to be sent from the buffer. The
EDMA decrements Nbytes and compares it with zero to
check when all of the data in a buffer is completely
segmented. The EDMA clears that field when all data
from the current buffer is sent.

For the receive direction, the Nbytes field indicates the
number of bytes left free in the buffer. The EDMA
compares that value with the number of bytes in the
current cell to check if there is enough space in the buffer
to store the cell payload. If there is not enough space, the
EDMA attempts to use a buffer linked after the current
buffer. In case there is no buffer after the current one, the
EDMA attaches a buffer from a Free Buffer List.

Free buffers are attached when the Beginning of
Message (BOM) cell is received or when the current
buffer does not have sufficient space to hold a cell’s
payload. Although the BOM cell is not marked in AAL5,
the EDMA infers it from the fact that the previous cell was
an EOM cell. This information is stored in the VC
Descriptor control field (VCD_ConAct bit). Buffers from the
Small Buffer List are used for BOM cells and Buffers from
the Large Buffer List are used for continuation or when
the first Buffer List is exhausted.

5-10 Enhanced DMA

pBuffData Pointer to Buffer Data Word 2 [31:0]
This field stores a pointer to the beginning of the current
buffer data. The pointer is copied from the Buffer
Descriptor when the EDMA accesses a new buffer to
avoid accessing Buffer Descriptors on a per cell basis.
The pointer is incremented to point to the current location
in the buffer. If pBuffData[32] from the VCD_Ctrl field is
set, then pBuffData is a 32-bit PCI pointer. Otherwise,
pBuffData is a 27-bit Secondary Bus pointer.

Crc32 Partial CRC32 Word 3 [31:0]
This field stores the partial CRC32. The EDMA initializes
CRC32 at the beginning of a CS-PDU payload and
appends (transmit) or verifies (receive) it when
processing the last cell of the payload. Note that the
CRC32field is used to hold additional control fields in the
AAL0 mode as described in Section 5.7, “AAL0 Mode
Operation.”

CellHdr Transmit Cell Header Tx Word 4 [31:0]
In transmit VC Descriptors, this word contains the cell
header. The EDMA transfers the ATM cell header from
the CellHdr field in the VC Descriptor to the front of
every cell transmitted and sets bit 0 of the PTI field in the
header of the last cell of the payload when in AAL5 mode
to indicate End of Message (EOM).

TimeStamp Time Stamp Counter Value Rx Word 4 [31:0]
In receive VC Descriptors, this field contains the
Time Stamp Counter value at the time the last cell was
received successfully. This field is mainly used for PDU
aging. The Time Stamp Counter is described in detail in
Chapter 8, “Timer Unit.”

BuffSize Buffer Size Word 5 [31:16]
This field stores the size of the current buffer. To reduce
the number of Buffer Descriptor accesses, BuffSize is
copied along with NextBFD from a Buffer Descriptor to the
VC Descriptor when the buffer is processed for the first
time.

PayldLen Payload Length Word 5 [15:0]
In AAL5 mode, the EDMA uses this field to compute the
CS-PDU payload length. The EDMA adds the lengths of
all buffers belonging to the same CS-PDU. In the transmit

Data Structures 5-11

direction, PayldLen is placed in the last cell transmitted
from the given CS-PDU. In the receive direction, this field
is compared with the payload length extracted from the
CS-PDU trailer to detect lost cells.

TailBFD Tail Buffer Number Word 6 [31:16]
This field contains the Buffer Number of the buffer at the
tail of the list of buffers attached to the VC Descriptor.
The EDMA uses this field when it needs to attach a buffer
to the list.

NextBFD Next Buffer Descriptor Word 6 [15:0]
This field stores the next Buffer Descriptor Number. To
reduce the number of Buffer Descriptor accesses,
NextBFD is copied along with BuffSize from a Buffer
Descriptor to the VC Descriptor when the buffer is
processed for the first time.

CurrBFD Current Buffer Descriptor Word 7 [31:16]
This field stores the current Buffer Descriptor Number.

VCD_UU AAL5 User-to-User Indicator Word 7 [15:8]
This field is added to the trailer of an AAL5 CS-PDU in
the transmit direction and filled with the UUI byte from the
CS-PDU trailer in the receive direction.

Reserved Word 7 [7:0]
Do not modify these bits.

5.2.1.2 VC Descriptor Control Field

The VC Descriptor Control field, illustrated in Figure 5.4, contains control
bits for the VC Descriptor. Table 5.3 provides information about each
control bit. The text following the table includes additional information
about the control bits.

Figure 5.4 VC Descriptor Control Field

31 30 29 28 27 26 25 24 23 19 18 17 16

VCD_
Buff-
Pres

VCD_
ConAct

VCD_BuffCont/
VCD_BuffLarge

VCD_
Buff-
Free

pBuff-
Data[32]

VCD_
Buff-
Done

VCD_
EFCI

VCD_
CLP

VCD_PHY/
VCD_RxCtrl

VCD_
CellHold

VCD_
AAL0

VCD_
ConOpen

5-12 Enhanced DMA

VCD_BuffPres
Buffer Descriptor Present 31
This is a status bit that the EDMA clears when there is
no Buffer Descriptor attached to the VC Descriptor. It is
set when at least one Buffer Descriptor is attached. It
represents the active/inactive state of a VC descriptor.

VCD_ConAct Connection Active 30
This is a status bit that indicates when a PDU is under
segmentation or reassembly. This bit is set after the BOM
cell is processed and cleared after an EOM cell has been
processed.

The behavior of VCD_BuffPres and VCD_ConAct bits in
time in the transmit direction is shown in Figure 5.5. The
figure assumes that there are no buffers attached to the
VC Descriptor initially. When the EDMA executes a buff

Table 5.3 VC Descriptor Control Bits

Bit Name Dir Description Owner

31 VCD_BuffPres Tx/Rx A buffer is attached to the VCD EDMA

30 VCD_ConAct Tx/Rx Connection active status EDMA

29 VCD_BuffCont Tx Current buffer continuation flag EDMA

29 VCD_BuffLarge Rx Buffer retrieved from the Large Free List EDMA

28 VCD_BuffFree Tx/Rx Buffer retrieved from a Free List EDMA

27 pBuffData[32] Tx/Rx Bit to indicate if pBuffData is PCI or Secondary address EDMA

26 VCD_BuffDone Tx/Rx Buffer complete but disposition is dependent on next cell EDMA

25 VCD_EFCI Rx/Tx Cell Header EFCI bit EDMA

24 VCD_CLP Rx/Tx Cell Header CLP bit EDMA

23:19 VCD_PHY Tx Address of the physical device to use APU

23:19 VCD_RxCtrl Rx Rx Control field to hold Free List EDMA

18 VCD_CellHold Rx/Tx Do not trigger ACI for cell transmission/do not return cell
to free list

APU

17 VCD_AAL0 Rx/Tx Type of ATM Adaptation Layer used APU

16 VCD_ConOpen Rx/Tx Connection Open EDMA

Data Structures 5-13

command, the VCD_BuffPres bit is set. Also, if the
EDMA_ConReActbit (EDMA_Ctrl register, bit 3, page 5-53)
is set, the Connection Number is returned to the
Completion Queue and the APU may start scheduling the
connection for transmission. The VCD_ConAct bit is then
set after the BOM cell for this connection is processed.
When the last cell from a PDU is sent and there are no
more buffers attached to the VC Descriptor, the
VCD_BuffPres bit is cleared.

Figure 5.5 BuffPres and ConAct Bits Timing

VCD_BuffCont 29
Current buffer continuation flag (for EDMA internal
usage).

VCD_BuffLarge 29
Buffer retrieved from a Large Free List.

VCD_BuffFree 28
Buffer retrieved from a free list. This bit is for EDMA
internal usage.

pBuffData[32] 27
If this bit is set, pBuffData is a PCI pointer. If this bit is
cleared, pBuffData points to a Secondary Bus address.

VCD_BuffDone 26
Buffer complete but disposition is dependent on next cell.

VCD_EFCI and VCD_CLP [25:24]
The behavior of these bits depends on the EDMA_OrHdr
bit in the EDMA_Ctrl register (page 5-52).

If the EDMA_OrHdrbit is cleared, then the bits 2 and 0 of
cell headers are extracted from each received cell and
placed in VCD_EFCI and VCD_CLP, respectively. They

ConAct

BuffPres

EDMA
Executes

Buff Command

BOM Cell
Sent

EOM Cell
Sent

EOM Cell
Sent

No More Data

PDU 1 PDU 2 PDU 3

5-14 Enhanced DMA

represent the network congestion indication and cell loss
priority of the last received cell. In the transmit direction,
the bits indicate the current value of CellHdr[2] and
CellHdr[0] which are copied to the free cell in the CBM.

If the EDMA_OrHdrbit is set, then the EFCI and CLP bits
of a cell header are controlled and observed from Buffer
Descriptors as explained in Section 5.2.2.2, “Buffer
Descriptor Control Field.”

VCD_PHY Device Physical Address [23:19]
In the transmit direction, the APU specifies the address
of the physical device in this field.

VCD_RxCtrl Rx Control Field [23:19]
In the receive direction, this field indicates the Free List
from which the EDMA attaches buffers to the VCD. See
Figure 5.6.

Figure 5.6 VCD_RxCtrl Usage

VCD_CellHold Inhibit Cell 18
This bit inhibits the automatic cell transmission (Tx) and
cell location disposal (Rx).

In the transmit direction, if this bit is cleared, the EDMA
automatically puts the cell in the Transmit FIFO when it
is completely built in Cell Buffer Memory. If this bit is set,
the EDMA does not put the cell in the Transmit FIFO and
this task must be performed by the APU.

In the receive direction, when the VCD_CellHold bit is
cleared, the EDMA automatically returns the cell location
to the Cell Buffer Manager when the cell is completely
transferred out of Cell Buffer Memory. When this bit is
set, the EDMA does not return the cell location to the Cell
Buffer Manager.

23 22 21 20 19

VCD_Free_Sel[2:0] (Rx)

Data Structures 5-15

VCD_AAL0 Operation Mode 17
When set, this bit selects the AAL0 mode of operation;
when cleared, it selects the AAL5 mode. EDMA operation
in the AAL0 and AAL5 modes is described in Section 5.6,
“AAL5 Mode Operation,” and Section 5.7, “AAL0 Mode
Operation.”

VCD_ConOpen
Connection Open 16
The EDMA uses this bit to indicate whether the
connection (Tx or Rx) is open or closed. If a TxCell or
RxCell command is issued to a closed connection, a
BFS_ErrNotOpen status bit is returned to the completion
queue. See Figure 5.20 on page 5-37. The APU can
close the connection by issuing a TxConClose /
RxConClose command described in Section 5.3.5,
“TxConClose/RxConClose Command.”

All the EDMA status bits are written after the current cell is processed.
For single-cell CS-PDUs, the EDMA sets the VCD_ConAct bit internally
when cell processing starts but does not write it to the VC Descriptor until
cell processing is finished, at which time the bit is cleared. Therefore,
single-cell CS-PDUs do not result in toggling of the VCD_ConAct bit.

The EDMA reads and writes VC Descriptors in words. During most
EDMA operations, the Nbytes field and certain bits of the VCD_Ctrl field
are changed in EDMA internal registers. The EDMA writes back both
VCD_Ctrl and Nbytes fields in a single write operation when the VC is
completely serviced. Therefore, to preserve information consistency, the
APU must guarantee that the EDMA is not accessing the VC Descriptor
that is to be modified. The TxConClose /RxConClose commands may be
used by the APU to keep the EDMA from modifying the VC Descriptor.

5-16 Enhanced DMA

5.2.2 Buffer Descriptor

A Buffer Descriptor occupies four words in memory and must be aligned
on a 16-byte boundary. Figure 5.7 illustrates the layout of the fields in a
Buffer Descriptor.

Figure 5.7 Buffer Descriptor

5.2.2.1 Buffer Descriptor Fields

Table 5.4 lists and defines the individual fields contained in a Buffer
Descriptor. The text below the table provides additional information about
each field.

ConNum[15:0]BFD_Ctrl[7:0]

pBuffData.PCI[31:0]

NextBFD[15:0]

0x00

0x04

0x08

031 24 23

BuffSize[15:0]

0x0C

16 15

BFD_UU[7:0]

BFD_FreeSel[2:0]

pBuffData.Sec[26:0]R

Table 5.4 Buffer Descriptor Fields

Name Addr
Size
Bits Description Initilized

BFD_Ctrl 0x0 8 Buffer Descriptor control bits
described in Table 5.5

Yes

BFD_UU 0x1 8 AAL5 User-to-User byte Yes

ConNum 0x2 16 Connection Number to which
buffer belongs

Yes

BuffSize 0x4 16 Number of bytes in the buffer Yes

NextBFD 0x6 16 The next Buffer Descriptor in the
list

Yes

Data Structures 5-17

BFD_Ctrl Buffer Descriptor Control Word 0 [31:24]
This field stores the control bits of a Buffer Descriptor.

BFD_UU AAL5 User-to-User Byte Word 0 [23:16]
Data byte reserved for user.

ConNum Connection Number Word 0 [15:0]
This field contains the Connection Number to which the
Buffer Descriptor is attached. In the receive direction, the
EDMA builds this field when the buffer data is completed
and before the buffer number is returned to the EDMA
Completion Queue. In the transmit direction, the host or
the APU must set the ConNumfield and the EDMA uses it
to determine the VC Descriptor to which it should attach
the buffer when executing a buff command.

BuffSize Buffer Size Word 1 [31:16]
This field indicates the number of bytes in the buffer. In
the transmit direction it is set by the host or the APU to
specify how many bytes of data are present in the buffer.
In the receive direction and for the buffers that are
attached in advance, the BuffSize field should be set by
the host or the APU to specify the size of the buffer. This
field is ignored for buffers taken from a free list. Instead,
the EDMA uses values from the EDMA_SBuffSize or
EDMA_LBuffSize registers (page 5-49) depending on
whether the buffer was retrieved from the Small or from
the Large Free Buffer List. The number of bytes received
is returned in the BuffSize field when the EDMA has
completed processing the receive buffer.

NextBFD Next Buffer Descriptor Word 1 [15:0]
This field contains the number of the next buffer on a
linked list or zero at the end of the list. The Buff
Processor maintains this field for Tx Buffer Descriptors.

pBuffData.PCI 0x8 32 PCI pointer to the payload Yes

BFD_FreeSel 0xC 3 Free List select Yes

pBuffData.Sec 0xC 27 Secondary Bus pointer to payload Yes

Table 5.4 Buffer Descriptor Fields (Cont.)

Name Addr
Size
Bits Description Initilized

5-18 Enhanced DMA

pBuffData.PCI
PCI Buffer Data Pointer Word 2 [31:0]
Either the APU or the host stores a buffer payload pointer
to PCI address space in this field. The EDMA uses the
pointer to find the beginning of the buffer payload. This
field is never modified by the EDMA. This field, along with
the pBuffData.Sec field, determines if the buffer is in the
Buffer Copy or Cell mode.

BFD_FreeSel Free List Select Word 3 [31:29]
The APU uses this field to indicate to which Free List
(0–5) the BFD belongs.

R Reserved Word 3 [28:27]
Do not change these bits.

pBuffData.Sec
Secondary Bus Buffer Data Pointer Word 3 [26:0]
Either the APU or the host stores a payload pointer to
Secondary Bus address space in this field. The EDMA
uses the pointer to find the beginning of the buffer
payload. This field is never modified by the EDMA. This
field, along with the pBuffData.PCI field, determines if
the buffer is in the Buffer Copy or Cell mode.

Note: The BFD is in the “packet mode” if both the pBuffData.PCI
and pBuffData.Sec fields are nonzero and the data is
copied from the PCI to the Secondary memory at the Buff
command. In the receive direction, the Buff command can
be used to preattach the “packet mode” BFD to the VCD. If
either pBuffData.PCI or pBuffData.Sec is 0, then the
buffer is in Cell mode and the buffer is not copied.

5.2.2.2 Buffer Descriptor Control Field

The Buffer Descriptor Control field, illustrated in Figure 5.8, stores control
bits for the Buffer Descriptor. Table 5.5 provides information about each
control bit. The text following the table includes additional information
about the control bits.

Data Structures 5-19

Figure 5.8 Buffer Descriptor Control Field

BFD_BuffCont
Buffer Continued 31
The APU or the host sets this bit in the transmit direction
and the EDMA sets it in the receive direction. When this
bit is set, it indicates that the CS-PDU payload is
continued in the buffer following the current one and
pointed to by NextBFD.

BFD_EFCI and BFD_CLP [30:29]
When the EDMA_OrHdrbit in the EDMA_Ctrl register
(page 5-52) is set, the BFD_EFCI and BFD_CLPbits
generate or extract the corresponding bits of a cell
header on a per CS-PDU basis.

In the transmit direction, the BFD_EFCI and BFD_CLPbits
of the first buffer of a CS-PDU are logically ORed with
corresponding bits of the VCD_CellHdr to compute the
cell header bits of all cells belonging to that CS-PDU:

CellHeader[0] = BFD_CLP | VCD_CellHdr[0]
CellHeader[2] = BFD_EFCI | VCD_CellHdr[2]

31 30 29 28 27 26 25 24

BFD_
BuffCont

BFD_
EFCI

BFD_
CLP

BFD_
BuffFree

BFD_
BuffLarge

BFD_
ErrAbort

BFD_
ErrLength

BFD_
ErrCrc

Table 5.5 Buffer Descriptor Control Bits

Bit Name Dir Description Init

31 BFD_BuffCont Rx/Tx Buffer continuation Yes

30 BFD_EFCI Rx/Tx EFCI bit of cell header Yes

29 BFD_CLP Rx/Tx CLP bit of cell header Yes

28 BFD_BuffFree Rx Buffer retrieved from a Free List 0

27 BFD_BuffLarge Rx Buffer from Large Free List 0

26 BFD_ErrAbort Rx Zero payload length in cell 0

25 BFD_ErrLength Rx Lost or misinserted cell 0

24 BFD_ErrCrc Rx Crc32 error 0

5-20 Enhanced DMA

In the receive direction, the BFD_EFCI and BFD_CLPbits
are set for the last buffer of a CS-PDU if any cell
belonging to the CS-PDU has the corresponding cell
header bit set. Note that the EDMA RxCell Processor
does not read the Cell Buffer Memory to obtain cell
headers but rather uses bits provided by the APU with
the RxCell command (see Figure 5.10).

When the EDMA_OrHdrbit is cleared, cell header bits 2
and 0 are controlled and observed using the VCD_CLPand
VCD_EFCI bits. The BFD_CLPand BFD_EFCI bits are
discarded in the transmit direction and never set in the
receive direction.

BFD_BuffFree
Buffer Free 28
The EDMA sets this bit in the receive direction when the
buffer is retrieved from a Free Buffer List.

BFD_BuffLarge
Buffer Large 27
This bit is set for buffers from the Large Free Buffer list
and cleared for buffers from the Small Free Buffer List.

BFD_ErrAbort
Zero Payload 26
This bit is set in the receive direction when the payload
field of an AAL5 EOM cell holds a zero value.

BFD_ErrLength
Payload Length Error 25
The EDMA sets this bit if an incorrect payload length is
detected. The EDMA detects lost or misinserted cells by
comparing the accumulated payload length, LenVCD, with
the payload length, LenCell , extracted from the CS-PDU
trailer. The accumulated payload length is the number of
received cells since the last EOM cell multiplied by 48
(including the current EOM cell). The BFD_ErrLength bit
is set if the following relation is not detected (receive
direction only):

LenCell + 8 ≤ LenVCD< LenCell + 56

EDMA Commands 5-21

BFD_ErrCrc CRC32 Error 24
The EDMA sets this bit in the receive direction when the
computed CRC32 does not match the one extracted from
an EOM cell.

5.3 EDMA Commands

Memory mapped registers serve as the interface between the EDMA and
the APU. The interface handles the following types of requests:

• Transmit cells to or receive cells from a virtual connection

• Attach a buffer to a VC Descriptor

• Transfer data between source and destination locations

These requests are made by writing commands to the appropriate
memory mapped registers. Each register has an associated request
queue. After a command is written to a register, the command is then
written to the appropriate request queue (if that request queue is not full).
Figure 5.9 illustrates the request queues.

Figure 5.9 EDMA Request & Completion Queues

TxCell

RxCell

Move

Buff

APU

16 + 12

16 + 12 + 3

5 + 32 + 32 + 16

16 + 2 + 3

32 + 32

32 + 32

32 + 32

RxCell Req Queue

TxCell Req Queue Tx Compl Queue

Rx Compl Queue

Buff Req Queue

Move Req Queue

Buff Compl Queue

5-22 Enhanced DMA

The status of command execution can be checked by reading the
EDMA_Status register (page 5-33).

If the APU writes to a command register and the associated request
queue is full, the APU is stalled until the EDMA processor retrieves the
command and renders the request queue not full. This situation needs
to be avoided since it can create a deadlock. For example, a deadlock
occurs when the APU stalls as the result of writing to a full request queue
at the same time the EDMA processor stalls as the result of writing to a
full completion queue. This situation leads to a Watchdog Timer Bus
Error which is usually a nonrecoverable system exception.

The feedback path from the EDMA processors to the APU uses three
EDMA completion queues. The TxCell and RxCell Completion queues
are eight entries deep while the Buff Completion queue is four entries
deep. The EDMA mainly uses the completion queues to send completed
Buffer Numbers back to the APU. However, the queues are also used to
signal exception and error conditions. Since an EDMA processor is
stalled when it attempts to write to a full completion queue, the APU
should empty the queues at a sufficient rate to avoid the problem (by
reading the EDMA_TxCompl, EDMA_RxCompl, or EDMA_BuffCompl
registers, page 5-49).

See Table 5.7 through Table 5.9 on page 5-42 for lists of the completion
queue messages and their descriptions.

In addition, the Buff Processor is capable of informing the APU that a
Buffer Descriptor has been attached to a VC Descriptor that previously
did not have any buffers, possibly requiring connection rescheduling.

The RxCell and Buff Processors can issue commands to the Move
Processor when Buffer Copy mode is selected (see Section 5.4.3, “Buffer
Payload.”)

The Move Processor gives priority to the EDMA (RxCell or Buff
commands) over the APU. Once a move begins, however, it is not
interrupted for a higher priority command. The EDMA RxCell command
has priority over the Buff command. Again, lower priority commands in
process are not interrupted by higher priority commands.

Note: Transmit buffer copies are initiated by the Buff Processor.

EDMA Commands 5-23

For information about other registers that are used to control EDMA
operations, see Section 5.5, “Register Descriptions.”

5.3.1 RxCell Command

The RxCell command is used to put a cell service request in the RxCell
Request Queue. The APU has to write the desired connection number to
the EDMA_RxConNum register (page 5-49) and write the cell address,
which is concatenated with the three LSBs of the cell header, to the
EDMA_RxCell register (Figure 5.10). The second write operation transfers
the contents of both registers into the RxCell Request Queue (if it is not full).

Figure 5.10 EDMA_RxCell Register Format

The CellEFCI , CellEOM , and CellCLP bits correspond to bits 2–0 of a
cell header in AAL5 mode. The EDMA_RxCell register is located at
address 0xB800.0048.

R Reserved [31:19]
Not used by the L64364.

CellEFCI Cell EFCI 18
When set, this bit causes the EDMA to extract the
corresponding bits from the cell header and store them
first in a VC Descriptor (VCD_EFCIand VCD_CLPbits) and,
when a buffer is completed, in a Buffer Descriptor
(BFD_EFCI and BFD_CLP bits). The EDMA stores either
the values from the last cell command or a logical OR
of all bits from the CS-PDU. Which value the EDMA
stores depends on the EDMA_OrHdrbit located in the
EDMA_Ctrl register (page 5-52).

CellEOM Cell End of Message 17
When set, this bit indicates that the current cell is the last
cell of a CS-PDU in AAL5 mode. The AAL0 mode uses the

31 19 18 17 16 15 14 13 2 1 0

R CellEFCI CellEOM CellCLP R aCell R

Default Value & Read/Write Status

0x0000.0000

R/W

5-24 Enhanced DMA

CDS_EOMfield of the Cell Descriptor (see Section 5.7,
“AAL0 Mode Operation,” and Section 6.3, “Cell
Descriptor.”)

CellCLP Cell CLP 16
See the CellEFCI description above.

R Reserved [15:14]
Not used by the L64364. See the aCell field description
following.

aCell [11:0] Cell Address [13:2]
This field represents the cell address in the Cell Buffer
Memory. Since cells must be aligned on a word boundary
in the Cell Buffer Memory and the maximum cell buffer
size is 4 Kbytes, bits [15:14] and [1:0] of the cell address
are discarded.

R Reserved [1:0]
Not used by the L64364. See the preceding aCell field
description.

When the RxCell Processor completes a buffer, either because the buffer
storage has been exhausted or because an EOM cell has been received,
it places the Buffer Number in the Receive Completion Queue. It may
also optionally copy the corresponding Buffer Descriptor and issue a
command to the Move Processor to copy the buffer contents. These
optional behaviors are controlled by the EDMA_RxBFD_Copybit in the
EDMA_Ctrl register (page 5-52) and the pBuffData.Sec and
pBuffData.PCI fields of the BFD, respectively. For additional information,
see Section 5.2.2, “Buffer Descriptor.”

5.3.2 TxCell Command

The TxCell command is used to put a cell service request in the TxCell
Request Queue. The APU has to write the desired Connection Number
to the EDMA_TxConNum register (page 5-49) and the cell address to the
EDMA_TxCell register (Figure 5.11). The second write operation
transfers the contents of both registers into the TxCell Request Queue
(if it is not full). The EDMA _TxCell register is located at address
0xB800.0008.

EDMA Commands 5-25

Figure 5.11 EDMA_TxCell Register Format

R Reserved [31:14]
Not used by the L64364.

aCell[11:0] Cell Address [13:2]
This field represents the cell address in the Cell Buffer
Memory. Cells must be aligned on a word boundary in
the Cell Buffer Memory and the maximum cell buffer size
is 4 Kbytes, so only 12 bits are needed.

R Reserved [1:0]
Not used by the L64364.

When the TxCell Processor completes a buffer after all the buffer payload
has been sent out, it places the Buffer Number in the Transmit
Completion Queue.

5.3.3 Buff Command

The buff command is used to attach a Buffer Descriptor to a VC
Descriptor for segmentation or reassembly. The command is placed in
the Buff Request Queue by writing the Buffer Number and five control
bits into the EDMA_Buff register. The register is located at address
0xB800.0080. The format of the register is shown in Figure 5.12.

31 14 13 2 1 0

R aCell R

Default Value & Read/Write Status

0x0000

R/W

5-26 Enhanced DMA

Figure 5.12 EDMA_Buff Register Format

R Reserved [31:21]
Not used in the L64364.

BFS_FreeSel[3:0]
Free List Select [20:18]
These bits select one of the six (0–5) Free Lists to which
the buffer should be returned. If BFS_FreeSel is 6 or 7,
the buffer number is returned in the Buff Completion
queue.

BFS_BuffFree
Buffer Free 17
When this bit is set, the EDMA attaches the Buffer
Descriptor to the Large (BFS_BuffLarge set) or Small
(BFS_BuffLarge cleared) Free Buffer List.

BFS_BuffLarge
Buffer Large 16
When this bit and the BFS_BuffFree bit are set, the
EDMA attaches the Buffer Descriptor to a Large Free
Buffer List. When this bit is cleared and the
BFS_BuffFree bit is set, the EDMA attaches the Buffer
Descriptor to a Small Free Buffer List. If the
BFS_BuffLarge bit is set and the BFS_BuffFree bit is
cleared, then the contents of the buffer are not copied
from the pBuffData.PCI to the pBuffData.Sec when a
“packet mode” buffer is attached to the VC descriptor and
both the fields are nonzero (see Section 5.2.2.1, “Buffer
Descriptor Fields”). This can be used to preattach buffers
to the receive VC Descriptor.

Buffer Number[15:0] [15:0]
16-bit number assigned to a Buffer Descriptor location at
initialization.

31 21 20 18 17 16 15 0

R BFS_FreeSel BFS_BuffFree BFS_BuffLarge Buffer Number

Default Value and Read/Write Status

0x0000.0000

R/W

EDMA Commands 5-27

When the EDMA retrieves the buff command with a Buffer Number from
the request queue, it reads a Connection Number from the Buffer
Descriptor and attaches the Buffer Descriptor at the end of the Buffer
Descriptor list for the connection. Since the EDMA disregards the
NextBFD field of the Buffer Descriptor only one Buffer Descriptor may be
attached with a single buff command.

The command may be used for both transmit and receive virtual
connections. For the transmit side, the linked list of Buffer Descriptors is
used by the EDMA to segment the buffer data into cells. For the receive
direction, the command is optional since the EDMA uses a storage area
from a Free Buffer List if there are no Buffer Descriptors available.

When the Buff Processor attaches a buffer, it also optionally may copy
the corresponding Buffer Descriptor and issue a command to the Move
Processor to copy the buffer contents. These optional behaviors are
controlled by the EDMA_TxBFD_Copyand EDMA_RxBFD_Copybits in the
EDMA_Ctrl register (page 5-52), and the nonzero pBuffData.PCI and
pBuffData.Sec fields in the BFD, respectively. The behaviors are further
described in Section 5.2.2, “Buffer Descriptor.” The encoding of
BFS_BuffFree , BFS_BuffLarge , and BFS_FreeSel is summarized as
follows.

Table 5.6 BFS_BuffFree, BFS_BuffLarge, and BFS_FreeSel
Encoding

BFS_
BuffFree

BFS_
BuffLarge

BFS_
FreeSel Operation

0 0 0 Attach a BFD to VCD (copy BFD/buffer as
specified by EDMA_TxBFD_Copyand BFD
pBuffData pointers). ConReact message if
applicable.

0 1 0 Attach a BFD to VCD (no buffer copy, copy
BFD as specified by EDMA_RxBFD_Copy). No
ConReact messages.

1 0 0–5 Return a BFD to small free list.

1 1 0–5 Return a BFD to large free list.

5-28 Enhanced DMA

The Buff Processor places the Connection Number in the
EDMA_BuffCompl register to inform the APU that the connection might
require rescheduling if:

• the VC Descriptor has no buffers attached when the command is
executed,

• the VCD_BuffPres bit toggles from zero to one as a result of
command execution, and

• the EDMA_ConReActbit is set.

5.3.4 Move Command

The move command transfers a block of data between the Secondary
Bus and the PCI Bus. To issue the move command, first write source and
destination addresses to the EDMA_MoveSrc and EDMA_MoveDst
registers, respectively (see Figure 5.13). Then write the number of bytes
to be transferred to the EDMA_MoveCount or EDMA_MoveCount2
register (see page 5-29 or page 5-31). The move command is placed in
the Move Request Queue when a nonzero byte count is written to the
EDMA_MoveCount or EDMA_MoveCount2 register. The
EDMA_MoveSrc register is located at address 0xB800.00A0 and the
EDMA_MoveDst register is located at address 0xB800.00A4.

Figure 5.13 EDMA_MoveSrc and EDMA_MoveDst Register Format

31 28 27 0

Not Used EDMA_MoveSrc

Default Value & Read/Write Status

0x0000.0000

R/W

31 28 27 2 1 0

Not Used EDMA_MoveDst Not
Used

Default Value & Read/Write Status

0x0000.0000

R/W

EDMA Commands 5-29

The Move Processor cannot perform byte alignment. The two LSBs of
the EDMA_MoveSrc register are used for the two LSBs of both the
source and destination address. The two LSBs from the EDMA_MoveDst
register are ignored.

When initiating the move command using the EDMA_MoveCount register,
the four MSBs of the EDMA_MoveSrc and EDMA_MoveDst registers are
not used, and bit 27 of the EDMA_MoveSrc is used to determine the
direction of the transfer. If EDMA_MoveSrc[27] = 0, then the transfer is
from the Secondary Bus to the PCI Bus. If EDMA_MoveSrc[27] = 1, the
transfer is from PCI Bus to Secondary Bus. The 32-bit PCI address is
formed by concatenating the 5-bit APU_PriMSB field of the APU_AddrMap
register and bits [26:0] of the EDMA_MoveSrc or EDMA_MoveDst register
based on the direction of transfer. This form of the move command remains
compatible with what was implemented in ATMizer II (L64363).

PCI Address = {APU_PriMSB, EDMA_MoveSrc/Dst[26:2] ,
EDMA_MoveSrc[1:0] }

When initiating the move command using the EDMA_MoveCount2
register, the EDMA_MoveSrc and EDMA_MoveDst registers contain 32-
bit source and destination addresses. Bit 20 (Sec2PCI) of the
EDMA_MoveCount2 register determines the direction of transfer. If
Sec2PCI = 0, then the transfer is from the PCI Bus to the Secondary Bus.
If Sec2PCI = 1, then the transfer is from the Secondary Bus to the PCI
Bus.

Note: The move command cannot be used to transfer a block of
data when both the source and destination addresses are
located in the same port.

Figure 5.14 illustrates the format of the EDMA_MoveCount register. It is
located at address 0xB800.00A8.

Figure 5.14 EDMA_MoveCount Register

31 24 23 19 18 16 15 0

ComStatus R ComId Count

Default Value & Read/Write Status

5-30 Enhanced DMA

ComStatus[7:0]
Command Status [31:24]
See ComId below.

R Reserved [23:19]
Not used in the L64364.

ComId[2:0] Command ID [18:16]
The ComId and ComStatus fields work together to provide
the APU a mechanism for monitoring the status of move
commands. When the move command is issued (writing
a nonzero value to the Count field), the ComId field is
passed to the Move Request Queue. On completion of
the move command, the Move Processor sets the
corresponding bit in the ComStatus field to indicate that
the move command has completed. The APU is informed
about the completed command by polling the ComStatus
field or by enabling the IntMove_Compl interrupt (see
Section 4.8.2, “External Vectored Interrupt Sources”). A
ComStatus bit is cleared by writing a “1” to the desired bit.

Note: If a move command is issued with the same ComId as an
active or pending move command, the APU may only see a
single completion indication for multiple move commands.

Count[15:0] Move Count [15:0]
This field specifies the number of bytes to be moved.

The EDMA_MoveCount2 register, shown in Figure 5.15, supports 32-bit
addressing on the PCI Bus and little and big endian addressing. A 32-bit
move is performed by writing 32-bit addresses into the EDMA_MoveSrc
and EDMA_MoveDst registers and then writing to the
EDMA_MoveCount2 register. The EDMA_MoveCount2 register is located
at address 0xB800.00AC.

0x00 0x0 0x0000

R/W Write
Only R/W

31 24 23 19 18 16 15 0

EDMA Commands 5-31

Figure 5.15 EDMA_MoveCount2 Register

ComStatus2[7:0]
Command Status 2 [31:24]
See ComId2 following.

R Reserved [23:22]
Not used in the L64364.

LEndian Little Endian 21
If LEndian = 0, the Move Processor reads from and
writes to both PCI and SB memories as big endian
memories, i.e., byte 0 at bits [31:24] and byte 3 at bits
[7:0]. If LEndian = 1, the Move Processor reads from and
writes to both PCI and SB memories as little endian
memories, i.e., byte 3 at bits [31:24] and byte 0 at bits
[7:0].

Sec2PCI Secondary/Bus to PCI Bus Move 20
When this bit is set, the move is from the Secondary
Memory to the PCI Memory. When it is cleared, the move
is in the opposite direction.

R Reserved 19
Not used in the L64364.

ComId2[2:0] Command ID 2 [18:16]
The ComId2 and ComStatus2 fields work together to
provide the APU a mechanism for monitoring the status
of move commands. When the move command is issued
(writing a nonzero value to the Count2 field), the ComId2
field is passed to the Move Request Queue. On
completion of the move command, the Move Processor
sets the corresponding bit in the ComStatus2 field to
indicate that the move command has completed. The
APU is informed about the completed command by
polling the ComStatus2 field or by enabling the

31 24 23 22 21 20 19 18 16 15 0

ComStatus2 R LEndian Sec2
PCI R ComId2 Count2

Default Value & Read/Write Status

0x00 0x00 0x0000

R/W Write Only R/W

5-32 Enhanced DMA

IntMove_Compl interrupt (see Section 4.8.2, “External
Vectored Interrupt Sources”). A ComStatus2 bit is cleared
by writing a “1” to the desired bit.

Note: If a move command is issued with the same ComId2 as an
active or pending move command, the APU may only see a
single completion indication for multiple move commands.

Count2[15:0] Move Byte Count 2 [15:0]
This field specifies the number of bytes to be moved.

The Move Processor can also receive commands internally from the Buff
or RxCell Processors that have higher priority than APU commands.
However, in all cases, a command that is in progress will always be
completed before accepting a new command from the Request Queue
or from the other processors.

5.3.5 TxConClose/RxConClose Command

The ConClose commands are used by the APU to clear the VCD_ConOpen
bits for the connections that are specified. The commands are executed
by writing the EDMA_TxConClose or EDMA_RxConClose register with
the connection number the APU would like to access. When the
commands are completed, there are ConClose messages in the
appropriate completion queues. See Section 5.3.7, “Buffer Completion,”
page 5-35 for more information.

Figure 5.16 Tx/RxConClose Command Format

5.3.6 Checking Status

The APU can check the status of all EDMA processors and queues by
reading the EDMA_Status register. The status bits are set when the
described conditions occur and are cleared when the conditions are
cleared. The register is located at address 0xB800.00C4.

31 16 15 0

R Connection Number

Default Value & Read/Write Status

0x0000

Write Only

EDMA Commands 5-33

Figure 5.17 EDMA_Status Register

EDMA_RxCellCompFull
RxCell Completion Queue Full 15
This bit is set if the RxCell Completion Queue is full.

EDMA_TxCellCompFull
TxCell Completion Queue Full 14
This bit is set if the TxCell Completion Queue is full.

EDMA_BuffCompFull
Buff Completion Queue Full 13
This bit is set if the Buff Completion Queue is full.

EDMA_MoveRxPend
Rx Move Request Pending 12
This bit is set when the RxCell Processor has an
internally generated request for the Move Processor
pending.

EDMA_RxCellMsg
RxCell Completion Queue Message 11
This bit is set if there is a message in the RxCell
Completion Queue.

15 14 13 12 11 10 9 8

EDMA_
RxCell

CompFull

EDMA_
TxCell

CompFull

EDMA_
Buff

CompFull

EDMA_
Move

RxPend

EDMA_
RxCellMsg

EDMA_
TxCellMsg

EDMA_
BuffMsg

EDMA_
Move

BuffPend

Default Value & Read/Write Status

0x0000

Read Only

7 6 5 4 3 2 1 0

EDMA_
RxCell
ReqFull

EDMA_
TxCell

ReqFull

EDMA_
Buff

ReqFull

EDMA_
Move

ReqFull

EDMA_
RxCellBusy

EDMA_
TxCellBusy

EDMA_
BuffBusy

EDMA_
MoveBusy

Default Value & Read/Write Status

0x0000

Read Only

5-34 Enhanced DMA

EDMA_TxCellMsg
TxCell Completion Queue Message 10
This bit is set if there is a message in the TxCell
Completion Queue.

EDMA_BuffMsg
Buff Completion Queue Message 9
This bit is set if there is a message in the Buff Completion
Queue.

EDMA_MoveBuffPend
Buff Move Request Pending 8
This bit is set when the Buff Processor has an internally
generated request for the Move Processor pending.

EDMA_RxCellReqFull
RxCell Request Queue Full 7
This bit is set if the RxCell Request Queue is full. The
APU should avoid writing to the EDMA_RxCell command
register, when the EDMA_RxCellReqFull bit is set
because this will stall the APU.

EDMA_TxCellReqFull
TxCell Request Queue Full 6
This bit is set if the TxCell Request Queue is full. The
APU should avoid writing to the EDMA_TxCell command
register, when the EDMA_TxCellReqFull bit is set
because this will stall the APU.

EDMA_BuffReqFull
Buff Request Queue Full 5
This bit is set if the Buff Request Queue is full. The APU
should avoid writing to the EDMA_Buff command
register, when the EDMA_BuffReqFull bit is set because
this will stall the APU.

EDMA_MoveReqFull
Move Request Queue Full 4
This bit is set if the Move Request Queue is full. The APU
should avoid writing to the EDMA_MoveCount and
EDMA_MoveCount2 command registers, when the
EDMA_MoveReqFull bit is set because this will stall the
APU.

EDMA Commands 5-35

EDMA_RxCellBusy
EDMA RxCell Processor Busy 3
This bit is set when the RxCell Processor is executing an
RxCell command.

EDMA_TxCellBusy
EDMA TxCell Processor Busy 2
This bit is set when the TxCell Processor is executing a
TxCell command.

EDMA_BuffBusy
EDMA Buff Processor Busy 1
This bit is set when the Buff Processor is executing a
Buff command.

EDMA_MoveBusy
EDMA Move Processor Busy 0
This bit is set when the Move Processor is executing a
Move command.

In addition, the APU may check the current active Connection Number
by reading one of the EDMA_XxxxConAct registers (page 5-49).

5.3.7 Buffer Completion

The TxCompl, RxCompl, and BuffCompl commands retrieve completed
Buffer Numbers from the EDMA Transmit, Receive, and Buff Completion
Queues. A completion queue is a 64-bit wide register that is accessed
as a pair of 32-bit registers. The first completion queue is known as the
primary completion queue and the second completion queue is referred
to as the auxiliary completion queue. The commands are executed by
reading the EDMA_TxCompl, EDMA_RxCompl, or EDMA_BuffCompl
registers (page 5-49).

A transmit buffer is completed when all data from the buffer is segmented
into cells and sent to the ATM Cell Interface (ACI). A receive buffer is
completed when either the whole CS-PDU payload is received or the
buffer storage is exhausted and a new buffer will be used to reassemble
the payload. A Buff command is completed when a buffer is attached to
a VC Descriptor or a buffer is returned to the Free List.

The EDMA has three completion queues known as EDMA_TxCompl,
EDMA_RxCompl, and EDMA_BuffCompl for the Tx processor, Rx
processor, and Buff processor, respectively. The primary completion

5-36 Enhanced DMA

queue must always be read first. The contents of the auxiliary completion
queue are valid after reading the primary completion queue. The
auxiliary completion queue contents are accessed by reading the
EDMA_TxComplB, EDMA_RxComplB, and EDMA_BuffComplB
registers. You may choose not to read the auxiliary completion queue
and proceed to read the next entry in the primary completion queue.

The TxCompl , RxCompl, or BuffCompl command returns the value zero
when the EDMA Transmit, Receive, or Buff Completion Queue is empty.
The EDMA processor is stalled when it attempts to write to a full
completion queue. The APU should, therefore, empty the completion
queues at a rate sufficient to prevent this problem.

Figure 5.18 shows the contents of the primary completion queue when it
holds a buffer number or a connection number.

Figure 5.18 Primary Completion Queue

Figure 5.19 shows the contents of the auxiliary completion queue when
it holds a connection number, a buffer number, or a cell address.

Figure 5.19 Auxiliary Completion Queue

Figure 5.20 shows the status bits returned in the primary completion
queue.

31 16 15 0

Status Bits Buffer Number Buff

31 16 15 0

Status Bits Connection Number Conn

31 16 15 0

0x0000 Connection Number Conn

31 16 15 0

0x0800 Buffer Number Buff

31 16 15 0

0xB000 Cell Address Cell

EDMA Commands 5-37

Note: Status bit 30 determines the meaning of the dual-function
bits. When bit 30 is set, the first definitions of the
dual-function bits apply. When it is cleared, the second
functions apply.

Figure 5.20 Buffer Status Bits

BFS_ErrAll All Errors 31
This bit is set when any error bit is set in bit positions
[29:21].

BFS_ConNum
Connection Number 30
This bit is set when the completion queue contains a
Connection Number and is cleared when the completion
queue contains a Buffer Number.

BFS_ErrZeroSize
Zero Size Error (BFS_ConnNum Set) 29
This bit is set when a Buff command for a BFD within
the EDMA_Buff register with BuffSize equal to zero is
issued and BFS_BuffFree in the EDMA_Buff register is
cleared.

BFS_BuffCont
Buffer Continued (BFS_ConnNum Cleared) 29
This bit is copied from the Buffer Descriptor. In the Buffer
Descriptor, the APU or the host sets this bit in the
transmit direction and the EDMA sets it in the receive
direction. When this bit is set, it indicates that the
CS-PDU payload is continued in the buffer following the
current one and pointed to by the NextBFD field in the
BFD.

31 30 29 28 27 26 25 24

BFS_
ErrAll

BFS_
ConNum

BFS_ErrZero
Size/BFS_
BuffCont

BFS_
ZeroPtr

BFS_ErrNo
Data/BFS_
ErrNotOpen

BFS_ErrNo
Mem/BFS_
ErrLenOver

BFS_ErrNo
ContBuff/

BFS_ErrCPI

BFS_
ErrLowMem

23 22 21 20 18 17 16

BFS_ErrFree
Sel/BFS_
ErrAbort

BFS_Zero
ConNum/

BFS_
ErrLength

BFS_ErrNot
Open/BFS_

ErrCrc
BFS_FreeSel

BFS_Con
Close/BFS_

BuffFree

BFS_Cell
Hold/BFS_
BuffLarge

5-38 Enhanced DMA

BFS_ErrZeroPtr
BFD has Zero Pointers 28
This bit is set when the EDMA receives a Buff command
for a BFD with zero pointers or an RxCell command
which attaches a BFD with zero pointers from the Free
List.

BFS_ErrNoData
No Data Error (BFS_ConnNum Set) 27
This bit is set when the EDMA receives a TxCell
command for a transmit VC but there is no buffer
attached to the VC Descriptor. The Connection Number
is placed in the completion queue.

BFS_ErrNotOpen
VCD Closed (BFS_ConnNum Cleared) 27
This bit is set when the EDMA receives a Buff command
for a VC which has the VCD_ConOpenbit cleared.

BFS_ErrNoMem
Both Free Buffer Lists Empty (BFS_ConnNum
Set) 26
If the RxCell Processor needs a new buffer, it first checks
whether there is one attached to the VC Descriptor. If
there is not, it takes a buffer from a Free Buffer List.
When the RxCell Processor tries to use a buffer from a
Small Free Buffer List and the list is empty, it attempts to
use the Large Free Buffer List. Similarly, when the
processor tries to use a buffer from the Large Free Buffer
List and the list is empty, it attempts to use a buffer from
the Small Free Buffer list.

This bit is set when the processor attempts to retrieve a
buffer from both free lists and both lists are empty. The
Connection Number is returned to the completion queue
and VCD_ConOpen is cleared (the connection is closed)
in the VCD. The connection is closed for recovery
purposes as multiple commands for the same VCD may
need to be recovered from the Rx request queue before
the buffer problem is fixed.

If you do not care about recovering the PDU, then you
can drop the cell that originated from the nomem
message by returning it to the free list and reopen the
connection by setting the VDC_ConOpen bit.

EDMA Commands 5-39

If you do care about recovering the PDU, then you need
to stop issuing Rx cell commands and wait for the Rx
request queue to empty. The request queue is empty
when EDMA_RxCellBusy in the EDMA_Status register is
cleared. If there were more cell commands relating to the
connection that received the nomem message, then
these cells are returned with an Rx completion message
of type ErrNotOpen. The APU needs to keep track of the
cells that are returned so that they can be reissued after
a new data buffer is attached to the VCD and the
connection has been reopened.

BFS_ErrLenOver
Payload Length Overflow Error (BFS_ConnNum
Cleared) 26
This bit is set when the AAL5 Payload is greater than
64 Kbytes. The VCD_ConOpen bit in the VCD_CTRL
register is cleared by the EDMA TxCell Processor.

BFS_ErrNoContBuff
No Continued Buffer Error (BFS_ConnNum Set) 25
This bit is set when the cell is partially built in the current
buffer and the BFD_BuffCont bit in the Buffer Descriptor
(page 5-19) is set indicating the buffer is continued but
there is no buffer available.

BFS_ErrCPI CPI Error (BFS_ConnNum Cleared) 25
This bit is set when the CPI field of the AAL5 PDU is not
zero.

BFS_ErrLowMem
One Free Buffer List Empty 24
This bit is set when the processor attempts to retrieve a
buffer from a free list and either the small or large list is
empty.

BFS_ErrFreeSel
Free Select Error (BFS_ConnNum Set) 23
This bit is set when a buff command with the
BFS_BuffFree bit set and BFS_FreeSel field equal to 6
or 7 is issued, or when an RxCell command that requires
a free buffer and a VCD_FreeSel field of 6 or 7 is issued.

5-40 Enhanced DMA

BFS_ErrAbort
Zero Payload (BFS_ConnNum Cleared) 23
This bit is copied from the Buffer Descriptor and is set in
the receive direction when the payload field of an EOM
cell holds a zero value.

BFS_ZeroConNum
Zero Connection Error (BFS_ConnNum Set) 22
This bit is set when the TxConClose , RxConClose , or
RxCell command is issued with a zero connection number.

BFS_ErrLength
Payload Length Error (BFS_ConnNum Cleared) 22
This bit is copied from the Buffer Descriptor. The EDMA
sets this bit if an incorrect payload length is detected. The
EDMA detects lost or misinserted cells by comparing the
accumulated payload length, LenVCD, with the payload
length, LenCell , extracted from the CS-PDU trailer. The
accumulated payload length is the number of received
cells since the last EOM cell multiplied by 48 (including
the current EOM cell.) The BFD_ErrLength bit is set if the
following relation is not detected (receive direction only):

LenCell + 8 < LenVCD < LenCell + 56

BFS_ErrNotOpen
VCD Closed (BFS_ConnNum Set) 21
This bit is set when the EDMA receives a TxCell or
RxCell command for a VC which has the VCD_ConOpen
bit cleared.

BFS_ErrCrc CRC32 Error (BFS_ConnNum Cleared) 21
This bit is copied from the Buffer Descriptor. The EDMA
sets this bit in the receive direction when the computed
CRC32 does not match the one extracted from an EOM
cell.

BFS_FreeSel[2:0]
Free List Select [20:18]
These bits are copied from the BFD_FreeSel field. They
represent the free list to which the buffer belongs.

EDMA Commands 5-41

BFS_ConClose
Connection Closed (BFS_ConnNum Set) 17
This bit indicates that the Tx or Rx connection for which
the TxConClose /RxConClose command was issued is
closed.

BFS_BuffFree
Buffer Origin (BFS_ConnNum Cleared) 17
This bit indicates the buffer origin. When the bit is
cleared, the buffer was attached by the user to a VC
Descriptor. When the bit is set, the buffer was taken from
a Free Buffer List and the BFS_BuffLarge bit specifies
whether it was from the Free Large or Small Buffer List.
The BFS_BuffFree bit can only be set in the receive
direction.

BFS_Cell Hold
Completion Message Due to Cell Hold
(BFS_ConnNum Set) 16
When this bit is set, the completion message in the Tx/Rx
Completion Queue is due to the Cell Hold mode of the
VC Descriptor.

BFS_BuffLarge
Buffer from Large or Small Free Buffer List
(BFS_ConnNum Cleared) 16
When this bit is set, the buffer was taken from the Large
Free Buffer List (if BFS_BuffFree is also set). When this
bit is cleared, the buffer was taken from the Small Free
Buffer List (if BFS_BuffFree is set).

The completion messages returned in the Transmit, Receive, and Buffer
Completion Queues are summarized in Table 5.7, Table 5.8, and
Table 5.9.

5-42 Enhanced DMA

Table 5.7 Tx Completion Queue Messages

Message

DescriptionPrimary Status Bits Auxiliary

buff 0x0000 (BFD_BuffCont Clear)
0x2000 (BFD_BuffCont Set)

conn Buffer Completion

conn 0x4001 cell1

1. The cell is not sent to the ACI TxFIFO.

Cell Hold

conn 0xC800 cell2

2. The cell is returned to the ACI freelist.

ErrNoData

conn 0xC200 cell2 ErrNoContBuff

conn 0x4002 0 TxConclose

0 (conn) 0xC042 0 TxConclose with zero connection error

conn 0xC020 cell2 ErrNotOpen

buff 0x8400 conn Payload Overrun

Table 5.8 Rx Completion Queue Messages

Message

DescriptionPrimary Status Bits Auxiliary

buff 0x0002 (BFD_BuffCont Clear, Free Small)
0x0003 (BFD_BuffCont Clear, Free Large)
0x2002 (BFD_BuffCont Set, Free Small)
0x2003 (BFD_BuffCont Set, Free Large)
0x8080 (ErrAbort in PDU)
0x8040 (ErrLength in PDU)
0x8020 (ErrCrc in PDU)
0x8100 (ErrLowMem)

conn Buffer Completion

conn 0x4001 cell1 Cell Hold

conn 0xC400 cell2 ErrNoMem

conn 0xC098 (Free Sel = 6)
0xC09C (Free Sel = 7)

cell2 Err Free Sel

conn 0xD000 buff Err zero pointers in BFD

conn 0x4002 0 RxConClose

Data Structure Locations 5-43

5.4 Data Structure Locations

The EDMA’s three primary data structures (VC Descriptors, Buffer
Descriptors, and buffers) can be located in three different address
spaces; Primary Port memory, Secondary Port memory, or Cell Buffer
Memory. This section describes the system options for locating these
data structures.

0 (conn) 0xC040 cell2 RxCell with zero connection
error

0 (conn) 0xC042 0 RxConclose with zero
connection error

conn 0xC020 cell2 ErrNotOpen

1. The cell is not returned to the ACI freelist.
2. The cell is not returned to the ACI freelist if the error is reported.

Table 5.8 Rx Completion Queue Messages (Cont.)

Message

DescriptionPrimary Status Bits Auxiliary

Table 5.9 Buff Completion Queue Messages

Message

DescriptionPrimary Status Bits Auxiliary

conn 0x4000 buff Connection Reactivation

0 (conn) 0xC098 (Free Sel = 6)
0xC09C (Free Sel = 7)

buff Err Free Select

conn 0xD000 buff Err zero pointers in BFD

conn 0xE000 buff Err zero BuffSize in BFD

buff 0x8800 conn ErrNotOpen

0 (conn) 0xC040 buff Err ZeroConNum

5-44 Enhanced DMA

5.4.1 VC Descriptors Address Calculation

VC Descriptors are referenced using 16-bit wide Connection Numbers.
The VC Descriptors are located in the Primary Port memory space,
Secondary Port memory space, or in Cell Buffer Memory. In addition, to
further reduce the Secondary Port bandwidth requirements, you can
place a limited number of VC Descriptors in Cell Buffer Memory. These
are the initial VCDs as defined by the SCD_VCDinCBfield of the SCD_Ctrl
register (see Section 7.6.8, “Calculating a VC Descriptor Address.”)

To compute the VC Descriptor address, the EDMA adds the contents of
the VCD_Base field of the Tx_EDMA_VCD_Base register or
Rx_EDMA_VCD_Base register and the Connection Number field of the
EDMA_TxConNum or EDMA_RxConNum register. Figure 5.21 shows
the format of the Tx/Rx_EDMA_VCD_Base register. They are located at
address 0xB800.00CC and 0xB800.00D8 respectively. For backward
compatibility, the Rx_EDMA_VCD_Base register is dual addressed with
the Tx_EDMA_VCD_Base register. Both EDMA_VCD_Base registers
are written with the same data when the APU writes to the
Tx_EDMA_VCD_Base register. When the APU writes to 0xB800.00D8,
only the Rx_EDMA_VCD_Base register is updated. Due to layout
restrictions, this register is not readable.

Figure 5.21 TX/RX_EDMA_VCD_Base Register

Figure 5.22 shows the calculation for a VCD in PCI memory. When VCDs
are located in PCI memory, bit 0 of the Tx/Rx_EDMA_VCD_Base
register should be set. Then bits [31:9] of the Tx/Rx_EDMA_VCD_Base
register are extended with trailing zeros and added to bits [20:5] of the
EDMA_Tx/RxConNum register extended with trailing zeros.

31 9 8 1 0

VCD_Base R PCI

Default Value & Read/Write Status

0x0000.0000

R/W

Data Structure Locations 5-45

Figure 5.22 VC Descriptor Address Calculation for PCI Memory

Figure 5.23 shows the address calculation for VCDs in Local or Cell
Buffer Memory. When VCDs are in Local Memory or CBM, bit 0 of the
Tx/Rx_EDMA_VCD_Base register is cleared. Then bits [28:9] of the
Tx/Rx_EDMA_VCD_Base register are extended with trailing zeros and
added to bits [20:5] of the EDMA_Tx/RxConNum register extended with
trailing zeros.

Connection Number

0x000

0x00

VC Descriptor
Address in+

EDMA_TxConNum or

31 9 8 0

5 4 0

EDMA_RxConNum Register

018931

VCD_Base

PCI Bit = 1

VCD_Base

31 0

Connection Number

0x00

20

PCI Memory
(0x0000.0000–0xFFFF.FFFF)

16 15

Tx/Rx_EDMA_VCD_Base

5-46 Enhanced DMA

Figure 5.23 VC Descriptor Address Calculation for Local or Cell Buffer Memory

Note: The results of the VCD address calculation in the ranges
0x0800.0000–0x0FFF.FFFF and 0x1800.0000–
0x1FFF.FFFF, when the PCI bit = 0, cause bus error
interrupts.

5.4.2 Buffer Descriptors

Buffer Descriptors can be located in either the Primary Port memory or
the Secondary Port memory, and they are referenced using a 16-bit wide
Buffer Number. Figure 5.24 illustrates the Buffer Descriptor address
computation scheme.

Figure 5.24 Buffer Descriptor Address Calculation

Connection Number

0x000

0x00

VC Descriptor
Address in

+

EDMA_TxConNum or

9 8 0

5 4 0

EDMA_RxConNum Register

018931

VCD_Base

PCI Bit = 0

VCD_Base

31 0

Connection Number

0x00

20

Local Memory
(0x0000.0000–0x07FF.FFFF)

28

or in CBM
(0x1000.000–0x17FF.FFFF)

Note: Bit 28 of VCD_Base determines whether address is in Local Memory or CBM.

16 15

Bits [31:29] of VCD_BASE are don’t cares.

Tx/Rx_EDMA_VCD_Base

BFD_Base (Far or Local)

Buffer Number

0

00

Buffer Descriptor
Address+

EDMA_BFD_FBase or
EDMA_BFD_LBase
Register

31/28 8 7 0

31 20 19 4 3 0

CurrBFD Field
of VCD

Data Structure Locations 5-47

If Buffer Descriptors are located in PCI memory, bits [31:8] of the
EDMA_BFD_FBase register are added to the Buffer Number to access
them. If BFDs are located in Secondary Memory, bits [28:8] of the
EDMA_BFD_LBase register are added to the Buffer Number to access
them. Figure 5.25 shows the format of the EDMA_BFD_FBase register
(address 0xB800.00D4) and Figure 5.26 shows the format of the
EDMA_BFD_LBase register (address 0xB800.00D0).

Figure 5.25 EDMA_BFD_FBase Register

Figure 5.26 EDMA_BFD_LBase Register

Although the number of times the EDMA must access the Buffer
Descriptors has been minimized, processing linked lists of Buffer
Descriptors can require more than one access. For applications where
Buffer Descriptors are placed in shared memory with high latency, it is
possible to reduce shared Buffer Descriptor accesses even further by
correctly setting the EDMA_TxBFD_Copyand/or EDMA_RxBFD_Copybits in
the EDMA_Ctrl register (page 5-52).

When a EDMA_Tx/RxBFD_Copybit is cleared, the EDMA always uses the
same base register for the Buffer Descriptors. The EDMA_Tx/RxBFD_Far
bit in the EDMA_Ctrl register (page 5-52) specifies if Far Base (when set)
or Local Base (when cleared) is used.

31 8 7 0

BFD_FBase

Default Value and Read/Write Status

0x0000.0000

R/W

31 29 28 8 7 0

BFD_LBase

Default Value and Read/Write Status

0x0000.0000

R/W

5-48 Enhanced DMA

When the EDMA_Tx/RxBFD_Copybit is set, the EDMA_Tx/RxBFD_Far bit is
not used, and the EDMA processors make Buffer Descriptor copies when
necessary.

For the transmit direction, the Buff Processor copies Buffer Descriptors
from the PCI address to the Secondary address when a buff command
is executed. For the receive direction, when a buffer is completed, the
RxCell Processor copies Buffer Descriptors from the Secondary address
to the PCI address before placing the Buffer Number in the Receive
Completion Queue. All other accesses to the Buffer Descriptor use a
local address.

This structure makes it possible to address three different applications
separately for the transmit and receive sides. When the external host
uses different Buffer Descriptor formats than the EDMA, the APU has to
perform the necessary translation. The APU places the Buffer Descriptor
in the Secondary Port memory and clears both the EDMA_Tx/RxBFD_Copy
and EDMA_Tx/RxBFD_Far bits. If the formats are compatible and the
shared bus of the Primary Port is fast, the Buffer Descriptor copy is not
required. The APU then clears the EDMA_Tx/RxBFD_Copybit and sets the
EDMA_Tx/RxBFD_Far bit. If the shared bus is slow, the APU can set the
EDMA_Tx/RxBFD_Copy bit.

5.4.3 Buffer Payload

The buffer payload can be located in either Primary Port memory or
Secondary Port memory. It is referenced using a 32-bit or a 27-bit wide
address pointer, pBuffData.PCI or pBuffData.Sec , placed in the Buffer
Descriptors. In the VC Descriptors, pBuffData is a 33-bit pointer. If
pBuffData[32] is set, the buffer payload is in PCI memory.

In applications where shared memory located on the Primary Port has
low latency, the EDMA processors may access the buffers placed in that
shared memory on a per-cell basis. In that case, the EDMA processors
access the shared memory to transfer the required cell payload of up to
48-bytes for each TxCell or RxCell command. If shared memory has a
high latency, it is possible to automatically copy the whole buffer between
shared memory and local memory (attached to the Secondary Port).

For the transmit direction, if the pBuffData.PCI and PBuffData.Sec
fields in the BFD are nonzero, the EDMA performs the buffer copy
operation when a Buffer Descriptor is attached to a VC Descriptor. The

Register Descriptions 5-49

EDMA retrieves the source address from the Buffer Descriptor’s
pBuffData.PCI field and the destination address from the
pBuffData.Sec field. The number of bytes transferred is retrieved from
the Buffer Descriptor’s BuffSize field.

For the receive direction, if the pBuffData.PCI and PBuffData.Sec
fields are nonzero, the EDMA performs the buffer copy operation when
a buffer is completed and before the Buffer Number is placed in the
Receive Completion queue. The EDMA retrieves the source address
from the Buffer Descriptor’s pBuffData.Sec field and the destination
address from the pBuffData.PCI field. The number of bytes transferred
is retrieved from the Buffer Descriptor’s BuffSize field.

The Buff and RxCell Processors generate internal commands to the
Move Processor. The Buff and RxCell Processors are stalled until the
Move Processor completes the transfer.

5.5 Register Descriptions

The registers listed in Table 5.10 provide the mechanism for controlling
EDMA operations. The APU accesses these registers at memory
address 0xB800.00XX, where XX is specified in the Offset column.

Table 5.10 EDMA Memory Mapped Registers

Name Offset Size R/W Description

EDMA_TxCompl 0x00 32 R Read Transmit Completion Queue

EDMA_TxConNum 0x04 32 R/W Connection Number for the TxCell Command

EDMA_TxCell 0x08 32 R/W Issue a TxCell Command

EDMA_TxConAct 0x10 32 R Current active ConNumprocessed by TxCell Processor

EDMA_TxComplB 0x14 32 R Auxiliary Transmit Completion Queue

EDMA_TxConClose 0x18 32 W Transmit Connection Close Command

EDMA_AAL5Pad 0x1F 8 R/W AAL5 Pad Byte

EDMA_RxCompl 0x40 32 R Read Receive Completion Queue

(Sheet 1 of 3)

5-50 Enhanced DMA

EDMA_RxConNum 0x44 32 R/W Connection Number for the RxCell Command

EDMA_RxCell 0x48 32 R/W Issue an RxCell Command

EDMA_RxConAct 0x50 32 R Current Active ConNumProcessed by RxCell Processor

EDMA_RxComplB 0x54 32 R Auxiliary Receive Completion Queue

EDMA_RxConClose 0x58 32 W Receive Connection Close Command

EDMA_Buff 0x80 32 R/W Issue a buff Command

EDMA_BuffCompl 0x88 32 R Read Buff Completion Queue

EDMA_BuffComplB 0x8C 32 R Auxiliary Buff Completion Queue

EDMA_BuffConAct 0x90 32 R Current Active ConNumProcessed by Buff Processor

EDMA_LBuff0 0x94 16 R/W Head of Large Free Buffer List 0

EDMA_SBuff0 0x96 16 R/W Head of Small Free Buffer List 0

EDMA_LBuff1 0x98 16 R/W Head of Large Free Buffer List 1

EDMA_SBuff1 0x9A 16 R/W Head of Small Free Buffer List 1

EDMA_MoveSrc 0xA0 32 R/W Program the Source Address for a move Command

EDMA_MoveDst 0xA4 32 R/W Program the Destination Address for a move
Command

EDMA_MoveCount 0xA8 32 R/W Issue a move Command

EDMA_MoveCount2 0xAC 32 R/W Issue Enhanced move Command

EDMA_LBuff2 0xB0 16 R/W Head of Large Free Buffer List 2

EDMA_SBuff2 0xB2 16 R/W Head of Small Free Buffer List 2

EDMA_LBuff3 0xB4 16 R/W Head of Large Free Buffer List 3

EDMA_SBuff3 0xB6 16 R/W Head of Small Free Buffer List 3

EDMA_LBuff4 0xB8 16 R/W Head of Large Free Buffer List 4

EDMA_SBuff4 0xBA 16 R/W Head of Small Free Buffer List 4

EDMA_LBuff5 0xBC 16 R/W Head of Large Free Buffer List 5

Table 5.10 EDMA Memory Mapped Registers (Cont.)

Name Offset Size R/W Description

(Sheet 2 of 3)

Register Descriptions 5-51

The EDMA_TxConAct, EDMA_RxConAct and EDMA_BuffConAct
registers contain either the current active Connection Number (that the
TxCell, RxCell, or Buff Processor will process) or, if the module is idle,
the value zero.

The EDMA-AAL5Pad register holds the pad byte for the AAL5
CPCS-PDU. It is cleared at reset.

The EDMA_LBuffSize and EDMA_SBuffSize registers specify the sizes
of large/small buffers to be used when a buffer is linked from a Free
Buffer List. The values in both the EDMA_LBuffSize and
EDMA_SBuffSize register must be larger than or equal to 48 for correct
EDMA operations. The values present in the BuffSize field of the Buffer
Descriptor are ignored at that time as they were most probably
overwritten by the actual number of bytes received the last time the buffer
was used. Instead, the EDMA uses the value in the EDMA_LBuffSize or
EDMA_SBuffSize register, sets the BFS_BuffFree bit in the
EDMA_BuffCompl register (page 5-26) and sets or clears the
BFS_BuffLarge bit in the EDMA_BuffCompl register to indicate the origin
of the buffer.

EDMA_SBuff5 0xBE 16 R/W Head of Small Free Buffer List 5

EDMA_Ctrl 0xC0 16 R/W EDMA Control Bits

EDMA_Status 0xC4 16 R See the EDMA_Status Register Description on
page 5-33

EDMA_LBuffSize 0xC8 16 R/W Size of Large Buffers in Bytes

EDMA_SBuffSize 0xCA 16 R/W Size of Small Buffers in Bytes

EDMA_VCD_Base 0xCC 32 R/W Base Address of the VC Descriptor Table

EDMA_BFD_LBase 0xD0 32 R/W Local Base Address of the Buffer Descriptor Table

EDMA_BFD_FBase 0xD4 32 R/W Far Base Address of the Buffer Descriptor Table

EDMA_ErrMask 0xDC 16 R/W Error Mask Register

EDMA_BusErr 0xE3 8 R Address and Bus Error Register

Table 5.10 EDMA Memory Mapped Registers (Cont.)

Name Offset Size R/W Description

(Sheet 3 of 3)

5-52 Enhanced DMA

The EDMA_LBuff0–5 and EDMA_SBuff0–5 registers point to the
beginning of Large and Small Free Buffer Lists. They are accessible to
software mainly for test and diagnostic purposes.

5.5.1 EDMA Control Register

The EDMA_Ctrl register contains the control bits shown in Figure 5.27.
The register is located at address 0xB800.00C0.

Figure 5.27 EDMA_Ctrl Register

R Reserved [15:13]
Not used in the L64364.

EDMA_Compat
Compatibility 12
When cleared, this bit configures the move engine to
operate in L64363 compatibility mode (move engine uses
big endian addressing for EDMA initiated moves). When
this bit is set and the EDMA_ByteSwapbit is set, the move
engine uses little endian addressing for EDMA initiated
moves.

EDMA_Rx/TxBFD_Far and EDMA_Rx/TxBFD_Copy [11:8]
These bits specify the location of Buffer Descriptors and
whether the Buffer Descriptors are copied to/from the far
address as described in Section 5.4.2, “Buffer
Descriptors.”

R Reserved [7:6]
Not used in the L64364.

EDMA_OrHdr OR Header 5
This bit controls the generation and extraction of the EFCI
and CLPcell header bits. If EDMA_OrHdr is set, these bits

15 13 12 11 10 9 8 7 6 5 4 3 2 0

R EDMA_
Compat

EDMA_RxB
FD_Far

EDMA_Rx
BFD_Copy

EDMA_Tx
BFD_Far

EDMA_Tx-
BFD_Copy R EDMA_

OrHdr
EDMA_

ByteSwap
EDMA_

ConReAct R

Default Value and Read/Write Status

0x0000

R/W

Register Descriptions 5-53

are logically ORed over a CS-PDU (see the description
of the BFD_EFCI and BFD_CLPbits in Section 5.2.2.2,
“Buffer Descriptor Control Field”). If the bit is cleared, the
VCD_CLPand VCD_EFCI represent the bits extracted from
the last received cell or the bits inserted into all
transmitted cells.

EDMA_ByteSwap
Byte Swapping 4
This bit controls byte swapping for cell payload transfers.
Byte swapping assures proper interfacing between the
ATMizer II+ chip and a little endian external bus master.
When the EDMA_ByteSwap bit is set, the EDMA swaps
bytes in the cell payload during the execution of a TxCell
or RxCell command. The placement of bytes depends on
the EDMA_ByteSwap bit and the value of pBuffData as
described in Section 5.6.4, “Big Endian and Little Endian.”
Byte swapping is never done for control structures (VC
Descriptors and Buffer Descriptors).

EDMA_ConReAct
Reactivate Connection 3
This bit enables connection reactivation in the transmit
direction. In many applications, you may want to remove
the connection from scheduling tables when there is no
data to send and then reactivate the connection when data
becomes available. To support this operation, the EDMA
Buff Processor can flag when a connection that had no
data to send receives buffer data for segmentation.

When the EDMA_ConReActbit is set and VCD_BuffPres bit
in the VC Descriptor (page 5-12) changes from 0 to 1 as
a result of the buff command, the EDMA places the
Connection Number in the Buff Completion Queue so
that the APU may reschedule the connection for service.

R Reserved [2:0]
Not used in the L64364.

5.5.2 EDMA Error Mask Register

The EDMA_ErrMask register is used to mask the errors that are reported
in the completion queues. Clearing the bits masks the errors. The
register is at memory address 0xB800.00DC. The format of the register
is shown in Figure 5.28.

5-54 Enhanced DMA

Figure 5.28 EDMA_ErrMask Register

R Reserved [15:12]
Not used in the L64364.

EDMA_BuffFreeSel
FreeSel Field Equal to Command 11
This bit is set to enable the BFS_ErrFreeSel field in the
Buff completion queue. BFS_ErrFreeSel bit is set when
the buff command is issued with the BFS_BuffFree bit
set and the BFS_FreeSel field equal to 6 or 7.

EDMA_BuffZeroPtr
Zero Pointer in BFD on Buff Command 10
This bit is set to enable the BFS_ErrZeroPtr completion
message when a buff command is issued.
BFS_ErrZeroPtr occurs when both the pBuffData.Sec
and pBuffData.PCI pointers in the BFD are zero.

EDMA_BuffNotOpen
Buff Command to a Closed Connection 9
This bit is set to enable the BFS_ErrNotOpen completion
message when a buff command is issued to a VC
Descriptor with the VCD_ConClose bit cleared.

EDMA_RxLowMem
Low Memory Error 8
This bit is set to enable the BFS_ErrLowMem message in
the Rx completion queue when one of the free lists is
empty.

EDMA_RxZeroPtr
Zero Pointer in BFD on RxCell Command 7
This bit is set to enable the BFS_ErrZeroPtr completion
message when an RxCell command is issued.

15 12 11 10 9 8 7 6 5 4 3 2 1 0

R
EDMA_

Buff
FreeSel

EDMA_
Buff-

ZeroPtr

EDMA_
Buff-
Not-

Open

EDMA_
RxLow-

Mem

EDMA_
Rx-

ZeroPtr

EDMA_
ErrBad-

CPI

EDMA_
RxNot-
Open

EDMA_
Rx-

Close

EDMA_
TxNo-
Data

EDMA_
TxNo-
Cont-
Buff

EDMA_
TxNot-
Open

EDMA_
Tx-

Close

Default Values & Read/Write Status

0xFFF

R/W

Register Descriptions 5-55

BFS_ErrZeroPtr is set when both the pBuffData.Sec
and pBuffData.PCI pointers in the BFD are zero.

EDMA_ErrBadCPI
ErrBadCPI in Buff Format 6
This bit is set to enable the BFS_ErrBadCPI error
reporting in Buff format.

EDMA_RxNotOpen
RxCell Command to a Closed Connection 5
This bit is set to enable the BFS_ErrNotOpen completion
message when an RxCell command is issued to a VC
Descriptor with the VCD_ConClose bit cleared.

EDMA_RxClose
Completion of RxConClose Command 4
This bit is set to enable the completion message for the
RxConClose command to a receive VC Descriptor.

EDMA_TxNoData
ErrNoData on TxCell Command 3
This bit is set to enable the BFS_ErrNoData completion
message for the TxCell command to a transmit VC
Descriptor.

EDMA_TxContBuff
ErrNoContBuff on TxCell Command 2
This bit is set to enable the BFS_ErrNoContBuff
completion message for the TxCell command to a
transmit VC Descriptor.

EDMA_TxNotOpen
TxCell Command to a Closed Connection 1
This bit is set to enable the BFS_ErrNotOpen completion
message when a TxCell command is issued to a VC
Descriptor with the VCD_ConClose bit cleared.

EDMA_TxClose
Completion of TxConClose Command 0
This bit is set to enable the completion message for the
TxConClose command to a transmit VC Descriptor.

5-56 Enhanced DMA

5.5.3 EDMA Bus Error Register

The EDMA_BusErr register is used to determine the cause of the
IntEDMA_BusErr interrupt (see Section 4.8.1, “External Nonvectored
Interrupts”) and has the fields shown in Figure 5.29. The register is at
address 0xB800.00E3.

Figure 5.29 EDMA_BusErr Register

PCI Master [1:0]
Current PCI Bus Master [7:6]
These bits indicate which ATMizer II+ engine is the cur-
rent PCI Bus master as follows:

Secondary Master [1:0]
Current Secondary Bus Master [5:4]
These bits indicate which ATMizer II+ engine is the cur-
rent Secondary Bus master as follows:

7 6 5 4 3 2 1 0

PCI Master Secondary Master R EDMA_ErrBus EDMA_ErrAddr

Default Value and Read/Write Status

0x00

Read Only

PCI Master [1:0] Definition

0b00 Port idle

0b01 Tx Engine

0b10 Rx Engine

0b11 Buff Engine

Sec. Master [1:0] Definition

0b00 Port idle

0b01 Tx Engine

0b10 Rx Engine

0b11 Buff Engine

AAL5 Mode Operation 5-57

R Reserved [3:2]
Not used in the L64364.

EDMA_ErrBus
Bus Error 1
This bit is set when the EDMA has a bus error.

EDMA_ErrAddr
Address Error 0
This bit is set when the EDMA has an address error.

5.6 AAL5 Mode Operation

The EDMA is a custom Segmentation and Reassembly multiprocessor
that executes a complex microcoded program. This section explains the
operation of the EDMA using a stylized pseudo-code.

To simplify the description, the pseudo-code does not handle the case
when the CS-PDU payload is fragmented between multiple buffers. The
hardware EDMA module handles that case transparently.

5.6.1 Transmit Cell Processing Requests

The EDMA TxCell Processor retrieves a VC Descriptor Number (ConNum)
and a Cell Number (CellNum) from the EDMA TxCell Request Queue.

1. read VC Descriptor
2. if BuffDone
3. insert cell header with EOM
4. clear cell bytes 4 to 45
5. place CS-PDU payload length in bytes 46-47
6. place final crc32 in bytes 48-51
7. send cell out
8. clear BuffDone bit
9. delink current buffer
10. return current buffer to Completion Queue
11. if next buffer present
12. install next buffer
13. exit
14. if no buffer installed
15. exit

5-58 Enhanced DMA

16. N = min(48, Nbytes)
17. transfer N bytes from buffer to cell and update crc32
18. if current buffer exhausted
19. if N > 40
20. insert cell header, no EOM
21. fill rest of the cell with AAL5Pad byte
22. send cell out
23. set BuffDone bit
24. else
25. insert cell header with EOM
26. fill cell bytes with AAL5Pad till byte 45
27. place CS-PDU payload length in bytes 46-47
28. place final crc32 in bytes 48-51
29. send cell out
30. delink current buffer
31. return current buffer to Completion Queue
32. if next buffer present
33. install next buffer
34. else
35. insert cell header, no EOM
36. send cell out
37. update VC Descriptor

Lines 2–13 – handle the case where the entire CS-PDU payload was
sent, except a cell with padding and a CS-PDU trailer still needs to be
sent.

Lines 16–17 – transfer the payload from a buffer to the Cell Buffer
Memory.

Lines 20–23 – handle the case where the CS-PDU trailer would not fit
in the current cell.

Lines 25–33 – process the case where the trailer fits and an EOM cell
should be sent.

Delinking the current buffer operation (line 30) consists of advancing the
CurrBFD index to point to the following Buffer Descriptor. Installing the
next buffer (line 33) consists of copying the BuffSize and pBuffData
fields from the Buffer Descriptor to the VC Descriptor and performing
various initialization routines.

AAL5 Mode Operation 5-59

Note: The EDMA does not modify Buffer Descriptors for the
transmit direction. In particular the NextBFD field in the
Buffer Descriptor returned to the EDMA Completion Queue
contains a possibly invalid pointer to the next Buffer
Descriptor.

5.6.2 Receive Cell Processing Requests

The EDMA RxCell Processor retrieves the VC Descriptor Number
(ConNum) and a Cell Number (CellNum) from the EDMA RxCell Request
Queue.

1. read VC Descriptor
2. if no buffer installed
3. if buffer available
4. install buffer
5. else
6. pull buffer from small free buffer list
7. install buffer
8. read cell header from Cell Buffer Memory
9. set N = 48
10. if an EOM cell
11. read expected payload length from the cell
12. if expected payload length different from accumulated
13. return buffer with error status
14. compute N (number of bytes in cell payload)
15. read expected crc32
16. if Number-Of-Bytes-In-Buffer + N > Buffer Size
17. delink current buffer
18. return the current buffer in completion queue
19. if next buffer available
20. install next buffer
21. else
22. pull buffer from large free buffer list
23. install buffer
24. transfer N payload bytes to buffer
25. if EOM cell
26. update crc32 with padding and length
27. check crc32 against expected and set error codes
28. delink current buffer
29. return current buffer

5-60 Enhanced DMA

Lines 2–8 – process the case where the cell is the first cell of the
payload and the receiving buffer is not yet available. Line 8 checks
whether the current cell is a continuation cell or an EOM cell.

Line 9 – the expected number of bytes to transfer is preset to 48 for a
continuation cell. For an EOM cell, the EMDA retrieves the payload
length and the expected CRC32 from the cell and then computes the
number of bytes to transfer based on the payload length. The expected
payload length is compared with the accumulated length to detect lost
cells.

Lines 16–23 – check whether there is enough space in the current
buffer to transfer the cell payload and, if necessary, returns the current
buffer to the completion queue and opens a new buffer.

Line 24 – the EDMA transfers the cell payload and performs CRC32
checks for EOM cells.

The EDMA modifies Buffer Descriptors for the receive direction. It inserts
all status codes in the BFD_Ctrl field, places the Connection Number in
the ConNumfield, and writes the number of bytes received in the
BuffSize field.

5.6.3 Free Buffers

The EDMA maintains twelve lists of buffers, six pairs of Small Free Buffer
Lists and Large Free Buffer Lists. The buffers from a free list are used in
the receive direction if the CS-PDU needs to be reassembled and there
is either no space in the current buffer or no buffer is attached.

A buffer from the Small Free Buffer List is used at the beginning of the
CS-PDU. If additional buffers are required they are taken from the Large
Free Buffer List. The Rx VCD has a field that indicates which free list
should be accessed when a buffer is required. The Free Buffer Lists are
initialized by the EDMA_Lbuff0–5 and EDMA_Sbuff0–5 registers.

Buffers are returned to a free list whenever the BFS_BuffFree bit in the
EDMA_Buff register (page 5-26) is set. The EDMA examines the
BFS_BuffLarge and the BFS_FreeSel bits in the EDMA_Buff register to
decide which buffer list it should use. A free buffer is always inserted at
the beginning of the list and is the first one reused. This arrangement is
different from the instance when a buffer is attached to a VC Descriptor

AAL5 Mode Operation 5-61

where it is appended to the tail of the list. However, appending to the end
of a list requires two pointers, a head and a tail pointer. For free buffers,
the list order is not important and one pointer can be omitted.

The EDMA places the actual number of received bytes in the BuffSize
field of a Buffer Descriptor upon completion. The Buffer Descriptor is
then typically passed to a host processor and, when the data is
processed, the buffer is returned to a free list. At this point, the APU
would have to insert the original buffer size in the BuffSize field. To
avoid the extra memory access, the EDMA uses the BFD_BuffLarge bit
in the EDMA_Buff register (page 5-26) to determine which free buffer list
to use and it takes the buffer size value from an internal register.

5.6.4 Big Endian and Little Endian

The ATMizer II+ chip operates internally in big endian mode. To facilitate
interfacing with little endian external bus masters, the EDMA_Ctrl register
(page 5-52) contains the EDMA_ByteSwap bit. When this bit is set, the
EDMA swaps bytes for the cell payload transfers (TxCell and RxCell
commands). Figure 5.30 illustrates the byte swapping.

5-62 Enhanced DMA

Figure 5.30 Byte Swapping

5.7 AAL0 Mode Operation

The AAL0 mode can be chosen on a per-VC basis by setting the
VCD_AAL0bit in the VC Descriptor (page 5-11). The AAL0 mode provides
hardware support to implement other ATM Adaptation Layers such as
AAL1 or AAL3/4 with minimum APU intervention.

The main difference between AAL5 and AAL0 modes involves execution
of the Tx/RxCell commands. In the AAL0 mode, the EDMA does not
process the AAL5 CS-PDU trailer. The padding, payload length, and
CRC32 are not appended to or extracted from a cell.

0 1 2 3

0 1 2 3

31 0

Cell Buffer

Port

pBuffData modulo 4 = 0

0 1 2 3

0 1 2 3

31 0

0 1 2 3

0 1 2 3

31 0

Cell Buffer

Port

pBuffData modulo 4 = 1

0 1 2 3

0 1 2 3

31 0

0 1 2 3

0 1 2 3

31 0

Cell Buffer

Port

pBuffData modulo 4 = 2

0 1 2 3

0 1 2 3

31 0

0 1 2 3

3 2 1 0

31 0

0 1 2 3

3 2 1 0

31 0

0 1 2 3

3 2 1 0

31 0

0 1 2 3

3 2 1 0

31 0

0 1 2 3

3 2 1 0

31 0

0 1 2 3

3 2 1 0

31 0

0 1 2 3

0 1 2 3

31 0

Cell Buffer

Port

pBuffData modulo 4 = 3

0 1 2 3

0 1 2 3

31 0

0 1 2 3

3 2 1 0

31 0

0 1 2 3

3 2 1 0

31 0

EDMA_ByteSwap = 0 EDMA_ByteSwap = 1
Big Endian Mode Little Endian Mode

AAL0 Mode Operation 5-63

In the transmit direction, the EDMA copies the cell payload from an
external buffer to Cell Buffer Memory and sets or clears the CDS_BOM
and CDS_EOMbits in the Cell Descriptor (page 6-5). In the receive
direction, the EDMA uses the CDS_EOMbit from the Cell Descriptor to
determine if the current cell is an EOM cell. The cell header and Cell
Descriptor are copied from the VC Descriptor or from the current buffer
depending on the value of VCD_Offs field of the VC Descriptor
(Figure 5.31) and on the ACI_CellSize field of the ACI Control register
(page 6-10). The EDMA first copies these values from the VC Descriptor.
However, if the VCD_Offs is sufficiently small, values from the descriptor
for the current buffer overwrite those from the VC Descriptor. In
particular, when VCD_Offs is equal to 0, the whole cell including the Cell
Descriptor, optional tag bytes, and the cell header are copied from the
descriptor for the current buffer.

The unused CRC32field of the VC Descriptor is used to store additional
control information as shown in Figure 5.31 (upper 16 bits).

Figure 5.31 VC Descriptor Control Fields (AAL0 Mode Uses CRC32 Field)

VCD_Tbytes[5:0]
Maximum Transfer Bytes [31:26]
This field specifies the maximum number of bytes to
transfer (transmit direction only).

VCD_Crc10 CRC10 25
This bit is copied to the CDS_Crc10 field of the Cell
Descriptor.

R Reserved 24
Not used in the L64364.

VCD_Offs[5:0] Offset [23:18]
This field specifies the offset from the cell location
beginning where the data transfer should start.

R Reserved [17:16]
Not used in the L64364.

31 26 25 24 23 18 17 16

VCD_Tbytes VCD_Crc10 R VCD_Offs R

5-64 Enhanced DMA

In the receive direction, the EDMA uses the value in the CDS_Tbytes field
of the Cell Descriptor (page 6-5) to determine how many bytes to store
in the buffer. It also uses the CDS_EOMbit from the Cell Descriptor to
determine whether or not the current cell is an EOM cell. In the AAL5
mode, bit 0 of the cell header PTI field is used for the EOM check, and
the number of bytes to transfer is computed based on the payload length
field in the CS-PDU trailer.

In the transmit direction, the EDMA uses the value in the VCD_Tbytes
field as the maximum number of bytes to store in Cell Buffer Memory. If
the current buffer holds a number of bytes (Nbytes field of the VCD) that
is less than or equal to the VCD_Tbytes value and it is the last buffer of
a CS-PDU (BFD_BuffCont bit in the Buffer Descriptor is cleared, see
page 5-19), the EDMA sets the CDS_EOMbit in the Cell Descriptor.
Otherwise, the CDS_EOMbit is cleared. In both cases, the actual number
of bytes transferred is stored in the CDS_Tbytes field of the Cell
Descriptor. The EDMA clears the CDS_Tbytes field in AAL5 mode.

For the transmit direction, if the VCD_Offs field in the VCD is 0, the Cell
Descriptor is copied from the buffer instead of being generated. Similarly,
if the VCD_Offs is less than or equal to the position of the cell header
(that depends on the number of tag bytes), the cell header is copied from
the buffer instead of being copied from the VC Descriptor. This feature
allows complete ATM cells in an external buffer (including the cell
header) to be transferred to the Utopia Bus. For the receive direction,
setting VCD_Offs to a low value allows copying the whole cell (including
the Cell Descriptor and the cell header) to an external buffer.

The AAL0 mode can be used to implement the AAL3/4 operation mode.
For example, to support AAL3/4 transmit operation, the APU:

• Sets the VCD_AAL0bit and VCD_CellHold bit in the VC Descriptor
control field to 1.

• Sets the VCD_Tbytes field to 44.

• Sets the VCD_Offs field to an offset of 10 (assuming the cell size is
52). The offset of 10 is needed to skip over the Cell Descriptor
(4 bytes), the cell header (4 bytes), and the SAR-PDU header
(2 bytes).

L64364 ATMizer II+ ATM-SAR Chip 6-1

Chapter 6
ATM Cell Interface

This chapter describes the ATM Cell Interface and includes the following
sections:

• Section 6.1, “ACI Overview,” page 6-2

• Section 6.2, “Cell Size and Layout,” page 6-4

• Section 6.3, “Cell Descriptor,” page 6-5

• Section 6.4, “Memory-Mapped ACI Registers,” page 6-9

• Section 6.5, “Cell Buffer Manager,” page 6-18

• Section 6.6, “ACI Receiver,” page 6-21

• Section 6.7, “ACI Transmitter,” page 6-25

• Section 6.8, “Polling Scheme,” page 6-29

• Section 6.9, “Loopback Mode,” page 6-29

• Section 6.10, “Utopia Interface,” page 6-30

Important: Register bits and fields labeled “Reserved” are don’t cares.
Descriptor bits and fields labeled “Reserved” should not be
modified.

6-2 ATM Cell Interface

6.1 ACI Overview

The ATM Cell Interface (ACI) handles the transfer of cells between the
Cell Buffer Memory (CBM) and the Utopia Port. A block diagram of the
ACI is shown in Figure 6.1.

The Utopia Port complies with The ATM Forum Utopia Level 2, v1.0,
multi-PHY specification. The port operates at 50 MHz with 8-bit data
buses and cell-level handshaking.

The ACI includes the following key elements:

• Cell Descriptor

• Memory-Mapped Registers

• Cell Buffer Manager

• ACI Transmitter

• ACI Receiver

The ACI Transmitter retrieves cells built in Cell Buffer Memory by the
EDMA or the APU and sends them, one byte at a time, to a selected
Physical Layer (PHY) device. The transmitter can be programmed to
generate and insert the Header Error Correction (HEC) byte and to
generate and append the CRC10field.

The ACI Receiver uses a programmed priority scheme to decide which
physical device will be serviced in the current cell slot. Then the ACI
receives the cell, one byte at a time, and places it in Cell Buffer Memory
for further processing by the EDMA or the APU. The receiver can be
programmed to verify the HECbyte and CRC10.

Both the transmitter and the receiver may operate as either a Utopia
master or slave device.

The ACI uses a 4 byte Cell Descriptor placed in front of a cell in Cell
Buffer Memory to manage the transmit and receive operations.

ACI Overview 6-3

Figure 6.1 ACI Block Diagram

PCI Interface

Secondary Bus
Memory Controller

Primary Port Secondary Port

4 Kbytes
Cell Buffer
Memory

Scheduler TimerEnhanced

Clock
PLL

Local BusPCI Bus

Utopia Bus

DMA UnitUnit

I/D
Cache APU

Cell Buffer
Manager

ACI
Transmitter

ACI
Receiver

AddrData

ATM

Interface
Cell

6-4 ATM Cell Interface

6.2 Cell Size and Layout

Cell size on the Utopia Bus (52-, 56-, 60-, or 64-bytes) is set using the
ACI_CellSize field in the ACI_Ctrl register (page 6-10). Since a cell
address in CBM must be aligned on a word boundary (4 bytes) and the
first 4 bytes are always occupied by a Cell Descriptor, the possible cell
sizes in the Cell Buffer Memory are 56-, 60-, 64-, and 68-bytes as shown
in Table 6.1.

Figure 6.2 illustrates the cell layout. The first 4 bytes of a cell location are
used for the Cell Descriptor that is not present on the Utopia Bus. The
following 12 bytes are used for the optional tag bytes. Then the next
4 bytes contain the cell header and the last 48 bytes are for the cell
payload.

You can program the ACI cell size to support applications with extra
header fields. These extra fields use tag bytes to convey additional
information.

Table 6.1 Cell Size

ACI_CellSize Bits
Cell Size on Utopia

(bytes)
Cell Size in CBM

(bytes)

0b00 52/53 56

0b01 56/57 60

0b10 60/61 64

0b11 64/65 68

Cell Descriptor 6-5

Figure 6.2 Cell Layout

6.3 Cell Descriptor

The ACI uses a 4 byte Cell Descriptor to manage transmit and receive
operations. As shown in Figure 6.2, the Cell Descriptor is located at the
front of the cell in CBM. Figure 6.3 shows the Cell Descriptor format; the
text that follows Figure 6.3 defines the Cell Descriptor fields.

Figure 6.3 Cell Descriptor Format

R Reserved [31:30]
Not used in the L64364.

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Cell Size = 60 bytes

Cell Size = 56 bytes

Cell Size = 52 bytes

0

4

8

C

10

Address in
Cell Buffer

Byte Order
on Utopia

Cell Cell
Header

Cell
PayloadDescriptor

Tag
Bytes

14

18

1C

20

24

28

2C

30

34

38

3C

0 1 2 3

4 5 6 7

8 9 A B

C D E F

0

4

8

C

10

14

18

1C

20

24

28

2C

30

34

0

4

8

C

10

14

18

1C

20

24

28

2C

30

34

38

0 1 2 3

4 5 6 7

8 9 A B

C D E F

0 1 2 3

4 5 6 7

8 9 A B

C D E F

0 1 2 3

4 5 6 7

8 9 A B

0 1 2 3

4 5 6 7

8 9 A B

C D E F

0 1 2 3

4 5 6 7

8 9 A B

C D E F

0 1 2 3

0 1 2 3

4 5 6 7

8 9 A B

C D E F

0 1 2 3

4 5 6 7

8 9 A B

C D E F

0 1 2 3

4 5 6 7

8 9 A B

C D E F

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

8 9 A B

C D E F

0 1 2 3

4 5 6 7

8 9 A B

C D E F

0 1 2 3

4 5 6 7

8 9 A B

C D E F

0 1 2 3

4 5 6 7

8 9 A B

C D E F

0

4

8

C

10

14

18

1C

20

24

28

2C

30

34

38

3C

40

Cell Size = 64 bytes

31 30 29 18 17 16 15 10 9 8 7 6 5 4 0

R CDS_Next R CDS_TBytes CDS_
Crc10

CDS_
Par

CDS_
BOM

CDS_
EOM

CDS_
Len

CDS_
PHY

6-6 ATM Cell Interface

CDS_Next[11:0]
Next Free Cell [29:18]
The Cell Buffer Manager uses this field to build the
Receive FIFO, Transmit FIFO, Error FIFO, and the Cell
Free List as explained in Section 6.5, “Cell Buffer
Manager” page 6-18.

R Reserved [17:16]
Not used in the L64364.

CDS_TBytes[5:0]
Number of Valid Data Bytes (Transmit) [15:10]
The ACI uses this field in the transmit direction to
determine how many bytes of cell data are valid. If this
field is other than zero, the ACI reads CDS_TBytes bytes
of cell payload from Cell Buffer Memory and transfers it
to the Utopia Bus. The remaining bytes (48 -CDS_TBytes)
of the cell payload are not read from Cell Buffer Memory;
instead, they are replaced by a constant value equal to
the value of the ACI_ClearBytes register. The
ACI_ClearBytes register defaults to a value of zero.

If the CDS_Crc10 bit is set, the last 2 bytes are not
cleared. The correct CRC10 value is still inserted in the
last 10 bits of the cell (taking into account the cleared
bytes of the cell payload) and the preceding 6 bits remain
unchanged.

When the CDS_TBytes is cleared, the entire cell payload
is transmitted. The EDMA clears the CDS_TBytes field in
the AAL5 mode and sets it to the actual number of bytes
transferred in the AAL0 mode.

CDS_Crc10 Crc10 Error 9
In the transmit direction, this bit is set by the APU to tell
the ACI to include CRC10 in the cell. The ACI computes
a CRC10 value over the first 374 bits of the cell payload
and writes the value into the last 10 bits of the payload.
In the receive direction, the ACI calculates a CRC10
value over the first 374 bits and compares it to the value
of the last 10 bits. If they do not match, the ACI sets the
CDS_Crc10 bit to inform the APU. (The ACI has no means
of determining if the last 10 bits are a valid CRC10
value.) If the APU finds that the cell does not contain
CRC10, it can simply ignore the CDS_Crc10 bit.

Cell Descriptor 6-7

CDS_Par Parity Error Detected 8
This bit indicates when a parity error is detected in an
incoming cell. CDS_Par is set whenever a Utopia parity
error occurs, provided the global Utopia parity enable is
set. The ACI_Parity bit in the ACI_Ctrl register
enables/disables Utopia parity.

If the CDS_Par bit is set in the Cell Descriptor, the errored
cell is placed in the ACI Error FIFO which removes the
cell from the data path. Then the APU decides what
action to take. If the ACI_Parity bit is cleared, then
Utopia parity is ignored, the CDS_Par bit is not set, and
the received cells are placed in the Receive FIFO.

The CDS_Par bit is also set by the ACI when the received
cell has an HEC error and the ACI_HEC bit is set. Note
that, even in case of HEC or CRC10 errors, a cell is
always built in the ACI Receive FIFO. The APU may
decide to discard the cell if necessary.

The table below summarizes what happens for each type
of receive error. It also shows the states of the status bits
in which FIFO the ACI places the errored cell for a given
error type.

CDS_BOM and CDS_EOM
Begin/End of Message [7:6]
The EDMA uses these two bits as described in
Section 5.7, “AAL0 Mode Operation.” In the transmit
direction, the EDMA sets the CDS_BOMbit for the first cell
of a CS-PDU and the CDS_EOMbit for the last cell of a
CS-PDU. Single-cell CS-PDUs have both bits set. In the
receive direction and in the AAL0 mode, the EDMA uses
the CDS_EOMbit to determine if the current cell is the last
cell of a CS-PDU. In the receive direction, the CDS_EOM

Error Status Bit Destination FIFO

HEC1 CDS_Par = 1 Receive FIFO

Parity2 CDS_Par = 1 Error FIFO

Short cell CDS_Len = 1 Error FIFO

CRC10 CDS_Crc10 = 1 Receive FIFO

Tx Time-out CDS_Par = 0
CDS_Len = 0

Error FIFO

1. If ACI_HEC is set, otherwise HEC is not checked
2. If ACI_Parity is set, otherwise parity is not checked.

6-8 ATM Cell Interface

bit is ignored in AAL5 mode and the CDS_BOMbit is
ignored in both modes.

CDS_Len Cell Length Error 5
This bit is set to indicate that a cell received from the
Utopia PHY port has a cell length error. This error
condition is generated when a short cell is received by
the Utopia interface.

A short cell error is triggered if a PHY device asserts
RxSOCearly (that is, before the current cell is completely
assembled). The partially assembled cell is placed in the
ACI Error FIFO, which removes the cell from the data
path. The APU can then decide what action to take but,
at a minimum, should return the cell to a free list. If the
free list was empty when the short cell occurred, the
short cell is discarded by the ACI and the current cell is
reused.

CDS_PHY[4:0]
Physical Port [4:0]
The field specifies the PHY port in the Utopia Master
mode. In the transmit direction, the APU or the EDMA
places the address of the transmit port in the CDS_PHY
field. In the receive direction, the ACI Receiver places the
receive port address in the CDS_PHYfield.

Memory-Mapped ACI Registers 6-9

6.4 Memory-Mapped ACI Registers

The memory-mapped registers listed in Table 6.2 provide the mechanism
the APU uses for controlling ACI operations. The APU accesses these
registers at memory address 0xB800.01XX, where XX is specified in the
Offset column.

Table 6.2 Memory Mapped ACI Registers

Name Offset Size R/W Description Initialized

ACI_Ctrl 0x00 16 R/W ACI control field Yes

ACI_FreeList 0x02 16 R/W Beginning of free cell list Yes

ACI_TxTimer 0x04 8 R/W Transmit time-out Yes

ACI_TxSize 0x05 8 R/W Maximum number of cells in Transmit FIFO Yes

ACI_TxLimit 0x06 8 R/W Number of cells in Transmit FIFO to generate
an interrupt

Yes

ACI_RxLimit 0x07 8 R/W Number of cells in Receive FIFO to generate
an interrupt

Yes

ACI_RxMask 0x08 24 R/W Receive polling mask Yes

ACI_Free 0x0C 32 R/W Get or return a free cell location –

ACI_RxRead 0x10 32 R Get cell from Receive FIFO. –

ACI_TxWrite 0x14 32 W Put cell in Transmit FIFO. –

ACI_RxCells 0x18 8 R Number of cells in the Receive FIFO –

ACI_TxCells 0x1A 8 R Number of cells in the Transmit FIFO –

ACI_Error 0x1C 32 R Get a cell from the Error FIFO –

ACI_RxSize 0x20 8 R/W Maximum number of cells in Receive FIFO Yes

ACI_BadHEC 0x26 16 R/W Bad HEC register –

ACI_ClearBytes 0x2B 8 R/W ACI will use this for PAD byte –

ACI_FreeCount 0x2F 8 R/W Count of Free Cells Yes

6-10 ATM Cell Interface

6.4.1 ACI_Ctrl Register

Figure 6.4 shows the format of the ACI_Ctrl register. Its address is
0xB800.0100. The text that follows Figure 6.4 defines the individual bits
and fields in the register. The register is located at address 0xB800.0100.

Figure 6.4 ACI_Ctrl Register

ACI_Reset Reset Transmitter and Receiver 15
This bit is set by PCI_RSTn (see Section 3.2, “PCI
Interface”) or the APU_Reset bit in the XPP_Ctrl register
(page 9-22). When this bit is set, the ACI Transmitter and
Receiver state machines revert to the idle state. This
reset provides a mechanism for recovering from
unforeseen events on the Utopia Bus. The reset does not
clear the Tx and Rx FIFOs.

The reset is asynchronous and does not rely on any
prerequisite conditions or clock transition. Writeable
memory-mapped registers are not reset but the current
state machine process is aborted asynchronously. If this
reset is triggered during system run time, then the APU
must reinitialize other related functional units (such as,
the free list and the FIFO counters).

ACI_DirectPoll
Polling Scheme 14
This bit specifies whether a direct or multiplexed polling
scheme is used. If this bit is set, the ACI uses a direct
polling method with four Clav signals and support for four
slave devices. When this bit is cleared, devices 0 through
23 are polled using Clav[0] as the status line. Note that
the maximum number of slave devices is 24, and that the
ACI does not support multiplexed polling on four Clav
lines.

15 14 13 12 11 10 9 8 7 6 5 4 0

ACI_
Reset

ACI_
DirectPoll

ACI_
Slave

ACI_
FixedPr

ACI_
TxIdle

ACI_
HEC ACI_CellSize R ACI_

Parity
ACI_

LoopBack ACI_PHY

Default Values & Read/Write Status

0x0000

R/W

Memory-Mapped ACI Registers 6-11

ACI_Slave Utopia Bus Master/Slave 13
This bit controls the master/slave operation of the Utopia
Bus. If this bit is cleared, the ACI is the Utopia Bus
master and it performs all the polling of slave devices. If
this bit is set, the ACI is a Utopia slave and it responds
to the ACI physical address (ACI_PHY).

Note: The ACI_LoopBack bit must never be set when the
ACI_Slave bit is set.

In the slave mode, the ACI ignores the CDS_PHYaddress
of the Cell Descriptor and, in the Master mode, it ignores
the ACI_PHY field. In the Master mode, the ATMizer II+
chip emulates an ATM-layer device and in slave mode it
emulates a PHY-layer device, as defined in The ATM
Forum Utopia Level 2, v1.0 specification.

ACI_FixedPr Priority Scheme 12
This bit specifies the priority scheme used in the receive
direction. When this bit is set, the ACI Receiver uses a
fixed priority scheme, where port 0 has the highest
priority and port 23 has the lowest. When this bit is
cleared, a round-robin priority scheme is used.

ACI_TxIdle Idle Cells 11
This bit specifies whether the ACI generates idle cells. If
this bit is set, the ACI Transmitter generates idle cells
whenever the Transmit FIFO is empty. The transmitter
always retrieves the idle cell from cell location 0 and it
always sends the idle cell to PHY address 0.

ACI_HEC HEC 10
This bit specifies whether the ACI should generate or
verify the HEC bit. When this bit is set, the ACI inserts
the HEC byte after the cell header in the transmit
direction. In the receive direction, it computes the HEC
and compares it with the HEC extracted from the cell.
The CDS_Par bit in the Cell Descriptor (page 6-5) is set in
case of errors and the cell is placed in the ACI Receive
FIFO as usual.

6-12 ATM Cell Interface

ACI_CellSize[1:0]
Cell Size [9:8]
These bits specify the cell size to be used as follows:

R Reserved 7
Not used in the L64364.

ACI_Parity Parity 6
When set, this bit specifies a global enable for Utopia
parity generation and error detection. Cells with parity
errors are placed in the ACI Error FIFO.

ACI_Loopback
Loopback Enable 5
This bit enables/disables loopback operation. When this
bit is set, the ACI Transmitter output is connected to the
ACI Receiver input and causes the outgoing cells to
loopback from the transmitter to the receiver. The Utopia
Bus signals are placed in the 3-state mode.

Note: The ACI_LoopBack bit must never be set when the
ACI_Slave bit is set.

ACI_PHY[4:0] Physical Address [4:0]
This field contains the PHY address of the ACI. In slave
mode, the ACI compares incoming addresses with this
field to determine if it is being addressed. This field is
used only in slave mode.

6.4.2 ACI_FreeList Register

The APU uses this register only at initialization to set the beginning of
the free cell list. Since cells must be aligned on a word boundary in Cell
Buffer Memory, the two LSBs of the cell address are always 0b00. The
ACI discards the two LSBs when the APU performs a write operation and
clears the two LSBs when the APU reads the register as shown in
Figure 6.5.

ACI_CellSize[1:0] No. of Bytes in Cell

0b00 52/53

0b01 56/57

0b10 60/61

0b11 64/65

Memory-Mapped ACI Registers 6-13

This register must be initialized to the first cell in the free list before the
ACI_Reset bit in the ACI_Ctrl register is cleared. You can read this
register during normal operation to get a snapshot of the top of the free
list, but you must not write to this register again during normal operation.
Its address is 0xB800.0102.

Figure 6.5 ACI_Free List Register

6.4.3 ACI_TxTimer Register

The format of the ACI_TxTimer register is shown in Figure 6.6. Its
address is 0xB800.0104.

Figure 6.6 ACI_TxTimer Register Format

ACI_TxTimerClockSel
Select Timer Clock [7:5]
This field selects a clock to use for decrementing the
timer. Value 0b000 specifies the system clock; values
between 0b001 and 0b111 specify the time-out event of
the corresponding general-purpose timer.

ACI_TxTimerInit
Timer Initialization Value [4:0]
This field specifies the timer initialization value. If this field
is 0x00, the ACI Transmit Timer does not operate (that is,
cells are never removed from the Transmit FIFO).

15 14 13 2 1 0

Reserved Cell Address 0b00

Default Values & Read/Write Status

0x000

R/W

7 5 4 0

ACI_TxTimerClockSel ACI_TxTimerInit

Default Values & Read/Write Status

0x00

R/W

6-14 ATM Cell Interface

6.4.4 ACI_TxSize Register

The APU accesses this register to set the maximum size of the Transmit
FIFO. This is done to guarantee sufficient free cell locations for the
Receive FIFO. This register is 8-bits wide and is located at address
0B800.0105. It defaults to 0x00 at reset.

6.4.5 ACI_TxLimit and ACI_RxLimit Registers

The values in these registers set the thresholds for generating an
interrupt to the APU based on the number of cells in the Transmit and
Receive FIFOs. When the actual number of cells exceeds the
ACI_RxLimit or drops below ACI_TxLimit , an interrupt is sent to the
APU (if interrupts are enabled). These registers are each 8-bits wide and
are located at addresses 0B800.0106 (Tx) and 0x0B800.0107 (Rx). Both
registers default to 0x00 at reset.

6.4.6 ACI_RxMask Register

Bits 0 to 23 are assigned to PHY devices 0 to 23. When a bit is set, the
corresponding PHY’s CLAV(Cell Available) information is used. When a
bit is cleared, the PHY’s CLAVinformation is ignored. See Section 6.6.3,
“Receive Priority Scheme,” and Section 6.8, “Polling Scheme,” for
information about polling. This register is 24-bits wide and is located at
address 0B800.0108. It defaults to 0x00 at reset.

6.4.7 ACI_Free Register

The APU accesses this register to get a free cell location (when reading)
or to return a cell location to the Free Cell List (when writing). The upper
16 bits are set to 0xB000 when a cell address is returned. This register
is 32-bits wide and is located at address 0B800.010C.

The following read operations from this register will cause the OCA Bus
to stall or time-out:

1. A nonword (32 bit) read.

2. Any type of read with the ACI_Reset bit in the ACI_Ctrl register set.

3. Any type of read with the APU_Reset bit in the APU_AddrMap
register set.

Memory-Mapped ACI Registers 6-15

The following write operations to this register will complete, but they will
be ignored and will not result in any data being written:

1. A nonword (32 bit) write.

2. Any type of write with the ACI_Reset bit in the ACI_Ctrl register set.

3. Any type of write with the APU_Reset bit in the APU_AddrMap
register set.

6.4.8 ACI_RxRead Register

The APU accesses this register to retrieve a received cell from the
Receive FIFO. The register is read-only. This register is 32-bits wide and
is located at address 0B800.0110. The upper 16 bits are set to 0xB000
when a cell address is returned.

The following read operations from this register will cause the OCA Bus
to stall or time-out:

1. A nonword (32 bit) read.

2. Any type of read with the ACI_Reset bit in the ACI_Ctrl register set.

3. Any type of read with the APU_Reset bit in the APU_AddrMap
register set.

6.4.9 ACI_TxWrite Register

The APU writes to this register to place a cell in the Transmit FIFO. The
APU may achieve the same result by issuing a Txcell command with a
null Connection Number to the EDMA. Since cells must be aligned on a
word boundary in Cell Buffer Memory, the 2 LSBs of the cell address are
always 0b00. The ACI discards the 2 LSBs and ignores the upper 18 bits
when the APU performs a write operation as shown in Figure 6.7.

The following write operations to this register will complete, but they will
be ignored and will not result in any data being written:

1. A nonword (32 bit) write.

2. Any type of write with the ACI_Reset bit in the ACI_Ctrl register set.

3. Any type of write with the APU_Reset bit in the APU_AddrMap
register set.

6-16 ATM Cell Interface

The ACI_TxWrite register is located at address 0xB800.0114.

Figure 6.7 ACI_TxWrite Register

6.4.10 ACI_RxCells and ACI_TxCells Registers

The APU reads these registers to check how many cells are currently
present in the Transmit and Receive FIFOs. These registers are
read-only, are each 8-bits wide, and are located at addresses
0xB800.0118 (Rx) and 0xB800.011A (Tx).

6.4.11 ACI_Error Register

The APU uses this register to retrieve cells from the Error FIFO. A read
operation from this register returns a cell address (or zero if the Error
FIFO is empty) and removes the cell from the Error FIFO. Note that cells
may be placed in the ACI Error FIFO in case of parity errors, short cells,
or transmit time-outs. This register is read only, is 32 bits wide, and is
located at address 0xB800.011C. The upper 16 bits are set to 0xB000
when a cell address is returned.

The following read operations from this register will cause the OCA Bus
to stall or time-out:

1. A nonword (32 bit) read.

2. Any type of read with the ACI_Reset bit in the ACI_Ctrl register set.

3. Any type of read with the APU_Reset bit in the APU_AddrMap
register set.

31 14 13 2 1 0

Reserved Cell Address 0b00

Default Values & Read/Write Status

0x0000

Write Only

Memory-Mapped ACI Registers 6-17

6.4.12 ACI_RxSize Register

The APU accesses this register to set the maximum size of the Receive
FIFO. This is done to guarantee sufficient free cell locations for the
Transmit FIFO. The ACI Receiver stops requesting cells from the free list
when the number of cells in the RxFIFO ≥ RxSize . The receive logic may
have prefetched a cell before this condition was met, so it’s possible to
see RxSize + 1 cells in the RxFIFO.

While the last prefetched cell is being received and after it goes into the
RxFIFO, the ATMizer II+ stops polling (Master mode) until the FIFO count
drops below RxSize . In slave mode, the CLAVsignal is driven inactive
until free cells are available.

The default value for this register is 0xFF (256). This value is higher than
the largest possible number of free cells, which means the default
operation is that the Receiver can keep fetching cells until the free list is
empty. This register is R/W, is 8-bits wide, and is located at address
0xB800.0120.

6.4.13 ACI_BadHEC Register

This register is used for diagnostic purposes. The ACI uses this register
to generate bad HEC for the PHY selected in the register. Figure 6.8
shows the contents of the register. It is located at address 0xB800.0126.

Figure 6.8 ACI_BadHEC Register

R Reserved [15:13]
Not used in the L64364.

PHY[4:0] PHY Select R/W [12:8]
This field specifies the PHY for which the bad HEC
should be generated.

15 13 12 8 7 0

R PHY XOR_Data

Default Values & Read/Write Status

0x0000

R/W

6-18 ATM Cell Interface

XOR_Data[7:0]
XOR Data for Generating Bad HEC R/W [7:0]
The data in this field is XORed with the HEC to generate
a bad HEC for the cell.

When the ACI transmits a HEC for the selected PHY, it is XORed with
the XOR_Data field. You can set one or more bits in the XOR_Data field to
generate single or multiple bit errors for software testing. This register
defaults to zero, so no bad HECs is the default operation. An illegal or
unused PHY address in the PHYfield or all zeros in the XOR_Data field
results in this feature being disabled. See Section 6.7.5, “HEC
Generation,” for a more complete description of the ACI_BadHEC
register.

6.4.14 ACI_ClearBytes Register

The ACI uses the pattern given in this register to pad the bytes remaining
in a cell after CDS_TBytes . The remaining bytes of the payload
(48 CDS_Tbytes) are not read from Cell Buffer Memory. Instead, they are
replaced by a constant value equal to the value of the ACI_ClearBytes
register. This is normally used in AAL0 mode only. See also Section 6.3,
“Cell Descriptor.” The ACI_ClearBytes register is R/W, 8-bits wide,
located at 0xB800.012B, and defaults to a value of 0x00.

6.4.15 ACI_FreeCount Register

This register is a software debugging aid. The APU can use this register
to keep track of the number of free cells in CBM. This register is
incremented and decremented by the ACI as cells are added to and
removed from the free list. It is up to you to initialize this register with a
valid number. This register is R/W, 8-bits wide, located at address
0B800.012F, and defaults to a value of 0x00.

6.5 Cell Buffer Manager

The Cell Buffer Manager manages the Free Cell List, the Transmit FIFO,
the Receive FIFO, and the Error FIFO.

The Cell Buffer Manager maintains the Free Cell List using a hardware
register called the ACI_FreeList register. At initialization, the APU must

Cell Buffer Manager 6-19

build a list of free cells by executing a routine similar to that shown in
Section 6.5.1, “Cell Buffer Initialization.”

Cell number 0 is reserved and must never be used except for storing the
idle cell pattern. If the idle cell generation is inhibited, cell location 0 may
be used as scratch-pad APU memory.

6.5.1 Cell Buffer Initialization

The following C code performs the initialization:

1. typedef struct Cell_s {
2. ushort CDS_Next;
3. ushort CDS_Tbytes:6,
4. CDS_Crc10:1,
5. CDS_Par:1,
6. CDS_BOM:1,
7. CDS_EOM:1,
8. CDS_Len:1,
9. CDS_PHY:5;
10.#ifdef CELL_TAG
11. ulong Tag[CELL_TAG];
12.#endif
13. ulong CellHdr;
14. uchar Payld[48];
15. } Cell_t *pCell_t;
16.
17.Cell_t CellBuff[BufferSize];
18.ushort TxHead, TxTail;
19.ushort RxHead, RxTail;
20.ushort FreeList;
21.
22. for (ushort i = 1; i < BufferSize - 1; i++)
23. CellBuff[i].Next = (i + 1) * sizeof(Cell_t);
24.CellBuff[BufferSize - 1].Next = 0;
25.FreeList = 1;

6.5.2 Requesting and Releasing a Free Cell Location

When the APU or the ACI Receiver requests a free cell location, the Cell
Buffer Manager returns the ACI_Free register and reloads the register
with the CDS_Next field of the current Cell Descriptor. If the Free Cell List

6-20 ATM Cell Interface

is empty, the Cell Buffer Manager returns the value zero. This is
illustrated by the following C routine. Note that this routine and the one
in Section 6.5.3, “Inserting and Removing Cells from the ACI FIFO,” are
executed by the Cell Buffer Manager hardware unit and not by the APU.

1. ulong GetFree()
2. {
3. ulong CellNum = FreeList;
4. if (FreeList)
5. FreeList = CellBuff[CellNum].Next;
6. return CellNum;
7. }

When a cell is returned to the Free Cell List the Cell Buffer Manager
executes the following routine:

1. void ReturnFree(ulong CellNum)
2. {
3. CellBuff[CellNum].Next = FreeList;
4. FreeList = CellNum;
5. }

6.5.3 Inserting and Removing Cells from the ACI FIFO

Four registers maintain the Transmit and Receive FIFOs. They are called
the ACI_TxHead, ACI_TxTail, ACI_RxHead, and ACI_RxTail registers. All
four registers are cleared at initialization. The management of the
Transmit and Receive FIFOs is identical.

When a cell needs to be put into a FIFO, the Cell Buffer Manager
executes the following routine:

1. void Put(ulong CellNum)
2. {
3. if (Tail != 0)
4. CellBuff[Tail].Next = CellNum;
5. else
6. Head = Tail = CellNum;
7. CellBuff[CellNum].Next = 0;
8. }

When a cell needs to be removed from a FIFO, the Cell Buffer manager
executes the following routine:

ACI Receiver 6-21

1. ulong Get()
2. {
3. ushort CellNum = Head;
4. if (Head)
5. Head = CellBuff[Head].Next;
6. if (Head == 0)
7. Tail = 0;
8. return CellNum;
9. }

6.5.4 Setting and Checking FIFO Sizes

Since the APU creates the Free Cell List at initialization, it may decide
to use only part of the Cell Buffer Memory for cell holders and leave the
rest of it as a scratch-pad memory. The size of both FIFOs is therefore
implicitly set during the initialization as described in Section 6.5.1, “Cell
Buffer Initialization.”

Since both FIFOs share the same memory, it may be necessary to limit
the size of the Transmit FIFO to assure a sufficient size for the Receive
FIFO. This can be done by loading the desired maximum size of the
Transmit FIFO into the ACI_TxSize register.

The ACI uses the ACI_TxCells and ACI_RxCells registers to maintain a
count of the number of cells in the Receive and Transmit FIFOs. When
a cell is inserted into a FIFO, the ACI increments the corresponding
counter; when a cell is removed, the counter is decremented. If the
ACI_TxCells counter reaches a count equal to the value in the
ACI_TxSize register, the Cell Buffer Manager returns Cell Number 0 the
next time the APU requests a free cell location. Due to the presence of
the EDMA Request Queue, the Transmit FIFO size can exceed the value
programmed in the ACI_TxSize register by a maximum of four cells.

6.6 ACI Receiver

The ACI Receiver accepts bytes of cell data from the Utopia Receive Bus
and builds cells in Cell Buffer Memory. When a cell arrives, the APU
reads the cell header to determine the Virtual Connection to which the
cell belongs and what operations to perform.

The received cells can be handled in one of four ways:

6-22 ATM Cell Interface

1. Reassembly –the APU issues an RxCell command to the EDMA to
transfer the cell into a buffer.

2. Cell buffer switching –the APU sends the received cell back to the
PHY device (either the same one that sent it or a different one)
without transferring the cell to external memory.

3. External memory switching –the APU issues a command to
transfer the whole cell (including the header) to external memory.

4. Discard –the APU discards the cell and returns the cell number to
the Free Cell List.

6.6.1 ACI Receiver Operations

When the cell arrives from the Utopia Receive Bus, the ACI Receiver
requests a free cell location from the Cell Buffer Manager. The Cell
Buffer Manager gets a cell location from the Free Cell List. In case there
are no more free locations, the ACI Receiver stops cell reception. When
the cell is completely built in Cell Buffer Memory, the ACI Receiver
signals the Cell Buffer Manager to place the cell in the Receive FIFO.

The APU retrieves the cell address from the Receive FIFO by reading the
ACI_RxRead register and the Cell Buffer Manager removes the cell from
the Receive FIFO. The APU then reads the cell header to determine what
operations to perform on the cell. If reassembly into a buffer is required,
the APU issues the RxCell command by writing to the EDMA_RxCell
register, specifying the Connection Number and the Cell Number.

When the EDMA completes a cell transfer and the VCD_CellHold bit in
the VC Descriptor (page 5-11) is cleared, it sends the cell address to the
Cell Buffer Manager to place the cell location in the Free Cell List. If the
VCD_CellHold bit is set, the APU is responsible for returning the cell to
the Free List by writing the cell address into the ACI_Free register.

If the APU decides to send the cell back to the Utopia interface (internal
switching), possibly after modifying the cell header or payload, it places
the cell in the Transmit FIFO by writing the cell address into the
ACI_TxWrite register. Or, the APU issues a TxCell command with a null
Connection Number and the EDMA places the cell in the Transmit FIFO.
This latter method maintains the transmit cell sequence. Then the Cell
Buffer Manager updates the Transmit FIFO pointers.

ACI Receiver 6-23

Finally, the APU can choose to discard the cell by writing the cell address
to the ACI_Free register.

6.6.2 Receive FIFO Status

The APU has several ways to verify the status of the ACI Receive FIFO.

• Reading the ACI_RxCells register (page 6-16) returns the number of
cells in the ACI Receive FIFO.

• Reading the ACI_RxRead register (page 6-15) returns a cell address
(and removes the cell from the FIFO) or returns a value of 0 if the
ACI Receive FIFO is empty.

• The APU_ACI_RxFull bit in the APU_Status register (page 4-108) is
set when the ACI Receive FIFO is full. The FIFO is full when the
number of cells in the FIFO exceeds the value programmed in the
ACI_RxSize register or if all cells in CBM are used up. If the
corresponding interrupt is enabled, this condition generates the
IntACI_RxFull vectored interrupt.

Note: This bit is also set when the ACI_RxSize register
(page 6-17) and the ACI_RxCells register (page 6-16) are
both zero.

• The APU_ACI_RxThrld bit in the APU_Status register is set when
the number of cells in the ACI Receive FIFO exceeds the value
programmed in the ACI_RxLimit register (page 6-14). If the
corresponding interrupt is enabled, this condition generates the
IntACI_RxThrld vectored interrupt.

6.6.3 Receive Priority Scheme

When operating in either a multi-PHY environment or as the Utopia
master, there can be more than one physical device ready to send a cell
at any given time. All PHY devices are polled for cell availability
according to Utopia Level 2 protocol. The ACI Receiver then decides
which port to service based on the port number and the programmed
port priority scheme. The ACI performs port polling for the next cell slot
during the current cell transfer. This overlapping of polling and data
transfers makes it possible for the ACI to receive cells back-to-back.

The ACI_FixedPr bit in the ACI_Ctrl register (page 6-10), determines the
port priority scheme that is used. If this bit is set, the ports are serviced

6-24 ATM Cell Interface

with a fixed priority where port 0 has the highest priority and port 23 the
lowest. In a given polling cycle, if port 0 signals it has a cell to send, it
will always be selected. If port 1 signals it has a cell to send, it will be
selected only if port 0 does not have a cell to send.

When the ACI_FixedPr bit is cleared, a round-robin priority scheme is
used. For the first cell after reset, port 0 has the highest priority and port
23 the lowest. After a port receives service, it then becomes the lowest
priority port and the next port immediately following it (in descending
order with wrap around from 23 to 0) becomes the highest priority. This
process continues indefinitely or until the ACI_FixedPr bit changes.

6.6.4 HEC Processing

The ACI may be programmed to receive cells with or without HEC bytes.
The ACI_Ctrl register (page 6-10) includes a ACI_HEC control bit. If the
ACI_HECbit is set, the ACI expects the received cells to have a HEC byte.

Cells containing a HEC byte have an actual cell size on the Utopia Bus
of 53-, 57-, 61-, or 65-bytes depending on the state of the ACI_CellSize
field in the ACI_Ctrl register.

The first step in HEC processing involves comparing the received cell’s
HEC byte with a computed HEC byte. If an error is detected, the CDS_PAR
bit in the Cell Descriptor (page 6-5) is set. Despite the error, the cell is
always received and placed in the Receive Cell Buffer. Then the APU has
the responsibility of deciding whether to retain or discard a cell that
contains a HEC error.

6.6.5 CRC10 Verifications

The ACI Receiver systematically checks the CRC10 of the cell although
it has no means to detect if the cell actually contains a CRC10. The
result of the check sets or clears the CDS_Crc10 bit in the Cell Descriptor
(page 6-5). In most cases (except for AAL3/4 traffic) the CDS_Crc10 bit is
set because the cell did not contain CRC10 at all. The decision to exploit
this error indicator or not is left to the APU and the cell is always built in
the Receive FIFO.

ACI Transmitter 6-25

6.6.6 Utopia Parity Checking

The ACI may be programmed to receive cells with or without Utopia
parity on a global basis. The ACI_Parity bit in the ACI_Ctrl register
(page 6-10) is used to enable this function.

Parity checking is performed on a per octet basis. If an error is detected,
the cell is placed in the Error FIFO and the CDS_Par bit in the Cell
Descriptor (page 6-5) is set. This capability makes it possible to detect
contention on the Utopia Bus for multi-PHY applications.

6.7 ACI Transmitter

The ACI Transmitter handles cell transfers from the Transmit Cell Buffer
Memory to the Utopia Transmit Bus, one byte at a time. There are three
possible ways for cells to become available for transmission in Cell Buffer
Memory.

1. Segmentation –the APU issues a TxCell command to the EDMA to
build an AAL5 cell in Cell Buffer Memory. After the cell is built, if
CellHold is cleared, the CBM places the cell in the Transmit FIFO.

2. Internal switching –without using external memory, the ACI
Transmitter outputs cells to the Utopia Transmit Bus that were
previously received by the ACI Receiver and placed in the Receive
Cell Buffer Memory.

3. External memory switching –transmits cells that were brought into
the Cell Buffer Memory from external memory in AAL0 mode.

6.7.1 ACI Transmitter Operations

The APU decides which Virtual Connection should be serviced at any
given time. After the APU makes that decision, it requests a free cell
location from the Cell Buffer Manager by reading the ACI_Free register.
If there are no free cells or if the number of cells in the Transmit FIFO
has reached the maximum value programmed in the ACI_TxSize
register, the Cell Buffer Manager returns a value of 0. Otherwise, it
returns a valid cell address. The APU then issues a Txcell command
which specifies the Connection Number and the cell address.

6-26 ATM Cell Interface

The EDMA uses the cell address to build a cell in the Cell Buffer. After
the cell is built, if the VCD_CellHold bit is clear, the EDMA sends the cell
address to the Cell Buffer Manager. The Cell Buffer Manager then places
the Cell in the Transmit FIFO. If the VCD_CellHold bit is set, only the
APU can send the cell address to the Cell Buffer Manager.

The APU can also build the cell using the cell address obtained from the
Cell Buffer Manager. In addition, the APU can place the newly built cell
in the Transmit FIFO either directly by writing into the ACI_TxWrite
register or indirectly by executing a Txcell command with a null
Connection Number.

The ACI Transmitter systematically retrieves cells from the Transmit
FIFO. If the Transmit FIFO is empty, the ACI Transmitter can optionally
send idle cells. If the Cell Buffer Manager provides a valid address, the
ACI Transmitter sends the cell, one byte at a time, to the Utopia interface.
After the cell is transmitted, the ACI Transmitter tells the Cell Buffer
Manager to return the cell to the Free Cell List.

6.7.2 Transmit FIFO Status

The APU has several ways to verify the status of the ACI Transmit FIFO.

• Reading the ACI_TxCells register returns the number of cells in the
ACI Transmit FIFO.

• Reading the ACI_Free register returns a free cell location address
(and removes the cell from the Free Cell List) or, if the ACI Transmit
FIFO is full, it returns a value 0. The FIFO is considered full when
the number of cells in the FIFO exceeds the value programmed in
the ACI_TxSize register.

• The APU_ACI_TxThrld bit in the APU_Status register (page 4-108)
is set when the number of cells in the ACI Transmit FIFO is less than
the value programmed in the ACI_TxLimit register. If the
corresponding interrupt is enabled, this condition generates the
IntACI_TxThrld vectored interrupt.

6.7.3 Idle Cell Generation

If the ACI_TxIdle bit in the ACI_Ctrl register (page 6-10) is set when the
Transmit FIFO becomes empty, the ACI Transmitter retrieves the idle cell
from Cell Number 0 and sends it to the Utopia Transmit Bus. The APU

ACI Transmitter 6-27

must have previously initialized Cell Number 0 with the appropriate bit
pattern to create an idle cell. Idle cells are always transmitted to the PHY
port 0.

If the ACI_TxIdle bit is clear when the Transmit FIFO becomes empty,
the ACI Transmitter stops cell transmission. Transmission resumes only
after the Transmit FIFO becomes nonempty.

Idle cell generation is intended for single PHY applications, and the PHY
port must be mapped to location 0. In a multi-PHY environment, it is
possible to send idle cells to address 0 only. The other PHY addresses
must use PHY devices that are capable of generating the idle cells.

6.7.4 PHY Port Selection and Port Polling

In the Utopia Master mode, the PHY address in the transmit direction is
stored in the VCD_PHYfield of the VC Descriptor (page 5-11). The EDMA
transfers that field into the CDS_PHYfield of the Cell Descriptor (page 6-5).
Based on the contents of the CDS_PHYfield, the ACI Transmitter selects
the port to which it will send the data. Then the ACI Transmitter polls the
selected device to see if it can accept data. If the PHY port is not ready
to accept the data, the ACI Transmitter stalls until the PHY device
becomes ready.

This mechanism can cause head-of-the-line blocking in a multi-PHY
environment. To avoid this situation, use careful cell scheduling so that
long bursts to the same PHY device do not occur.

A timer is used to detect situations where the destination PHY device is
malfunctioning. Upon time-out, the cell at the head of the transmit FIFO
optionally can be discarded.

6.7.5 HEC Generation

When the ACI_HECbit in the ACI_Ctrl register (page 6-10) is set, the ACI
Transmitter generates the HEC byte and inserts it after the cell header.
Depending on the state of the ACI_CellSize bits, the ACI Transmitter
outputs 53-, 57-, 61-, or 65-bytes per cell.

When the ACI_HECbit is cleared, the ACI Transmitter does not generate
an HEC byte and, depending on the state of the ACI_CellSize bits, the
ACI Transmitter outputs 52-, 56-, 60-, or 64-bytes per cell.

6-28 ATM Cell Interface

The ACI_BadHEC register can be used to generate bad HECs for
diagnostic purposes. This feature can be targeted to a specific PHY. The
format of the ACI_BadHec register is shown in Figure 6.8.

6.7.6 CRC10 Generation

When the CDS_Crc10 bit in the Cell Descriptor (page 6-5) is set, the ACI
Transmitter generates 10 bits of CRC10 out of the first 374 bits of cell
payload and replaces the last 10 bits of the cell payload with the
calculated CRC10.

6.7.7 ACI Transmitter Time-Out

When the destination PHY device is not ready to receive a cell, the ACI
Transmitter stalls. To prevent a malfunctioning PHY device from blocking
other PHY devices, the cell at the head of the transmit FIFO is discarded
when the ACI Transmit Timer reaches time-out.

If the ACI Transmitter stalls because a PHY device is not ready, it loads
the contents of the ACI_TxTimer register (see Section 6.4.3,
“ACI_TxTimer Register,” page 6-13) into the ACI Transmit Timer. The
Timer decrements using a system clock or a time-out event of a
general-purpose timer. After the ACI Transmit Timer decrements to 0, the
ACI Transmitter removes the cell at the head of the Transmit FIFO.

The ACI Transmitter places the discarded cell in the ACI Error FIFO from
which the APU may retrieve it by reading the ACI_Error register.
Subsequent sequential cells that are also queued for the same PHY port
are also placed in the ACI Error FIFO, providing Tx_Clav (page 3-12) is
not asserted.

If the ACI Error FIFO is empty when the APU reads the ACI_Error
register, a value of 0 is returned. The ACI Transmitter can optionally send
an interrupt whenever the ACI Error FIFO is not empty.

6.7.8 Utopia Parity Generation

The ACI Transmitter always generates a parity signal. This signal can be
ignored if parity is not used.

Polling Scheme 6-29

6.8 Polling Scheme

In the multi-PHY environment, the Utopia master must poll slave devices
to obtain their status. The L64364 supports two polling methods in the
receive direction:

• Direct polling scheme using four Tx_Clav (page 3-12) signals

• Multiplexed polling using a single Tx_Clav line

The L64364 does not support multiplexed polling on four Tx_Clav lines.

When the ACI_DirectPoll bit in the ACI_Ctrl register (page 6-10) is set,
the ACI polls up to four slave devices in parallel using the four
Tx_Clav[3:0] signals. The ATMizer II+ chip assigns PHY addresses 3
to 0 to the Tx_Clav[3:0] lines respectively. This is not programmable.
When the ACI_DirectPoll bit is cleared, the ACI uses the Tx_Clav[0]
signal to poll PHY devices 0 through 23. In this mode, Tx_Clav[3:1] are
not used.

To avoid polling nonexistent PHY devices in the receive direction, the
ACI_RxMask register (page 6-14) must be correctly programmed. The
ACI Receiver always polls all (4 or 24) PHY devices, however, only if bit
N in the ACI_RxMask register is set will the Tx_Clav bit for PHY N be
processed. If the bit is cleared, the ACI Receiver ignores that device.

6.9 Loopback Mode

The ACI includes a loopback mode which is enabled when the
ACI_LoopBack bit in the ACI_Ctrl register (page 6-10) is set.

Note: The ACI_Slave bit must not be set at the same time as the
ACI_LoopBack bit.

In the loopback mode, the ACI Transmitter acts as a Utopia master and
the ACI Receiver acts as a Utopia slave. As a slave device, the Receiver
responds to any address and ignores the value in the ACI_PHY field of
the ACI_Ctrl register. The value of 0x1F is written to the CDS_PHYfield of
all cells received in loopback mode. The input signals use internal
multiplexers to connect to the appropriate output signals. All external
Utopia signals are 3-stated when in loopback mode.

6-30 ATM Cell Interface

6.10 Utopia Interface

Utopia Interface timing conforms to ATM Forum Utopia Level 2, v1.0. The
L64364 ATMizer II+ chip directly connects to PHY devices (in Master
mode) or ATM Layer devices (in slave mode) that conform either to the
Utopia Level 2 multi-PHY or Utopia Level 1 cell-level handshake
specifications.

6.10.1 Utopia Clocks

The TX_CLKand RX_CLKsignals can be asynchronous to each other and
to the internal system clock. The frequencies of TX_CLKand RX_CLKmust
be no more than 80% of the frequency of the internal system clock. For
example for an internal system clock at 66 MHz, TX_CLKand RX_CLK
frequencies can be no greater than 50 MHz.

6.10.2 Unused Pins

The following signals are 3-stated at various times and therefore need to
be pulled to their inactive states. In Slave mode, or in Master mode when
multiplexed polling is used, the TX_CLAV[3:1] and RX_CLAV[3:1] lines
should be tied to logic or digital ground through 4.7 kΩ resistors. The
TxSOCand RxSOCsignals should be tied to logic or digital ground through
4.7 kΩ resistors. The RxEnbl and TxEnbl signals should be pulled to
logic 1 with resistors.

L64364 ATMizer II+ ATM-SAR Chip 7-1

Chapter 7
Scheduler Unit

This chapter describes the Scheduler Unit and includes the following
sections:

• Section 7.1, “Scheduler Overview,” page 7-1

• Section 7.2, “Priority Mode Operation,” page 7-3

• Section 7.3, “Flat Mode Operation,” page 7-8

• Section 7.4, “Calendar Switching,” page 7-11

• Section 7.5, “Command Execution,” page 7-13

• Section 7.6, “Register Descriptions,” page 7-14

Important: Register bits and fields labeled “Reserved” are don’t cares.
Descriptor bits and fields labeled “Reserved” must not be
modified.

7.1 Scheduler Overview

The Scheduler performs traffic management functions on a large number
of connections with arbitrary cell rates. Traffic management involves
managing a Calendar Table that is typically implemented in an external
memory. The Scheduler executes the following commands when the
APU accesses appropriate memory-mapped registers:

• Schedule (ConNum, T) – Schedules the ConNum for service at cell
slot T.

• Tic – Advances the time to the next cell slot.

• Service – Returns the ConNum to be serviced in the current slot.

• Calendar Switch (Cal_no) – Switches the active calendar to
Cal_no .

• Now(T) – Moves the current slot pointer to a different slot number T.

7-2 Scheduler Unit

Each entry in the Calendar Table corresponds to one cell slot. An entry
contains the Connection Numbers of the Virtual Connections (VCs) to be
serviced in that slot. Since there may be more than one VC scheduled
for service in one cell slot, the VC’s are kept in a linked list using the
NextVCD field of VC Descriptors (page 5-8).

Since each entry in the Calendar Table holds either one or two
Connection Numbers, the required memory size is proportional to the
number of bits required to encode a Connection Number. The Scheduler
can also support a limited number of VC Descriptors located in Cell
Buffer Memory.

The Scheduler operates in one of two modes, Priority mode or Flat
mode. In Priority mode, the connections requiring service are assigned
priorities based on the Class field of the VC Descriptor. There are six
priority levels. Class 0 has the highest priority and Class 5 has the
lowest. In Flat mode, all connections have equal priority and the Class
field is not used.

When a connection is scheduled in a particular slot, it can either be
inserted at the bottom of the list in a given class (tail-insertion) or it can
be inserted at the top of the list in a given class (head-insertion). The
selection can be made on a per-class basis. In Flat mode, since there is
only one class, new connections are put either at the beginning of the
list or at the end.

In Priority mode, the Calendar Table holds only the head of a list of VCs.
The Scheduler must scan the list, resulting in the possibility of long
execution times and many memory accesses. In Flat mode, the Calendar
Table holds pointers to both the head and tail of the list which assures
constant and predictable processing time.

Since retrieving a connection for service and advancing the time are
separate operations, the APU can use the current cell slot for a
connection that is not managed using the Scheduler. In this case,
handling the priorities among connections is totally under software
control.

The scheduler supports four calendars (0 to 3). All four calendars
operate in either Priority or Flat mode. You can switch between calendars
at any time. Once a calendar is selected, all future commands are

Priority Mode Operation 7-3

executed on that calendar until another is selected. The mechanism for
switching calendars is described in Section 7.4, “Calendar Switching.”

All entries in the Calendar Table must be initialized before using the
Scheduler.

7.2 Priority Mode Operation

In Priority mode, the Scheduler handles six priority classes. Class 0 has
the highest priority and the Class 5 the lowest. The first word of the VC
Descriptor contains the priority class and the NextVCD link field as shown
in Figure 7.1.

Figure 7.1 VC Descriptor Format (Word 0)

In Priority mode, each Calendar Table entry holds a pointer to the head
of the VC Descriptor list that is to be serviced in the corresponding cell
slot.

7.2.1 Example of Priority Mode Operation

In Figure 7.2, slot 2 is the current cell slot. Slot 2 holds Connections A
and B, which belong to Class 1.

Figure 7.2 Scheduler Calendar Table in Priority Mode

31 19 18 16 15 0

Reserved Class NextVCD

A

B

2 3 4 5 6 7 8 91

1

1

E
2

C

D

0

3

NOW

F

G

1

3

7-4 Scheduler Unit

To determine which connection needs to be serviced at the current time,
the APU executes a service command. In response to the service
command, the Scheduler returns Connection A and then removes it from
the list by advancing the head pointer to Connection B. In typical
applications, after a connection is serviced, it must be rescheduled to be
serviced again and the APU must issue a schedule command to place
the VC Descriptor back on the list. For example, the intercell gap for
Connection A equals 6, then Figure 7.3 depicts the Calendar Table after
the completion of the schedule command.

Figure 7.3 Priority Mode - Calendar Table

Note that the default mode for the scheduling of a new connection in the
list is tail-insertion. Whenever a new connection is scheduled, it is
scheduled at the end of the corresponding class. You can optionally
program the scheduler to use head-insertion for a particular class. After
Connection A has been serviced and rescheduled, the current time is
advanced and the APU issues the tic command. Then the Scheduler
advances its current index and attaches the unserviced Connection B to
slot 3 as shown in Figure 7.4. Since Connection B has a lower priority
than Connection C, it is inserted after Connection C.

A

B

2 3 4 5 6 7 8 91

1

1
E
2

C

D

0

3

NOW

F

G

1

3
Calendar Table-After Service and Schedule Commands

Priority Mode Operation 7-5

Figure 7.4 Priority Mode - Calendar Table

7.2.2 Service Command

In Priority mode, the Scheduler maintains the head and tail of the
Connection List for each class at the current cell slot in internal registers
for each calendar. This reduces the number of memory accesses. When
the APU reads the SCD_Serv register, the Scheduler returns the head
of the highest priority nonempty list and advances the head pointer to the
next connection. If all lists are empty, the Scheduler returns Connection
Number 0.

In addition, most applications need to know the connection class and
whether the connection has any data to send. To support these
requirements, the Scheduler returns the SCD_BuffPres and SCD_Class
fields along with the Connection Number field as shown in Figure 7.5. It
also reads the next VCD pointed to by the new head pointer to have the
VCD_BuffPres and VCD_Class information ready for the next time the
service command is issued.

A

C

2 3 4 5 6 7 8 91

1

0
E
2

B

D

1

3

NOW

F

G

1

3

Calendar Table - After Service, Schedule, and Tic Commands

7-6 Scheduler Unit

Figure 7.5 Service Command Return Value

7.2.3 Schedule Command

The Scheduler executes the schedule command when the APU writes
the Connection Number and the cell slot number into the SCD_Sched
register. Figure 7.6 shows the format of this register. It is located at
address 0xB800.0210.

Figure 7.6 SCD_Sched Register Format

If Connection Number 0 is specified in the Connection Number field, the
Scheduler uses the last non-null Connection Number of the current
calendar returned by a service command. If a non-null Connection
Number is specified for a schedule command, the Scheduler reads the
corresponding VC Descriptor (page 7-3) to retrieve the connection class;
otherwise, the class is kept in an internal register.

If the slot number in the schedule command is equal to the current time
slot as pointed to by the Now register, the connection is scheduled in the
next slot.

It is preferable to use a null connection number for the schedule
command whenever possible because this produces fewer memory
accesses.

31 30 27 26 24 23 16 15 0

SCD_BuffPres Reserved SCD_Class R Connection Number

Default Value and Read/Write Status

0x0000.0000

Read Only

31 16 15 0

Connection Number Slot Number

Default Values & Read/Write Status

0x0000.0000

Write Only

Priority Mode Operation 7-7

The scheduler can also insert the new scheduled connection at the head
(instead of the tail) of the same class in Priority mode. This option can
be enabled for each class by setting the corresponding Head_Sel bit in
the SCD_HeadSel register (see Figure 7.7). The SCD_HeadSel register
is located at address 0xB800.0243.

Figure 7.7 Format of SCD_HeadSel Register

Referring to Figure 7.8, if head insertion mode is chosen for Class 1, a
command to Schedule connection A in slot 8 will make the Scheduler
schedule connection A before F.

Figure 7.8 Priority Mode - Calendar Table

7 6 5 4 3 2 1 0

R Head_Sel5 Head_Sel4 Head_Sel3 Head_Sel2 Head_Sel1 Head_Sel0

Default Value and Read/Write Status

0x00

R/W

F

B

2 3 4 5 6 7 8 91

1

1
E
2

C

D

0

3

NOW

A

G

1

3

Calendar Table - After Service and Schedule Commands

7-8 Scheduler Unit

7.2.4 Tic Command

When the APU writes to the SCD_Tic register, the Scheduler executes a
tic command. Then the Scheduler advances the internal now index,
wrapping around the Calendar Table if needed. The Calendar end is set
by the contents of the SCD_CalSize register. The Scheduler scans the
list of connections present in the new cell slot and appends the list of
connections to the end of the corresponding priority class list. Note that
the connections from the next slot are always appended to the end of the
corresponding priority class in the current list independent of the
Head_Sel bit. A read of the SCD_Tic register returns the slot number of
the current calendar.

7.3 Flat Mode Operation

In Flat mode, each entry in the Calendar Table holds pointers to both the
head and tail of the list of connections. A schedule command uses a
fixed amount of time, but all connections effectively have the same
priority and the Class field of the VC Descriptor is not used.

7.3.1 Example of Flat Mode Operation

Assuming the same initial situation as the one shown in Figure 7.2,
Figure 7.9 depicts a Calendar Table after execution of the service and
schedule commands.

Figure 7.9 Flat Mode - Calendar Table after Schedule Command

B

2 3 4 5 6 7 8 91

EC

D

NOW

F

A

Calendar Table - After Service and Schedule Commands

G

Flat Mode Operation 7-9

In this case, Connection A was appended after Connection G at the end
of the list in cell slot 8. Since the last connection on a list is available
using the tail pointer, the Scheduler does not have to scan the
connection list at cell slot 8 when executing a schedule command.

After Connection A is serviced and rescheduled, the current time must
be advanced so the APU issues a tic command. The Scheduler
advances its current index and attaches the unserviced Connection B to
slot 3. Since there are no priorities, Connection B is attached in front of
the list. Figure 7.10 shows the Calendar Table after execution of the
service , schedule , and tic commands.

Figure 7.10 Flat Mode - Calendar Table after Tic Command

7.3.2 Service Command

When the APU reads the SCD_Serv register, the Scheduler executes the
service command. Since head and tail pointers of the current cell slot
are held in the Scheduler’s internal registers, the APU read operation is
completed immediately. After the read is completed, the Scheduler
replaces the head pointer with the VCD_NextVCDfield of the returned VC
Descriptor.

In addition, most applications need to know whether the connection to
be serviced has any data to send. To support this requirement, the
Scheduler returns the SCD_BuffPres field along with the Connection
Number as shown in Figure 7.5. It also reads the next VCD pointed to by
the new head pointer to have the VCD_BuffPres and VCD_Class
information ready for the next time the service command is issued.

2 3 4 5 6 7 8 91

NOW
Calendar Table - After Service, Schedule, and Tic Commands

C

EB

D

F

A

G

7-10 Scheduler Unit

Note: The VCD_Class field is passed on as the SCD_Class field in
the return value when Flat mode is selected.

7.3.3 Schedule Command

The Scheduler executes the schedule command when the APU writes
the connection number and the cell slot number into the SCD_Sched
register. Figure 7.6 shows the format of this register. If Connection
Number 0 is specified in the Connection Number field, the Scheduler
uses the last non-null connection number of the current calendar
returned by a service command.

If the slot number in the schedule command is equal to the current time
slot, the connection is scheduled in the next slot.

It is preferable to use a null connection number for the schedule
command whenever possible because this produces fewer memory
accesses.

The scheduler can also insert the new scheduled connection at the head
(instead of the tail) of the list. This option can be enabled by setting the
SCD_HeadSel0 bit of the SCD_HeadSel register. Referring to Figure 7.11,
if head-insertion mode is chosen, a command to schedule connection A
in slot 8 will make the scheduler schedule connection A before F.

Figure 7.11 Flat Mode - Calendar Table with SCD_HeadSel0 Bit Set

F

B

2 3 4 5 6 7 8 91

EC

D

NOW

A

G

Calendar Table - After Service and Schedule Commands

Calendar Switching 7-11

7.3.4 Tic Command

The Scheduler executes the tic command when the APU writes to the
SCD_Tic register (page 7-14). The Scheduler advances its internal index
register, wrapping around the calendar end (the calendar end is set by
the contents of the SCD_CalSize register, page 7-14). The Scheduler
attaches any connections scheduled for service in the next cell slot to the
end of the list in the current cell slot independent of the Head_Sel bit. A
read of the SCD_Tic register returns the current slot number of the
current calendar.

7.4 Calendar Switching

Four calendar tables (0 to 3) are supported in the ATMizer II+. The
Cal_Switch command is used to switch between calendars. The APU
issues the Cal_Switch command by writing to the SCD_CalSwitch
register with a new calendar number in the Cal_no field. If, however, the
new calendar number is the same as the old calendar, there is no
calendar switching. The format of the SCD_CalSwitch register is shown in
Figure 7.12. The command only switches between calendars; it does not
advance any pointers in the new or old calendar. All commands issued
prior to the Cal_Switch command are completed before the calendar is
switched. The SCD_CalSwitch register is located at address
0xB800.0223.

Figure 7.12 Format of the SCD_CalSwitch Register

Curr_Cal[1:0] Current Calendar Number [7:6]
This field can be read any time to return the current
calendar number.

R Reserved [5:2]
Not used in the L64364.

7 6 5 2 1 0

Curr_Cal R Cal_no

Default Value and Read/Write Status

0x00

Read Only Write Only

7-12 Scheduler Unit

Cal_no[1:0] New Calendar Number [1:0]
This field contains the number of the calendar to which
the Cal_Switch command switches.

When the APU issues the Cal_Switch command with the new calendar
number (Cal_no = 0b00 to 0b11), the Scheduler switches to the new
calendar and the NOW pointer points to the new calendar. For example,
Figure 7.13 shows the NOW pointer pointing to slot a3 of Calendar 0.
After issuing the Cal_Switch command with value 0x01, the NOW
pointer points to b4 of Calendar 1 as shown in Figure 7.14.

Figure 7.13 Flat Mode - Calendar Table 0

Figure 7.14 Flat Mode - Calendar Table 1

After the calendar switch, the next connection that is serviced is X from
calendar 1.

G

B

a2 a3 a4 a5 a6 a7 a8 a9a1

E

C

D

NOW0

F

A

NOW points to a3 of Calendar 0 before Tic command

X
X

b2 b3 b4 b5 b6 b7 b8 b9b1

P

Y
Z

NOW1

Q

Z

b10

NOW pointer points to b4 of Calendar 1

Command Execution 7-13

The current active calendar is indicated in the Curr_Cal field (read only)
of the SCD_CalSwitch register. The Cal_Base , Cal_Size , and Now
pointers must be initialized correctly before switching to a calendar.

Important: The Scheduler operates either in Priority or Flat mode.
Switching calendars does not change the Scheduler mode.
Also, switching calendars does not change the head
selection option of the priority classes.

7.5 Command Execution

The Scheduler starts command execution as soon as the APU reads or
writes the appropriate hardware register. The APU may issue another
command before the Scheduler completes the current one provided the
new command is different from the current one. The Scheduler registers
the new command and then executes it after completing the current
command.

The APU stalls if it issues a command similar to the one currently being
executed or is already registered for execution. To avoid such an APU
stall, you must make sure that the command is not busy. The status of
the SCD_Tic , SCD_Serv, SCD_Sched, and SCD_NowScheduler commands
can be verified by reading the APU_Status register (page 4-108).

The Scheduler implements a command pipe internally in case more than
one command is registered so that commands get executed in the order
they are received. This feature also allows the APU to issue schedule
and tic commands after a service command without checking
Scheduler status.

The Scheduler stores the connection(s) to be serviced in the current cell
slot in its internal registers along with their SCD_BuffPres status bits. In
Flat mode, there is only one connection class per calendar and in Priority
mode there may be up to six connection classes for each calendar.

If the EDMA modifies the VCD_BuffPres bit (page 5-11), the Scheduler
may have an outdated value. To prevent this situation, the EDMA
supplies the Scheduler with the current connection number and the
VCD_BuffPres bit. The Scheduler then compares the connection
numbers in its internal registers for all four calendars and, if necessary,
updates the corresponding SCD_BuffPres bit.

7-14 Scheduler Unit

7.6 Register Descriptions

The Scheduler has the registers listed and briefly defined in Table 7.1.
The APU uses an address of 0xB800.02XX to access the Scheduler
registers. The Offset column in Table 7.1 specifies the value of XX for
each register.

Table 7.1 Scheduler Registers

Name Offset Size R/W Description

SCD_Ctrl 0x00 32 R/W Control Register

SCD_CalSize0 0x06 16 R/W Size of the Calendar Table 0

SCD_Now 0x0A 16 R/W Current Cell Slot Pointer

SCD_Serv 0x0C 32 R Execute service Command

SCD_Sched 0x10 32 W Execute schedule Command

SCD_Tic 0x18 32 R/W Execute tic Command

SCD_CalSwitch 0x23 8 R/W Execute Cal_Switch Command

SCD_CalBase1 0x28 32 R/W Base of Calendar Table 1

SCD_CalBase2 0x2C 32 R/W Base of Calendar Table 2

SCD_CalBase3 0x30 32 R/W Base of Calendar Table 3

SCD_CalSize1 0x36 16 R/W Size of the Calendar Table 1

SCD_CalSize2 0x3A 16 R/W Size of the Calendar Table 2

SCD_CalSize3 0x3E 16 R/W Size of the Calendar Table 3

SCD_HeadSel 0x43 8 R/W Head Insertion Selection

SCD_Err 0x47 8 R Error Register

SCD_Class0 0x48 32 R Head and Tail of Priority Class 0 of Current Calendar

SCD_Class1 0x4C 32 R Head and Tail of Priority Class 1 of Current Calendar

SCD_Class2 0x50 32 R Head and Tail of Priority Class 2 of Current Calendar

SCD_Class3 0x54 32 R Head and Tail of Priority Class 3 of Current Calendar

SCD_Class4 0x58 32 R Head and Tail of Priority Class 4 of Current Calendar

SCD_Class5 0x5C 32 R Head and Tail of Priority Class 5 of Current Calendar

Register Descriptions 7-15

7.6.1 Scheduler Control Register

The Scheduler Control register (SCD_Ctrl) provides information needed
to calculate the VC Descriptor address and the Calendar Entry address.
As shown in Figure 7.15, the SCD_Ctrl register includes the base
address of Calendar Table 0 (SCD_CalBase0), the Scheduler operating
mode (SCD_FlatMode), and the number of VCDs stored in CBM
(SCD_VCDinCB).

Figure 7.15 Scheduler Control Register Format

The Scheduler operates in the Flat mode when the SCD_FlatMode bit is
set and in the Priority mode when the SCD_FlatMode bit is cleared.

7.6.2 Calendar Size Register

The Scheduler’s Calendar Size (SCD_CalSize0–3) registers program the
sizes of the Calendar Tables in units of cell slots. The memory required
to store a Calendar Table is computed as follows:

Memory (bytes) = SCD_CalSize * (2 + 2 * SCD_FlatMode)

7.6.3 SCD_Now Register

The SCD_Now register contains the current cell slot number. The
Scheduler uses the current cell slot number, which is also referred to as
the Calendar Index or the Now Index, to calculate the address of the
Calendar Table Entry.

The Now Index resets to zero after reaching a value equal to that in the
SCD_CalSize register minus 1. The APU may read the SCD_Now
register to obtain the value of the Now Index.

The APU may write to the SCD_Now register to change the Calendar
index. The Scheduler then reinitializes the internal head and tail pointer

31 24 23 22 20 19 0

SCD_VCDinCB SCD_FlatMode R SCD_CalBase0

Default Value and Read/Write Status

0x0000

R/W

7-16 Scheduler Unit

registers with the connection numbers from the new cell slot in the
current calendar. The Scheduler uses double buffering for the SCD_Ctrl,
SCD_CalBase1-3, and SCD_CalSize0-3 registers and the values written
into these registers are not used until after a write operation to the
SCD_Now register.

7.6.4 SCD_Serv, SCD_Sched, and SCD_Tic Registers

The APU controls Scheduler operation by accessing the SCD_Serv,
SCD_Sched, and SCD_Tic registers. When the APU reads the
SCD_Serv register, the Scheduler executes the service command (see
Section 7.2.2, “Service Command,” for Priority mode and Section 7.3.2,
“Service Command,”) for Flat mode. To schedule a connection for
service, the APU writes the connection number and the cell slot number
into the SCD_Sched register (see Section 7.2.3, “Schedule Command,”
for Priority mode and Section 7.3.3, “Schedule Command,” for Flat
mode). To execute a tic command, the APU writes to the SCD_Tic
register (see Section 7.2.4, “Tic Command”). A read from the SCD_Tic
register returns the NOW pointer of the current calendar. See
Section 7.4, “Calendar Switching,” for selecting different calendars.

7.6.5 SCD_HeadSel Register

The SCD_HeadSel register is used to set the head insertion selection for
each class in Priority mode and in Flat mode (see Section 7.2.3,
“Schedule Command” and Section 7.3.3, “Schedule Command.”)

7.6.6 SCD_Err Register

The SCD_Err register holds the error conditions in the operation of the
Scheduler. The error bits are set and nonvectored interrupt
IntSCD_BusErr is issued if the interrupt is enabled. A write to the register
is ignored. The bits can be cleared after they are set only by setting the
APU_Reset bit in the APU_AddrMap register (page 4-99).

Register Descriptions 7-17

Figure 7.16 SCD_Err Register

R Reserved [7:3]
Not used in the L64364.

SCD_AddrErr Address Error 2
The Scheduler sets this bit when the address it computes
is not mapped in the ATMizer II+ memory map.

SCD_BusErr Bus Error 1
The Scheduler sets this bit when it encounters a bus
error when accessing the PCI or Secondary Bus.

SCD_ClassErr
Schedule Class Error 0
This bit is set when a schedule command is issued for a
connection with Class 6 or 7.

7.6.7 SCD_Class0–5 Registers

The six SCD_Class0–5 registers hold the Heads and the Tails of the
corresponding priority classes of the current calendar. The Tail field of
a register is valid when the Head field is nonzero. These registers are
read-only and can be used to determine the internal lists held by the
Scheduler. The format of the registers is shown in Figure 7.17.

Figure 7.17 SCD_Class0–5 Registers Format

7 3 2 1 0

R SCD_
AddrErr

SCD_
BusErr

SCD_
ClassErr

Default Value & Read/Write Status

0x0

Read Only

31 16 15 0

Head Tail

Default Value & Read/Write Status

0x0000.0000

Read Only

7-18 Scheduler Unit

7.6.8 Calculating a VC Descriptor Address

As shown in Figure 7.18, the SCD_VCDinCBfield in the SCD_Ctrl register
determines the location of a VC Descriptor. Cell Buffer Memory contains
the VC Descriptor if the Connection Number is less than or equal to the
value in the SCD_VCDinCBfield. The VC Descriptor is located in PCI or
Local Memory if the connection number is greater than the value in the
SCD_VCDinCBfield. In the latter case, the VCD address is computed by
adding the EDMA_VCD_Baseto the Connection Number.

Figure 7.18 VC Descriptor Address Computations

Connection Number 0

VC Descriptor Address

0

in Cell Buffer MemoryConNum ≤ SCD_VCDinCB

ConNum > SCD_VCDinCB

EDMA_VCD_Base 0

0

VC Descriptor
Address in PCI+

0

28 20 5 4 0

31 9 8 0

28 20 5 4 0

Connection Number

or Local Memory

Register Descriptions 7-19

7.6.9 Calculating a Calendar Table Address

The Scheduler computes the address of a Calendar Table Entry using
the SCD_FlatMode bit, the Nowindex, and the SCD_CalBase as shown in
Figure 7.19. If the SCD_FlatMode bit is cleared (Priority mode enabled),
then the Calendar Entry Address is based on the SCD_CalBase and the
Now index (which is shifted left one bit position). If the SCD_FlatMode bit
is set (Flat mode enabled), then the Calendar Entry Address is based on
the SCD_CalBase and the Now index (which is shifted left two bit
positions). The calendars can be located only in Secondary memory or
CBM.

Figure 7.19 Calendar Table Address Computations

0

+
Calendar Entry
Address

0

SCD_FlatMode = 0

00

+
Calendar Entry
Address

0

SCD_FlatMode = 1

0

SCD_CalBase 0

SCD_CalBase 0

28 9 8 0

28 17 1

28 9 0

28 17 2

Calendar Index (Now)

Calendar Index (Now)

16

16 1 0

8

0

(Priority Mode)

(Flat Mode)

7-20 Scheduler Unit

L64364 ATMizer II+ ATM-SAR Chip 8-1

Chapter 8
Timer Unit

This chapter describes the Timer Unit and includes the following
sections:

• Section 8.1, “Introduction,” page 8-1

• Section 8.2, “Timer Clock Selection,” page 8-3

• Section 8.3, “Time-Out Events,” page 8-5

Important: Register bits and fields labeled “Reserved” are don’t cares.
Descriptor bits and fields labeled “Reserved” should not be
modified.

8.1 Introduction

The Timer Unit includes a set of hardware timers and registers that
provide real-time events for the APU. There are eight general-purpose
timers and a Time Stamp Counter implemented in a set of registers. The
Timer Unit registers shown in Table 8.1 are accessible to the APU at
physical base address 0x1800.0280.

8-2 Timer Unit

.

At initialization time, the Time Stamp Counter (TM_TimeStamp register)
has a count of zero. The counter increments once for each timing event
until it reaches a maximum count of 0xFFFF.FFFF and then wraps
around to zero. Each general-purpose timer register (TM_Timer 1
through 8) starts with a value programmed in it and then decrements

Table 8.1 Timer Unit Registers

Name Offset Size R/W Description Init

TM_TimeStamp 0x00 32 R/W Time Stamp Counter 0

TM_Timer1 0x04 8 R/W Timer Value Yes

TM_TimerInit1 0x06 8 R/W Timer Initialization Value 0

TM_Timer2 0x08 8 R/W Timer Value Yes

TM_TimerInit2 0x0A 8 R/W Timer Initialization Value 0

TM_Timer3 0x0C 8 R/W Timer Value Yes

TM_TimerInit3 0x0E 8 R/W Timer Initialization Value 0

TM_Timer4 0x10 8 R/W Timer Value Yes

TM_TimerInit4 0x12 8 R/W Timer Initialization Value 0

TM_Timer5 0x14 8 R/W Timer Value Yes

TM_TimerInit5 0x16 8 R/W Timer Initialization Value 0

TM_Timer6 0x18 8 R/W Timer Value Yes

TM_TimerInit6 0x1A 8 R/W Timer Initialization Value 0

TM_Timer7 0x1C 8 R/W Timer Value Yes

TM_TimerInit7 0x1E 8 R/W Timer Initialization Value 0

TM_Enable 0x20 6 R/W Time-Out Enable Yes

TM_Clear 0x24 6 W Time-Out Clear –

TM_ClockSel 0x28 32 R/W Timer Clock Selection Yes

TM_ClockSel2 0x2C 8 R/W Timer Clock Selection 2 Yes

TM_Timer8 0x30 8 R/W Timer Value 0

TM_TimerInit8 0x32 8 R/W Timer Initialization Value Yes

Timer Clock Selection 8-3

once for each timing event until it reaches a count of zero (times out).
Then the value from the corresponding TimerInit register is loaded into
the timer register.

The clock selection registers (TM_ClockSel and TM_ClockSel2) specify
the timing event for the Time Stamp Counter and each general-purpose
timer register. A timing event can be an external clock, the internal
system clock (see Section 11.1, “System Clock Options”), or a time-out
event of another general-purpose timer.

A time-out event occurs when a general-purpose timer reaches a count
of zero. Time-out events for Timers 1 through 3 and 8 are reported to the
APU using the APU_Status register. The eight general-purpose timers
may be cascaded to achieve higher counts.

8.2 Timer Clock Selection

All timers have input clocks that are selectable using the TM_ClockSel
(Timer Clock Selection) register shown in Figure 8.1. The TM_ClockSel
register is divided into eight 4-bit fields. Bits [3:0] select the clock and
time-out event for the Time Stamp Counter. Bits [31:4] select the clocks
and events for general-purpose timers 1 through 7. Bits [3:0] of
TM_ClockSel2 register are used to select the clock and time-out event
for timer 8. Note that the time-out event of timer 8 cannot be used as a
clocking event for timers 1–7 and the Time Stamp Counter.

Both registers default to all zeros and both are read/write registers. The
TM_ClockSel register is located at address 0xB800.02A8 and the
TM_ClockSel2 register is located at address 0xB800.02AC.

Figure 8.1 Timer Clock Selection Registers Format

Timer 7

31

Timer 6 Timer 5 Timer4 Timer 3 Timer 2 Timer 1 TimeStamp
Counter

28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

TM_

23

TM_EventSel[M]

22 20

ExtClock[M]

037 4

R Timer 8

TM_ClockSel2 Register

8-4 Timer Unit

8.2.1 TM_ClockSel Register

TM_ExtClock[M]
Timer External Clock Select [31,27,...,3]
When set, an external clock is used as the clock for timer
M or the Time Stamp Counter; when cleared, the internal
system clock (see Section 11.1, “System Clock Options”)
is used. The L64364 has an external clock input for this
purpose.

TM_EventSel[M]
Timer Event Select [30:28],[26:24],...,[2:0]
The values in these 3-bit fields determine when the
selected clocks decrement a general-purpose timer or
increment the Time Stamp Counter. When set to 0b000,
every selected clock pulse is used. When set to 0b001
through 0b111, the time-out event for the corresponding
timer gates a selected clock pulse to update the
timer/counter. For example, if Timer 2 is set to 1, Timer 2
is decremented once for every time-out of Timer 1.

Notes: The time-out event of Timer 8 cannot be used as a clocking
event for Timers 1–7 or the Time Stamp Counter.

Since an output of any general-purpose timer (except
Timer 8) may be used as an input of another timer, it is
possible to create a loop that will result in all of the timers
in the loop being stalled. The Timer Unit does not check for
this condition.

8.2.2 TM_ClockSel2 Register

R Reserved [8:5]
Not used in the L64364.

Timer 8 Timer 8 Clock and Event Select [4:0]
When bit 3 is set, an external clock is used to toggle
Timer 8. When bit 3 is cleared, the system clock is used.
Bits [2:0] determine when the selected clock decrements
Timer 8. When set to 0b000, every selected clock pulse
is used. When set to 0b001 through 0b111, the time-out
event for the corresponding timer gates a selected clock
pulse to update Timer 8.

Time-Out Events 8-5

8.3 Time-Out Events

The APU_Status register (page 4-108) records unmasked time-out
events for Timers 1 through 3 and Timer 8. See Section 4.8.5, “Status
Checking.”

Since general-purpose timers may be cascaded, it is often unnecessary
to report time-out events of all timers. Time-out events for only timers 1
to 3 and timer 8 are provided. The TM_Enable register may be used to
mask some of them. Bits [3:1] enable Timers 3 to 1 time-outs and bit 0
enables Timer 8. When a bit is cleared, the time-out event is not
registered in the APU_Status register; when the bit is set, the event is
registered and can generate an interrupt.

The APU may read the APU_Status register to check which timer has
timed-out. The read operation does not change the contents of the
register. The APU cannot directly set or clear a bit in the APU_Status
register. To clear time-out event bits [3:0] of the APU_Status register, the
APU must access the TM_Clear register. Writing a one to a bit position
in the TM_Clear register clears the corresponding time-out event bit in
the APU_Status register. Writing zero leaves the bit unchanged.

The APU can access each general-purpose timer register, the
TM_TimeStamp register, and the associated Timer Initialization registers
(see Section 8.1, “Introduction”). The EDMA copies the current value of
the TM_TimeStamp register to a VC Descriptor when it executes a cell
command for the receive direction.

Time-out events for General-Purpose Timers 4 through 7 as well as the
TimeStamp Counter are not recorded in the APU_Status register. These
timers can only be used as part of a wider, cascaded timer.

8-6 Timer Unit

L64364 ATMizer II+ ATM-SAR Chip 9-1

Chapter 9
PCI Interface

This chapter describes the L64364 PCI Interface and contains the
following sections:

• Section 9.1, “PCI Interface Overview,” page 9-1

• Section 9.2, “PCI Configuration Space Registers,” page 9-4

• Section 9.3, “Primary Port Registers,” page 9-21

• Section 9.4, “PCI Slave Transactions,” page 9-29

• Section 9.5, “PCI Master Transactions,” page 9-36

• Section 9.6, “Balancing Bus Usage,” page 9-44

This chapter assumes that the reader is familiar with the contents of the
PCI Local Bus Specification and does not repeat information contained
in that specification.

Important: Register bits and fields labeled “Reserved” are don’t cares.
Descriptor bits and fields labeled “Reserved” should not be
modified.

9.1 PCI Interface Overview

The PCI Interface, illustrated in Figure 9.1, includes the following major
functional units:

• Four FIFOs for PCI Bus read and write transactions:

– PCI Bus Master Read FIFO

– PCI Bus Master Write FIFO

– PCI Bus Slave Read FIFO

– PCI Bus Slave Write FIFO

9-2 PCI Interface

• 17 PCI configuration registers

• Two PCI control registers

• MailBox FIFO

The PCI Interface has the following features:

• Conforms to PCI Local Bus Specification, Revision 2.1.

• Handles 32-bit master and slave transactions at 33 MHz.

• Performs read/write master transactions to/from the APU and EDMA.

• Performs read/write slave transactions to/from the Mailbox FIFO, Cell
Buffer Memory (CBM), and local memory (that is, Secondary Bus
Memory).

• Includes independent master and slave state machines, and four
FIFOs which support interleaving concurrent master and slave PCI
Bus transactions.

• Supports a PCI system architecture based on a producer-consumer
model for optimal PCI Bus performance:

– PCI host (producer) writes ATM transmit payload data to the
L64364 local memory for segmentation (slave write transaction).

– The L64364 writes incoming data (received from the Utopia Bus)
to the PCI host (consumer) using master write transactions.

• Alternatively, the L64364 supports master read and write transfers of
transmit and receive PDUs to/from PCI memory.

• Supports segmentation and reassembly in either PCI memory or the
L64364 local memory.

• The PCI Configuration register may be accessed by both an external
PCI configuration host and the APU. See Section 9.2.20 and
Section 9.2.21 for more details. The L64364 can also drive PCI
configuration cycles.

PCI Interface Overview 9-3

Figure 9.1 PCI Interface Block Diagram

PCI Interface

Secondary
Secondary

4 Kbytes
Cell Buffer
Memory

ATM
Cell

Interface

Scheduler

Timer

Enhanced

Local Bus

PCI Bus

Utopia Bus

DMA

Unit

Unit

APU

Master
Read
FIFO

Master
Write
FIFO

Slave
Read
FIFO

Slave
Write
FIFO

MailBox
FIFOs

Configuration

Registers
Space

Register

Primary Port

Interface

Slave InterfaceMaster Interface
Control

Registers

Bus
Memory

Controller
Port

9-4 PCI Interface

Table 9.1 summarizes the functions and sizes of the FIFOs contained in
the PCI Interface.

9.2 PCI Configuration Space Registers

PCI Configuration Space registers configure and control the PCI
Interface. These registers are accessible through the PCI configuration
space as defined in Figure 9.2 and by the APU at addresses
0xB800.0900 through 0xB800.0944 in the APU hardware register space.

Notes: The APU accesses the registers in big endian format.

It is your responsibility to initialize the SB_64Mbit in the
SP_Ctrl register (affects the PCI Base Address register 2)
and the PCI Subsystem_ID and Subsystem_Vendor_ ID
registers to appropriate values before allowing external PCI
hosts access to the L64364 PCI Configuration Space. See
Section 9.2.21, “Configuration Master Operation” and
Section 9.3.2, “PP_Ctrl Register.”

In addition to the PCI Configuration registers, three other registers
control PCI Interface operation. Maximum burst size on the PCI Bus and
Secondary Bus is set by the APU in the PP_Ctrl register. PCI burst size
is limited to the maximum allowed by the PP_Ctrl register or PCI latency
timer. The amount of data to prefetch for slave read requests is set by
the APU in the PP_SlavePFtch register. The XPP_Ctrl register is
accessible in the PCI memory space and allows a PCI host to control
APU boot and PCI interrupts. These registers are defined in Section 9.3,
“Primary Port Registers.”

Table 9.1 PCI FIFO’s

FIFO Function Size

Master Read APU or EDMA read of PCI memory 32 x 32

Master Write APU or EDMA write to PCI memory 32 x 32

Slave Read PCI read of CBM, Mailbox, or local memory1

1. Only single word reads are allowed to the Mailbox and L64364 registers. The
Slave Read FIFO is provided for local memory and CBM access.

8 x 32

Slave Write PCI write to CBM, Mailbox, or local memory 32 x 32

PCI Configuration Space Registers 9-5

The L64364 supports Type 0 Configuration Space access. Figure 9.2
provides a map of the PCI Configuration Space registers. The shaded
registers are not used by the L64364. If a write transfer to an unused
register occurs, the L64364 handles it as a normal operation but ignores
the data. If a read transfer from an unused register occurs, the L64364
handles it as a normal operation but all the data will be zero.

Note: The little endian format is used in the PCI Configuration
Space registers (that is, byte 0 is the LSB).

Figure 9.2 PCI Configuration Space Registers

The following sections describe the Configuration Space registers.
Registers reset to the default values identified when PCI_RSTn is
asserted. PCI control bits not used by the L64364 are shaded.

31 16 15 0

0x00 Device ID Vendor ID

0x04 Status Command

0x08 Class Code Revision ID

0x0C BIST Header Type Latency Timer Cache Line Size

0x10 Base Address Register 1

0x14 Base Address Register 2

0x18 Base Address Register 3

0x1C Base Address Register 4

0x20 Base Address Register 5

0x24 Base Address Register 6

0x28 Card Bus CIS Pointer

0x2C Subsystem ID Subsystem Vendor ID

0x30 Expansion ROM Base Address

0x34 Reserved

0x38 Reserved

0x3C Max Latency Min Grant Interrupt Pin Interrupt Line

0x40 Reserved Retry Timer TRDY Timer

9-6 PCI Interface

9.2.1 Vendor ID Register

This register, illustrated in Figure 9.3, contains the LSI Logic vendor ID
and is located at Configuration Space address offset 0x00.

Figure 9.3 Vendor ID Register

Vendor_ID[15:0]
PCI Vendor Identification Number [15:0]
The LSI Logic Vendor ID as specified by the PCI Special
Interest Group is 0x102A.

9.2.2 Device ID Register

This register, illustrated in Figure 9.4, contains the device ID for the
L64364 and is located at Configuration Space address offset 0x02.

Figure 9.4 Device ID Register

Device_ID[15:0]
PCI Device Identification [31:16]
The L64364 has a Device ID of 0x0310.

15 0

Vendor_ID[15:0]

Default Value and Read/Write Status

0x102A

R

31 16

Device_ID[15:0]

Default Value and Read/Write Status

0x0310

R

PCI Configuration Space Registers 9-7

9.2.3 Command Register

This register, illustrated in Figure 9.5, contains commands that control the
PCI Interface. It is located at Configuration Space address offset 0x04.

Figure 9.5 Command Register

R Reserved [15:10]
Not used in the L64364.

FBBE Fast Back-to-Back Enable 9
When set, the L64364 is enabled to drive fast
back-to-back transactions.

SERR System Error Enable 8
When set, SERRenables assertion of PCI_SERRnwhen an
address parity error is detected. PER(bit 6) must also be
set to enable parity detection.

WCC Wait Cycle Control 7
The L64364 does not support address/data stepping.
This bit must remain cleared.

PER Parity Error Response 6
When set, PERenables detection of PCI address and
data parity error responses. Per the PCI Local Bus
Specification, all agents are required to generate valid
parity.

When the L64364 detects an address parity error, it
claims the cycle and terminates the transfer with target
abort. If SERR(bit 8) is set, the L64364 also asserts the
PCI_SERRn signal when an address parity error is
detected.

When the L64364 detects a data parity error, it completes
the data transfer and asserts PCI_PERRn and the
IntPCIErr interrupt if the PERbit is set.

15 10 9 8 7 6 5 4 3 2 1 0

R FBBE SERR WCC PER VGA MWIE SCE BME MSE IOSE

Default Value and Read/Write Status

0x000 0x1 0x0

R R/W R R/W R R/W R R/W R

9-8 PCI Interface

VGA VGA Palette Snoop 5
Not used in the L64364. This bit should remain cleared.

MWIE Memory Write and Invalidate Enable 4
Memory write and invalidate is not supported in the
L64364. This bit must remain cleared.

SCE Special Cycle Enable 3
Special cycles are not supported in the L64364. This bit
must remain cleared.

BME Bus Master Enable 2
When set, the L64364 can act as PCI Bus master. When
cleared, the L64364 will not request the PCI Bus. The
L64364 will, however, respond to slave transactions.

This bit is set at initialization.

MSE Memory Space Enable 1
MSEenables the L64364 to respond to slave transactions
targeting the memory space selected by Base Address
Register 1 or Base Address Register 2.

IOSE I/O Space Enable 0
The L64364 does not use I/O Space. This bit must
remain cleared.

9.2.4 Status Register

This register, illustrated in Figure 9.6, indicates the status of the PCI
Interface operations and data. It is located at Configuration Space
address offset 0x06.

Figure 9.6 Status Register

31 30 29 28 27 26 25 24 23 22 21 20 16

DPE SSE RMA RTA STA DEVSEL[1:0] DPED FBBC UDFS 66MC R

Default Value and Read/Write Status

0x00 0x1 0x0 0x1 0x00

R/W R R/W R

PCI Configuration Space Registers 9-9

Note: To clear a R/W bit in the Status register, write a 1 to that
bit position. Writing a 0 to a R/W bit in the Status register
leaves the bit unchanged.

DPE Detected Parity Error 31
DPEis set when address or data parity errors are
detected, independent of the parity enable bits in the
Command register.

SSE Signaled System Error 30
SSE is set when the L64364 asserts the PCI_SERRn
signal.

RMA Received Master Abort 29
RMAis set when the L64364 terminates a transfer with
Master Abort. This condition occurs if PCI_DEVSELn is not
asserted within six PCI clocks from the time the L64364
asserts PCI_FRAMEnduring Master Read or Master Write
transactions.

RTA Received Target Abort 28
The L64364 sets RTAwhen a Master Read or Master
Write transaction is terminated by a Target Abort.

STA Signalled Target Abort 27
The L64364 signals Target Abort by setting this bit only
when it detects an address parity error on an access to
its memory spaces as defined by the Base Address 1
and Base Address 2 registers.

DEVSEL[1:0] DEVSEL Timing [26:25]
DEVSEL[1:0] specifies the maximum number of PCI
cycles required for the L64364 to assert PCI_DEVSELn in
response to PCI_FRAMEnduring Slave Read/Write
transactions. DEVSEL[1:0] is hardwired to 0b01 for
medium timing.

DPED Data Parity Error Detected 24
DPEDis set when the L64364 detects PCI_PERRnasserted
during Master Read or Master Write transactions and the
PERbit (bit 6 in the Command register) is set.

FBBC Fast Back-to-Back Capable 23
The L64364 is Fast Back-to-Back capable. This bit will
always be 1.

9-10 PCI Interface

UDFS User-Defined Features Supported 22
User-Defined Features are not supported in the L64364.
This bit will always be 0.

66MC 66 MHz Capable 21
The L64364 does not support the 66 MHz PCI Bus. This
bit will always be 0.

R Reserved [20:16]
Not used in the L64364.

9.2.5 Revision ID Register

This register, illustrated in Figure 9.7, contains the current revision ID for
the L64364 and is located at Configuration Space address offset 0x08.

Figure 9.7 Revision ID Register

REV_ID[7:0] Revision ID [7:0]
The current L64364 revision ID, 0x03, is loaded into this
register at boot up.

9.2.6 Class Code Register

This register, illustrated in Figure 9.8, contains the ATM controller class
codes for the L64364. It is located at Configuration Space address offset
0x09.

Figure 9.8 Class Code Register

7 0

REV_ID[7:0]

Default Value and Read/Write Status

0x03

R

31 24 23 16 15 8

BCC[7:0] SCC[7:0] SPI[7:0]

Default Value and Read/Write Status

0x02 0x03 0x00

R

PCI Configuration Space Registers 9-11

BCC[7:0] Base Class Code [31:24]
The L64364 is classified as a network controller.
BCC[7:0] is hardwired to 0x02.

SCC[7:0] Subclass Code [23:16]
The subclass code for the L64364 is 0x03, ATM controller.

SPI[7:0] Specific Programming Interface [15:8]
There are no specific programming interfaces defined for
ATM controllers. SPI[7 :0] is hardwired to 0x00.

9.2.7 Cache Line Size Register

This register, illustrated in Figure 9.9, specifies the size of a cache line
and is located at Configuration Space address offset 0x0C.

Figure 9.9 Cache Line Size Register

CLS[7:0] Cache Line Size [7:0]
CLS[7 :0] specifies the number of 32-bit words in the
system cache line. The L64364 uses CLS[7 :0] to
determine whether to issue Memory Read or Memory
Read Line commands on Master Read transactions.

9.2.8 Latency Timer Register

This register, illustrated in Figure 9.10, specifies how long the L64364
retains bus ownership after a Master Read or Write transaction. It is
located at Configuration Space address offset 0x0D.

Figure 9.10 Latency Timer Register

7 0

CLS[7:0]

Default Value and Read/Write Status

0x00

R/W

15 10 9 8

LT[7:2] 0x0

Default Value and Read/Write Status

0x00

R/W R

9-12 PCI Interface

LT[7:0] Latency Timer Value [15:8]
LT[7 :0] specifies the maximum number of PCI clocks
that the L64364 may retain bus ownership after PCI_GNTn
is deasserted on Master Read and Write transfers. The
two LSBs are hardwired to 0 to provide a granularity of
4 clocks.

9.2.9 Header Type Register

This register, illustrated in Figure 9.11, specifies the Header type and is
located at Configuration Space address offset 0x0E.

Figure 9.11 Header Type Register

HT[7:0] Header Type [23:16]
HT[7 :0] is hardwired to 0x00, indicating the L64364
supports Type 0 Configuration Space accesses.

9.2.10 Base Address Register 1

This register, illustrated in Figure 9.12, specifies parameters for Cell
Buffer Memory, Mailbox, and L64364 register addressing. It is located at
Configuration Space address offset 0x10.

Figure 9.12 Base Address Register 1

23 16

HT[7:0]

Default Value and Read/Write Status

0x00

R

31 15 14 4 3 2 1 0

BA1[31:15] R PF1 TYPE[1:0] MSI

Default Value and Read/Write Status

0x000.0000 0x1 0x0

R/W R

PCI Configuration Space Registers 9-13

BA1[31:15] Base Address 1 [31:15]
BA1[31 :15] specifies the PCI Base Address for the
ATMizer’s Cell Buffer Memory, MailBox, XPP_Cntl
register, and APU register space. The L64364 uses
32 Kbytes of PCI memory space for access to these
items.

R Reserved [14:4]
Not used in the L64364.

PF1 Prefetchable 3
The PF1 bit is hardwired to 1 indicating local memory is
prefetchable.

Note: Read accesses to the Mailbox, XPP_Ctrl register, and APU
registers is limited to one word at a time. Read accesses
to CBM prefetch the number of words specified in the
PP_SlavePFtch register. See Section 9.3.3, “Primary Port
Slave Prefetch Register.”

TYPE[1:0] Base Address Type [2:1]
TYPE[1 :0] is hardwired to 0b00, indicating that Base
Address register 1 can be located anywhere in the 32-bit
PCI memory space.

MSI Memory Space Identifier 0
MSI is hardwired to 0, indicating that Base Address 1 is
in Memory Space rather than I/O Space.

9.2.11 Base Address Register 2

This register, illustrated in Figure 9.13, specifies parameters for local
memory addressing. It is located at Configuration Space address
offset 0x14.

Figure 9.13 Base Address Register 2

31 24 23 4 3 2 1 0

BA2[31:24] R PF2 TYPE[1:0] MSI

Default Value and Read/Write Status

0x000.0000 1 0x0

R/W R

9-14 PCI Interface

BA2[31:24] Base Address 2 [31:24]
BA2[31 :24] specifies the PCI Base Address for local
memory connected to the ATMizer’s Secondary Bus.
From 16 Mbytes to 64 Mbytes of local memory is
accessible by the PCI Bus under control of the SB_64Mbit
in the SP_Ctrl register (page 10-5).

When SB_64Mis cleared, a 16 Mbyte local memory map
is selected and BA2[31:24] define the PCI Base
Address. If SB_64Mis set, a 64 Mbyte local memory map
is selected and BA2[31:26] define the PCI Base
Address. SB_64Mshould be programmed before Base
Address Register 2 is accessed.

R Reserved [23:4]
Not used in the L64364.

PF2 Prefetchable 3
The L64364 allows multiple-word bursts from local
memory. The PF2 bit is hardwired to 1, enabling local
memory to be prefetchable.

Note: Read accesses to the Secondary Bus prefetch the number
of words specified in the PP_SlavePFtch register. See
Section 9.3.3, “Primary Port Slave Prefetch Register.”

TYPE[1:0] Base Address Type [2:1]
TYPE[1 :0] is hardwired to 0x0, indicating that Base
Address Register 2 can be located anywhere in the
32-bit PCI memory space.

MSI Memory Space Identifier 0
MSI is hardwired to 0, indicating that Base Address
Register 2 is in Memory Space rather than I/O Space.

PCI Configuration Space Registers 9-15

9.2.12 Subsystem Vendor ID Register

This register, illustrated in Figure 9.14, contains the Subsystem Vendor
ID number and is located at Configuration Space address offset 0x2C.

Figure 9.14 Subsystem Vendor ID Register

Subsystem Vendor_ID[15:0] [15:0]
The Subsystem Vendor_ID register is read only from the
PCI interface. It resets to a default value of 0, and it is up
to you to program the correct information from the APU.
The Subsystem Vendor_ID can be read from or written to
by the APU through the APU PCI_Subsystem_ID register
(0xB800.092E).

9.2.13 Subsystem ID Register

This register, illustrated in Figure 9.15, contains the Subsystem ID
number and is located at Configuration Space address offset 0x2E.

Figure 9.15 Subsystem ID Register

Subsytem_ID[15:0] [31:16]
The Subsytem_ID register is read only from the PCI inter-
face. It resets to a default value of 0, and it is up to you
to program the correct information from the APU. The
Subsystem ID can be read from and written to by the
APU through the APU PCI_Subsystem_ID register
(0xB800.092C).

15 0

Subsystem Vendor_ID[15:0]

Default Value and Read/Write Status

0x0000

R/W

31 16

Subsystem_ID[15:0]

Default Value and Read/Write Status

0x0000

R/W

9-16 PCI Interface

9.2.14 Interrupt Line Register

This register, illustrated in Figure 9.16, contains the interrupt line number,
IL, and is located at Configuration Space address offset 0x3C.

Figure 9.16 Interrupt Line Register

IL[7:0] Interrupt Line [7:0]
The IL register is provided for PCI system initialization.
The value of IL[7 :0] has no effect on L64364 operation.

9.2.15 Interrupt Pin Register

This register, illustrated in Figure 9.17, specifies the interrupt pin
assignment and is located at Configuration Space address offset 0x3D.

Figure 9.17 Interrupt Pin Register

IP[7:0] Interrupt Pin [15:8]
Since the L64364 is a single function device, IP[7 :0] is
hardwired to 0x01 which indicates that PCI_INTn
corresponds to the INTA# signal defined in the PCI Local
Bus Specification.

7 0

IL[7:0]

Default Value and Read/Write Status

0x00

R/W

15 8

IP[7:0]

Default Value and Read/Write Status

0x01

R

PCI Configuration Space Registers 9-17

9.2.16 Minimum Grant Register

This register, illustrated in Figure 9.18, contains a value for minimum
grant duration. It is located at Configuration Space address 0x3E.

Figure 9.18 Minimum Grant Register

MINGNT[7:0] Minimum Grant [31:24]
No specific requirements or recommendations are made
for minimum PCI grant duration. MINGNT[7:0] is
hardwired to 0x00.

9.2.17 Maximum Latency Register

This register, illustrated in Figure 9.19, contains a hardwired latency
value and is located at Configuration Space address offset 0x3F.

Figure 9.19 Maximum Latency Register

MAXLAT[7:0] Maximum Latency [23:16]
No specific requirements or recommendations are made
for maximum PCI Bus latency. MAXLAT[7:0] is hardwired
to 0x00.

31 24

MINGNT[7:0]

Default Value and Read/Write Status

0x00

R

23 16

MAXLAT[7:0]

Default Value and Read/Write Status

0x00

R

9-18 PCI Interface

9.2.18 TRDY_Timer Register

The TRDY_Timer register, illustrated in Figure 9.20, is used to recover
from a target that asserts DEVSELnbut does not assert TRDYnor STOPn.
This register contains the maximum number of clock cycles that a target
has to assert TRDYnor STOPnafter FRAMEnis asserted. If the target does
not respond within the specified number of clocks, the L64364 removes
FRAMEnand IRDYn to get off the PCI Bus. It also signals an internal bus
error to the requesting master and, if enabled, asserts IntPCIErr
(nonvectored interrupt 5). The register is located at Configuration Space
address offset 0x40. A value of zero disables the TRDY Timer.

Figure 9.20 TRDY_Timer Register

9.2.19 Retry_Timer Register

The Retry_Timer register, illustrated in Figure 9.21, is used to recover
from a target that continually responds to a request with retry (STOPn
asserted). This register contains the maximum number of retries that the
L64364 allows on any master request. When the retry limit is reached,
an internal bus error is signaled to the requesting master and, if enabled,
IntPCIErr (nonvectored interrupt 5) is asserted. The register is located
at Configuration Space address 0x41. A value of 0 disables the Retry
Timer.

Figure 9.21 Retry_Timer Register

7 0

TRDY_Timer[7:0]

Default Value and Read/Write Status

0x80

R/W

15 8

Retry_Timer [7:0]

Default Value and Read/Write Status

0x80

R/W

PCI Configuration Space Registers 9-19

9.2.20 Configuration Target Operation

It is your responsibility to initialize the SB_64Mbit in the SP_Ctrl register
(affects the PCI Base Address register 2) and the PCI Subsystem_ID
and Subsystem_Vendor_ID configuration registers to appropriate values
before allowing external PCI hosts to access the L64364 PCI
Configuration Space. These registers are writeable only through the APU
hardware register space (0xB800.09xx). PCI target accesses to the
L64364 can be held off by setting the PCI_Hold bit in the PP_Ctrl
register. When this bit is set, the L64364 responds with retries to all
target requests. This prevents an external host from accessing the
L64364 PCI Configuration Space before it is properly initialized.

Figure 9.22 and Figure 9.23 illustrate the timing of PCI configuration
cycles directed to the L64364. To initiate the configuration cycle, an
external host asserts PCI_IDSEL , PCI_FRAMEn, a configuration read or
write command (PCI_CBEn[3 :0] = 0xA or 0xB), and an appropriate
configuration register address. PCI_IDSEL need only be valid during the
PCI address phase. In response, the L64364 asserts PCI_DEVSELn two
clock edges later (medium DEVSELtiming).

The external host then asserts PCI_IRDYn after it drives valid data on
PCI_AD[31:0] and valid byte enables on PCI_CBEn[3 :0] for a
configuration write command, or when it is ready to receive read data
from PCI_AD[31 :0] on a configuration read command. The L64364
asserts PCI_TRDYn when it has accepted configuration write data from
PCI_AD[31:0] or when it has placed configuration read data on
PCI_AD[31:0] .

The relationship between PCI_FRAMEnand PCI_TRDYn in the two figures
is typical and not exact.

9-20 PCI Interface

Figure 9.22 Configuration Space Read

Figure 9.23 Configuration Space Write

9.2.21 Configuration Master Operation

The APU accesses the L64364 PCI configuration registers using APU
hardware register space 0xB80009xx, and drives external PCI
Configuration cycles when the PCI_Cfg bit of the PP_Ctrl register

PCI_CLK

PCI_FRAMEn

PCI_IDSEL

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_DEVSELn

PCI_IRDYn

PCI_TRDYn

Cnfg Addr Cnfg Data

0xA 0x0

1 2 3 4 5 6 7

PCI_CLK

PCI_FRAMEn

PCI_IDSEL

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_DEVSELn

PCI_IRDYn

PCI_TRDYn

0xB

Cnfg Addr

0x0

Configuration Register Write Data

1 2 3 4 5 6 7

Primary Port Registers 9-21

converts APU Primary Port accesses to PCI configuration cycles. APU
accesses to PCI Configuration Space use the big endian format. For
example, the APU accesses the Command registers as a halfword with
PCI Configuration Space offset 0x06 and accesses the Status register
as a halfword with PCI Configuration Space offset 0x04.

The PCI_Cfg bit in the PP_Ctrl register enables/disables the APU’s ability
to drive configuration cycles onto the PCI Bus. When this bit is set, all
APU accesses to the Primary Port are driven onto the PCI Bus as
configuration read and configuration write cycles. When the PCI_Cfg bit
is cleared, all APU accesses to the Primary Port are driven onto the PCI
Bus as memory read and memory write cycles.

Figure 9.22 and Figure 9.23 illustrate the timing of PCI configuration
cycles driven by the L64364. To initiate the configuration cycle, the
L64364 asserts PCI_REQnto arbitrate for the PCI Bus. When the L64364
receives PCI_GNTn, it places the configuration register address on the
PCI_AD Bus. Four clock cycles later, the L64364 asserts PCI_FRAMEn
and issues a configuration read or write command (PCI_CBEn[3:0] =
0xA or 0xB). The four clock-cycle delay here allows external logic to
decode the PCI_AD signals and drive the appropriate PCI_IDSEL signal.
The L64364 asserts PCI_IRDYn one clock cycle later and waits for the
target to respond. The configuration cycle completes when the target
responds by asserting PCI_DEVSELnand PCI_IRDYn or PCI_STOPn. Error
cases where the target does not respond correctly are covered in
Section 9.5.2, “Master Write Errors” and Section 9.5.4, “Master Read
Errors.”

9.3 Primary Port Registers

In addition to the Configuration Space registers, three control registers
help determine the operation of the PCI Interface and two error registers
provide information for error recovery and debugging. They are the
XPP_Ctrl register, PP_Ctrl register, PP_SlavePFtch register, PP_Err
register, and PP_ErrAddr register. The XPP_Ctrl register (Figure 9.24) is
accessible using PCI memory space and not by the APU. It provides PCI
host control of PCI interrupts and the L64364 boot process. The PP_Ctrl
register (Figure 9.24) limits burst size on the PCI Bus and the Secondary
Bus, and controls APU access to the PCI Configuration Space. The
PP_SlavePFtch register limits the amount of data prefetched for target

9-22 PCI Interface

read requests. The PCI_Err register indicates what caused the first
received PCI-related error condition (reported by the IntPCIErr
interrupt). The PCI_ErrAddr register holds the address associated with
the errored access.

For most applications, the L64364 connects to PCI systems with high
latency. The PCI Interface optimizes performance by allowing long
bursts. To achieve optimum system performance, the burst length on the
PCI Bus may need to be fine-tuned with Secondary Bus burst length.
The PCI Interface and the Secondary Bus controller integrate maximum
burst-size timers which are controlled by the PP_Ctrl register. The PCI
Interface maximum burst-size timer works independently from the PCI
latency timer. These maximum burst-size timers provide a mechanism for
breaking up long packet transfers so the EDMA cell processors or APU
do not stall.

9.3.1 XPP_Ctrl Register

This register provides a variety of control functions and is located at PCI
Base Address 1 + 0x4010. The register layout is shown in Figure 9.24.

Figure 9.24 XPP_Ctrl Register

XPP_APU_Reset
PCI Host Reset 7
When set, XPP_APU_Reset holds all ATMizer II+ modules
in the reset state. All modules remain reset until
XPP_APU_Reset is cleared. When XPP_APU_Reset clears,
the APU initiates the boot sequence.

The default setting of XPP_APU_Reset at initialization
depends on the state of the SYS_Boot[1:0] input signals
when PCI_RSTn is asserted. This allows the PCI host to
control the start of the boot sequence when the

7 6 5 4 3 2 1 0

XPP_
APU_Reset

XPP_
BootFault

XPP_APU_W
Reset

XPP_
EnInt

XPP_
MbxRxFull

XPP_
MbxRxEmpty

XPP_
MbxTxFull

XPP_
MbxTxEmpty

Default Value and Read/Write Status

A1 0x0 1 0 1

R/W R R/W R

1. Default dependent on state of SYS_Boot[1:0] pins.

Primary Port Registers 9-23

ATMizer II+ chip is booting from Cell Buffer Memory.
When booting from EPROM, the boot sequence does not
depend on the PCI host; instead, it starts when PCI_RSTn
is deasserted. The following table defines the
XPP_APU_Reset default values:

XPP_BootFault
Bus Error Boot Fault 6
XPP_BootFault sets when a bus error occurs and the
APU_Reset bit (bit 31) in the APU_AddrMap register
(page 4-99) is set. This bit notifies the PCI host of a
possible boot failure due to a bus error that occurred
before the exception vectors were initialized.

When XPP_BootFault is set, the APU is prevented from
initiating access to the ACI, EDMA, and Scheduler
registers. It can still access CBM, Secondary Bus
memory, and the PCI Bus.

The boot fault condition can be cleared only by asserting
PCI_RSTn.

XPP_APU_WReset
PCI Host Warm Reset 5
When set, XPP_APU_WResetholds the APU in warm
reset. All other modules remain unaffected. When
XPP_APU_WResetclears, the APU initiates the boot
sequence. The APU_WResetbit in the APU_AddrMap
register indicates that the last reset was due to an
XPP_APU_WReset.

The main intent of this reset bit is to allow the L64364 to
recover from an error condition and keep as much data
as possible intact for debugging purposes.

XPP_EnInt PCI Interrupt Enable 4
When set, XPP_EnInt enables assertion of the PCI
interrupt signal (PCI_INTn) when the Transmit Mailbox is
not empty.

SYS_Boot Boot Source
XPP_APU_Reset
Default Value

0b00 Secondary Bus EPROM 0b0

0b01 Not Used 0b1

0b10 Cell Buffer Memory 0b1

0b11 Serial EPROM 0b0

9-24 PCI Interface

XPP_MbxRxFull
Receive Mailbox Full 3
The PCI Interface sets XPP_MbxRxFull when the Receive
Mailbox is full.

XPP_MbxRxEmpty
Receive Mailbox Empty 2
The PCI Interface sets XPP_MbxRxEmpty when the
Receive Mailbox is empty.

XPP_MbxTxFull
Transmit Mailbox Fulll 1
The PCI Interface sets XPP_MbxTxFull when the
Transmit MailBox is full.

XPP_MbxTxEmpty
Transmit Mailbox Empty 0
The PCI Interface sets XPP_MbxTxEmpty when the
Transmit MailBox is empty.

9.3.2 PP_Ctrl Register

This register controls access to the PCI Configuration Space and
specifies the maximum burst rate for certain transactions. Its format is
shown in Figure 9.25. It is located at APU address 0xB800.0403.

Figure 9.25 PP_Ctrl Register

PCI_Cfg PCI Configuration Select 7
When set, APU accesses to the Primary Port are issued
as PCI configuration read and configuration write
commands. When cleared, APU accesses to the Primary
Port are issued as PCI memory read and memory write
commands.

7 6 5 4 3 2 1 0

PCI_Cfg PCI_Hold R SP_MaxBurst PP_MaxBurst

Default Value and Read/Write Status

0x00

R/W R/W

Primary Port Registers 9-25

PCI_Hold PCI Target Hold 6
When set, all PCI requests, including configuration
cycles, targeting the L64364 are issued a retry. This is
used to hold off PCI target accesses until boot code has
had a chance to initialize the L64364 PCI Configuration
registers.

You must initialize the SB_64Mbit in the SP_Ctrl register
(affects PCI Base Address Register 2) and the PCI
Subsystem_ID and Subsystem_Vendor_ID configuration
registers to appropriate values before allowing external
PCI hosts to access to the L64364 PCI Configuration
Space.

R Reserved [5:4]
Not used in the L64364.

SP_MaxBurst[1:0]
Secondary Port Maximum Burst Length [3:2]
SP_MaxBurst[1:0] sets the maximum number of words
in an EDMA move command burst or PCI slave write
burst. Bit encoding is as follows:

PP_MaxBurst[1:0]
Primary Port Maximum Burst Length [1:0]
PP_MaxBurst[1:0] sets the maximum number of words
in a burst when the EDMA executes a move command.
Bit encoding is the same as for SP_MaxBurst[1:0] .

9.3.3 Primary Port Slave Prefetch Register

This register specifies the number of words to be prefetched on a PCI
slave access to the Cell Buffer Memory and Secondary Bus. Its format
is shown in Figure 9.26. It is located at APU address 0xB800.0410.

The initial byte enables sent with a PCI target read request are used
when prefetching the first word of data. All remaining words in the
prefetch assume all byte enables active. So, programming a memory

SP_MaxBurst Burst Length

0b00 Unlimited

0b01 16 32-bit words maximum

0b10 24 32-bit words maximum

0b11 32 32-bit words maximum

9-26 PCI Interface

page with a Pftch value of 0x1 allows you to do byte-read accesses to
that memory page.

Figure 9.26 PP_SlavePFtch Register

R Reserved [31:24]
Not used in the L64364.

Pftch_CBM[3:0]
Prefetch from CBM [23:20]
Pftch_CBM sets the number of data words to prefetch
from CBM when it is the target of a PCI slave access.
The bit coding is as follows:

Pftch4[3:0] Prefetch from SDRAM [19:16]
Pftch4 sets the number of data words to prefetch from
Secondary Bus Page 4 (SDRAM) when it is the target of
a PCI slave access. The bit coding is the same as for
Pftch_CBM .

Pftch3[3:0] Prefetch from SSRAM [15:12]
Pftch3 sets the number of data words to prefetch from
Secondary Bus Page 3 (SSRAM) when it is the target of
a PCI slave access. The bit coding is the same as for
Pftch_CBM .

31 24 23 20 19 16 15 12 11 8 7 4 3 0

R Pftch_CBM Pftch4 Pftch3 Pftch2 Pftch1 Pftch0

Default Value & Read/Write Status

0x00 0x1 0x000 0x1 0x1

R R/W

Pftch_CBM[3:0]
Number of Data
Words Prefetched

0x0 unlimited1

0x1–0xF 1–15

1. Keep the PCI Slave Read FIFO full. This
results in prefetching more data than
necessary. The PCI Slave Read FIFO is
eight words deep.

Primary Port Registers 9-27

Pftch2[3:0] Prefetch from 32-Bit SRAM [11:8]
Pftch2 sets the number of data words to prefetch from
Secondary Bus Page 2 (32-bit SRAM) when it is the
target of a PCI slave access. The bit coding is the same
as for Pftch_CBM .

Pftch1[3:0] Prefetch from 8-Bit PHY [7:4]
Pftch1 sets the number of data words to prefetch from
Secondary Bus Page 1 (8-bit PHY) when it is the target
of a PCI slave access. The bit coding is the same as for
Pftch_CBM .

Pftch0[3:0] Prefetch from 8-Bit EPROM/SRAM [3:0]
Pftch0 sets the number of data words to prefetch from
Secondary Bus Page 0 (8-bit EPROM/SRAM) when it is
the target of a PCI slave access. The bit coding is the
same as for Pftch_CBM .

9.3.4 Primary Port Error Register

This register contains information on the type of error and the offending
master. The PP_Err register captures information on the first error
received and contains valid data when the VLD bit is set. The APU
re-enables the capturing of future errors by clearing the VLD bit. The
register format is shown in Figure 9.27. It is located at APU address
0xB800.0420.

Figure 9.27 PP_Err Register

VLD Primary Port Error Valid Bit 31
VLD is set when the PP_Err register has captured data
pertaining to a Primary Port error condition. VLD is
cleared by writing a 1 to the bit position. Clearing the VLD
bit enables the capturing of data pertaining to the next
error condition.

31 30 28 27 26 25 24 23 22 21 20 19 0

VLD Master[2:0] R/W R RTRY TRDY WDT TA MA PRTY R

Default Value & Read/Write Status

0x0000.0000

R/W R

9-28 PCI Interface

Master[2:0] Primary Port Master Field [30:28]
These bits indicate the master that caused the Primary
Port error condition as follows:

R/W Read/Write Indicator 27
When the R/Wbit is set, the Primary Port error occurred
on a read access. When the bit is cleared, the Primary
Port error occurred on a write access.

R Reserved 26
Not used in the L64364.

RTRY Retry Timer Time-Out 25
When set, indicates that the PCI Retry Timer timed out.
See the Retry_Timer register description in
Section 9.2.19. This bit is cleared at reset.

TRDY TRDY Timer Time-Out 24
When set, indicates that the PCI TRDY Timer timed out.
See the TRDY_Timer register description in
Section 9.2.18. This bit is cleared at reset.

WDT WatchDog Time-Out 23
When set, indicates that the access caused an APU
WatchDog time-out. This bit is cleared at reset.

TA Target Abort 22
When set, indicates that the Primary Port detected a PCI
target abort. This bit is cleared at reset.

Master[2:0] Master of Access

0b000 APU

0b001 TMU

0b010 EDMA

0b011 MOVE

0b100 External Host
Base Address 2 Decode

0b101 External Host
Base Address 1 Decode

0b110 Reserved

0b111 Reserved

PCI Slave Transactions 9-29

MA Master Abort 21
When set, indicates that the Primary Port detected a PCI
master abort. This bit is cleared at reset.

PRTY Parity Error 20
When set, indicates that the Primary Port detected a PCI
parity error. This bit is cleared at reset.

R Reserved [19:0]
Not used in the L64364.

9.3.5 Primary Port Error Address Register

This register contains the address associated with an errored access. Its
format is shown in Figure 9.28. It is located at APU address
0xB800.0424.

Figure 9.28 PP_ErrAddr Register

PP_ErrAddr Primary Port Error Address [31:0]
Primary Port address that was being accessed when the
error occurred. Due to pipelining delays associated with
the PCI read and write FIFOs, the PP_ErrAddr register
provides the initial address of burst accesses that caused
a bus error.

9.4 PCI Slave Transactions

PCI Base Address Register 1 (page 9-12) supports access to the L64364
Cell Buffer Memory, Mailbox FIFO, XPP_Ctrl register, and APU hardware
registers. Table 9.2 provides a memory map for this address range.

31 0

PP_ErrAddr

Default Value & Read/Write Status

0x00000000

R

9-30 PCI Interface

Note: Burst reads of the L64364 Mailbox FIFO and registers are
not supported. Burst reads/writes to Cell Buffer Memory and
burst writes to the Receive Mailbox FIFO are permitted.

PCI Base Address register 2 (page 9-13) maps the ATMizer’s local
memory into PCI memory space. Refer to Table 10.1 on page 10-3 for
the local memory address map.

9.4.1 Mailbox

The Mailbox consists of two FIFOs, each are 32-bits wide and 4-words
deep. The Mailbox assures faster communication between the APU and
an external PCI Bus master. One FIFO (the Transmit FIFO) provides for
APU-to-PCI host messaging, and the other FIFO (the Receive FIFO) for
PCI host-to-APU messaging. From the APU side, the Mailbox appears to
be a memory-mapped hardware register, called APU_MailBox. From the
external PCI Bus master, it is mapped above Cell Buffer Memory.

The PCI master may access the Mailbox by word read or write at
address offsets 0x4000, 0x4004, 0x4008, or 0x400C. The behavior of the
Mailbox is independent of the address by which it is accessed. All PCI
slave reads of the Transmit FIFO must be single word transfers. Burst
transfers are supported on PCI slave writes to the Receive FIFO.

Table 9.2 ATMizer II+ Chip External Memory Map

PCI Memory Module Size

0x0000–0x0FFF Cell Buffer Memory 4 Kbytes

0x1000–0x3FFF Reserved1

1. PCI slave writes to this reserved area are completed normally but data is
ignored. PCI slave reads of this reserved area wrap to the corresponding
location in Cell Buffer Memory.

12 Kbytes

0x4000–0x400F Mailbox FIFO 16 Bytes

0x4010 XPP_Control register 1 Byte

0x4011–0x6FFF Reserved2

2. PCI slave writes to this reserved area are completed normally but data is
ignored. PCI slave reads of this reserved area return all 1s.

< 16 Kbytes

0x7000–0x7FFF L64364 registers3

3. See Appendix A for a summary of L64364 hardware registers.

< 16 Kbytes

PCI Slave Transactions 9-31

The APU writes to the Transmit FIFO at address 0xB800.0408 and reads
the Receive FIFO at address 0xB800.0404. APU writes to the Receive
FIFO or APU reads from the Transmit FIFO are not supported.

Figure 9.29 shows the implementation of the Mailboxes. The MbxTxEmpty
signal generates the PCI_INTn signal. The PCI Interface asserts
PCI_INTn when enabled in the XPP_Ctrl register (page 9-22) and the
Transmit FIFO is not empty. External controllers must isolate the Mailbox
from events that cause overflow of the FIFO.

Figure 9.29 Mailbox Registers

If an external PCI Bus master reads an empty Transmit FIFO, it receives
a 0 value. If a PCI Bus master attempts to write to a full Receive FIFO,
the PCI Interface drops the written data and generates a nonvectored
interrupt to the APU. The external master must prevent overflow of the
FIFO. Note that Mailbox status signals are visible to the PCI Bus master
in the XPP_Ctrl register.

If the APU reads an empty Receive FIFO, it receives a 0 value. If the
APU attempts to write to a full Transmit FIFO, the APU stalls until the
FIFO becomes nonempty.

The MbxRxEmpty signal is internally connected to the APU Vectored
Interrupt IntRxMbx (Receive FIFO not empty) described in Section 4.8.2,
“External Vectored Interrupt Sources.” In addition, the IntRxMbx interrupt

APUPCI
Bus

MbxRxEmpty

MbxTxFull

MbxRxFull

MbxTxEmpty

Receive FIFO

Transmit FIFO

9-32 PCI Interface

sets the APU_RxMbxbit and the MbxTxFull bit sets the APU_MbxFull bit
in the APU_Status register (page 4-108). The MbxRxFull signal is used
to create IntRxMbxOvr , nonvectored interrupt 2, as shown in
Section 4.8.1, “External Nonvectored Interrupts.”

9.4.2 PCI Slave Write Timing

Figure 9.30, Figure 9.31, and Figure 9.32 illustrate PCI slave write timing.
Figure 9.30 illustrates a slave write transfer of four words. When the
ATMizer II+ chip’s Slave Write FIFO becomes full, the L64364
disconnects as shown in Figure 9.31. Figure 9.32 illustrates timing when
the PCI Interface detects data parity errors (PCI_PERRn).

To initiate a PCI slave write transfer (Figure 9.30), an external master
asserts PCI_FRAMEnand issues a write command to the L64364
(PCI_CBE[3 :0] = 0x7 or 0xF) with an address in the range specified by
one of the Base Address registers (page 9-12). The external bus master
also asserts the PCI Initiator Ready (PCI_IRDYn) signal to indicate when
there is valid data on the PCI Bus (PCI_AD[31 :0]). The PCI_CBEn lines
then become byte enables.

In response to PCI_FRAMEn, the L64364 asserts PCI Device Select
(PCI_DEVSELn) two clock edges later (medium timing, see DEVSEL[1:0]
on page 9-9).

The L64364 asserts the PCI Target Ready (PCI_TRDYn) signal when it
can accept write data from the PCI Bus. The condition of the Slave Write
FIFO determines when the L64364 can accept data. If the Slave Write
FIFO is full, the L64364 continues to retry the transaction until the FIFO
becomes not full.

If the Slave Write FIFO is full (during a burst transaction), the L64364
disconnects from the PCI Bus by asserting PCI_STOPn as shown in
Figure 9.31.

If the PCI Interface attempts a slave write to a Secondary Bus Memory
page that is not enabled, the transfer is not aborted. Instead, the transfer
finishes normally, and the Secondary Bus Controller issues a Secondary
Bus Address error which causes an Int_SBErr interrupt (nonvectored
interrupt 4).

PCI Slave Transactions 9-33

Figure 9.30 Slave Write Timing

Figure 9.31 Slave Write Stop Timing

PCI_CLK

PCI_REQn

PCI_GNTn

PCI_FRAMEn

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_DEVSELn

PCI_IRDYn

PCI_TRDYn

PCI_STOPn

1 2 3 4 5 6 7 8 9 10 11

A0 D0 D1 D2 D3

C7 E0 E1 E2 E3

1 2 3 4 5 6 7 8 9 10 11

PCI_CLK

PCI_FRAMEn

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_DEVSELn

PCI_IRDYn

PCI_TRDYn

PCI_STOPn

D26 D27 D28 D29 D30 D31

E26 E27 E28 E29 E30 E31

9-34 PCI Interface

If the Parity Error Response bit (PER) in the Command register (page 9-7)
is set, the PCI Interface asserts PCI_PERRnwhen it detects a data parity
error (see Figure 9.32). If a data parity error is detected during a slave
write operation, the error is reported to the APU as IntPCIErr ,
nonvectored interrupt 5.

Figure 9.32 Parity Error Timing

9.4.3 PCI Slave Read Timing

Figure 9.33 illustrates the PCI slave read timing. To initiate a PCI slave
read transfer, an external master asserts PCI_FRAMEnand a read
command (PCI_CBE[3:0] = 0x6, 0xC, or 0xE) with an address in the
range specified by one of the Base Address registers. The external bus
master also asserts the PCI Initiator Ready (PCI_IRDYn) signal to
indicate when it can accept data from the PCI Bus (PCI_AD[31:0]). In
response to PCI_FRAMEn, the L64364 asserts PCI_DEVSELn two clock
edges later (medium DEVSELtiming).

PCI_CLK

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_PAR

PCI_PERRn

1 2 3 4 5 6 7 8 9 10 11

0x00

0x0

PCI Slave Transactions 9-35

Figure 9.33 PCI Slave Read Timing

The L64364 asserts the PCI Target Ready (PCI_TRDYn) signal to indicate
that there is data available in the Slave Read FIFO. If data is not
available within 16 clocks, the L64364 asserts PCI_STOPnand retries the
transaction. In this case, all subsequent slave read commands to other
addresses are retried until the transaction completes. If the original PCI
master does not retry the transaction within 216 PCI clock cycles, the PCI
Interface flushes the slave read data.

If the PCI Bus master attempts a slave read of a Secondary Bus Memory
page that is not enabled, the transfer is not aborted. Instead, the transfer
finishes with 0xFFFF.FFFF returned as data and the Secondary Bus
Controller issues a Secondary Bus Address error. This error then
generates an Int_SBErr interrupt (nonvectored interrupt 4) to the APU.

PCI_CLK

PCI_REQn

PCI_GNTn

PCI_FRAMEn

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_DEVSELn

PCI_IRDYn

PCI_TRDYn

PCI_STOPn

1 2 3 4 5 6 7 8 9 10 11

A0 D0

C6 E0

9-36 PCI Interface

9.4.4 PCI Slave Errors

The following error conditions can occur during a PCI slave access:

• Data parity error

• Address parity error

For data parity errors, the L64364 completes the data transfer and, if
enabled by the PERbit in the Command register, asserts PCI_PERRnon
PCI slave writes and generates an IntPCIErr interrupt to the APU.

For address parity errors, the L64364 claims the transfer cycle and
terminates it with target abort. This occurs regardless of the state of the
SERRbit in the Command register. However, if the SERRbit is set, the
L64364 also asserts PCI_SERRn.

9.5 PCI Master Transactions

The L64364 requests a PCI master transaction when the APU or EDMA
accesses Primary Memory space. As PCI Bus master, the L64364 can
generate the following commands:

The four bus masters, APU, EDMA Move processor, EDMA TxCell
Processor, and EDMA RxCell Processor, all arbitrate for PCI Master
transactions by using a round-robin arbitration technique.

Note: L64364 masters must not initiate a PCI cycle with an
address that targets the same L64364's PCI slave interface.
Should this happen, the L64364's PCI slave interface tries
to respond to the request. This results in either bad data
being transferred, or an L64364 PCI interface lock up. The
results are not predictable.

PCI_CBE[3:0] Command

0b0110 Memory Read

0b0111 Memory Write

0b1100 Memory Read Multiple

0b1110 Memory Read Line

PCI Master Transactions 9-37

9.5.1 PCI Master Write Timing

Figure 9.34 and Figure 9.35 illustrate master write timing. Figure 9.34
contains a master write burst of four words. The same transfer is initiated
in Figure 9.35, but then it is terminated by a target disconnect.

Figure 9.34 Master Write Timing

PCI_CLK

PCI_REQn

PCI_GNTn

PCI_FRAMEn

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_DEVSELn

PCI_IRDYn

PCI_TRDYn

PCI_STOPn

1 2 3 4 5 6 7 8 9 10 11

A0 D0 D1 D2 D3

C7 E0 E1 E2 E3

9-38 PCI Interface

Figure 9.35 Master Write Stop Timing

The ATMizer’s Primary Port module writes data to the Master Write FIFO
when the APU or EDMA issues a write bus request to the Primary
Memory space. When the Master Write FIFO becomes nonempty, the
PCI Interface asserts PCI_REQn. For burst transactions, the Primary Port
module continues to fill the Master Write FIFO until one of the following
events occur:

• The Master Write FIFO becomes full.

• The maximum burst size specified by the PP_MaxBurst bits in the
PP_Ctrl register (page 9-24) is reached.

• The burst is completed.

Case 1 can occur only when the EDMA processes a move command to PCI
Memory. As explained in Section 5.3.4, “Move Command,” the command
transfers a block of data between the Secondary Port memory (local
memory) and the Primary Port memory (PCI memory). The EDMA Move
Processor retains ownership of the PCI Interface but releases the
Secondary Bus to allow interleaved accesses by the EDMA Cell
Processors or APU. When the Master Write FIFO reaches half full, the

1 2 3 4 5 6 7 8 9 10 11

PCI_CLK

PCI_REQn

PCI_GNTn

PCI_FRAMEn

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_DEVSELn

PCI_IRDYn

PCI_TRDYn

PCI_STOPn

A0 D0 D1

C7 E0 E1

PCI Master Transactions 9-39

Move Processor requests the Secondary Bus and continues the move
transfer.

Case 2 occurs only when the EDMA is processing a move command. In
this case, the Primary Port allows other bus masters (APU and EDMA
Cell processors) to access the PCI Master Write FIFO.

The PCI Interface terminates the PCI transaction (normal completion)
when the Master Write FIFO becomes empty. If this occurs before
completion of the intended burst transfer, the PCI Interface requests the
PCI Bus again and continues until the transaction finishes.

9.5.2 Master Write Errors

The following error conditions can occur during a master write
transaction:

• Master abort

• Target abort

• Parity error

Master abort occurs if PCI_DEVSELn is not returned within six PCI clocks
or PCI_TRDYn is not returned within 128 PCI clocks after a memory write
command. Target abort is an abnormal termination requested by the
selected target. The target reports parity errors to the L64364 on the
PCI_PERRnpin.

Target abort and master abort cause the PCI Interface to signal a bus
error to the current bus master. This in turn may cause one or more
nonvectored interrupts to be generated to the APU. If the APU was the
bus master, exception code 6 (bus error) is generated. If the EDMA was
the bus master, an Int_EDMA_BusErr interrupt (nonvectored interrupt 0)
may be generated to the APU.

Reporting master write errors back to the bus master (EDMA or APU) is
not reliable due to the pipelining of PCI master transactions. Therefore, the
error is also reported to the APU as IntPCIErr , nonvectored interrupt 5.

For data parity errors, the L64364 completes the data transfer and, if
enabled by the PERbit in the Command register, generates an IntPCIErr
interrupt (nonvectored interrupt 5) to the APU.

9-40 PCI Interface

9.5.3 PCI Master Read Timing

Figure 9.36 through Figure 9.38 illustrate master read timing. Figure 9.36
shows a four-word, master read, burst transfer. Figure 9.37 shows the
same transfer being initiated but here the transfer terminates due to
target disconnect. Figure 9.38 illustrates PCI_PERRnwhen a data parity
error occurs.

The Primary Port initiates a PCI read transaction when the APU or
EDMA executes a read operation to Primary Memory space. The PCI
command depends on the transaction size and the value programmed in
the PCI Cache Line Size register.

• If the Cache Line Size register is programmed to zero, the L64364
always generates the Memory Read command.

• If the Cache Line Size register is programmed with a nonzero value
and the requesting master requests a data block whose size is less
than the Cache Line Size register, the L64364 generates a Memory
Read command.

• If the Cache Line Size register is programmed with a nonzero value,
the requesting master requests a data block whose size is greater
than or equal to the Cache Line Size register, and the data block
starts on a cache line boundary, the L64364 generates a Memory
Read Line command.

• If the Cache Line Size register is programmed with a nonzero value,
the requesting master requests a data block whose size is greater
than or equal to the Cache Line Size register, and the data block
does not start on a cache line boundary, the L64364 generates a
Memory Read Multiple command.

PCI Master Transactions 9-41

Figure 9.36 PCI Master Read Timing

PCI_CLK

PCI_REQn

PCI_GNTn

PCI_FRAMEn

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_DEVSELn

PCI_IRDYn

PCI_TRDYn

PCI_STOPn

1 2 3 4 5 6 7 8 9 10 11

A0 D0 D1 D2 D3

C6 E0 E1 E2 E3

9-42 PCI Interface

Figure 9.37 Master Read Stop Timing

Figure 9.38 Master Read Error Timing

1 2 3 4 5 6 7 8 9 10 11

PCI_CLK

PCI_REQn

PCI_GNTn

PCI_FRAMEn

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_DEVSELn

PCI_IRDYn

PCI_TRDYn

PCI_STOPn

A0 D0 D1

C6 E0 E1

PCI_CLK

PCI_AD[31:0]

PCI_CBE[3:0]

PCI_PAR

PCI_PERRn

1 2 3 4 5 6 7 8 9 10 11

0x00

0x0

PCI Master Transactions 9-43

9.5.4 Master Read Errors

The following error conditions can occur during a Master Read
transaction:

• Master abort

• Target abort

• Parity error

Master abort occurs when PCI_DEVSELn is not returned within six PCI
clocks or PCI_TRDYn is not returned within 128 PCI clocks after a
memory read, memory read line, or memory read multiple command.
Target abort is an abnormal termination requested by the selected target.
When a data parity error is detected, the PCI Interface generates a parity
error only if the Parity Error Response bit (PERbit) in the Command
register is set.

Target abort and master abort cause the PCI Interface to signal a bus
error to the current bus master. This in turn may cause one or more
nonvectored interrupts to be generated to the APU. The IntPCIErr
interrupt (nonvectored interrupt 5) is always generated for target abort
and master abort. If the APU was the bus master, exception code 6 (bus
error) is generated. If the EDMA was the bus master, an
Int_EDMA_BusErr interrupt (nonvectored interrupt 0) may be generated
to the APU.

For data parity errors, the L64364 completes the data transfer and if
enabled by the PERbit in the Command register, asserts PCI_PERRnand
generates an IntPCIErr interrupt to the APU.

Data parity errors are reported to the APU as a nonvectored interrupt 5.

9-44 PCI Interface

9.6 Balancing Bus Usage

When transferring data between the PCI and Secondary Memory, the
ATMizer II+ chip handles high latency by balancing bus usage between
the PCI Bus and the Secondary Bus. The PCI Bus tends to be a
high-latency bus, so it is better to maximize burst length. The Secondary
Bus has real time requirements from the APU, EDMA, and Scheduler.
This causes high Secondary Bus latency.

The sections that follow summarize the PCI FIFO protocol used to balance
PCI and Secondary Bus usage. PCI FIFO size and thresholds are
optimized assuming a 66 MHz or greater, zero wait state, Secondary
Memory. Lower performance Secondary Memories are also supported, but
can cause additional disconnects during burst transactions. Refer to
Figure 9.1 at the beginning of this chapter during the following discussions.

9.6.1 Master Write

This section summarizes the steps used to perform a master write
transaction initiated by the EDMA.

The EDMA Move Processor requests the Secondary Bus and requests
to read MoveCount bytes. MoveCount is specified in the
EDMA_MoveCount register. When the first word is read, the EDMA
requests the Primary Port to write MoveCount bytes.

When the Primary Port request is granted, the EDMA Move Processor
transfers data from the Secondary Bus Controller to the PCI Master
Write FIFO. If the PCI Master Write FIFO becomes full, the EDMA
releases the Secondary Bus.

When the PCI Master Write FIFO drains to half full, the EDMA Move
Processor again requests the Secondary Bus. If the Secondary Bus
request is granted before the PCI Master FIFO becomes empty, the
operation continues.

When the PCI Master FIFO becomes empty, the PCI Interface
disconnects from the PCI Bus. If the PCI Interface disconnects from the
PCI Bus before MoveCount bytes are transferred, it requests the bus
again as soon as the PCI Master FIFO becomes nonempty to continue
the transaction.

Balancing Bus Usage 9-45

9.6.2 Master Read

This section summarizes the steps used to perform a master read
transaction initiated by the EDMA.

The EDMA Move Processor requests to read MoveCount bytes from the
Primary Port. This causes the PCI Interface to request the PCI Bus. The
EDMA Move Processor is stalled but it owns the Primary Port until the
PCI Master Read FIFO fills to 16 words (half full).

When the PCI Master Read FIFO reaches half full or the PCI read
completes, the EDMA Move Processor requests the Secondary Bus.
When the Secondary Bus request is granted, the EDMA Move Processor
transfers data to the Secondary Bus until the PCI Master Read FIFO
becomes empty or MoveCount bytes are transferred.

When the PCI Master Read FIFO becomes empty, the EDMA releases
the Secondary Bus. If MoveCount bytes have not been transferred, the
operation continues when the Master Read FIFO reaches half full. If after
this occurs, the PCI Read FIFO fills due to Secondary Bus latency, the
PCI Interface disconnects from the PCI Bus. If the PCI Interface
disconnects from the PCI Bus before MoveCount bytes are transferred, it
requests the bus again as soon as the PCI Master FIFO becomes
nonempty.

9.6.3 Slave Write

This section summarizes the steps used to perform a slave write
transaction.

When the PCI Slave Write FIFO becomes nonempty, the PCI Interface
requests the Secondary Bus. The Secondary Bus Controller transfers the
slave write data to Secondary Memory. If the PCI Slave Write FIFO
becomes full due to Secondary Bus latency, the PCI Interface
disconnects from the PCI Bus.

When the PCI Slave Write FIFO becomes empty, the PCI Interface
releases the Secondary Bus. The transaction continues when the PCI
Slave Write FIFO becomes not empty.

9-46 PCI Interface

9.6.4 Slave Read

The PCI Interface requests the Secondary Bus in response to a slave
read command from a PCI master. When the Secondary Bus is available,
data is transferred to the PCI Bus through the PCI Slave Read FIFO. The
Secondary Bus Controller prefetches data until the programmed prefetch
limit is reached (see the PP_SlavePftch register, page 9-26), the Slave
Read FIFO becomes full, or the PCI master terminates the operation.

L64364 ATMizer II+ ATM-SAR Chip 10-1

Chapter 10
Secondary Bus
Memory Controller

This chapter describes the Secondary Bus Memory Controller (SBC), the
L64364’s interface to local memory.

This chapter includes the following sections:

• Section 10.1, “Overview,” page 10-2

• Section 10.2, “SBC Configuration,” page 10-3

• Section 10.3, “Secondary Bus Performance Considerations,”
page 10-11

• Section 10.4, “SDRAM Controller,” page 10-14

• Section 10.5, “SSRAM Controller,” page 10-25

• Section 10.6, “32-Bit SRAM/EPROM Controller,” page 10-28

• Section 10.7, “PHY Controller,” page 10-32

• Section 10.8, “8-Bit SRAM/EPROM Controller,” page 10-36

• Section 10.9, “External Bus Masters,” page 10-40

• Section 10.10, “Error Reporting,” page 10-41

Important: Registers and fields labeled “Reserved” are don’t cares.
Descriptor bits and fields labeled “Reserved” must not be
modified.

10-2 Secondary Bus Memory Controller

10.1 Overview

The SBC provides a seamless interface to local memory. It contains the
control logic necessary to directly connect synchronous DRAM,
synchronous SRAM, asynchronous SRAM, EPROM, and some physical
layer devices to the L64364.

The controller supports both 32-bit and 8-bit wide devices. The 8-bit
capability enables connecting byte-wide EPROMs that can contain the
APU boot program and a target debugger. A byte-wide interface can also
be used to connect to external physical layer devices, such as framers.

An integrated wait-state generator allows direct connection to slower
asynchronous SRAM, PHY, and EPROM devices.

Both internal and external PCI Bus masters can access secondary
memory. The internal PCI Bus masters include the APU, EDMA, and the
Scheduler. A simple bus request/grant arbiter allows connection of
external bus masters directly on the Secondary Bus.

Access to the SBC is gained through a round-robin arbitration technique.
The participants include:

• PCI Slave Interface

• APU

• EDMA TxCell Processor

• EDMA RxCell Processor

• EDMA Move Processor

• Scheduler

• External Secondary Bus master

Starving of Secondary Bus agents can be minimized by limiting burst
size with SP_MaxBurst[1 :0] in the PP_Ctrl register (page 9-24).

The SBC has five memory pages as shown in Table 10.1 and Table 10.2,
one for each external memory device. The SBC uses the memory page
address to select the control sequence appropriate for a particular
external memory device.

SBC Configuration 10-3

When accessing asynchronous SRAM, EPROM, or peripheral devices,
bus cycle timing is controlled either with an integrated wait-state
generator or the data-valid input signal, SB_RDYn.

10.2 SBC Configuration

The SBC can be configured to support all five local memory pages
concurrently. Electrical characteristics limit the number of devices that
directly connect to the ATMizer II+ chip. Typically, only one bank of
SDRAM, SSRAM, or SRAM are directly connected to the L64364
ATMizer II+ chip while EPROM and PHY devices are buffered with a
transceiver.

Table 10.1 16 Mbyte Secondary Bus Memory Map 1

1. Selected when the SB_64Mbit in the SP_CTRL register is cleared.

Start Address End Address Size Device Type Bus Size

0x0000.0000 0x000F.FFFF 1 Mbyte EPROM/SRAM 8

0x0020.0000 0x002F.FFFF 1 Mbyte PHY 8

0x0040.0000 0x005F.FFFF 2 Mbytes EPROM/SRAM 32

0x0060.0000 0x007F.FFFF 2 Mbytes SSRAM 32

0x0080.0000 0x00FF.FFFF 8 Mbytes SDRAM 32

Table 10.2 64 Mbyte Secondary Bus Memory Map 1

1. Selected when the SB_64Mbit in the SP_CTRL register is set.

Start Address End Address Size Device Type Bus Size

0x0000.0000 0x000F.FFFF 1 Mbyte EPROM/SRAM 8

0x0020.0000 0x002F.FFFF 1 Mbyte PHY 8

0x0040.0000 0x007F.FFFF 4 Mbytes EPROM/SRAM 32

0x0080.0000 0x00BF.FFFF 4 Mbytes SSRAM 32

0x0200.0000 0x03FF.FFFF 32 Mbytes SDRAM 32

10-4 Secondary Bus Memory Controller

10.2.1 SP_Ctrl Register

The SP_Ctrl register, shown in Figure 10.1, enables the active local
memory pages and selects the number of wait states for EPROM,
SRAM, and PHY devices. The APU accesses the SP_Ctrl register at
memory address 0xB800.0800.

SB_EnPage[4:0]
Secondary Bus Page Enables [31: 27]
SB_EnPage[4:0] enable the corresponding local memory
pages (see table below). An APU or PCI access to a local
memory page that is not enabled will cause an SBC
address error which asserts nonvectored interrupt 4
(IntSBErr) exception to the APU.

SB_DSL3 Secondary Bus SSRAM Deselect Timing 26
SB_DSL3is used to control deselect timing in the SSRAM
page. SB_DSL3should be set when using single-cycle
deselect SSRAM devices and should be cleared when
using double-cycle deselect SSRAM devices.

Figure 10.1 SP_Ctrl Register

31 27 26 25 24 18 17 16 15 14 13 12 11 8 7 4 3 0

SB_EnPage
[4:0]

SB_
DSL3

SB_
64M R SB_DSL2

[1:0]
SB_DSL1

[1:0]
SB_DSL0

[1:0]
SB_Wait2

[3:0]
SB_Wait1

[3:0]
SB_Wait0

[3:0]

Reset Value & Read/Write Status

0x1F 0x0 0x0 0x00 0x3F 0xE/0xF1

R/W R R/W

1. The reset values of SB_Wait2 , SB_Wait1 , and SB_Wait0 depend on the state of SB_RDYnwhile
PCI_RSTn is asserted. If SB_RDYnis a ‘1,’ then the SB_Wait fields reset to 0xE; if SB_RDYnis a ‘0,’
then the SB_Wait fields reset to 0xF.

Bit # Bit Name Local Memory Page

31 SB_EnPage[4] SDRAM

30 SB_EnPage[3] SSRAM

29 SB_EnPage[2] 32-bit SRAM/EPROM

28 SB_EnPage[1] 8-bit PHY

27 SB_EnPage[0] 8-bit SRAM/EPROM

SBC Configuration 10-5

SB_64M Secondary Bus Memory Map Size Select 25
SB_64Mcleared selects the 16 Mbyte Secondary Bus
Memory Map. SB_64Mset selects the 64 Mbyte
Secondary Bus Memory Map. See Table 10.1 and
Table 10.2.

R Reserved [24:18]
Not used in the L64364.

SB_DSL2[1:0] Secondary Bus Page 2 Deselect Timing [17:16]
SB_DSL2selects the number of clock delays inserted from
the deassertion of SB_PCSn[2] (see page 3-10) to the
assertion of a new SB_PCSn. The number of clock delays
is coded as follows:

SB_DSL1[1:0] Secondary Bus Page 1 Deselect Timing [15:14]
SB_DSL1selects the number of clock delays inserted from
the deassertion of SB_PCSn[1] (see page 3-10) to the
assertion of a new SB_PCSn. Bit coding is the same as
SB_DSL2.

SB_DSL0[1:0] Secondary Bus Page 0 Deselect Timing [13:12]
SB_DSL0selects the number of clock delays inserted from
the deassertion of SB_PCSn[0] (see page 3-10) to the
assertion of a new SB_PCSn. Bit coding is the same as
SB_DSL2.

SB_Wait2[3:0] Secondary Bus Page 2 Wait States [11:8]
SB_Wait2[3:0] selects the number of wait states
inserted in read/write accesses from/to the 32-bit
SRAM/EPROM page. The number of wait states is
encoded as follows:

SB_DSL2[1:0] Clock Delay

0b00 0

0b01 1

0b10 2

0b11 3

SB_Wait2[3:0] Wait States

0x0–0xE 0–14

0xF SB_RDYn

10-6 Secondary Bus Memory Controller

When SB_Wait2[3:0] = 0xF, the SB_RDYn(see
page 3-10) input is used to terminate the data cycle.
SB_RDYnis an asynchronous input and is resynchronized
to SB_CLKObefore it is used.

When in this mode, if SB_RDYnis not asserted within
64 system clocks, an SBC address error is generated.

SB_Wait1[3:0] Secondary Bus Page 1 Wait States [7:4]
SB_Wait1[3:0] selects the number of wait states
inserted in read/write accesses to the PHY page.
SB_Wait1 uses the same bit encoding as SB_Wait2 .

SB_Wait0[3:0] Secondary Bus Page 0 Wait States [3:0]
SB_Wait0[3:0] selects the number of wait states
inserted in read/write accesses to the 8-bit
SRAM/EPROM page. SB_Wait0 uses the same bit
encoding as SB_Wait2 .

10.2.2 Secondary Bus Clock Control Register

The Secondary Bus Clock Control register allows you to tune the
SB_CLKOoutput clock and the SB_D[31:0] input read clock (refer to
Figure 10.2) to the internal system clock as needed by your system
design. The internal system clock is the base clock for Secondary Bus
Control logic.

SBC Configuration 10-7

Figure 10.2 SB Clock Relationships

The format of the SB Clock Control register is shown in Figure 10.3 and
its fields are described following the figure. The register is accessible at
address 0xB800.0810.

Figure 10.3 Secondary Bus Clock Control Register

R Reserved [31:11]
Not used in the L64364.

SB_DCLK delay[2:0] [10:8]
These bits specify a delay of SB_DCLKfrom the internal
system clock of up to 4 ns in approximate 0.5 ns steps.
This delay can be adjusted so that the SB_D[31:0] inputs
from external RAM meet the specified ATMizer II+ setup
time. The following table shows the delay between

SB_CLKO Delay Mux

SB_DCLK Delay Mux

SB
Registers

SB_D

Register
Input

Clock
Synthesis
Module

SB_DCLK Delay Select

SB_CLKO Delay Select

Internal System Clock

SB_DCLK

SB_CLKO

SB_A
SB_PCSn
SB_OEn
SB_WEn
SB_D(out)
SB_RDYn
SB_REQn
SB_GNTn

SB_D(in)

31 11 10 8 7 3 2 0

R SB_DCLK
delay R SB_CLKO

delay

Reset Value & Read/Write Status

0x0000 0x4

R/W R/W

10-8 Secondary Bus Memory Controller

SB_DCLKand the internal system clock for each delay
setting.

Should your system design have trouble making the
SB_D[31:0] inputs setup time specified in Table 13.2, the
value of SB_DCLKdelay could be increased to delay the
clock that captures the SB_D[31:0] data input. Doing this
effectively decreases SB_D[31:0] input setup
requirements and increases SB_D[31:0] input hold
requirements as shown in Figure 10.4.

SB_DCLK delay[2:0]
Delay from
Internal Clock (ns)

0b000 +0.4

0b001 +1.1

0b010 +1.5

0b011 +2.2

0b100 +2.7

0b101 +3.4

0b110 +3.8

0b111 +4.5

SBC Configuration 10-9

Figure 10.4 Effects of SB_DCLK Delay Register

R Reserved [7:4]
Not used in the L64364.

SB_CLKO delay[2:0] [2:0]
These bits specify a timing adjustment of SB_CLKOwith
respect to the internal system clock of up to ± 2 ns in
approximate 0.5 ns steps. The adjustment is provided to
compensate for different output loadings on the
Secondary Bus. The following table shows the skew
between the two clocks based on SB_CLKOloading and
the delay setting. The grayed-out cells in the table show
where the L64364 meets its Secondary Bus timing
specification.

SB_D(in) XXXXXXXXXXXXXXXXXX XXXXXX

SB_DCLK
(delay = 2)

SB_D(in) XXXXXXXXXXXXXXXXXX XXXXXX

SB_DCLK
(delay = 0)

Internal Clock

1 2 43

B: Effective internal clock period from SB_D register to internal masters (cycle time − SB_DCLK_delay)
A: Effective clock period from external devices to ATMizer II+ (cycle time − SB_CLK0_delay + SB_DCLK_delay)

C
A

D
B

SB_CLKO
(delay = 4,

C: Effective SB input setup = Input setup time + SB_CLKO_delay − SB_DCLK_delay
D: Effective SB input hold = Input hold time − SB_CLKO_delay + SB_DCLK_delay

loading = 35 pF)

10-10 Secondary Bus Memory Controller

The SB_CLKOclock output is a derivative of the internal
system clock and, for proper Secondary Bus operation
with synchronous memories, the skew between SB_CLKO
and the internal system clock needs to be minimized to
prevent setup and hold violations. The SB_CLKOdelay
control aligns the SB_CLKOclock output to the internal
system clock over the 15 pF to 85 pF loading range that
is specified for Secondary Bus pins. The variation in
loading from 15 pF to 85 pF causes the timing of the
SB_CLKOoutput buffer to change by approximately 2 ns.

The Secondary Bus timing specifications in Table 13.2
are based on the skew between the internal system clock
and SB_CLKObeing within ± 0.5 ns. However, you may
operate the SB interface outside this range if needed by
your system’s design. Figure 10.5 shows the effects of
the delay settings. Increasing clock skew to the positive
side effectively decreases output delay, output hold, and
input hold times, and increases input setup times.
Increasing clock skew to the negative side effectively
increases output delay, output hold, and input hold times,
and decreases input setup times. The default setting of 4
keeps the skew between SB_CLKOand the internal
system clock within ± 0.5 ns for 15 pF to 65 pF SB_CLKO
loading.

SB_CLK
delay[2:0]

SB_CLKO Skew under Loading (ns) 1

1. These are preliminary clock skew numbers.

15 pF 35 pF 65 pF 85 pF

0b000 −3.1 −2.7 −2.0 −1.6

0b001 −2.7 −2.3 −1.6 −1.1

0b010 −1.9 −1.5 −0.8 −0.3

0b011 −1.5 −1.0 −0.3 +0.1

0b100 −0.6 −0.2 +0.5 +0.9

0b101 -0.2 +0.3 +0.9 +1.4

0b110 +0.5 +1.0 +1.6 +2.1

0b111 +1.0 +1.4 +2.1 +2.5

Secondary Bus Performance Considerations 10-11

Figure 10.5 Effects of SB_CLKO Delay Register

10.3 Secondary Bus Performance Considerations

L64364 throughput directly relates to Secondary Bus usage. For most
applications, the L64364 provides 150 Mbytes/s, full-duplex, PDU
throughput when operating at 80 MHz with synchronous SRAM.

The performance over the bus is primarily influenced by latencies in the
memory access pipeline. From a requesting master’s perspective, reads
experience latencies in every stage of the pipeline while writes
experience latencies only up to the bus arbitration stage. Latencies can
be calculated with the following generic formulas:

Total Read Latency = LRM + LA + LMC + LMD + LRD

Internal Clock

1 2 43

SB_DCLK

SB_CLKO

SB_CLKO

(delay = 0)

(delay = 4,

(delay = 5,

A B

DC

C: Effective SB output delays = Output valid time − SB_CLKO_delay
D: Effective SB output hold = Output hold time − SB_CLKO_delay

SB_A
SB_PCSn
SB_WEn
SB_OEn

SB_D(out)

SB_D(in)

XXXX XXXX XXXX XXXX

E: Effective SB input setup = Input setup time + SB_CLKO_delay − SB_DCLK_delay
F: Effective SB input hold = Input hold time − SB_CLKO_delay + SB_DCLK_delay

FE

B: Effective clock period from external devices to ATMizer II+ (cycle time − SB_CLKO_delay + SB_DCLK_delay)
A: Effective clock period from ATMizer II+ to external devices (cycle time + SB_CLKO_delay)

XXXXXXXXXXXXXXXXXX XXXXXX

loading = 35 pF)

loading = 35 pF)

10-12 Secondary Bus Memory Controller

where:

Total Write Latency = LRM + LA + LMD*

*Writes only experience memory device latency if extra cycles are
needed for address overhead in devices such as DRAM and
SDRAM.

Using the above formulas for an APU read from or write to secondary
memory yields a minimum of:

Total Read Latency = 3 + 2 + 1 + 3 + 1 = 10 clock cycles

Total Write Latency = 3 + 2 + 0 = 5 clock cycles

In a busy system, latency numbers are much higher because each
master must wait for its arbitration slot. During these times, LRM, LA, LMC,
and possibly some LMD are in the current master’s access and the
generic equation becomes:

Current Master’s Total Latency + LMD + LRD

In the busy system scenario, memory accesses are packed as tight as
the memory devices allow at the Secondary Bus pins. The references in
Table 10.3 and Table 10.4 are with respect to memory device timings at
the Secondary Bus pins. The tables show just how tightly the L64364 can
pack requests to different types of memory.

LRM Requesting Master Latency. This is 3 for the APU. It takes 3 clock cycles
to get the memory request from the CW4011 pipeline to the arbiter.

LA Arbitration Latency. When the requesting master is the default master
(last one making a request) and no other requests are active, this
latency is at its minimum of 2 clock cycles for the APU and 1 clock cycle
for other bus masters. Otherwise, it depends on how long it takes to
process higher-priority requests.

LMC Memory Controller Latency. This number is 1. There is a 1 clock-cycle
delay from the arbiter to the registers that drive the Secondary Bus pins.

LMD Memory Device Latency. This latency depends on the type of memory
device being accessed. Consult your memory databook for this number.

LRD Read Data Latency. It takes 1 clock cycle to get data from the Secondary
Bus pins to the requesting master.

Secondary Bus Performance Considerations 10-13

Table 10.3 lists the minimum number of clocks per data word required
during a Secondary Bus burst transfer.

The transfer sequence dictates how many additional lead-off cycles are
required for the first word of a burst transfer. Table 10.4 specifies the
number of lead cycles needed for different transfer sequences.

Table 10.3 SBC Clocks per Data Word

Secondary Page Example Part # Min Clocks/Data

SDRAM NEC uPD4516161G5-A10 1

SSRAM Micron MT58LC32K32C4-7 1

SRAM Micron MT5LC2568-15 2

PHY 3

EPROM 3

Table 10.4 SBC Transfer Lead-Off Cycles

Preceding Transfer

Number of Lead-Off Cycles for Next Transfer

SSRAM SDRAM2 ASRAM

R W R W R W

SSRAM1

1. For D7 devices; add one cycle for C4 SSRAM to non-SSRAM transfers.

R 0 1 5 3 1 1

W 2 0 4 2 1 1

SDRAM2

2. Assumes RAS; CAS latency = 2

R 3 1 4 2 4 1

W 5 3 6 4 3 3

ASRAM R 3 1 4 3 0 1

W 3 1 6 3 1 0

10-14 Secondary Bus Memory Controller

10.4 SDRAM Controller

The Synchronous DRAM (SDRAM) Controller connects to 16 Mbit and
64 Mbit SDRAMs from NEC. Configurations of two 1 M x 16-bit, four
2 M x 8-bit, and four 8 M x 8-bit SDRAMS provide 4 Mbytes, 8 Mbytes,
or 32 Mbytes of local memory, respectively. Interface signal timing meets
the requirements of NEC’s 1 M x 16-bit (uPD4516161G5-A10) SDRAMs
and 2 M x 8-bit (uPD4516821G5-A10) SDRAMs and 8 M x 8-bit
(uPD4564841G5-A10) SDRAMs at a 66 MHz clock rate. Different speed
grades may be used in lower performance applications.

Four Micron 8-bit DRAMs (MT41LC256K32D4) may also be used for
1 Mbyte configurations.

All SDRAM interface signals are synchronized to the rising edge of the
output clock signal, SB_CLKO. SB_CLKOhas the same frequency as the
L64364 system clock (in the recommended configuration).

10.4.1 SDRAM Connections

Table 10.5 lists the pin/signal interconnects between the L64364 and
SDRAM devices for 1 Mbyte, 4 Mbyte, and 8 Mbyte configurations.

SDRAM row and column addresses are multiplexed onto Secondary Bus
address lines SB_A[15 :2] . The SDRAM control signals (RASnand CASn)
connect to Secondary Bus address lines SB_A21 and SB_A20,
respectively. The SDRAM write enable control signal (WEn) connects to
the SB_WEn[0] output. The byte enables for SDRAM write operations are
on the output enable pins, SB_OEn[3:0] . For the SDRAM page,
SB_OEn[3:0] are active low signals, which is consistent with the SDRAM
DQM signal definition.

SDRAM Controller 10-15

Table 10.5 ATMizer II+ Chip to SDRAM Interconnections

L64364 Pin

8-Bit Wide Configurations
16-Bit Wide

Configurations
32-Bit Wide

Configuration

2 M x 8
8 M x 8
Chip #1

2 M x 8
8 M x 8
Chip #2

2 M x 8
8 M x 8
Chip #3

2 M x 8
8 M x 8
Chip #4

1 M x 16
4 M x 16
8 M x 16
Chip #1

1 M x 16
4 M x 16
8 M x 16
Chip #2 256 K x 32

SB_A[15]1 A[13] A[13] A[13] A[13] A[13] A[13] –

SB_A[14]1 A[12] A[12] A[12] A[12] A[12] A[12] –

SB_A[13] A[11] A[11] A[11] A[11] A[11] A[11] BA

SB_A[12] A[10] A[10] A[10] A[10] A[10] A[10] A[8]

SB_A[11] A[9] A[9] A[9] A[9] A[9] A[9] –

SB_A[10] A[8] A[8] A[8] A[8] A[8] A[8] –

SB_A[9:2] A[7:0] A[7:0] A[7:0] A[7:0] A[7:0] A[7:0] A[7:0]

SB_D[31:24] D[7:0] – – – D[15:8] – D[31:24]

SB_D[23:16] – D[7:0] – – D[7:0] – D[23:16]

SB_D[15:8] – – D[7:0] – – D[15:8] D[15:8]

SB_D[7:0] – – – D[7:0] – D[7:0] D[7:0]

SB_A[21] RASn RASn RASn RASn RASn RASn RASn

SB_A[20] CASn CASn CASn CASn CASn CASn CASn

SB_WEn[0] WEn WEn WEn WEn WEn WEn WEn

SB_OEn[3] DQM – – – DQMU – DQM3

SB_OEn[2] – DQM – – DQML – DQM2

10-16 Secondary Bus Memory Controller

10.4.2 SDRAM Controller Configuration

Synchronous DRAMs have numerous programmable configuration
options. SDRAM configuration settings depend on the L64364’s clock
frequency and the SDRAM speed grades. The default setting (reset
state) of the SP_SDRAM register (Figure 10.6) corresponds to NEC’s
16 Mbit SDRAM with -A10 speed grade. The register is at APU address
0xB800.0804.

Figure 10.6 SP_SDRAM Register

R Reserved 31
Not used in the L64364.

SB_OEn[1] – – DQM – – DQMU DQM1

SB_OEn[0] – – – DQM – DQML DQM0

SB_CLKO CLK CLK CLK CLK CLK CLK CLK

VDD CKE CKE CKE CKE CKE CKE CKE

VSS – – – – – – DSF

SB_PCSn[4] CSn CSn CSn CSn CSn CSn CSn

1. SB_A[15:14] are required only for 64 Mbit and 128 Mbit SDRAMs.

Table 10.5 ATMizer II+ Chip to SDRAM Interconnections (Cont.)

L64364 Pin

8-Bit Wide Configurations
16-Bit Wide

Configurations
32-Bit Wide

Configuration

2 M x 8
8 M x 8
Chip #1

2 M x 8
8 M x 8
Chip #2

2 M x 8
8 M x 8
Chip #3

2 M x 8
8 M x 8
Chip #4

1 M x 16
4 M x 16
8 M x 16
Chip #1

1 M x 16
4 M x 16
8 M x 16
Chip #2 256 K x 32

31 30 29 28 27 22 21 20 19 18 17 16 15 12 11 10 8 7 6 4 3 2 1 0

R PC MRS REF R CL[1:0] R RCD[1:0] RC[3:0] R RAS[2:0] R DAL[2:0] R RP3 DPL2

Default Value & Read/Write Status

0x0 0x00 0x2 0x0 0x2 0x7 0x0 0x5 0x0 0x3 0x0 0x0 0x0

R R/W R R/W R R/W R R/W R R/W R R/W

SDRAM Controller 10-17

PC Precharge Command 30
PC is the manual Precharge command. When set, it
causes the SBC to generate one precharge cycle for both
SDRAM banks. This bit is automatically cleared on
completion of the Precharge command.

MRS Mode Register Set 29
When MRSis set, the subsequent store word operation to
the SDRAM page generates a Mode Register Set
command (see Section 10.4.3, “SDRAM Initialization.”)
The SDRAM Mode register bits are loaded from the row
address bits.

For the 16 Mbyte memory map, typical virtual memory
store word addresses are 0xA080.8000, 0xA081.0000,
and 0xA081.8000 for CAS latency of 1, 2, or 3
respectively. The format of the Mode Register Set
command is:

For the 64 Mbyte memory map, typical virtual memory
store word addresses are 0xA200.8000, 0xA201.0000,
and 0xA201.8000 for CAS latency of 1, 2, or 3
respectively. The format for the Mode Register Set
command is:

The store word data is not used. The SBC clears the MRS
bit when the mode register write operation is completed.

REF Refresh Cycle Command 28
The REFbit is a manual Refresh command. When set,
this bit causes the SBC to generate one refresh cycle for
both SDRAM banks, independent of the state of the
refresh timer.

R Reserved [27:22]
Not used in the L64364.

31 30 29 28 27 26 25 24 23 22 11 10 0

X X X X 0 0 0 0 1 SDRAM Mode Register Bits Don’t Care

31 30 29 28 27 26 25 24 11 10 0

X X X X 0 0 1 SDRAM Mode Register Bits Don’t Care

10-18 Secondary Bus Memory Controller

CL[1:0] CAS Latency [21:20]
CL[1:0] specifies CAS latency (1 to 3 cycles). The
default setting is 2 cycles, which corresponds to 66 MHz
operation with NEC SDRAMs with a speed grade of 10.

R Reserved [19:18]
Not used in the L64364.

RCD[1:0] Row Activate to Read/Write
Command Delay [17:16]
RCD[1:0] selects the number of cycles between a Row
Activate command (RAS) and a Read/Write command. If
RAS occurs in clock cycle n, the Read/Write command
will occur in cycle n + RCD[1:0] . Valid selections are 1,
2, or 3. The default setting is 2.

RC[3:0] Refresh to Next Command Delay/
Row Activate to Row Activate Delay [15:12]
RC[3:0] selects the minimum number of cycles between
the Column Before Row (CBR) Refresh command (REF)
and the next command. That is, if REFoccurs in cycle n,
then the earliest the next command can occur is cycle
n + RC[3:0] . RC[3:0] is also the minimum number of
cycles between Row Activate commands. Valid settings
are 2 through 15. The default setting is 7.

R Reserved 11
Not used in the L64364.

RAS[2:0] Row Activate to Precharge Command Delay [10:8]
RAS[2:0] specifies the number of clock cycles between
the row activate and Precharge commands. That is, if
RAS occurs in clock cycle n, Precharge (PRE) will not
occur before clock cycle n + RAS[2:0] . Valid settings are
3 through 7. The default setting of 5 is required for NEC
SDRAMs with 10 speed grade at 66 MHz.

R Reserved 7
Not used in the L64364.

DAL[2:0] Write Complete to Refresh/Row Active
Command Delay [6:4]
DAL[2:0] specify the minimum number of cycles from the
end of a write to the next row activate or Refresh
command. That is, if a write transfer completes in cycle n,
the earliest the next RASor Refresh command will occur

SDRAM Controller 10-19

is cycle n + DAL[2:0] . Valid settings are 3 through 5. The
default value of 3 is required for NEC SDRAMs with 10
speed grade at 66 MHz.

R Reserved [3:2]
Not used in the L64364.

RP3 Precharge to Row Activate Command Delay 1
When set, RP3 specifies 3 as the minimum number of
clocks between a Precharge command and the next Row
Activate command. When cleared, RP3specifies 2 as the
minimum number of clocks. Cleared is the default setting
for this bit.

DPL2 Write Complete to Precharge Command Delay 0
When set, DPL2 causes a one cycle delay between the
last word of a write and the Precharge command. When
DPL2 is cleared (the default setting), the write is
terminated by a Precharge command in the cycle
following the last valid write data cycle.

10.4.3 SDRAM Initialization

SDRAMs must be initialized at power up. Precharge must be the first
command to the SDRAM. Following the Precharge command, a Mode
Register Set command must be issued to configure the SDRAM. When
set, the MRSbit in the SP_SDRAM register generates the Mode Register
Set command (refer to page 10-17).

The format of the 16 Mbit SDRAM Mode register is shown in Figure 10.7.

Figure 10.7 SDRAM Mode Register

The format of the 64 Mbit SDRAM Mode register is:

R Reserved [13:7]
Not used in the L64364. Must be kept set at 0.

11 7 6 4 3 2 0

R LTMODE WT BL

13 7 6 4 3 2 0

R LTMODE WT BL

10-20 Secondary Bus Memory Controller

LTMODE CAS Latency [6:4]
LTMODEselects the CAS latency and must be set to the
same value programmed in the CL[1 :0] bits in the
SDRAM Control register.

WT Burst Sequence 3
WTselects a sequential or interleaved burst sequence.
Since the L64364’s burst length is 1, the value of this bit
is don’t care.

BL Burst Length [2:0]
BL specifies the burst length. It must be set to 0b000 for
a burst length of 1 since a Read/Write command is
issued with each CAS.

After programming the SDRAM Mode register, two CBR refresh cycles
must transpire before the SDRAM becomes accessible. CBR refresh can
be initiated using either the Refresh Interval Timer (see the next topic)
or by setting the REFbit (page 10-17) in the SDRAM Control register.

10.4.4 SDRAM Refresh

16 Mbit SDRAMs require 2,048 row-refresh cycles in 32 ms and 64 Mbit
SDRAMs require 4,096 row-refresh cycles in 64 ms, which creates a
maximum refresh interval of 15,625 ns. If the L64364 clock frequency is
80 MHz, a Refresh command must be issued every 1,250 clock cycles
and, if the clock frequency is 100 MHz, a Refresh command must be
issued every 1,562 clock cycles. To perform this function, the SDRAM
Controller includes an 11-bit Refresh Interval Timer.

The Refresh Interval Timer has an 11-bit interval time initial register and an
11-bit counter which is decremented each clock cycle. The SP_Refresh
register is accessible by the APU at physical memory address 0xB800.0808.
The format for the SP_Refresh register is shown in Figure 10.8.

Figure 10.8 SP_Refresh Register

31 11 10 0

R Write - RIC[10:0]
Read - RCV[10:0]

Reset Value & Read/Write Status

0x0000

R R/W

SDRAM Controller 10-21

R Reserved [31:11]
Not used in the L64364.

RIC[10:0] Refresh Interval Count Write [10:0]
RIC[10:0] selects the number of L64364 system clock
cycles between refresh commands. For 80 MHz
operation, RIC[10 :0] should be programmed to a value
no greater than 0x480 (1152) and for 100 MHz operation,
RIC[10:0] shoudl be programmed to a value no greater
than 0x61A (1562) to ensure refresh occurs within the
32/64 ms time limit. RIC[10:0] = 0x000 disables the
SDRAM refresh logic. RIC[10:0] is write only.

RCV[10:0] Refresh Counter Value Read [10:0]
RVC[10:0] is the state of the Refresh Counter. The
Secondary Bus Controller issues a CBR Refresh
command when the Refresh Counter wraps. RVC[10:0] is
read only.

Following PCI_RSTn, the Refresh Interval Count and the Refresh Counter
both equal 0. Writing a nonzero value to RIC[10 :0] activates the Refresh
Interval Timer. Starting from the same initial value as RIC[10 :0] , the
Refresh Counter decrements each L64364 system clock cycle. When the
Refresh Counter reaches zero, the Secondary Bus Memory Controller
issues a CBR Refresh command and wraps the count to the initial
RIC[10 :0] value.

If a data transaction is occurring when the count reaches zero, the
Secondary Bus Controller waits for completion of the data transaction
and then issues the Refresh command.

Figure 10.9 illustrates Refresh command timing. In the figure, a
Precharge command is issued on clock edge 2, either from a previous
read/write transfer or from the manual Precharge command.

The timing from precharge to refresh is selected by the RP3 bit in the
SP_SDRAM register (page 10-16). In Figure 10.9, RP3 is set to 0,
causing the CBR Refresh command to occur two cycles later on clock
edge 4.

The SP_SDRAM register’s RC[3:0] bits specify the earliest the next Row
Activate (RAS) command can occur. In this example, an activate
command occurs on clock edge 10, since RCis set to 7.

10-22 Secondary Bus Memory Controller

Figure 10.9 SDRAM Refresh Timing

10.4.5 Secondary Bus Time-Out

The SDRAM refresh sequence does not need to be reinitiated following
a Secondary Bus time-out.

SB_CLKO

SB_PCSn[4:0]

SB_A21(RAS)

SB_A20(CAS)

SB_A[15:2]

SB_D[31:0]

SB_WE[3:0]

SB_OEn[3:0]

1 2 3 4 5 6 7 8 9 10 11

0F 1F 0F 1F 0F

400 A00

1 0

F

1

0

0F 1F 0F 1F 0F1F

SDRAM Controller 10-23

10.4.6 SDRAM Command Summary

This section summarizes the commands generated by the SDRAM
Controller. Table 10.6 lists the SDRAM signal values for each SDRAM
command.

The SDRAM Controller deasserts SB_PCSn[4] to idle the SDRAM. The
No Operation, Self-Refresh Entry, and Burst Stop commands are not
used. The Automatic Precharge mode is also not used.

10.4.7 SDRAM Read Transfer

A read transfer is initiated with a Row Activate (RAS) command followed
by one or more Read commands and terminated with a Precharge
command. The RAScommand may be delayed to meet the minimum
timing between consecutive RAScommands as specified in the SDRAM
Control register’s RC[3:0] field.

Table 10.6 SDRAM Command Summary

Command CSn 1

1. A “0” in this column indicates asserted, since CSn, RASn, CASn, and WEnare low active.

RASn1 CASn1 WEn1 A[13] 2,4 A[12] 2 A[11] 2

2. SDRAM pins A[n] = L64364 pins SB_A[n + 2] , AD[n] are either L64364 or PCI sourced address
bits.

A[10] 2 A[9:0] 2

No
Operation

1 X X X X X X X X

Mode Reg
Set

0 0 0 0 AD[24] AD[23] AD[22] AD[21] AD[20:11]

Row
Activate

0 0 1 1 AD[23] AD[22] AD[11] AD[10] AD[21:12]

Precharge 0 0 1 0 X X X 1 X

Write 0 1 0 0 AD[23] AD[22] AD[11] 0 AD[23,22,9:2]3

AD[25,24,9:2]4

3. Mappings for 16 Mbit SDRAMs only. (SP_Ctrl register bit SB_64Mcleared)
4. Mappings for 64 Mbit SDRAMs only. (SP_Ctrl register bit SB_64Mset)

Read 0 1 0 1 AD[23] AD[22] AD[11] 0 AD[23,22,9:2]3

AD[25,24,9:2]4

CBR
Refresh

0 0 0 1 X X X X X

10-24 Secondary Bus Memory Controller

On burst reads, a column address is provided for each data cycle.
Therefore, the SDRAM burst length (BL) must equal zero and burst type
(WT) is a don’t care.

Each read transfer is terminated with a Precharge command.

Figure 10.10 depicts timing for an SDRAM Read command. This figure
illustrates a four-word, burst read starting from address A00. The SDRAM
Control register specifies RAS latency in RCD[1:0] and CAS latency in
CL[1 :0] . Both fields are set to 2.

Figure 10.10 SDRAM Read Timing

10.4.8 SDRAM Write Transfer

As with read transfers, the write transfer starts with a RAScommand
followed by one or more Write commands and terminated with a
Precharge command. The RAScommand may be delayed to meet the
minimum timing between consecutive RAScommands as specified in the
SDRAM Control register’s RC[3:0] field.

On burst writes, a column address is provided for each data cycle.
Therefore, the SDRAM burst length (BL) and burst type (WT) are don’t
care.

SB_A[15:2]

SB_CLKO

SB_PCSn[4:0]

SB_A21(RAS)

SB_A20(CAS)

SB_D[31:0]

SB_WEn[3:0]

SB_OEn[3:0]

1 2 3 4 5 6 7 8 9 10 11

1F 0F

A00 A01 A02 A03 A04 404

D0 D1 D2 D3

1

F

1F 0F 1F

A00

1

0

0

F

SSRAM Controller 10-25

The Data Mask (DQM) pins are asserted consistent with the write enables
from the L64364 or PCI Bus.

Figure 10.11 depicts timing for an SDRAM Write command. This figure
illustrates a four-word, burst write starting from address 0xA00. The
SDRAM Control register specifies RAS latency in RCD[1:0] and CAS
latency in CL[1:0] . Both fields are set to 2.

Figure 10.11 SDRAM Write Timing

10.5 SSRAM Controller

The Synchronous SRAM Controller directly connects to Synchronous
SRAMs from Micron, Motorola, and NEC. Memory configurations of
128 Kbytes to 1 Mbyte are supported. Table 10.7 lists the recommended
SSRAM configurations. SSRAM Controller timing is designed to
interoperate with pipelined SSRAMs.

SB_CLKO

SB_PCSn[4:0]

SB_A21(RAS)

SB_A20(CAS)

SB_A[15:2]

SB_D[31:0]

SB_WEn[3:0]

SB_OEn[3:0]

1 2 3 4 5 6 7 8 9 10 11

1F 0F 1F0F1F

A00 A01 A02 A03 403

D0 D1 D2 D3

1

F

0

A00

1

0 F

10-26 Secondary Bus Memory Controller

L64364 to SSRAM interconnect is summarized in Table 10.8.

Unlike the SDRAM, there are no programmable options for the SSRAM.

Table 10.7 SSRAM Configurations

SSRAM
Configuration SSRAM Part No. No. of Devices Device Size

128 Kbytes - Micron MT58LC32K32D7
- Micron MT58LC32K32C4
- Motorola MCM69P532
- NEC uPD431232LGF

1
1
1
1

32 K x 32
32 K x 32
32 K x 32
32 K x 32

256 Kbytes - Micron MT58LC64K32D7
- Micron MT58LC64K32C4
- Motorola MCM69P618

1
1
2

64 K x 32
64 K x 32
64 K x 18

512 Kbytes - Micron MT58LC128K32D7
- Micron MT58LC128K32C4

1
1

128 K x 32
128 K x 32

1 Mbyte - Micron MT58LC128K32D7
- Micron MT58LC128K32C4

21

21

1. In this configuration, address line SB_A[19] is used to select the SSRAM bank.

128 K x 32
128 K x 32

Table 10.8 SSRAM Interconnections

L64364 Pin SSRAM Pin

SB_D[31:0] DQ[32:1]

SB_A[n + 3]1

SB_A[n + 2:2]

1. When designing with multiple banks of SSRAMs, only SB_A[21:15] may be
used for secondary chip enables CE2 and CE2n.

CE2, CE2n
A[n:0]

SB_PCSn[3] CEn

SB_OEn[0] OEn

SB_WEn[3:0] BW[4:1]

SB_CLKO CLK

VDD (3.3 V) GWn, ADSPn, ADVn

VSS BWEn, MODE, ZZ, ADSCn

SSRAM Controller 10-27

10.5.1 SSRAM Read Transfers

Figure 10.12 illustrates SSRAM read timing. In this example, a four-word
burst read from address A0 is followed by a word write to address A5.
SB_DSL3 is cleared for this example.

SSRAM read operations start with an address cycle, designated by
assertion of SB_PCSn[3] . Read data drives SB_D[31 :0] during the next
clock cycle. During burst transfers, the burst address drives SB_A[21:2]
during each cycle. The Burst read terminates when the SSRAM
Controller deasserts PCSn[3] , unless the next pending transfer is
targeted to SSRAM.

Figure 10.12 SSRAM Read Timing

10.5.2 SSRAM Write Transfers

Figure 10.13 shows the SSRAM write timing. In this example, a four-word
burst write to address A0 is followed by a word read of address A0.
SB_DSL3 is cleared for this example.

SSRAM write transfers start with the assertion of PCSn[3] and one or
more write enables, SB_WEn[3:0] . During this cycle, the valid write
address is specified on SB_A[21:2] , and write data is available on
SB_D[31:0] . The burst address drives SB_A[21:2] during each write
cycle. A burst write terminates with the deassertion of SB_PCSn[3] ,
unless the next pending transfer is also targeted to SSRAM.

SB_D[31:0]

SB_CLKO

SB_PCSn[4:0]

SB_A[21:2]

SB_WEn[3:0]

SB_OEn0

1 2 3 4 5 6 7 8 9 10 11

1F17

A0 A1 A2 A3 A5

D0 D1 D2 D3 D5

0F

1F 17

F

1F

10-28 Secondary Bus Memory Controller

Figure 10.13 SSRAM Write Timing

10.6 32-Bit SRAM/EPROM Controller

For lower performance applications, the 32-bit SRAM/EPROM Controller
serves as an alternative to SDRAM or SSRAM. For this memory type,
the L64364 directly controls operation of the asynchronous SRAM or
EPROM. Configuring the memory is straight forward. The L64364
address, data, and control lines directly connect to corresponding SRAM
or EPROM pins. SB_PCSn[2] is used for the chip select. All interface
signals synchronize with the SB_CLKOoutput signal.

10.6.1 32-Bit SRAM/EPROM Read Transfer

A 32-bit SRAM/EPROM read operation starts with the assertion of
SB_PCSn[2] . During this cycle, the read address drives SB_A[21 :2] . For
the 32-bit EPROM/SRAM page, SB_OEn[1] is used as a high-active
address strobe. The address strobe is active when a new address is
presented on SB_A[21 :2] . Read data is captured in the following cycle if
the wait state count SB_Wait2[3 :0] = 0x0. Otherwise, read data
sampling occurs during the clock cycle specified by SB_Wait2[3 :0] .

If SB_Wait2[3:0] = 0xF, then SB_RDYntiming is selected and read data
is sampled in the clock cycle after resynchronization.

Figure 10.14 shows the SRAM read timing with SB_Wait2 = 0. In this
example, a two-word read starts from address A0 followed by a one-word
write to address A2.

SB_CLKO

SB_PCSn[4:0]

SB_A[21:2]

SB_D[31:0]

SB_WEn[3:0]

SB_OEn0

1 2 3 4 5 6 7 8 9 10 11

1F 17 1F

A0A0 A1 A2 A3

D0 D1 D2 D3 D0

F 0 0 0 0 F

32-Bit SRAM/EPROM Controller 10-29

Figure 10.14 SRAM Read Timing

10.6.2 32-Bit SRAM Write Transfers

A 32-bit SRAM write operation starts with the assertion of SB_PCSn[2]
on the rising edge of SB_CLKO. During this cycle, SB_A[21:2] contains a
valid write address, and SB_D[31:0] contains valid write data. One-half
cycle later, on the falling edge of SB_CLKO, the L64364 asserts the write
enables, SB_WEn[3:0] . The write enables, address and data remain valid
for the number of cycles specified by SB_Wait2[3:0] . If
SB_Wait2[3:0] = 0x0, the write enables remain active for one clock
cycle (from negative-edge to negative-edge of SB_CLKO).

If SB_Wait2[3:0] = 0xF, then the SB_RDYninput determines when the
data is written. See Section 10.6.3, “32-Bit SRAM/EPROM SB_RDYn
Timing.”

Figure 10.15 depicts SRAM write transfer timing. In this example, a
two-word write starts from address A0. Then, a one-word read from
address A2 occurs with SB_Wait2 = 0x0.

SB_CLKO

SB_PCSn[4:0]

SB_A[21:2]

SB_D[31:0]

SB_WEn[3:0]

SB_OEn[0]

SB_OEn[1]

1 2 3 4 5 6 7 8 9 10 11

1F 1B 1F

A0 A1 A2

D0 D1 D5

F 0 F

10-30 Secondary Bus Memory Controller

Figure 10.15 SRAM Write Timing

10.6.3 32-Bit SRAM/EPROM SB_RDYn Timing

Figure 10.16 and Figure 10.17 show the read and write timing with
SB_RDYn. When SB_Wait2 = 0xF, the L64364 uses the asserting edge of
SB_RDYnto determine when the transfer is complete. An asserting edge
of SB_RDYnmust be seen for each word transferred. If asserted
synchronously with SB_CLKO, SB_RDYnneed only be asserted/deasserted
for one clock cycle; otherwise, it must be asserted/deasserted for a
minimum of two clock cycles.

For burst transfers, SB_OEn[1] is used as a high-active address strobe
indicating that a new address has been placed on SB_A[21:2] . If
SB_RDYnis used to complete the transfer, then the logic generating the
SB_RDYnpulse should key off of the assertion of SB_OEn[1] .

The L64364 captures read data five clock cycles after the asserting edge
of SB_RDYn, at the deasserting edge of SB_OEn[0] or, in back-to-back
accesses, at the asserting edge of SB_OEn[1] (at the change of
address). The L64364 completes write operations four and one-half clock
cycles after the asserting edge of SB_RDYn, at the deasserting edge of
SB_WEn[3:0] .

1 2 3 4 5 6 7 8 9 10 11

A0 A1 A2

D0 D1 D5

F 0 F 0 F

1F1B1F

SB_CLKO

SB_PCSn[4:0]

SB_A[21:2]

SB_D[31:0]

SB_WEn[3:0]

SB_OEn[0]

SB_OEn[1]

32-Bit SRAM/EPROM Controller 10-31

Figure 10.16 32-Bit SRAM/EPROM Read Timing with SB_RDYn

Figure 10.17 32-Bit SRAM/EPROM Write Timing with SB_RDYn

SB_CLKO

SB_A[21:2]

SB_OEn[1]

SB_PCSn[4:0]

SB_OEn[0]

SB_RDYn

SB_D[31:24]

SB_WEn[0]

1B

A0 A1

D1

1 2 3 4 5 6 7 8 9 10 11 12 13

D0

F

SB_CLKO

SB_A[21:2]

SB_WEn[3:0]

SB_OEn[1]

SB_PCSn[4:0]

SB_D[31:0]

SB_OEn[0]

SB_RDYn

1B

A0 A1

D1D0

FF F0 0

1 2 3 4 5 6 7 8 9 10 11 12 13

10-32 Secondary Bus Memory Controller

10.7 PHY Controller

The PHY Controller makes it easy to connect the 8-bit control/
management interface common on ATM Physical Layer devices and
conforms to the timing specified in Appendix A2.4.2 of the ATM Forum
Utopia Level 2 Specification, Version 1.0. PHY devices connect to the
Secondary Bus as listed in Table 10.9.

10.7.1 PHY Read Transfers

Figure 10.18 illustrates PHY read timing with SB_Wait1 = 0x0 (zero wait
states). Section 10.7.3, “PHY SB_RDYn Timing,” describes PHY
read/write timing when SB_Wait1 = 0xF.

PHY read transfers start with the assertion of SB_PCSn[1] . During the
same cycle, SB_A[21 :2] has a valid address and the controller asserts
an ALE signal on SB_OEn[1] . SB_OEn[2] , the R/W signal, is also valid at
this time.

SB_Wait1[3:0] specifies how many cycles the controller asserts
SB_OEn[0] . If SB_Wait1[3:0] equals 0x0 or 0x1, the controller asserts

Table 10.9 Secondary Bus to PHY Device Connections

Device
Connections Description

Secondary Bus
Connections

Addr[19:0] Contains the Byte Address SB_A[21:2]

Data[7:0] SB_D[31:24]

Sel Chip Select SB_PCSn[1]

Rd Read Strobe SB_OEn[0]

Wr Write Strobe SB_WEn[0]

R/W Read/Write Signal SB_OEn[2]

DS Data Strobe SB_OEn[0] and
SB_WEn[0]

Rdy/Dtack Ready/Data Acknowledge SB_RDYn

ALE Address Latch Enable SB_OEn[1]

PHY Controller 10-33

SB_OEn[0] the cycle after SB_OEn[1] (ALE). Otherwise, SB_OEn[0] lags
by two cycles. Read data capture occurs in the last cycle the controller
asserts SB_OEn[0] .

Figure 10.18 PHY Read Timing

10.7.2 PHY Write Transfers

Figure 10.19 illustrates PHY write transfer timing with SB_Wait1 = 0x0
(zero wait states). Section 10.7.3, “PHY SB_RDYn Timing,” describes
PHY read/write timing when SB_Wait1 = 0xF.

As with read transfers, PHY write transfers start with the assertion of
SB_PCSn[1] . During this same cycle, the controller asserts an ALEsignal
on SB_OEn[1] and outputs a valid address on SB_A[21:2] .

SB_Wait1[3:0] specifies how many cycles the controller asserts
SB_WE[0] . If SB_Wait1[3:0] equals 0x0 or 0x1, the controller asserts
SB_WEn[0] the cycle after SB_OEn[1] (ALE). Otherwise, SB_WEn[0] lags
by two cycles.

1 2 3 4 5 6 7 8 9 10 11

SB_CLKO

SB_PCSn[4:0]

SB_OEn[1]

SB_A[21:2]

SB_D[31:24]

SB_WEn[0]

SB_OEn[0]

A0 A1 A2 A3

D0 D1 D2 D3

1F 1F1D

SB_OEn[2]

10-34 Secondary Bus Memory Controller

Figure 10.19 PHY Write Timing

10.7.3 PHY SB_RDYn Timing

When SB_Wait1 = 0xF, the L64364 uses the asserting edge of SB_RDYn
to determine when to complete the transfer. An asserting edge of
SB_RDYnmust be seen for each byte transferred. Timing for the assertion
of SB_RDYnshould be based on the asserting edge of SB_OEn[0] for
reads (Figure 10.20) and SB_WEn[0] for writes (Figure 10.21). Once
asserted, SB_RDYnmust remain asserted until the L64364 deasserts
SB_OEn[0] for reads and SB_WEn[0] for writes. This conforms to the
timing specified in Appendix A2.4.2 of the ATM Forum Utopia Level 2
Specification, Version 1.0.

The L64364 captures read data four clock cycles after the asserting edge
of SB_RDYn, at the deasserting edge of SB_OEn[0] . It completes write
operations four clock cycles after the asserting edge of SB_RDYn, at the
deasserting edge of SB_WEn[0] .

D0

1 2 3 4 5 6 7 8 9 10 11

1F 1D 1F

A0 A1 A2 A3

D1 D2 D3

SB_CLKO

SB_PCSn[4:0]

SB_A[21:2]

SB_OEn[1]

SB_D[31:24]

SB_WEn[0]

SB_OEn[0]

SB_OEn[2]

PHY Controller 10-35

Figure 10.20 PHY Read Timing with SB_RDYn

Figure 10.21 PHY Write Timing with SB_RDYn

SB_CLKO

SB_A[21:2]

SB_OEn[1]

SB_PCSn[4:0]

SB_OEn[0]

SB_RDYn

SB_D[31:24]

SB_WEn[0]

A0

1D

D0

1 2 3 4 5 6 7 8 9 10 11 12 13

SB_CLKO

SB_A[21:2]

SB_OEn[1]

SB_PCSn[4:0]

SB_OEn[0]

SB_RDYn

SB_D[31:24]

SB_WEn[0]

A0

1D

D0

1 2 3 4 5 6 7 8 9 10 11 12 13

10-36 Secondary Bus Memory Controller

10.8 8-Bit SRAM/EPROM Controller

The eight-bit SRAM/EPROM Controller supports booting the L64364
from a byte-wide EPROM. Since data transfers are byte wide, the
SB_A[21:2] outputs contain the byte address, which are equivalent to
the L64364 or PCI address bits [19:0]. Data is transferred on
SB_D[31:24] , and SB_WEn[0] and SB_OEn[0] are the corresponding
write enable and output enable signals.

10.8.1 8-Bit SRAM/EPROM Read Transfers

Figure 10.22 shows SRAM/EPROM read timing with SB_Wait1 = 0x0
(zero wait states). Section 10.8.3, “8-Bit SRAM/EPROM SB_RDYn
Timing,” describes SRAM/EPROM read/write timing when
SB_Wait1 = 0xF.

Read transfers start when the controller asserts SB_PCSn[0] . During the
same cycle, SB_A[21:2] has a valid address, and the controller asserts
an ALE signal on SB_OEn[1] .

SB_Wait0[3:0] specifies how many cycles the controller asserts
SB_OEn[0] . If SB_Wait1[3:0] equals 0x0 or 0x1, the controller asserts
SB_OEn[0] the cycle after SB_OEn[1] (ALE). Otherwise, SB_OEn[0] lags
by two cycles. Read data capture occurs in the last cycle the controller
asserts SB_OEn[0] or, in the case of bursts, the clock edge on which
SB_OEn[1] is asserted (new address).

8-Bit SRAM/EPROM Controller 10-37

Figure 10.22 8-Bit SRAM/EPROM Read Timing

10.8.2 8-Bit SRAM/EPROM Write Transfers

Figure 10.23 illustrates 8-bit write timing with SB_Wait1 = 0x0 (zero wait
states). Section 10.8.3, “8-Bit SRAM/EPROM SB_RDYn Timing,”
describes the SRAM/EPROM read/write timing when SB_Wait1 = 0xF.

As with read transfers, 8-bit SRAM/EPROM write transfers start when the
controller asserts SB_PCSn[0] . During this same cycle, the controller
asserts an ALE signal on SB_OEn[1] and outputs a valid address on
SB_A[21:2] .

SB_Wait1[3:0] specifies how many cycles the controller asserts
SB_WEn[0] . If SB_Wait1[3:0] equals 0x0 or 0x1, the controller asserts
SB_WEn[0] the cycle after SB_OEn[1] (ALE). Otherwise, SB_WEn[0] lags
by two cycles.

1 2 3 4 5 6 7 8 9 10 11

1F 1E 1F

A0 A1 A2 A3

D0 D1 D2 D3

SB_CLKO

SB_PCSn[4:0]

SB_A[21:2]

SB_OEn[1]

SB_D[31:24]

SB_WEn[0]

SB_OEn[0]

10-38 Secondary Bus Memory Controller

Figure 10.23 8-Bit SRAM Write Timing

10.8.3 8-Bit SRAM/EPROM SB_RDYn Timing

When SB_Wait1 = 0xF, the L64364 uses the asserting edge of SB_RDYn
to determine when the transfer is complete. Refer to Figure 10.24 and
Figure 10.25. An asserting edge of SB_RDYnmust be seen for each byte
transferred. If asserted synchronously with SB_CLKO, SB_RDYnneed only
be asserted/deasserted for one clock cycle; otherwise, it must be
asserted/deasserted for a minimum of two clock cycles.

For burst transfers, SB_OEn[1] is used as a high-active address strobe
indicating that a new address has been placed on SB_A[21:2] . If
SB_RDYnis used to complete the transfer, then the logic generating the
SB_RDYnpulse should key off of the assertion of SB_OEn[1] .

The L64364 captures read data five clock cycles after the asserting edge
of SB_RDYn, at the deasserting edge of SB_OEn[0] or, in back-to-back
accesses, at the asserting edge of SB_OEn[1] (at the change of
address). The L64364 completes write operations four clock cycles after
the asserting edge of SB_RDYn, at the deasserting edge of SB_WEn[0] .

1 2 3 4 5 6 7 8 9 10 11

1F 1E 1F

A0 A1 A2 A3

D0 D1 D2 D3

SB_CLKO

SB_PCSn[4:0]

SB_A[21:2]

SB_OEn[1]

SB_D[31:24]

SB_WEn[0]

SB_OEn[0]

8-Bit SRAM/EPROM Controller 10-39

Figure 10.24 8-Bit SRAM/EPROM Read Timing with SB_RDYn

Figure 10.25 8-Bit SRAM/EPROM Write Timing with SB_RDYn

SB_CLKO

SB_A[21:2]

SB_OEn[1]

SB_PCSn[4:0]

SB_OEn[0]

SB_RDYn

SB_D[31:24]

SB_WEn[0]

1E

A0 A1

D1

1 2 3 4 5 6 7 8 9 10 11 12 13

D0

SB_OEn[1]

SB_CLKO

SB_A[21:2]

SB_PCSn[4:0]

SB_OEn[0]

SB_RDYn

SB_D[31:24]

SB_WEn[0]

1E

A0 A1

D0 D1

1 2 3 4 5 6 7 8 9 10 11 12 13

10-40 Secondary Bus Memory Controller

10.9 External Bus Masters

The L64636 can accommodate additional external bus masters on the
Secondary Bus. The SB_REQnand SB_GNTnsignals allow an external bus
master to arbitrate for bus access. Arbitration for the Secondary Bus
uses a round-robin technique among the L64364 bus masters (APU,
EDMA, and Scheduler) and the PCI Slave interface.

Secondary Bus ownership is granted to the external bus master when
SB_GNTnis asserted. Figure 10.26 illustrates Secondary Bus grant
timing. All Secondary Bus interface signals, except SB_CLKOand
SB_GNTn, are held 3-stated until the external master deasserts SB_REQn.
SB_GNTnis deasserted one clock cycle after SB_REQnis deasserted.

It is the responsibility of the external master to relinquish the Secondary
Bus in time to prevent stalling of the L64364 core modules. Also, an
SDRAM refresh will not pre-empt a Secondary Bus transaction, so the
refresh timer must be set to accommodate maximum external bus master
transactions.

Figure 10.26 Secondary Bus Grant Timing

SB_CLKO

SB_REQn

SB_GNTn

SB_PCSn[4:0]

SB_A[21:2]

SB_D[31:0]

SB_WEn[3:0]

SB_OEn[3:0]

1 2 3 4 5 6 7 8 9 10 11 12 13

A3 A4 A5 A6 A7

D3 D4 D5 D6 D7

0 F

F

0F 1F

Error Reporting 10-41

10.10 Error Reporting

Two registers aid in error debugging. The SB_Err (Secondary Bus Error)
register at 0xB800.0820 contains information on the type of error and the
offending master (see Figure 10.27). The SB_ErrAddr (Secondary Bus
Error Address) register at 0xB800.0824 contains the address associated
with the errored access (see Figure 10.28).

These registers capture information on the first error received and
contain valid data when the VLDbit in the SB_Err register is set. The APU
re-enables the capturing of future errors by clearing the VLD bit.

Figure 10.27 SB_Err Register

VLD Secondary Bus Error Valid Bit 31
The VLDbit is set when the SB_Err register has captured
data pertaining to a Secondary Bus error condition. VLD
is cleared by writing a 1 to the bit position. Clearing the
VLD bit enables the capturing of data pertaining to the
next Secondary Bus error condition.

Master[2:0] Secondary Bus Master Field [30:28]
The Master that caused the Secondary Bus Error Condition.

31 30 28 27 26 24 23 22 21 20 19 0

VLD Master
[2:0] RW R WDT RDY DIS ADR R

Reset Value & Read/Write Status

0x0000.0000

R/W R

Master[2:0] Clock Delay

0x0 APU

0x1 TMU

0x2 PCI

0x3 MOVE

0x4 EDMA

0x5 EDMA

0x6 SB_REQn

0x7 Reserved

10-42 Secondary Bus Memory Controller

R/W Read/Write Indicator 27
When R/W is set, the Secondary Bus error occurred on
a read access. When R/W is cleared, the Secondary Bus
error occurred on a write access.

R Reserved [26:24]
Not used in the L64364.

WDT WatchDog Time-Out 23
When set, indicates that the access caused an APU
WatchDog time-out.

RDY SB_RDY Time-Out 22
When set, indicates that the Secondary Bus error is due
to SB_RDYnnot being returned within 64 clocks from the
start of the access.

DIS Disabled Memory Page Access 21
When set, indicates that the Secondary Bus error is due
to an access to a disabled Secondary Bus memory page.

ADR Address Error 20
When set, indicates that the Secondary Bus error is due
to an access to an undefined Secondary Bus address
(addresses not defined in Table 10.1 and Table 10.2).

R Reserved [19:0]
Not used in the L64364.

Figure 10.28 SB_ErrAddr Register

31 0

SB_ErrAddr

Reset Value & Read/Write Status

0x0000.0000

R

L64364 ATMizer II+ ATM-SAR Chip 11-1

Chapter 11
System Clock

This chapter describes the L64364 System Clock module and includes
the following sections:

• Section 11.1, “System Clock Options,” page 11-1

• Section 11.2, “Clock Synthesis,” page 11-2

• Section 11.3, “Design Considerations,” page 11-4

11.1 System Clock Options

The L64364 provides two options for selecting an input source for the
System Clock. The two input options include:

• PCI Clock (PCI_CLK)

• System Clock (SYS_CLK)

Figure 11.1 shows a block diagram of the Clock Selection and Synthesis
Circuit. When asserted, SYS_CLK_PCI selects PCI_CLK as the clock
source for the L64364.

11-2 System Clock

Figure 11.1 Clock Selection and Synthesis Circuit

The L64364 integrates a Phase-Locked Loop (PLL) to optionally
synthesize an internal clock that is twice the frequency of PCI_CLK or
SYS_CLK. The PLL operates at 15–100 MHz. The output of the PLL is
selected by asserting the SYS_PLL signal. SYS_PLL must be stable from
power up. Therefore, it is recommended that SYS_PLL be tied either to
power (VDD) or ground (VSS).

On power up, it is recommended that the system clock source be
stabilized at the operating frequency before deasserting PCI_RSTn.

When PCI_CLK is used as the system clock source, tie SYS_CLKeither to
power (VDD) or ground (VSS).

11.2 Clock Synthesis

The PLL (Figure 11.2) consists of a phase detector, charge pump,
external loop filter, and voltage-controlled oscillator (VCO). The phase
detector monitors the phase difference between the incoming reference
clock and the output of the VCO divided by 2. At startup, the reference
clock frequency is greater than one-half the VCO frequency causing the
voltage at the output of the charge pump to increase. This, in turn,
causes the VCO to increase in frequency.

When the VCO frequency reaches twice the reference clock frequency,
the input signals to the phase detector are the same frequency and the
output of the phase detector represents their phase difference. The phase
detector output then speeds up and slows down the VCO to keep the
internal System Clock’s phase locked to that of the input reference clock.

MUX PLL

Internal Clock Trunk

Signal on Clock Trunk

Reference Clock

xMUX

SYS_CLK_PCI

PCI_CLK

SYS_CLK

SYS_PLL

Reference Clock
0

1

0

1

1/2

Clock Synthesis 11-3

Note: This circuit introduces significant skew between the clock
inputs and the internal clock. Therefore, signals interfacing
to the Secondary Bus or APU should be synchronized to
the SB_CLKOoutput. Signals on the PCI Interface or Utopia
Interface should be synchronized to the PCI_CLK or the
Utopia TX and Rx clocks, respectively.

Figure 11.2 Phase-Locked Loop

You must provide the external loop filter. Table 11.1 lists the component
values for the filter. The filter must be connected within one inch of the
L64364’s PLL_LP2 and PLL_AGNDpins.

C2

R2

Phase Detector

VCO

System Clock

To On-chip
Clock Driver

C1

PLL

Charge
Pump

Loop Filter

PLL_AGND

Reference Clock

PLL_LP2

Table 11.1 Loop Filter Components

Component Value Tolerance

R2 200 Ω ±5%

C2 10 nF ±5%

C1 15–25 pF ±10%

11-4 System Clock

11.3 Design Considerations

The following should be considered when designing the L64364 into a
system:

• Phase tolerance and jitter are independent of PLL frequency. Jitter is
affected by the noise frequency on the analog VDD and VSS lines.
Jitter increases with the noise level on those lines so the noise level
on the PLLVDDline should be kept under 10 mV. The level can be
minimized with the following techniques:

– Use wide PCB traces for the analog VDD and VSS connections
to the PLL interface.

– Use proper VDD and VSS decoupling.

– Use good power and ground sources on the PC board.

– In some setups, an RC network (see Figure 11.3) between the
analog PLLVDDand PLLVSSsupplies reduces jitter by filtering the
noise on the lines.

• Never connect the PLL_AGNDpin to the PC board ground. The
PLL_AGNDpin should be connected only to the external PLL filter as
shown in Figure 11.2.

• An LVCMOS- or LVTTL-level input reference clock is recommended
for signal compatibility with the PLL block. Other levels, such as 5 V
CMOS or TTL, may degrade the tolerances.

Figure 11.3 PLL Supply Filtering

VDD

PLLVDD

PLLVSS

R = 20.0 Ω ± 5%

C = 0.47 µF ± 5%

L64364 ATMizer II+ ATM-SAR Chip 12-1

Chapter 12
JTAG Interface

This chapter describes the L64364 JTAG Interface. It assumes the reader
is familiar with the IEEE 1149.1, Standard Test Access Port and
Boundary Scan Architecture (JTAG) specification, and only describes the
JTAG instructions supported by the L64364 and the bit order of the
L64364 boundary scan chain. This chapter includes the following
sections:

• Section 12.1, “JTAG Instructions,” page 12-1

• Section 12.2, “Boundary Scan Chain Order,” page 12-3

12.1 JTAG Instructions

The L64364 contains a 3-bit instruction register supporting the BYPASS,
SAMPLE/PRLOAD, EXTEST, and HI_Z instructions. The MSB of the register
is connected to the JTAG_TDI Input signal. Table 12.1 defines the bit
encoding of the L64364 JTAG Instruction register.

12-2 JTAG Interface

12.1.1 BYPASS Instruction

The BYPASSinstruction selects the one-bit bypass register between the
JTAG_TDI and JTAG_TDOpins. L64364 I/O pins are left in their normal
functional mode.

12.1.2 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOADinstruction selects the L64364 boundary scan
chain between the JTAG_TDI and JTAG_TDOpins. L64364 I/O pins are in
their normal functional mode. The SAMPLE/PRELOADinstruction can be
used to sample and scan out the current state of the I/O pins, or it can
be used to scan data into the boundary scan chain in preparation for the
EXTESTinstruction. The SAMPLE/PRELOADinstruction has no affect on the
normal operation of the L64364.

12.1.3 EXTEST Instruction

The EXTESTinstruction selects the L64364 boundary scan chain between
the JTAG_TDI and JTAG_TDOpins. EXTESTdrives the data loaded in the
boundary scan chain onto L64364 outputs based on the settings of the
3-state control bits in the boundary scan chain. If a 3-state control bit is
cleared, its corresponding outputs are enabled to drive the pin. If a
3-state control bit is set, its corresponding outputs will be 3-stated.

Table 12.1 JTAG Instruction Register Encoding

Inst_reg[2:0] Instruction

0b000 EXTEST

0b001 SAMPLE/PRELOAD

0b010 Reserved (EXTEST)

0b011 Reserved (BYPASS)

0b100 Reserved (BYPASS)

0b101 Reserved (BYPASS)

0b110 HI-Z

0b111 BYPASS

Boundary Scan Chain Order 12-3

12.1.4 HI-Z Instruction

The HI-Z instruction 3-states all L64364 output and bidirectional signals.
The bypass register between the JTAG_TDI and JTAG_TDOpins is
selected.

12.2 Boundary Scan Chain Order

Table 12.2 shows the bit order of the L64364 boundary scan chain.

Table 12.2 L64364 Boundary Scan Chain

Boundary Scan
Chain Order Signal Comment

JTAG_TDI JTAG_TDI JTAG_TDI input pin

bscn_chain[335] TM_CLK Input

bscn_chain[334] TEST_EN Input

bscn_chain[333] SCAN_EN Input

bscn_chain[332] TX_ADDR[0] Input

bscn_chain[331] TX_ADDR[0] Output

bscn_chain[330] TX_ADDR[1] Input

bscn_chain[329] TX_ADDR[1] Output

bscn_chain[328] TX_ADDR[2] Input

bscn_chain[327] TX_ADDR[2] Output

bscn_chain[326] TX_ADDR[3] Input

bscn_chain[325] TX_ADDR[3] Output

bscn_chain[324] TX_ADDR[4] Input

bscn_chain[323] TX_ADDR[4] Output

bscn_chain[322] TX_DATA[0] Input

bscn_chain[321] TX_DATA[0] Output

(Sheet 1 of 15)

12-4 JTAG Interface

bscn_chain[320] TX_DATA[1] Input

bscn_chain[319] TX_DATA[1] Output

bscn_chain[318] TX_DATA[2] Input

bscn_chain[317] TX_DATA[2] Output

bscn_chain[316] TX_DATA[3] Input

bscn_chain[315] TX_DATA[3] Output

bscn_chain[314] TX_DATA[4] Input

bscn_chain[313] TX_DATA[4] Output

bscn_chain[312] TX_DATA[5] Input

bscn_chain[311] TX_DATA[5] Output

bscn_chain[310] TX_DATA[6] Input

bscn_chain[309] TX_DATA[6] Output

bscn_chain[308] TX_DATA[7] Input

bscn_chain[307] TX_DATA[7] Output

bscn_chain[306] TX_PRTY Input

bscn_chain[305] 3-State control bit1 3-State control for TX_DATA[7:0],
TX_SOC, TX_PRTY

bscn_chain[304] TX_PRTY Output

bscn_chain[303] TX_ENBn Input

bscn_chain[302] TX_ENBn Output

bscn_chain[301] TX_SOC Input

bscn_chain[300] TX_SOC Output

bscn_chain[299] TX_CLAV_0 Input

bscn_chain[298] 3-State control bit1 3-State control for TX_CLAV_0

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 2 of 15)

Boundary Scan Chain Order 12-5

bscn_chain[297] TX_CLAV_0 Output

bscn_chain[296] TX_CLAV[1] Input

bscn_chain[295] TX_CLAV[2] Input

bscn_chain[294] TX_CLAV[3] Input

bscn_chain[293] TX_CLK Input

bscn_chain[292] RX_CLK Input

bscn_chain[291] RX_CLAV[3] Input

bscn_chain[290] RX_CLAV[2] Input

bscn_chain[289] RX_CLAV[1] Input

bscn_chain[288] RX_CLAV_0 Input

bscn_chain[287] 3-State control bit1 3-State control for RX_CLAV_0

bscn_chain[286] RX_CLAV_0 Output

bscn_chain[285] RX_ADDR[0] Input

bscn_chain[284] 3-State control bit1 3-State control for TX_ENBn,
TX_ADDR[4:0], RX_ENBn,
RX_ADDR[4:0]

bscn_chain[283] RX_ADDR[0] Output

bscn_chain[282] RX_ADDR[1] Input

bscn_chain[281] RX_ADDR[1] Output

bscn_chain[280] RX_ADDR[2] Input

bscn_chain[279] RX_ADDR[2] Output

bscn_chain[278] RX_ADDR[3] Input

bscn_chain[277] RX_ADDR[3] Output

bscn_chain[276] RX_ADDR[4] Input

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 3 of 15)

12-6 JTAG Interface

bscn_chain[275] RX_ADDR[4] Output

bscn_chain[274] RX_DATA[0] Input

bscn_chain[273] RX_DATA[0] Output

bscn_chain[272] RX_DATA[1] Input

bscn_chain[271] RX_DATA[1] Output

bscn_chain[270] RX_DATA[2] Input

bscn_chain[269] RX_DATA[2] Output

bscn_chain[268] RX_DATA[3] Input

bscn_chain[267] RX_DATA[3] Output

bscn_chain[266] RX_DATA[4] Input

bscn_chain[265] RX_DATA[4] Output

bscn_chain[264] RX_DATA[5] Input

bscn_chain[263] RX_DATA[5] Output

bscn_chain[262] RX_DATA[6] Input

bscn_chain[261] RX_DATA[6] Output

bscn_chain[260] RX_DATA[7] Input

bscn_chain[259] RX_DATA[7] Output

bscn_chain[258] RX_PRTY Input

bscn_chain[257] 3-State control bit1 3-State control for RX_DATA[7:0],
RX_SOC, RX_PRTY

bscn_chain[256] RX_PRTY Output

bscn_chain[255] RX_ENBn Input

bscn_chain[254] RX_ENBn Output

bscn_chain[253] RX_SOC Input

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 4 of 15)

Boundary Scan Chain Order 12-7

bscn_chain[252] RX_SOC Output

bscn_chain[251] PCI_INTn PCI_INTn is only controlled by its
3-state control pin, and will be
either 3-state or driving ‘0’

bscn_chain[250] PCI_RSTn Input

bscn_chain[249] PCI_GNTn Input

bscn_chain[248] 3-State control bit1 3-State control for PCI_REQn

bscn_chain[247] PCI_REQn Output

bscn_chain[246] PCI_AD[31] Input

bscn_chain[245] 3-State control bit1 3-State control for PCI_AD[31]

bscn_chain[244] PCI_AD[31] Output

bscn_chain[243] PCI_AD[30] Input

bscn_chain[242] 3-State control bit 3-State control for PCI_AD[30]

bscn_chain[241] PCI_AD[30] Output

bscn_chain[240] PCI_AD[29] Input

bscn_chain[239] 3-State control bit1 3-State control for PCI_AD[29]

bscn_chain[238] PCI_AD[29] Output

bscn_chain[237] PCI_AD[28] Input

bscn_chain[236] 3-State control bit1 3-State control for PCI_AD[28]

bscn_chain[235] PCI_AD[28] Output

bscn_chain[234] PCI_AD[27] Input

bscn_chain[233] 3-State control bit1 3-State control for PCI_AD[27]

bscn_chain[232] PCI_AD[27] Output

bscn_chain[231] PCI_AD[26] Input

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 5 of 15)

12-8 JTAG Interface

bscn_chain[230] 3-State control bit1 3-State control for PCI_AD[26]

bscn_chain[229] PCI_AD[26] Output

bscn_chain[228] PCI_AD[25] Input

bscn_chain[227] 3-State control bit1 3-State control for PCI_AD[25]

bscn_chain[226] PCI_AD[25] Output

bscn_chain[225] PCI_AD[24] Input

bscn_chain[224] 3-State control bit1 3-State control for PCI_AD[24]

bscn_chain[223] PCI_AD[24] Output

bscn_chain[222] PCI_CBEn[3] Input

bscn_chain[221] 3-State control bit1 3-State control for PCI_CBEn[3]

bscn_chain[220] PCI_CBEn[3] Output

bscn_chain[219] PCI_IDSEL Input

bscn_chain[218] PCI_AD[23] Input

bscn_chain[217] 3-State control bit1 3-State control for PCI_AD[23]

bscn_chain[216] PCI_AD[23] Output

bscn_chain[215] PCI_AD[22] Input

bscn_chain[214] 3-State control bit1 3-State control for PCI_AD[22]

bscn_chain[213] PCI_AD[22] Output

bscn_chain[212] PCI_AD[21] Input

bscn_chain[211] 3-State control bit1 3-State control for PCI_AD[21]

bscn_chain[210] PCI_AD[21] Output

bscn_chain[209] PCI_AD[20] Input

bscn_chain[208] 3-State control bit1 3-State control for PCI_AD[20]

bscn_chain[207] PCI_AD[20] Output

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 6 of 15)

Boundary Scan Chain Order 12-9

bscn_chain[206] PCI_AD[19] Input

bscn_chain[205] 3-State control bit1 3-State control for PCI_AD[19]

bscn_chain[204] PCI_AD[19] Output

bscn_chain[203] PCI_AD[18] Input

bscn_chain[202] 3-State control bit1 3-State control for PCI_AD[18]

bscn_chain[201] PCI_AD[18] Output

bscn_chain[200] PCI_AD[17] Input

bscn_chain[199] 3-State control bit1 3-State control for PCI_AD[17]

bscn_chain[198] PCI_AD[17] Output

bscn_chain[197] PCI_AD[16] Input

bscn_chain[196] 3-State control bit1 3-State control for PCI_AD[16]

bscn_chain[195] PCI_AD[16] Output

bscn_chain[194] PCI_CBEn[2] Input

bscn_chain[193] 3-State control bit1 3-State control for PCI_CBEn[2]

bscn_chain[192] PCI_CBEn[2] Output

bscn_chain[191] PCI_FRAME Input

bscn_chain[190] 3-State control bit1 3-State control for PCI_FRAMEn

bscn_chain[189] PCI_FRAMEn Output

bscn_chain[188] PCI_IRDYn Input

bscn_chain[187] 3-State control bit1 3-State control for PCI_IRDYn

bscn_chain[186] PCI_IRDYn Output

bscn_chain[185] PCI_TRDYn Input

bscn_chain[184] PCI_TRDYn Output

bscn_chain[183] PCI_DEVSELn Input

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 7 of 15)

12-10 JTAG Interface

bscn_chain[182] 3-State control bit1 3-State control for PCI_DEVSELn,
PCI_TRDYn, PCI_STOPn

bscn_chain[181] PCI_DEVSELn Output

bscn_chain[180] PCI_STOPn Input

bscn_chain[179] PCI_STOPn Output

bscn_chain[178] PCI_PERRn Input

bscn_chain[177] 3-State control bit1 3-State control for PCI_PERRn

bscn_chain[176] PCI_PERRn Output

bscn_chain[175] PCI_SERRn PCI_SERRn is only controlled by
its 3-state control pin, and will be
either 3-state or driving ‘0’

bscn_chain[174] PCI_PAR Input

bscn_chain[173] 3-State control bit1 3-State control for PCI_PAR

bscn_chain[172] PCI_PAR Output

bscn_chain[171] PCI_CBEn[1] Input

bscn_chain[170] 3-State control bit1 3-State control for PCI_CBEn[1]

bscn_chain[169] PCI_CBEn[1] Output

bscn_chain[168] PCI_AD[15] Input

bscn_chain[167] 3-State control bit1 3-State control for PCI_AD[15]

bscn_chain[166] PCI_AD[15] Output

bscn_chain[165] PCI_AD[14] Input

bscn_chain[164] 3-State control bit1 3-State control for PCI_AD[14]

bscn_chain[163] PCI_AD[14] Output

bscn_chain[162] PCI_AD[13] Input

bscn_chain[161] 3-State control bit1 3-State control for PCI_AD[13]

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 8 of 15)

Boundary Scan Chain Order 12-11

bscn_chain[160] PCI_AD[13] Output

bscn_chain[159] PCI_AD[12] Input

bscn_chain[158] 3-State control bit1 3-State control for PCI_AD[12]

bscn_chain[157] PCI_AD[12] Output

bscn_chain[156] PCI_AD[11] Input

bscn_chain[155] 3-State control bit1 3-State control for PCI_AD[11]

bscn_chain[154] PCI_AD[11] Output

bscn_chain[153] PCI_AD[10] Input

bscn_chain[152] 3-State control bit1 3-State control for PCI_AD[10]

bscn_chain[151] PCI_AD[10] Output

bscn_chain[150] PCI_AD[9] Input

bscn_chain[149] 3-State control bit1 3-State control for PCI_AD[9]

bscn_chain[148] PCI_AD[9] Output

bscn_chain[147] PCI_AD[8] Input

bscn_chain[146] 3-State control bit1 3-State control for PCI_AD[8]

bscn_chain[145] PCI_AD[8] Output

bscn_chain[144] PCI_CBEn[0] Input

bscn_chain[143] 3-State control bit1 3-State control for PCI_CBEn[0]

bscn_chain[142] PCI_CBEn[0] Output

bscn_chain[141] PCI_AD[7] Input

bscn_chain[140] 3-State control bit1 3-State control for PCI_AD[7]

bscn_chain[139] PCI_AD[7] Output

bscn_chain[138] PCI_AD[6] Input

bscn_chain[137] 3-State control bit1 3-State control for PCI_AD[6]

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 9 of 15)

12-12 JTAG Interface

bscn_chain[136] PCI_AD[6] Output

bscn_chain[135] PCI_AD[5] Input

bscn_chain[134] 3-State control bit1 3-State control for PCI_AD[5]

bscn_chain[133] PCI_AD[5] Output

bscn_chain[132] PCI_AD[4] Input

bscn_chain[131] 3-State control bit1 3-State control for PCI_AD[4]

bscn_chain[130] PCI_AD[4] Output

bscn_chain[129] PCI_AD[3] Input

bscn_chain[128] 3-State control bit1 3-State control for PCI_AD[3]

bscn_chain[127] PCI_AD[3] Output

bscn_chain[126] PCI_AD[2] Input

bscn_chain[125] 3-State control bit1 3-State control for PCI_AD[2]

bscn_chain[124] PCI_AD[2] Output

bscn_chain[123] PCI_AD[1] Input

bscn_chain[122] 3-State control bit1 3-State control for PCI_AD[1]

bscn_chain[121] PCI_AD[1] Output

bscn_chain[120] PCI_AD[0] Input

bscn_chain[119] 3-State control bit1 3-State control for PCI_AD[0]

bscn_chain[118] PCI_AD[0] Output

bscn_chain[117] SB_A[2] Output

bscn_chain[116] SB_A[3] Output

bscn_chain[115] SB_A[4] Output

bscn_chain[114] PCI_CLK Input

bscn_chain[113] SB_A[5] Output

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 10 of 15)

Boundary Scan Chain Order 12-13

bscn_chain[112] SB_A[6] Output

bscn_chain[111] SB_A[7] Output

bscn_chain[110] SB_A[8] Output

bscn_chain[109] SB_A[9] Output

bscn_chain[108] SB_A[10] Output

bscn_chain[107] SB_A[11] Output

bscn_chain[106] SB_A[12] Output

bscn_chain[105] SB_A[13] Output

bscn_chain[104] SB_A[14] Output

bscn_chain[103] SB_A[15] Output

bscn_chain[102] SB_A[16] Output

bscn_chain[101] SB_A[17] Output

bscn_chain[100] SB_A[18] Output

bscn_chain[99] SB_A[19] Output

bscn_chain[98] SB_A[20] Output

bscn_chain[97] SB_A[21] Output

bscn_chain[96] 3-State control bit1 3-State control for SB_A[21:2]

bscn_chain[95] SB_D[0] Input

bscn_chain[94] SB_D[0] Output

bscn_chain[93] SB_D[1] Input

bscn_chain[92] SB_D[1] Output

bscn_chain[91] SB_D[2] Input

bscn_chain[90] SB_D[2] Output

bscn_chain[89] SB_D[3] Input

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 11 of 15)

12-14 JTAG Interface

bscn_chain[88] SB_D[3] Output

bscn_chain[87] SB_D[4] Input

bscn_chain[86] SB_D[4] Output

bscn_chain[85] SB_D[5] Input

bscn_chain[84] SB_D[5] Output

bscn_chain[83] SB_D[6] Input

bscn_chain[82] SB_D[6] Output

bscn_chain[81] SB_D[7] Input

bscn_chain[80] SB_D[7] Output

bscn_chain[79] SB_D[8] Input

bscn_chain[78] SB_D[8] Output

bscn_chain[77] SB_D[9] Input

bscn_chain[76] SB_D[9] Output

bscn_chain[75] SB_D[10] Input

bscn_chain[74] SB_D[10] Output

bscn_chain[73] SB_D[11] Input

bscn_chain[72] SB_D[11] Output

bscn_chain[71] SB_D[12] Input

bscn_chain[70] SB_D[12] Output

bscn_chain[69] SB_D[13] Input

bscn_chain[68] SB_D[13] Output

bscn_chain[67] SB_D[14] Input

bscn_chain[66] SB_D[14] Output

bscn_chain[65] SB_D[15] Input

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 12 of 15)

Boundary Scan Chain Order 12-15

bscn_chain[64] SB_D[15] Output

bscn_chain[63] SB_D[16] Input

bscn_chain[62] SB_D[16] Output

bscn_chain[61] 3-State control bit1 3-State control for SB_D[31:0]

bscn_chain[60] SB_D[17] Input

bscn_chain[59] SB_D[17] Output

bscn_chain[58] SB_D[18] Input

bscn_chain[57] SB_D[18] Output

bscn_chain[56] SB_D[19] Input

bscn_chain[55] SB_D[19] Output

bscn_chain[54] SB_D[20] Input

bscn_chain[53] SB_D[20] Output

bscn_chain[52] SB_D[21] Input

bscn_chain[51] SB_D[21] Output

bscn_chain[50] SB_D[22] Input

bscn_chain[49] SB_D[22] Output

bscn_chain[48] SB_D[23] Input

bscn_chain[47] SB_D[23] Output

bscn_chain[46] SB_D[24] Input

bscn_chain[45] SB_D[24] Output

bscn_chain[44] SB_D[25] Input

bscn_chain[43] SB_D[25] Output

bscn_chain[42] SB_D[26] Input

bscn_chain[41] SB_D[26] Output

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 13 of 15)

12-16 JTAG Interface

bscn_chain[40] SB_D[27] Input

bscn_chain[39] SB_D[27] Output

bscn_chain[38] SB_D[28] Input

bscn_chain[37] SB_D[28] Output

bscn_chain[36] SB_D[29] Input

bscn_chain[35] SB_D[29] Output

bscn_chain[34] SB_D[30] Input

bscn_chain[33] SB_D[30] Output

bscn_chain[32] SB_D[31] Input

bscn_chain[31] SB_D[31] Output

bscn_chain[30] 3-State control bit1 3-State control for SB_PCSn[4:0],
SB_OEn[3:0], SB_WEn[3:0]

bscn_chain[29] SB_WEn[0] Output

bscn_chain[28] SB_WEn[1] Output

bscn_chain[27] SB_WEn[2] Output

bscn_chain[26] SB_WEn[3] Output

bscn_chain[25] SB_OEn[0] Output

bscn_chain[24] SB_OEn[1] Output

bscn_chain[23] SB_OEn[2] Output

bscn_chain[22] SB_OEn[3] Output

bscn_chain[21] SB_PCSn[0] Output

bscn_chain[20] SB_PCSn[1] Output

bscn_chain[19] SB_PCSn[2] Output

bscn_chain[18] SB_PCSn[3] Output

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 14 of 15)

Boundary Scan Chain Order 12-17

bscn_chain[17] SB_PCSn[4] Output

bscn_chain[16] SB_GNTn Output

bscn_chain[15] SB_RDYn Input

bscn_chain[14] SB_REQn Input

bscn_chain[13] SE_ACK Input

bscn_chain[12] SE_CLK Output

bscn_chain[11] SE_DI Input

bscn_chain[10] SYS_CLK_PCI Input

bscn_chain[9] SYS_CLK Input

bscn_chain[8] SYS_PLL Input

bscn_chain[7] SYS_BOOT[0] Input

bscn_chain[6] SYS_BOOT[1] Input

bscn_chain[5] SYS_CPCOND Input

bscn_chain[4] SYS_INTn[0] Input

bscn_chain[3] SYS_INTn[1] Input

bscn_chain[2] SYS_NMIn Input

bscn_chain[1] SYS_OE Input

bscn_chain[0] SYS_PSTALLn Output

JTAG_TDO JTAG_TDO JTAG_TDO output pin

1. These bits control 3-state outputs during the EXTEST.

Table 12.2 L64364 Boundary Scan Chain (Cont.)

Boundary Scan
Chain Order Signal Comment

(Sheet 15 of 15)

12-18 JTAG Interface

L64364 ATMizer II+ ATM-SAR Chip 13-1

Chapter 13
Specifications

This chapter describes the electrical specifications for the LSI Logic
L64364 chip. The following sections are included:

• Section 13.1, “AC Timing,” page 13-1

• Section 13.2, “Electrical Requirements,” page 13-10

• Section 13.3, “Pin Summary,” page 13-14

• Section 13.4, “Package Information,” page 13-17

13.1 AC Timing

This section specifies the AC timing characteristics of the L64364.
Figure 13.1 and Figure 13.2 identify reference points for output and input
signal timings, respectively. Table 13.1 through Table 13.5 contain
AC timing information.

Figure 13.1 Output Signal Timing Reference Points

Vtest

Vth

Vtl
Tval

Ton

Toff

CLK

Output Delay

3-State Output

Vtest

Output Current ≤ Leakage Current

Note: Vtest = 1/2 VDD

13-2 Specifications

Figure 13.2 Input Signal Timing Reference Points

Vtest

Vth

Vtl

Vtest

Tsu Th

Vth

Vtl

CLK

Input VtestInputs Valid

Table 13.1 PCI Interface Timing

Ref # Signal Timing Reference Clock Min Max Units

P1 PCI_CLK cycle time – 30 – ns

P2 PCI_CLK HIGH time – 11 – ns

P3 PCI_CLK LOW time – 11 – ns

P4 PCI_CLK slew rate – 1 4 V/ns

P5 PCI_RSTn slew rate – 50 – mV/ns

P6 PCI_AD[31:0] input setup time PCI_CLK 7 – ns

P7 PCI_AD[31:0] input hold time PCI_CLK 0 – ns

P8 PCI_AD[31:0] output valid PCI_CLK 1 11 ns

PCI_AD[31:0] output float PCI_CLK – 10 ns

p9 PCI_CBE[3:0] input setup time PCI_CLK 7 – ns

p10 PCI_CBE[3:0] input hold time PCI_CLK 0 – ns

p11 PCI_CBE[3:0] output valid PCI_CLK 2 11 ns

PCI_CBE[3:0] output float PCI_CLK – 10 ns

p12 PCI_PAR input setup time PCI_CLK 7 – ns

p13 PCI_PAR input hold time PCI_CLK 0 – ns

p14 PCI_PAR output valid PCI_CLK 2 11 ns

PCI_PAR output float PCI_CLK – 10 ns

p15 PCI_FRAMEn input setup time PCI_CLK 7 – ns

P16 PCI_FRAMEn input hold time PCI_CLK 0 – ns

(Sheet 1 of 3)

AC Timing 13-3

P17 PCI_FRAMEn output valid PCI_CLK 2 11 ns

PCI_FRAMEn output float PCI_CLK – 10 ns

P18 PCI_IRDYn input setup time PCI_CLK 7 – ns

P19 PCI_IRDYn input hold time PCI_CLK 0 – ns

P20 PCI_IRDYn output valid PCI_CLK 2 11 ns

PCI_IRDYn output float PCI_CLK – 10 ns

P21 PCI_TRDYn input setup time PCI_CLK 7 – ns

P22 PCI_TRDYn input hold time PCI_CLK 0 – ns

P23 PCI_TRDYn output valid PCI_CLK 2 11 ns

PCI_TRDYn output float PCI_CLK – 10 ns

P24 PCI_STOPn input setup time PCI_CLK 7 – ns

P25 PCI_STOPn input hold time PCI_CLK 0 – ns

P26 PCI_STOPn output valid PCI_CLK 2 11 ns

PCI_STOPn output float PCI_CLK – 10 ns

P27 PCI_IDSEL input setup time PCI_CLK 7 – ns

P28 PCI_IDSEL input hold time PCI_CLK 0 – ns

P29 PCI_DEVSELn input setup time PCI_CLK 7 – ns

P30 PCI_DEVSELn input hold time PCI_CLK 0 – ns

P31 PCI_DEVSELn output valid PCI_CLK 2 11 ns

PCI_DEVSELn output float PCI_CLK – 10 ns

P32 PCI_REQn output valid PCI_CLK 2 12 ns

P33 PCI_GNTn input setup time PCI_CLK 10 – ns

P34 PCI_GNTn input hold time PCI_CLK 0 – ns

P35 PCI_PERRn input setup time PCI_CLK 7 – ns

Table 13.1 PCI Interface Timing (Cont.)

Ref # Signal Timing Reference Clock Min Max Units

(Sheet 2 of 3)

13-4 Specifications

Secondary Bus best-case timings (minimum output delay) were
simulated at best-case operating conditions and a 15 pF Secondary Bus
load. Worst-case timings (minimum setup, maximum output delay) were
simulated at worst-case operating conditions and an 85 pF load.

These timings are based on the SB_CLKOoutput clock and internal
SB_DCLK(SB_D input capture clock) being within ± 0.5 ns of the internal
system clock. See Section 10.2.2, “Secondary Bus Clock Control
Register,” for an explanation of the clock relationships. The default
settings of the Secondary Bus Clock Control register meet the above
requirement for SB_CLKO loadings from 15 pF to 65 pF.

P36 PCI_PERRn input hold time PCI_CLK 0 – ns

P37 PCI_PERRn output valid PCI_CLK 2 11 ns

PCI_PERRn output float PCI_CLK – 10 ns

P38 PCI_SERRn output valid PCI_CLK 2 11 ns

PCI_SERRn output float PCI_CLK – 10 ns

P39 PCI_INTn output valid, asynchronous PCI_CLK N/A N/A ns

Table 13.1 PCI Interface Timing (Cont.)

Ref # Signal Timing Reference Clock Min Max Units

(Sheet 3 of 3)

AC Timing 13-5

Table 13.2 Secondary Bus Timing

Ref # Signal Timing
Reference

Clock

Min Max

UnitsPX80 PX100 PX80 PX100

S0 SB_CLKO period – 12.5 10.0 – – ns

S1 SB_CLKO duty cycle
(SYS_PLL = 0)

– 40 60 %

SB_CLKO duty cycle
(SYS_PLL = 1)

– 45 55 %

S2 SB_CLKO phase delay
(SYS_CLK_PCI = 1, SYS_PLL = 0)

PCI_CLK 4.1 14.7 ns

S3 SB_CLKO phase delay
(SYS_CLK_PCI = 0, SYS_PLL = 0)

SYS_CLK 2.8 12.8 ns

S4 SB_D[31:0] input setup time SB_CLKO 2.0 1.0 – – ns

S5 SB_D[31:0] input hold time SB_CLKO 0.5 – – ns

S6 SB_D[31:0] output valid SB_CLKO 3.0 2.5 8.5 5.0 ns

SB_D[31:0] output hold time SB_CLKO 1.0 – – ns

SB_D[31:0] output float SB_CLKO – – 5.5 5.0 ns

S7 SB_A[21:2] output valid SB_CLKO 3.0 2.5 9.0 6.0 ns

SB_A[21:2] output hold time SB_CLKO 1.0 – – ns

SB_A[21:2] output float SB_CLKO – – 5.5 5.0 ns

S8 SB_WEn[3:0] output valid SB_CLKO 3.0 2.5 9.0 5.5 ns

SB_WEn[3:0] output hold time SB_CLKO 1.0 – – ns

SB_WEn[3:0] output float SB_CLKO – – 5.5 5.0 ns

S9 SB_OEn[3:0] output valid SB_CLKO 3.0 2.5 9.0 5.5 ns

SB_OEn[3:0] output hold time SB_CLKO 1.0 – – ns

SB_OEn[3:0] output float SB_CLKO – – 5.5 5.0 ns

(Sheet 1 of 2)

13-6 Specifications

S10 SB_PCSn[4:0] output valid SB_CLKO 3.0 2.5 9.0 5.5 ns

SB_PCSn[4:0] output hold time SB_CLKO 1.0 – – ns

SB_PCSn[4:0] output float SB_CLKO – – 5.5 5.0 ns

S11 SB_REQn input setup time SB_CLKO 2.0 – – ns

S12 SB_REQn input hold time SB_CLKO 0.5 – – ns

S13 SB_GNTn output valid SB_CLKO 4.0 3.0 10.5 8.0 ns

S14 SB_RDYn setup time1 SB_CLKO 2.0 – – –

S15 SB_RDYn hold time1 SB_CLKO 0.5 – – –

1. While SB_RDYnis an asynchronous input, these times are provided if you choose to make the inputs
synchronous.

Table 13.2 Secondary Bus Timing (Cont.)

Ref # Signal Timing
Reference

Clock

Min Max

UnitsPX80 PX100 PX80 PX100

(Sheet 2 of 2)

Table 13.3 Utopia Interface Transmit Timing

Ref # Signal Timing
Reference
Clock Min Max Units

U1 TX_CLK, RX_CLK frequency – 0 50 MHz

U2 TX_CLK, RX_CLK duty cycle – 40 60 %

U3 TX_DATA[7:0] input setup time TX_CLK 4 – ns

U4 TX_DATA[7:0] input hold time TX_CLK 1 – ns

U5 TX_DATA[7:0] output valid TX_CLK 2 13 ns

TX_DATA[7:0] output float TX_CLK – 6.5 ns

U6 TX_SOC input setup time TX_CLK 4 – ns

U7 TX_SOC input hold time TX_CLK 1 – ns

(Sheet 1 of 2)

AC Timing 13-7

U8 TX_SOC output valid TX_CLK 2 10 ns

TX_SOC output float TX_CLK – 6.5 ns

U9 TX_ENBn input setup time TX_CLK 4 – ns

U10 TX_ENBn input hold time TX_CLK 1 – ns

U11 TX_ENBn output valid TX_CLK 2 10 ns

U12 TX_PRTY input setup time TX_CLK 4 – ns

U13 TX_PRTY input hold time TX_CLK 1 – ns

U14 TX_PRTY output valid TX_CLK 2 15 ns

TX_PRTY output float TX_CLK – 6.5 ns

U15 TX_ADDR[4:0] input setup time TX_CLK 4 – ns

U16 TX_ADDR[4:0] input hold time TX_CLK 1 – ns

U17 TX_ADDR[4:0] output valid TX_CLK 2 10 ns

U18 TX_CLAV0 input setup time TX_CLK 4 – ns

U19 TX_CLAV0 input hold time TX_CLK 1 – ns

U20 TX_CLAV0 output valid TX_CLK 2 13 ns

TX_CLAV0 output float TX_CLK – 6.5 ns

U21 TX_CLAV[3:1] input setup time TX_CLK 4 – ns

U22 TX_CLAV[3:1] input hold time TX_CLK 1 – ns

Table 13.3 Utopia Interface Transmit Timing (Cont.)

Ref # Signal Timing
Reference
Clock Min Max Units

(Sheet 2 of 2)

13-8 Specifications

Table 13.4 Utopia Interface Receive Timing

Ref # Signal Timing
Reference
Clock Min Max Units

U23 RX_DATA[7:0] input setup time RX_CLK 4 – ns

U24 RX_DATA[7:0] input hold time RX_CLK 1 – ns

U25 RX_DATA[7:0] output valid RX_CLK 2 13 ns

RX_DATA[7:0] output float RX_CLK – 6.5 ns

U26 RX_SOC input setup time RX_CLK 4 – ns

U27 RX_SOC input hold time RX_CLK 1 – ns

U28 RX_SOC output valid RX_CLK 2 10 ns

RX_SOC output float RX_CLK – 6.5 ns

U29 RX_ENBn input setup time RX_CLK 4 – ns

U30 RX_ENBn input hold time RX_CLK 1 – ns

U31 RX_ENBn output valid RX_CLK 2 13 ns

U32 RX_PRTY input setup time RX_CLK 4 – ns

U33 RX_PRTY input hold time RX_CLK 1 – ns

U34 RX_PRTY output valid RX_CLK 2 15 ns

RX_PRTY output float RX_CLK – 6.5 ns

U35 RX_ADDR[4:0] input setup time RX_CLK 4 – ns

U36 RX_ADDR[4:0] input hold time RX_CLK 1 – ns

U37 RX_ADDR[4:0] output valid RX_CLK 2 13 ns

U38 RX_CLAV0 input setup time RX_CLK 4 – ns

U39 RX_CLAV0 input hold time RX_CLK 1 – ns

U40 RX_CLAV0 output valid RX_CLK 2 10 ns

RX_CLAV0 output float RX_CLK – 6.5 ns

U41 RX_CLAV[3:1] input setup time RX_CLK 4 – ns

U42 RX_CLAV[3:1] input hold time RX_CLK 1 – ns

AC Timing 13-9

Table 13.5 Miscellaneous Timing

Ref # Signal Timing
Reference

Clock

Min Max

UnitsPX80 PX100 PX80 PX100

M1 SYS_CLK frequency
(SYS_PLL = 0)

– – – 80.0 100.0 MHz

M2 SYS_CLK duty cycle
(SYS_PLL = 0)

– 40 60 %

M3 SYS_CLK frequency
(SYS_PLL = 1)

– 7.5 40.0 50.0 MHz

M4 SYS_CLK duty cycle
(SYS_PLL = 1)

– 40 60 %

M5 SE_DI input setup time SE_CLK 10 – – ns

M6 SE_DI input hold time SE_CLK 5 – – ns

M7 SE_ACK input setup time SE_CLK 10 – – ns

M8 SE_ACK input hold time SE_CLK 5 – – ns

M9 JTAG_TCLK frequency – 0 20 MHz

M10 JTAG_TCLK duty cycle – 40 60 %

M11 JTAG_TDI setup time JTAG_TCLK 1 – – ns

M12 JTAG_TDI hold time JTAG_TCLK 3 – – ns

M13 JTAG_TM setup time JTAG_TCLK 1 – – ns

M14 JTAG_TM hold time JTAG_TCLK 3 – – ns

M15 JTAG_TDO output delay JTAG_TCLK 7 15 ns

M16 JTAG_TRSTn pulse width JTAG_TCLK 20 – – ns

13-10 Specifications

13.2 Electrical Requirements

This section specifies the electrical requirements for the L64364.

13.2.1 I/O Pad Drivers and Receivers

Table 13.6 identifies the circuits used to drive signals to and receive
signals from the L64364’s input/output signal pins. The L64364 is
manufactured in the LSI Logic G10®-p process technology.

Table 13.6 I/O Pad Drivers and Receivers

Pin Name Pin Type
Internal
Resistor

Drive
Strength Cell Type

JTAG_TCLK I pull-up – ibufuf

JTAG_TDI I pull-up – ibufuf

JTAG_TDO O – 4 mA proc_drv

JTAG_TM I pull-up – ibufuf

JTAG_TRSTn I pull-up – ibufuf

PCI_AD[21:0] I/O – PCI rbdepci25f

PCI_CBEn[3:0] I/O – PCI rbdepci25f

PCI_CLK I – – ibuff

PCI_DEVSELn I/O – PCI rbdepci25f

PCI_FRAMEn I/O – PCI rbdepci25f

PCI_GNTn I – PCI rbdepci25f

PCI_IDSEL I – PCI rbdepci25f

PCI_INTn I/O – PCI rbdepci25f

PCI_IRDYn I/O – PCI rbdepci25f

PCI_PAR I/O – PCI rbdepci25f

PCI_PERRn I/O – PCI rbdepci25f

(Sheet 1 of 3)

Electrical Requirements 13-11

PCI_REQn I – PCI rbdepci25f

PCI_RSTn I – PCI rbdepci25f

PCI_SERRn O – PCI rbdepci25f

PCI_STOPn I/O – PCI rbdepci25f

PCI_TRDYn I/O – PCI rbdepci25f

PLL_AGND I – – PLL

PLL_LP2 I/O – – PLL

PLL_IDDTn I pull-down – iiddtnf

RX_ADDR[4:0] I/O – 6 mA bd6cf

RX_CLAV[3:0] I/O – 6 mA bd6cf

RX_CLK I – – ibuff

RX_DATA[7:0] I/O – 6 mA bd6cf

RX_ENBn I/O – 6 mA bd6cf

RX_PRTY I/O – 6 mA bd6cf

RX_SOC I/O – 6 mA bd6cf

SB_A[21:2] O – 8 mA bt8rp

SB_CLKO O – 12 mA bt12

SB_D[31:0] I/O – 8 mA bd8cf

SB_GNTn O – 8 mA bt8rp

SB_OEn[3:0] O – 8 mA bt8rp

SB_PCSn[4:0] O – 8 mA bt8rp

SB_RDYn I pull-up – ibufuf

SB_REQn I pull-up – ibufuf

SB_WEn[3:0] O – 8 mA bt8rp

Table 13.6 I/O Pad Drivers and Receivers (Cont.)

Pin Name Pin Type
Internal
Resistor

Drive
Strength Cell Type

(Sheet 2 of 3)

13-12 Specifications

SCAN_EN I pull-down – ibufdf

SE_ACK I – – ibuff

SE_CLK O – 8 mA bt8rp

SE_DI I – – ibuff

SYS_BOOT[1:0] I – – ibuff

SYS_CLK I – – ibuff

SYS_CLK_PCI I – – ibuff

SYS_CPCOND I – – ibuff

SYS_INTn[1:0] I – – ibuff

SYS_NMIn I – 6 mA bd6cf

SYS_OE I – – icptnuf

SYS_PLL I – – ibuff

SYS_PSTALLn O – 8 mA bt8rp

TEST_EN I pull-down – ibufdf

TM_CLK I – – ibuff

TX_ADDR[4:0] I/O – 6 mA bd6cf

TX_CLAV[3:1] I – – ibuff

TX_CLAV[0] I/O – 6 mA bd6cf

TX_CLK I – – ibuff

TX_DATA[7:0] I/O – 6 mA bd6cf

TX_ENBn I/O – 6 mA bd6cf

TX_PRTY I/O – 6 mA bd6cf

TX_SOC I/O – 6 mA bd6cf

Table 13.6 I/O Pad Drivers and Receivers (Cont.)

Pin Name Pin Type
Internal
Resistor

Drive
Strength Cell Type

(Sheet 3 of 3)

Electrical Requirements 13-13

13.2.2 I/O Level Requirements

This section identifies the power and signal level characteristics of the
L64364.

Table 13.7 DC Characteristics

Symbol Parameter Condition Min Typ Max Units

VDD Supply Voltage 3.135 3.3 3.465 V

VCC PCI clamp diode voltage 4.75 5.0 5.25 V

VILP Voltage Input Low - PCI Bus −0.5 – 0.8 V

VIHP Voltage Input High - PCI Bus 2.0 – 5.5 V

VOLP Voltage Output Low - PCI Bus – 0.2 0.55 V

VOHP Voltage Output High - PCI Bus 2.4 – VDD V

VILS Voltage Input Low - Secondary Bus −0.5 – 0.8 V

VIHS Voltage Input High - Secondary Bus 2.0 – VDD + 0.3 V

VOL Voltage Output Low - Secondary
Bus

– 0.2 0.4 V

VOH Voltage Output High - Secondary
Bus

2.4 – VDD V

VIL Voltage Input Low - all other signals −0.5 – 0.8 V

VIH Voltage Input High - all other
signals

2.0 – 5.5 V

VOL Voltage Output Low - all other
signals

– 0.2 0.4 V

VOH Voltage Output High - all other
signals

2.4 – VDD V

IIL Input current low VIN = VSS −10 −1 – µA

IILP Input current low - pins with
pull-ups

VIN = VSS −214 −115 −35 µA

IIH Input current high VIN = VDD – 1 10 µA

IIHP Input current high - pins with
pull-downs

VIN = VDD 35 115 222 µA

13-14 Specifications

13.3 Pin Summary

Table 13.8 summarizes the L64364’s input/output signal-to-pin
assignments. The table is in alphabetical signal name order. Figure 13.4
shows the L64364 pinout.

IOZ 3-state leakage current VIN = VSS − VDD −10 – 10 µA

IDD Dynamic supply current 80 MHz operation – 740 830 mA

100 MHz operation – 925 1040 mA

Table 13.7 DC Characteristics (Cont.)

Symbol Parameter Condition Min Typ Max Units

Pin Summary 13-15

Table 13.8 L64364 Pin Summary 240 Pin Alphabetical Pin List

VDD 46
VDD 57
VDD 76
VDD 88
VDD 232
VDD2 107
VDD2 137
VDD2 17
VDD2 164
VDD2 195
VDD 217
VDD2 32
VDD2 48
VDD2 78
VSS 4
VSS 104
VSS 120
VSS 134
VSS 14
VSS 150
VSS 180
VSS 213
VSS 29
VSS 45
VSS 56
VSS 75
VSS 90
VSS 233
VSS2 163
VSS2 194
VSS2 216
VSS2 31
VSS2 47
VSS2 77
VSS2 106
VSS2 136
VSS2 16
+5V 2
+5V 13
+5V 25
+5V 36
+5V 44
+5V 59
+5V 68

Signal PinSignal Pin
JTAG_TCLK 184
JTAG_TDI 186
JTAG_TDO 187
JTAG_TM 185
JTAG_TRST 162
PCI_AD0 70
PCI_AD1 69
PCI_AD2 67
PCI_AD3 66
PCI_AD4 65
PCI_AD5 64
PCI_AD6 63
PCI_AD7 62
PCI_AD8 60
PCI_AD9 58
PCI_AD10 55
PCI_AD11 54
PCI_AD12 53
PCI_AD13 52
PCI_AD14 51
PCI_AD15 50
PCI_AD16 33
PCI_AD17 28
PCI_AD18 27
PCI_AD19 26
PCI_AD20 24
PCI_AD21 23
PCI_AD22 22
PCI_AD23 21
PCI_AD24 18
PCI_AD25 15
PCI_AD26 12
PCI_AD27 11
PCI_AD28 10
PCI_AD29 9
PCI_AD30 8
PCI_AD31 7
PCI_CBEn0 61
PCI_CBEn1 49
PCI_CBEn2 34
PCI_CBEn3 19
PCI_CLK 74
PCI_DEVSELn 39
PCI_FRAMEn 35
PCI_GNTn 5
PCI_IDSEL 20
PCI_INTn 240
PCI_IRDYn 37
PCI_PAR 43

PCI_PERRn 41
PCI_REQn 6
PCI_RSTn 1
PCI_SERRn 42
PCI_STOPn 40
PCI_TRDYn 38
PLL_AGND 168
PLL_LP2 169
PLL_VDD 167
PLL_VSS 170
PLL_IDDTn 172
RX_ADDR0 222
RX_ADDR1 223
RX_ADDR2 224
RX_ADDR3 225
RX_ADDR4 226
RX_CLAV0 221
RX_CLAV1 220
RX_CLAV2 219
RX_CLAV3 218
RX_CLK 215
RX_DATA0 227
RX_DATA1 228
RX_DATA2 229
RX_DATA3 230
RX_DATA4 231
RX_DATA5 234
RX_DATA6 235
RX_DATA7 236
RX_ENBn 238
RX_PRTY 237
RX_SOC 239
SB_A2 71
SB_A3 72
SB_A4 73
SB_A5 79
SB_A6 80
SB_A7 81
SB_A8 82
SB_A9 83
SB_A10 84
SB_A11 85
SB_A12 86
SB_A13 87
SB_A14 91
SB_A15 92
SB_A16 93
SB_A17 94
SB_A18 95

SB_A19 96
SB_A20 97
SB_A21 98
SB_CLKO 89
SB_D0 99
SB_D1 100
SB_D2 101
SB_D3 102
SB_D4 103
SB_D5 108
SB_D6 109
SB_D7 110
SB_D8 111
SB_D9 112
SB_D10 113
SB_D11 114
SB_D12 115
SB_D13 116
SB_D14 117
SB_D15 118
SB_D16 119
SB_D17 122
SB_D18 123
SB_D19 124
SB_D20 125
SB_D21 126
SB_D22 127
SB_D23 128
SB_D24 129
SB_D25 130
SB_D26 131
SB_D27 132
SB_D28 133
SB_D29 138
SB_D30 139
SB_D31 140
SB_GNTn 156
SB_OEn0 145
SB_OEn1 146
SB_OEn2 147
SB_OEn3 148
SB_PCSn0 149
SB_PCSn1 152
SB_PCSn2 153
SB_PCSn3 154
SB_PCSn4 155
SB_RDYn 157
SB_REQn 158
SB_WEn0 141

SB_WEn1 142
SB_WEn2 143
SB_WEn3 144
SCAN_EN 189
SE_ACK 159
SE_CLK 160
SE_DI 161
SYS_BOOT0 173
SYS_BOOT1 174
SYS_CLK 166
SYS_CLK_PCI 165
SYS_CPCOND 175
SYS_INTn0 176
SYS_INTn1 177
SYS_NMIn 178
SYS_OE 179
SYS_PLL 171
SYS_PSTALLn 182
TEST_EN 188
TM_CLK 183
TX_ADDR0 190
TX_ADDR1 191
TX_ADDR2 192
TX_ADDR3 193
TX_ADDR4 196
TX_CLAV0 208
TX_CLAV1 209
TX_CLAV2 210
TX_CLAV3 211
TX_CLK 214
TX_DATA0 197
TX_DATA1 198
TX_DATA2 199
TX_DATA3 200
TX_DATA4 201
TX_DATA5 202
TX_DATA6 203
TX_DATA7 204
TX_ENBn 206
TX_PRTY 205
TX_SOC 207
VDD 3
VDD 105
VDD 121
VDD 135
VDD 151
VDD 181
VDD 212
VDD 30

Signal Pin Signal Pin Signal Pin

13-16 Specifications

Figure 13.3 L64364 240 Pin PQUAD

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35
36
37
38
39
40

42

44

46

48

50

52

L64364

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

41

43

45

47

49

51

PCI_RSTn
+5V

VDD
VSS

PCI_GNTn
PCI_REQn
PCI_AD31
PCI_AD30
PCI_AD29
PCI_AD28
PCI_AD27
PCI_AD26

+5V
VSS

PCI_AD25
VSS2
VDD2

PCI_AD24
PCI_CBEn3
PCI_IDSEL
PCI_AD23
PCI_AD22
PCI_AD21
PCI_AD20

+5V
PCI_AD19
PCI_AD18
PCI_AD17

VSS
VDD

VSS2
VDD2

PCI_AD16
PCI_CBEn2

PCI_FRAMEn
+5V

PCI_IRDYn
PCI_TRDYn

PCI_DEVSELn
PCI_STOPn
PCI_PERRn
PCI_SERRn

PCI_PAR
+5V
VSS
VDD

VSS2
VDD2

PCI_CBEn1
PCI_AD15
PCI_AD14
PCI_AD13
PCI_AD12
PCI_AD11
PCI_AD10

VSS
VDD

PCI_AD9
+5V

PCI_AD8

P
C

I_
C

B
E

n0
P

C
I_

A
D

7
P

C
I_

A
D

6
P

C
I_

A
D

5
P

C
I_

A
D

4
P

C
I_

A
D

3
P

C
I_

A
D

2
+

5V
P

C
I_

A
D

1
P

C
I_

A
D

0
S

B
_A

2
S

B
_A

3
S

B
_A

4
P

C
I_

C
LK

V
S

S
V

D
D

V
S

S
2

V
D

D
2

S
B

_A
5

S
B

_A
6

S
B

_A
7

S
B

_A
8

S
B

_A
9

S
B

_A
10

S
B

_A
11

S
B

_A
12

S
B

_A
13

V
D

D
S

B
_C

LK
O

V
S

S
S

B
_A

14
S

B
_A

15
S

B
_A

16
S

B
_A

17
S

B
_A

18
S

B
_A

19
S

B
_A

20
S

B
_A

21
S

B
_D

0
S

B
_D

1
S

B
_D

2
S

B
_D

3
S

B
_D

4
V

S
S

V
D

D
V

S
S

2
V

D
D

2
S

B
_D

5
S

B
_D

6
S

B
_D

7
S

B
_D

8
S

B
_D

9
S

B
_D

10
S

B
_D

11
S

B
_D

12
S

B
_D

13
S

B
_D

14
S

B
_D

15
S

B
_D

16
V

S
S

240 PQUAD
Top View

54

56

58

53

55

57

60
59

61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 96 97 98 99 10
0

10
2

10
4

10
6

10
8

11
0

11
2

62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 10
1

10
3

10
5

10
7

10
9

11
1

11
4

11
6

11
8

11
3

11
5

11
7

12
0

11
9

180

178

176

174

172

170

168

166

164

162

160

158

156

154

152

150

148

146
145
144
143
142
141

139

137

135

133

131

129

179

177

175

173

171

169

167

165

163

161

159

157

155

153

151

149

147

140

138

136

134

132

130

VSS
SYS_OE
SYS_NMIn
SYS_INTn1
SYS_INTn0
SYS_CPCOND
SYS_BOOT1
SYS_BOOT0
PLL_IDDTn
SYS_PLL
PLL_VSS
PLL_LP2
PLL_AGND
PLL_VDD
SYS_CLK
SYS_CLK_PCI
VDD2
VSS2
JTAG_TRST
SE_DI
SE_CLK
SE_ACK
SB_REQn
SB_RDYn
SB_GNTn
SB_PCSn4
SB_PCSn3
SB_PCSn2
SB_PCSn1
VDD
VSS
SB_PCSn0
SB_OEn3
SB_OEn2
SB_OEn1
SB_OEn0
SB_WEn3
SB_WEn2
SB_WEn1
SB_WEn0
SB_D31
SB_D30
SB_D29
VDD2
VSS2
VDD
VSS
SB_D28
SB_D27
SB_D26
SB_D25
SB_D24
SB_D23
SB_D22
SB_D21
SB_D20
SB_D19
SB_D18
SB_D17
VDD

127

125

123

128

126

124

121
122

18
1

18
3

18
5

18
7

18
9

19
1

19
3

19
5

19
7

19
9

20
1

20
3

20
5

20
7

20
9

21
1

21
3

21
5

21
6

21
7

21
8

21
9

22
0

22
2

22
4

22
6

22
8

23
0

23
2

18
2

18
4

18
6

18
8

19
0

19
2

19
4

19
6

19
8

20
0

20
2

20
4

20
6

20
8

20
0

21
2

21
4

22
1

22
3

22
5

22
7

22
9

23
1

23
4

23
6

23
8

23
3

23
5

23
7

24
0

23
9

P
C

I_
IN

T
n

R
X

_S
O

C
R

X
_E

N
B

n
R

X
_P

R
T

Y
R

X
_D

AT
A

7
R

X
_D

AT
A

6
R

X
_D

AT
A

5
V

S
S

V
D

D
R

X
_D

AT
A

4
R

X
_D

AT
A

3
R

X
_D

AT
A

2
R

X
_D

AT
A

1
R

X
_D

AT
A

0
R

X
_A

D
D

R
4

R
X

_A
D

D
R

3
R

X
_A

D
D

R
2

R
X

_A
D

D
R

1
R

X
_A

D
D

R
0

R
X

_C
LA

V
0

R
X

_C
LA

V
1

R
X

_C
LA

V
2

R
X

_C
LA

V
3

V
D

D
V

S
S

2
R

X
_C

LK
T

X
_C

LK
V

S
S

V
D

D
T

X
_C

LA
V

3
T

X
_C

LA
V

2
T

X
_C

LA
V

1
T

X
_C

LA
V

0
T

X
_S

O
C

T
X

_E
N

B
n

T
X

_P
R

T
Y

T
X

_D
AT

A
7

T
X

_D
AT

A
6

T
X

_D
AT

A
5

T
X

_D
AT

A
4

T
X

_D
AT

A
3

T
X

_D
AT

A
2

T
X

_D
AT

A
1

T
X

_D
AT

A
0

T
X

_A
D

D
R

4
V

D
D

2
V

S
S

2
T

X
_A

D
D

R
3

T
X

_A
D

D
R

2
T

X
_A

D
D

R
1

T
X

_A
D

D
R

0
S

C
A

N
_E

N
T

E
S

T
_E

N
JT

A
G

_T
D

O
JT

A
G

_T
D

I
JT

A
G

_T
M

JT
A

G
_T

C
LK

T
M

_C
LK

S
Y

S
_P

S
TA

LL
n

V
D

D

Package Information 13-17

13.4 Package Information

The L64364 is packaged in a 240-pin PQUAD. Electrical and thermal
characteristics for the 240-pin PQUAD are summarized in Table 13.9 and
its mechanical dimensions are shown in Figure 13.4.

Table 13.9 PQUAD Electrical and Thermal Data

Symbol Property Condition Min Typ Max Units

Lead Inductance 12.52 – 18.48 nH

Lead Resistance 127 – 164 MOhms

Lead Capacitance 1.48 – 2.28 pF

Θja Thermal Resistance Air flow = 0 LFPM – – 12.5 ˚C/W

Θja Thermal Resistance Air flow = 200 LFPM – – 9.7 ˚C/W

Θja Thermal Resistance Air flow = 500 LFPM – – 8.5 ˚C/W

13-18 Specifications

Figure 13.4 240-pin PQUAD (NL) Mechanical Drawing (Sheet 1 of 2)

Impor tant: This drawing may not be the latest version. For board layout and manufacturing, obtain the
most recent engineering drawings from your LSI Logic marketing representative by
requesting the outline drawing for package code NL.

Package Information 13-19

Figure 13.4 240-pin PQuad (NL) Mechanical Drawing (Sheet 2 of 2)

Impor tant: This drawing may not be the latest version. For board layout and manufacturing, obtain the
most recent engineering drawings from your LSI Logic marketing representative by
requesting the outline drawing for package code NL.

13-20 Specifications

L64364 ATMizer II+ ATM-SAR Chip A-1

Appendix A
Register Summary

CW4011 Data Manipulation Registers

Name Size R/W Description Page

Rotate 32 R/W Contains a 5-bit Shift Count used by SELSL and SELSR. 4-49

Circular Mask 32 R/W Contains a value used in Load and Store address calculations. 4-49

CW4011 Exception Handling Registers

Name1

1. Accessed using MIPS mtc0 and mfc0 instructions.

Size R/W Description Page

Debug Control & Status 32 R/W Contains enable and status bits. 4-63

Count 32 R/W Functions as a timer. 4-64

Compare 32 R/W When Timer equals Compare value, generates interrupt. 4-65

Status 32 R/W Processor status. 4-65, 4-68

Cause 32 R/W Most recent exception cause. 4-71

EPC 32 R/W Post exception Program Counter restart address. 4-73

PRID 32 R Processor implementation and revision number. 4-73

CCC 32 R/W Cache configuration and control. 4-74

LLAdr 32 R/W Most recent Load Linked read physical address. 4-77

BPC 32 R/W Contains program counter breakpoint. 4-78

BDA 32 R/W Contains virtual data address breakpoint. 4-78

BPCM 32 R/W Masks BPC bits. 4-78

BDAM 32 R/W Masks BDA bits. 4-79

Error EPC 32 R/W Stores PC. 4-79

EDMA Registers, 0xB800.0000

Name Offset Size R/W Description Page

EDMA_TxCompl 0x00 32 R Read Transmit Completion Queue. 5-49

EDMA_TxConNum 0x04 32 R/W Connection Number for the TxCell command. 5-49

EDMA_TxCell 0x08 32 R/W Issue a TxCell command. 5-49

EDMA_TxConAct 0x10 32 R Current active ConNum processed by TxCell Processor. 5-49

EDMA_TxComplB 0x14 32 R Auxiliary Transmit Completion Queue. 5-49

A-2 Register Summary

EDMA_TxConClose 0x18 32 W Transmit Connection Close command. 5-49

EDMA_AAL5Pad 0x1F 8 R/W AAL5 pad byte. 5-49

EDMA_RxCompl 0x40 32 R Read Receive Completion Queue. 5-49

EDMA_RxConNum 0x44 32 R/W Connection Number for the RxCell command. 5-50

EDMA_RxCell 0x48 32 R/W Issue an RxCell command. 5-50

EDMA_RxConAct 0x50 32 R Current active ConNum processed by RxCell Processor. 5-50

EDMA_RxComplB 0x54 32 R Auxiliary Receive Completion Queue. 5-50

EDMA_RxConClose 0x58 32 W Receive Connection Close command. 5-50

EDMA_Buff 0x80 32 R/W Issue a Buff command. 5-50

EDMA_BuffCompl 0x88 32 R Read Buff Completion Queue. 5-50

EDMA_BuffComplB 0x8C 32 R Auxiliary Buff Completion Queue. 5-50

EDMA_BuffConAct 0x90 32 R Current active ConNum processed by Buff Processor. 5-50

EDMA_LBuff0 0x94 16 R/W Head of Large Free Buffer list 0. 5-50

EDMA_SBuff0 0x96 16 R/W Head of Small Free Buffer list 0. 5-50

EDMA_LBuff1 0x98 16 R/W Head of Large Free Buffer list 1. 5-50

EDMA_SBuff1 0x9A 16 R/W Head of Small Free Buffer list 1. 5-50

EDMA_MoveSrc 0xA0 32 R/W Program the source address for a move command. 5-50

EDMA_MoveDst 0xA4 32 R/W Program the destination address for a move command. 5-50

EDMA_MoveCount 0xA8 32 R/W Program the byte count and issue a move command. 5-50

EDMA_MoveCount2 0xAC 32 R/W Program the byte count and issue move command using
32-bit addressing.

5-31

EDMA_LBuff2 0xB0 16 R/W Head of Large Free Buffer list 2. 5-50

EDMA_SBuff2 0xB2 16 R/W Head of Small Free Buffer list 2. 5-50

EDMA_LBuff3 0xB4 16 R/W Head of Large Free Buffer list 3. 5-50

EDMA_SBuff3 0xB6 16 R/W Head of Small Free Buffer list 3. 5-50

EDMA_LBuff4 0xB8 16 R/W Head of Large Free Buffer list 4. 5-50

EDMA_SBuff4 0xBA 16 R/W Head of Small Free Buffer list 4. 5-50

EDMA_LBuff5 0xBC 16 R/W Head of Large Free Buffer list 5. 5-50

EDMA_SBuff5 0xBE 16 R/W Head of Small Free Buffer list 5. 5-51

EDMA_Ctrl 0xC0 16 R/W EDMA control bits. 5-51

EDMA_Status 0xC4 16 R Check the EDMA status. 5-33

EDMA_LBuffSize 0xC8 16 R/W Size of large buffers in bytes. 5-51

EDMA_SBuffSize 0xCA 16 R/W Size of small buffers in bytes. 5-51

EDMA_VCD_Base 0xCC 32 R/W Base address of the VC Descriptor Table. 5-51

EDMA_BFD_LBase 0xD0 32 R/W Local Base address of the Buffer Descriptor Table. 5-51

EDMA_BFD_FBase 0xD4 32 R/W Far Base address of the Buffer Descriptor Table. 5-51

EDMA_ErrMask 0xDC 16 R/W Error Mask register. 5-51

EDMA_BusErr 0xE3 8 R Address and Bus error register. 5-51

EDMA Registers, 0xB800.0000 (Cont.)

Name Offset Size R/W Description Page

A-3

ACI Registers, 0xB800.0100

Name Offset Size R/W Description Pages

ACI_Ctrl 0x00 16 R/W ACI Control field. 6-9, 6-10

ACI_FreeList 0x02 16 R/W Beginning of free cell list. 6-9, 6-12

ACI_TxTimer 0x04 8 R/W Transmit time-out. 6-9, 6-13

ACI_TxSize 0x05 8 R/W Maximum number of cells in Tx FIFO. 6-9, 6-14

ACI_TxLimit 0x06 8 R/W Number of cells in Tx FIFO to generate an interrupt. 6-9, 6-14

ACI_RxLimit 0x07 8 R/W Number of cells in Rx FIFO to generate an interrupt. 6-9, 6-14

ACI_RxMask 0x08 32 R/W Receive polling mask. 6-9, 6-14

ACI_Free 0x0C 32 R/W Get or return a free cell location. 6-9, 6-14

ACI_RxRead 0x10 32 R Get cell from Rx FIFO. 6-9, 6-15

ACI_TxWrite 0x14 32 W Put cell in Tx FIFO. 6-9, 6-15

ACI_RxCells 0x18 8 R Number of cells in the Rx FIFO. 6-9, 6-16

ACI_TxCells 0x1A 8 R Number of cells in the Tx FIFO. 6-9, 6-16

ACI_Error 0x1C 32 R Get a cell from the Error FIFO. 6-9, 6-16

ACI_RxSize 0x20 8 R/W Maximum number of cells in Receive FIFO. 6-9, 6-17

ACI_BadHEC 0x26 16 R/W Bad HEC register. 6-9, 6-17

ACI_ClearBytes 0x2B 8 R/W ACI will use this for PAD byte. 6-9, 6-18

ACI_FreeCount 0x2F 8 R/W Count of Free Cells. 6-9, 6-18

Scheduler Unit Registers, 0xB800.0200

Name Offset Size R/W Description Page

SCD_Ctrl 0x00 32 R/W Control register. 7-15

SCD_CalSize0 0x06 16 R/W Size of the Calendar Table 0. 7-14

SCD_Now 0x0A 16 R/W Current cell slot pointer. 7-14

SCD_Serv 0x0C 32 R Execute service command. 7-14

SCD_Sched 0x10 32 W Execute schedule command. 7-6

SCD_Tic 0x18 32 RW Execute tic command. 7-14

SCD_CalSwitch 0x23 8 R/W Execute Cal_Switch command. 7-11

SCD_CalBase1 0x28 32 R/W Base of Calendar Table 1. 7-14

SCD_CalBase2 0x2C 32 R/W Base of Calendar Table 2. 7-14

SCD_CalBase3 0x30 32 R/W Base of Calendar Table 3. 7-14

SCD_CalSize1 0x36 16 R/W Size of the Calendar Table 1. 7-14

SCD_CalSize2 0x3A 16 R/W Size of the Calendar Table 2. 7-14

SCD_CalSize3 0x3E 16 R/W Size of the Calendar Table 3. 7-14

SCD_HeadSel 0x43 8 R/W Head Insertion selection. 7-7

SCD_Err 0x47 8 R Error register. 7-17

SCD_Class0 0x48 32 R Head & Tail of Priority Class 0. 7-14

SCD_Class1 0x4C 32 R Head & Tail of Priority Class 1. 7-14

SCD_Class2 0x50 32 R Head & Tail of Priority Class 2. 7-14

SCD_Class3 0x54 32 R Head & Tail of Priority Class 3. 7-14

SCD_Class4 0x58 32 R Head & Tail of Priority Class 4. 7-14

SCD_Class5 0x5C 32 R Head & Tail of Priority Class 5. 7-14

A-4 Register Summary

Timer Unit Registers, 0xB800.0280

Name Offset Size R/W Description Page

TM_TimeStamp 0x00 32 R/W Time Stamp counter. 8-2

TM_Timer1 0x04 8 R/W Timer value. 8-2

TM_TimerInit1 0x06 8 R/W Timer initialization value. 8-2

TM_Timer2 0x08 8 R/W Timer value. 8-2

TM_TimerInit2 0x0A 8 R/W Timer initialization value. 8-2

TM_Timer3 0x0C 8 R/W Timer value. 8-2

TM_TimerInit3 0x0E 8 R/W Timer initialization value. 8-2

TM_Timer4 0x10 8 R/W Timer value. 8-2

TM_TimerInit4 0x12 8 R/W Timer initialization value. 8-2

TM_Timer5 0x14 8 R/W Timer value. 8-2

TM_TimerInit5 0x16 8 R/W Timer initialization value. 8-2

TM_Timer6 0x18 8 R/W Timer value. 8-2

TM_TimerInit6 0x1A 8 R/W Timer initialization value. 8-2

TM_Timer7 0x1C 8 R/W Timer value. 8-2

TM_TimerInit7 0x1E 8 R/W Timer initialization value. 8-2

TM_Enable 0x20 6 R/W Time-out enable. 8-2

TM_Clear 0x24 6 W Time-out clear. 8-2

TM_ClockSel 0x28 32 R/W Timer clock selection. 8-3

TM_ClockSel2 0x2C 8 R/W Timer clock selection 2. 8-4

TM_Timer8 0x30 8 R/W Timer Value. 8-2

TM_TimerInit8 0x32 8 R/W Timer initialization value. 8-2

APU Registers, 0xB800.0300

Name Offset Size R/W Description Page

APU_AddrMap 0x00 32 R/W Holds MSBs to extend external addresses. 4-99

APU_SCbus_Watchdog 0x06 16 R/W Timer for APU SC Bus transactions. 4-113

APU_SRL 0x08 32 R APU Serial register. 4-119

APU_VIntEnable 0x0E 16 R/W Enables/masks vectored interrupts. 4-106

APU_VIntBase 0x10 32 R/W Holds part of EVI handler routine address. 4-107

APU_Status 0x14 32 R Holds status of real-time events. 4-108

APU_OCAbus_Watchdog 0x1A 16 R/W Timer for APU OCA Bus transactions. 4-112

APU_Priority 0x1F 8 R/W Priority raise register for SC Bus transactions. 4-114

APU_Error 0x20 32 R/W Error register for SC Bus time-out and
nonvectored interrupt status.

4-115

OCA_Error 0x80 32 R/W Error register for OCAbus time-outs. 4-117

A-5

Primary Port Controller Registers, 0xB800.0400

Name Offset Size R/W Description Page

PP_Ctrl 0x03 8 R/W Specifies burst size limit 9-24

PP_RxMbx 0x04 32 R Primary Port Rx Mailbox. 9-31

PP_TxMbx 0x08 32 W Primary Port Tx Mailbox. 9-31

PP_SlavePFtch 0x10 32 R/W Primary Port Slave Prefetch register. 9-25

PP_Err 0x20 32 R/W Error register. 9-27

PP_ErrAddr 0x24 32 R Error Address register. 9-29

SBC Control Registers, 0xB800.0800

Name Offset Size R/W Description Page

SP_Ctrl 0x00 32 R/W Enables local memory pages and the number of wait states. 10-4

SP_SDRAM 0x04 32 R/W Various SDRAM control functions. 10-16

SP_Refresh 0x08 32 Mixed Refresh interval count and counter. 10-20

SB Clock Control 0x10 32 R/W SB_DCLK and SB_CLKO timing adjustments. 10-7

SP_Err 0x20 32 Mixed Error register. 10-41

SP_ErrAddr 0x24 32 R Error Address register. 10-42

PCI Configuration Registers (See Section 9.2, “PCI Configuration Space Registers.”)

Name Address Size R/W Description Page

Vendor ID 0x00 16 Read LSI Logic vendor ID number. 9-6

Device ID 0x02 16 Read PCI device identification number. 9-6

Command 0x04 16 Mixed PCI control. 9-7

Status 0x06 16 Mixed Status of operation and data. 9-8

Revision ID 0x08 8 Read L64364 revision number. 9-10

Class Code 0x09 24 Read ATM controller class code. 9-10

Cache Line Size 0x0C 8 R/W Cache line size. 9-11

Latency Timer 0x0D 8 R/W Length of PCI bus ownership after PCI_GNTn deasserted. 9-11

Header Type 0x0E 8 Read PCI header type. 9-12

Base Address
Register 1

0x10 32 Mixed PCI base address and parameters for Cell buffer,
mailbox, and XPP_Ctrl register.

9-12

Base Address
Register 2

0x14 32 Mixed PCI base address and parameters for local memory. 9-13

Sub Vend ID 0x2C 16 R/W Subsystem Vendor ID Number. 9-15

Subsystem ID 0x2E 16 R/W Subsystem ID Number. 9-15

Interrupt Line 0x3C 8 R/W PCI interrupt line number. 9-16

Interrupt Pin 0x3D 8 Read PCI interrupt pin. 9-16

A-6 Register Summary

Minimum Grant 0x3E 8 Read Value for minimum PCI grant duration is hardwired to 0x00. 9-17

Maximum Latency 0x3F 8 Read Maximum PCI bus latency is hardwired to 0x00. 9-17

TRDY Timer 0x40 8 R/W IRDY to TRDY timing. 9-18

RETRY Timer 0x41 8 R/W Maximum number of PCI master access retries. 9-18

XPP_Ctrl Note1 8 Mixed Various control functions. 9-22

Rx/Tx MailBox Note2 32 R/W Write = Rx, Read = Tx 9-30

1. Base Address 1 + 0x4010
2. Base Address 1 + 0x4000

PCI Configuration Registers (See Section 9.2, “PCI Configuration Space Registers.”) (Cont.)

Name Address Size R/W Description Page

L64364 ATMizer II+ ATM-SAR Chip B-1

Appendix B
The ATM Cell

This appendix contains information about the structure of the ATM cell
header and the AAL5 mode CS-PDU trailer. It contains the following
sections:

• Section B.1, “ATM Cell Structure,” page B-1

• Section B.2, “The AAL5 Trailer,” page B-3

B.1 ATM Cell Structure

The unit of transmission across ATM networks is called a cell. A cell (see
Figure B.1) consists of a 48-octet (byte) payload of user data and a
5-octet header. The header fields for the User Network Interface (UNI)
are described in Figure B.1.

Figure B.1 The ATM Cell Layout at the UNI

Header Payload

53 Octets

GFC1 VPI VCI PT
C
L
P

HEC

48 Octets5 Octets

4 8 16 3 1 8 Bits

1. At the Network Node Interface (NNI), GFC is not used and the VPI is extended into this field to become 12-bits long.

B-2 The ATM Cell

GFC Generic Flow Control 4 Bits
This field permits a non-ATM unit, such as a multiplexer,
to control the rate of data flow between it and an ATM
terminal. At the Network Node Interface (NNI), these bits
are used for an extended VPI.

VPI Virtual Path Indicator 8 Bits
A transmission path between two ATM units which, in
turn, may contain virtual channels. An intermediate ATM
unit (such as a switch) changes the VPI of incoming cells
to denote the output channel (port) to which they belong.
A cell can be assigned to one of 256 virtual paths.

At the Network Node Interface (NNI), the VPI is extended
to 12-bits starting at the beginning of the header. This
provides 4096 virtual paths.

VCI Virtual Channel Indicator 16 Bits
An intermediate ATM unit changes the VCIs of incoming
cells to group them for further switching to a common
path. The combination of VPIs and VCIs defines the
exact route of cells through an ATM network. Each virtual
path can be divided into 216 virtual channels.

PT Payload Type 3 Bits
The PT field code is used to define the payload as user,
signalling, or maintenance data. Encoding of the PT field
is shown below:

Code Definition

0b000 MSB = 0 signifies a user data cell. The middle bit is
the Explicit Forward Congestion Indicator (EFCI). The
LSB is the AAL_indicate bit. In AAL5 mode, it is 0 for
all cells except the last one in a CS-PDU. In this
mode the last cell contains a CS-PDU trailer.

0b001

0b010

0b011

0b100 Operations Administration and Maintenance (OAM)
segment cell.

0b101 OAM end-to-end cell.

0b110 Resource management cell.

ob111 Reserved for future use.

The AAL5 Trailer B-3

CLP Cell Loss Priority 1 Bit
This bit indicates the priority the cell has over other cells
in a congested traffic network. If necessary, cells coded
1 will be discarded first.

HEC Header Error Check 8 Bits
Since the information in the header is critical, the HEC
field is used to check for and correct errors. Payload error
checking is left to higher layer protocols.

B.2 The AAL5 Trailer

In AAL5 mode, a pad and a trailer are added to the CS-PDU. The trailer
(see Figure B.2) is eight octets wide. Its fields are defined following the
figure. The pad is inserted to make the CS-PDU a multiple of 48 octets
so it can be evenly divided into cell payloads.

The AAL_indicate bit in the PT field of the cell headers is 0 and changes
to 1 in the last cell of the CS-PDU to indicate that the cell contains the
trailer.

Figure B.2 The AAL5 Trailer Layout

UU User-to-User Indicator 1 Octet
For user-to-user information. Transparent to the ATM
network.

Header Payload

53 Octets

41 Octets

Trailer

1 20-47

PAD

UU CPI Length CRCPAD

Last
Cell

B-4 The ATM Cell

CPI Common Part Indicator 1 Octet
This field is set to 0x00 per the current ATM
specifications.

Length CS-PDU Length 2 Octets
Identifies the length of the CS-PDU payload and
determines the size of the pad.

CRC Cyclic Redundancy Check 4 Octets
CRC-32 for detecting errors in the CS-PDU payload.

L64364 ATMizer II+ ATM-SAR Chip C-1

Appendix C
Glossary of
Abbreviations

This appendix defines some of the abbreviations used in this manual.

Abbreviation Definition

AAL1, 2, 3/4, 5 ATM Adaptation Layer 1, 2, 3/4, 5

ABR Available Bit Rate

ACI ATM Cell Interface

ALU Arithmetic Logic Unit

APU ATM Processing Unit

ASSP Application Specific Standard Product

ATM Asynchronous Transfer Mode

BFD Buffer Descriptor

BIU Bus Interface Unit

BOM Beginning of Message

CAS Column Address Select

CBM Cell Buffer Memory

CBR Constant Bit Rate (ATM)

CBR Column Before Row (DRAM Refresh)

CLP Call Loss Priority

CP0 Coprocessor 0

CRC Cyclic Redundancy Check

CS-PDU Convergence Sublayer - Protocol Data Unit

EDMA Enhanced Direct Memory Access

EFCI Explicit Forward Congestion Indicator

EOM End of Message

EPC Exception Program Counter

EVI External Vectored Interrupt

C-2 Glossary of Abbreviations

FIFO First In First Out

HEC Header Error Check

ISA Industry Standard Architecture

ISU Instruction Schedule Unit

JTAG IEEE 1149.1 boundary scan standard

LRU Least Recently Used

LSB Least Significant Bit/Byte

LSU Load/Store/Add Unit

MIPS Millions of Instructions Per Second

MMU Memory Management Unit

MSB Most Significant Bit/Byte

NMI Nonmaskable Interrupt

NNI Network Node Interface

NOP No Operation

PC Program Counter

PCI Peripheral Component Interconnect

PDU Protocol Data Unit

PHY Physical Layer or Device

PLL Phase-Locked Loop

QoS Quality of Service

RAS Row Address Select

RISC Reduced Instruction Set Computer

SAR Segmentation and Reassembly

TLB Translation Lookaside Buffer

UBR Unspecified Bit Rate

UNI User Network Interface

UU User to User

VBR Variable Bit Rate

Abbreviation Definition

Customer Feedback

We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the number
shown.

If appropriate, please also fax copies of any marked-up pages from this
document.

Important: Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.

Thank you for your help in improving the quality of our documents.

Customer Feedback

Reader’s Comments

Fax your comments to: LSI Logic Corporation
Technical Publications
M/S E-198
Fax: 408.433.4333

Please tell us how you rate this document: L64364 ATMizer II+ ATM-SAR
Chip Technical Manual. Place a check mark in the appropriate blank for
each category.

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you
directly for clarification or additional information.

Excellent Good Average Fair Poor

Completeness of information ____ ____ ____ ____ ____
Clarity of information ____ ____ ____ ____ ____
Ease of finding information ____ ____ ____ ____ ____
Technical content ____ ____ ____ ____ ____
Usefulness of examples and
illustrations

____ ____ ____ ____ ____

Overall manual ____ ____ ____ ____ ____

Name Date

Telephone

Title

Company Name

Street

City, State, Zip

Department Mail Stop

Fax

U.S. Distributors
by State

A. E. Avnet Electronics
http://www.hh.avnet.com
B. M. Bell Microproducts,

Inc. (for HAB’s)
http://www.bellmicro.com
I. E. Insight Electronics
http://www.insight-electronics.com
W. E. Wyle Electronics
http://www.wyle.com

Alabama
Daphne
I. E. Tel: 334.626.6190
Huntsville
A. E. Tel: 256.837.8700
B. M. Tel: 256.705.3559
I. E. Tel: 256.830.1222
W. E. Tel: 800.964.9953

Alaska
A. E. Tel: 800.332.8638

Arizona
Phoenix
A. E. Tel: 480.736.7000
B. M. Tel: 602.267.9551
W. E. Tel: 800.528.4040
Tempe
I. E. Tel: 480.829.1800
Tucson
A. E. Tel: 520.742.0515

Arkansas
W. E. Tel: 972.235.9953

California
Agoura Hills
B. M. Tel: 818.865.0266
Granite Bay
B. M. Tel: 916.523.7047
Irvine
A. E. Tel: 949.789.4100
B. M. Tel: 949.470.2900
I. E. Tel: 949.727.3291
W. E. Tel: 800.626.9953
Los Angeles
A. E. Tel: 818.594.0404
W. E. Tel: 800.288.9953
Sacramento
A. E. Tel: 916.632.4500
W. E. Tel: 800.627.9953
San Diego
A. E. Tel: 858.385.7500
B. M. Tel: 858.597.3010
I. E. Tel: 800.677.6011
W. E. Tel: 800.829.9953
San Jose
A. E. Tel: 408.435.3500
B. M. Tel: 408.436.0881
I. E. Tel: 408.952.7000
Santa Clara
W. E. Tel: 800.866.9953
Woodland Hills
A. E. Tel: 818.594.0404
Westlake Village
I. E. Tel: 818.707.2101

Colorado
Denver
A. E. Tel: 303.790.1662
B. M. Tel: 303.846.3065
W. E. Tel: 800.933.9953
Englewood
I. E. Tel: 303.649.1800
Idaho Springs
B. M. Tel: 303.567.0703

Connecticut
Cheshire
A. E. Tel: 203.271.5700
I. E. Tel: 203.272.5843
Wallingford
W. E. Tel: 800.605.9953

Delaware
North/South
A. E. Tel: 800.526.4812

Tel: 800.638.5988
B. M. Tel: 302.328.8968
W. E. Tel: 856.439.9110

Florida
Altamonte Springs
B. M. Tel: 407.682.1199
I. E. Tel: 407.834.6310
Boca Raton
I. E. Tel: 561.997.2540
Bonita Springs
B. M. Tel: 941.498.6011
Clearwater
I. E. Tel: 727.524.8850
Fort Lauderdale
A. E. Tel: 954.484.5482
W. E. Tel: 800.568.9953
Miami
B. M. Tel: 305.477.6406
Orlando
A. E. Tel: 407.657.3300
W. E. Tel: 407.740.7450
Tampa
W. E. Tel: 800.395.9953
St. Petersburg
A. E. Tel: 727.507.5000

Georgia
Atlanta
A. E. Tel: 770.623.4400
B. M. Tel: 770.980.4922
W. E. Tel: 800.876.9953
Duluth
I. E. Tel: 678.584.0812

Hawaii
A. E. Tel: 800.851.2282

Idaho
A. E. Tel: 801.365.3800
W. E. Tel: 801.974.9953

Illinois
North/South
A. E. Tel: 847.797.7300

Tel: 314.291.5350
Chicago
B. M. Tel: 847.413.8530
W. E. Tel: 800.853.9953
Schaumburg
I. E. Tel: 847.885.9700

Indiana
Fort Wayne
I. E. Tel: 219.436.4250
W. E. Tel: 888.358.9953
Indianapolis
A. E. Tel: 317.575.3500

Iowa
W. E. Tel: 612.853.2280
Cedar Rapids
A. E. Tel: 319.393.0033

Kansas
W. E. Tel: 303.457.9953
Kansas City
A. E. Tel: 913.663.7900
Lenexa
I. E. Tel: 913.492.0408

Kentucky
W. E. Tel: 937.436.9953
Central/Northern/ Western
A. E. Tel: 800.984.9503

Tel: 800.767.0329
Tel: 800.829.0146

Louisiana
W. E. Tel: 713.854.9953
North/South
A. E. Tel: 800.231.0253

Tel: 800.231.5775

Maine
A. E. Tel: 800.272.9255
W. E. Tel: 781.271.9953

Maryland
Baltimore
A. E. Tel: 410.720.3400
W. E. Tel: 800.863.9953
Columbia
B. M. Tel: 800.673.7461
I. E. Tel: 410.381.3131

Massachusetts
Boston
A. E. Tel: 978.532.9808
W. E. Tel: 800.444.9953
Burlington
I. E. Tel: 781.270.9400
Marlborough
B. M. Tel: 800.673.7459
Woburn
B. M. Tel: 800.552.4305

Michigan
Brighton
I. E. Tel: 810.229.7710
Detroit
A. E. Tel: 734.416.5800
W. E. Tel: 888.318.9953
Clarkston
B. M. Tel: 877.922.9363

Minnesota
Champlin
B. M. Tel: 800.557.2566
Eden Prairie
B. M. Tel: 800.255.1469
Minneapolis
A. E. Tel: 612.346.3000
W. E. Tel: 800.860.9953
St. Louis Park
I. E. Tel: 612.525.9999

Mississippi
A. E. Tel: 800.633.2918
W. E. Tel: 256.830.1119

Missouri
W. E. Tel: 630.620.0969
St. Louis
A. E. Tel: 314.291.5350
I. E. Tel: 314.872.2182

Montana
A. E. Tel: 800.526.1741
W. E. Tel: 801.974.9953

Nebraska
A. E. Tel: 800.332.4375
W. E. Tel: 303.457.9953

Nevada
Las Vegas
A. E. Tel: 800.528.8471
W. E. Tel: 702.765.7117

New Hampshire
A. E. Tel: 800.272.9255
W. E. Tel: 781.271.9953

New Jersey
North/South
A. E. Tel: 201.515.1641

Tel: 609.222.6400
Mt. Laurel
I. E. Tel: 856.222.9566
Pine Brook
B. M. Tel: 973.244.9668
W. E. Tel: 800.862.9953
Parsippany
I. E. Tel: 973.299.4425
Wayne
W. E. Tel: 973.237.9010

New Mexico
W. E. Tel: 480.804.7000
Albuquerque
A. E. Tel: 505.293.5119

U.S. Distributors
by State
(Continued)

New York
Hauppauge
I. E. Tel: 516.761.0960
Long Island
A. E. Tel: 516.434.7400
W. E. Tel: 800.861.9953
Rochester
A. E. Tel: 716.475.9130
I. E. Tel: 716.242.7790
W. E. Tel: 800.319.9953
Smithtown
B. M. Tel: 800.543.2008
Syracuse
A. E. Tel: 315.449.4927

North Carolina
Raleigh
A. E. Tel: 919.859.9159
I. E. Tel: 919.873.9922
W. E. Tel: 800.560.9953

North Dakota
A. E. Tel: 800.829.0116
W. E. Tel: 612.853.2280

Ohio
Cleveland
A. E. Tel: 216.498.1100
W. E. Tel: 800.763.9953
Dayton
A. E. Tel: 614.888.3313
I. E. Tel: 937.253.7501
W. E. Tel: 800.575.9953
Strongsville
B. M. Tel: 440.238.0404
Valley View
I. E. Tel: 216.520.4333

Oklahoma
W. E. Tel: 972.235.9953
Tulsa
A. E. Tel: 918.459.6000
I. E. Tel: 918.665.4664

Oregon
Beaverton
B. M. Tel: 503.524.1075
I. E. Tel: 503.644.3300
Portland
A. E. Tel: 503.526.6200
W. E. Tel: 800.879.9953

Pennsylvania
Mercer
I. E. Tel: 412.662.2707
Philadelphia
A. E. Tel: 800.526.4812
B. M. Tel: 877.351.2355
W. E. Tel: 800.871.9953
Pittsburgh
A. E. Tel: 412.281.4150
W. E. Tel: 440.248.9996

Rhode Island
A. E. 800.272.9255
W. E. Tel: 781.271.9953

South Carolina
A. E. Tel: 919.872.0712
W. E. Tel: 919.469.1502

South Dakota
A. E. Tel: 800.829.0116
W. E. Tel: 612.853.2280

Tennessee
W. E. Tel: 256.830.1119
East/West
A. E. Tel: 800.241.8182

Tel: 800.633.2918

Texas
Arlington
B. M. Tel: 817.417.5993
Austin
A. E. Tel: 512.219.3700
B. M. Tel: 512.258.0725
I. E. Tel: 512.719.3090
W. E. Tel: 800.365.9953
Dallas
A. E. Tel: 214.553.4300
B. M. Tel: 972.783.4191
W. E. Tel: 800.955.9953
El Paso
A. E. Tel: 800.526.9238
Houston
A. E. Tel: 713.781.6100
B. M. Tel: 713.917.0663
W. E. Tel: 800.888.9953
Richardson
I. E. Tel: 972.783.0800
Rio Grande Valley
A. E. Tel: 210.412.2047
Stafford
I. E. Tel: 281.277.8200

Utah
Centerville
B. M. Tel: 801.295.3900
Murray
I. E. Tel: 801.288.9001
Salt Lake City
A. E. Tel: 801.365.3800
W. E. Tel: 800.477.9953

Vermont
A. E. Tel: 800.272.9255
W. E. Tel: 716.334.5970

Virginia
A. E. Tel: 800.638.5988
W. E. Tel: 301.604.8488
Haymarket
B. M. Tel: 703.754.3399
Springfield
B. M. Tel: 703.644.9045

Washington
Kirkland
I. E. Tel: 425.820.8100
Maple Valley
B. M. Tel: 206.223.0080
Seattle
A. E. Tel: 425.882.7000
W. E. Tel: 800.248.9953

West Virginia
A. E. Tel: 800.638.5988

Wisconsin
Milwaukee
A. E. Tel: 414.513.1500
W. E. Tel: 800.867.9953
Wauwatosa
I. E. Tel: 414.258.5338

Wyoming
A. E. Tel: 800.332.9326
W. E. Tel: 801.974.9953

Sales Offices and Design
Resource Centers

LSI Logic Corporation
Corporate Headquarters
1551 McCarthy Blvd
Milpitas CA 95035
Tel: 408.433.8000
Fax: 408.433.8989

NORTH AMERICA

California
Irvine
18301 Von Karman Ave
Suite 900
Irvine, CA 92612

♦Tel: 949.809.4600
Fax: 949.809.4444

Pleasanton Design Center
5050 Hopyard Road, 3rd Floor
Suite 300
Pleasanton, CA 94588
Tel: 925.730.8800
Fax: 925.730.8700

San Diego
7585 Ronson Road
Suite 100
San Diego, CA 92111
Tel: 858.467.6981
Fax: 858.496.0548

Silicon Valley
1551 McCarthy Blvd
Sales Office
M/S C-500
Milpitas, CA 95035

♦Tel: 408.433.8000
Fax: 408.954.3353
Design Center
M/S C-410
Tel: 408.433.8000
Fax: 408.433.7695

Wireless Design Center
11452 El Camino Real
Suite 210
San Diego, CA 92130
Tel: 858.350.5560
Fax: 858.350.0171

Colorado
Boulder
4940 Pearl East Circle
Suite 201
Boulder, CO 80301

♦Tel: 303.447.3800
Fax: 303.541.0641

Colorado Springs
4420 Arrowswest Drive
Colorado Springs, CO 80907
Tel: 719.533.7000
Fax: 719.533.7020

Fort Collins
2001 Danfield Court
Fort Collins, CO 80525
Tel: 970.223.5100
Fax: 970.206.5549

Florida
Boca Raton
2255 Glades Road
Suite 324A
Boca Raton, FL 33431
Tel: 561.989.3236
Fax: 561.989.3237

Georgia
Alpharetta
2475 North Winds Parkway
Suite 200
Alpharetta, GA 30004
Tel: 770.753.6146
Fax: 770.753.6147

Illinois
Oakbrook Terrace
Two Mid American Plaza
Suite 800
Oakbrook Terrace, IL 60181
Tel: 630.954.2234
Fax: 630.954.2235

Kentucky
Bowling Green
1262 Chestnut Street
Bowling Green, KY 42101
Tel: 270.793.0010
Fax: 270.793.0040

Maryland
Bethesda
6903 Rockledge Drive
Suite 230
Bethesda, MD 20817
Tel: 301.897.5800
Fax: 301.897.8389

Massachusetts
Waltham
200 West Street
Waltham, MA 02451

♦Tel: 781.890.0180
Fax: 781.890.6158

Burlington - Mint Technology
77 South Bedford Street
Burlington, MA 01803
Tel: 781.685.3800
Fax: 781.685.3801

Minnesota
Minneapolis
8300 Norman Center Drive
Suite 730
Minneapolis, MN 55437

♦Tel: 612.921.8300
Fax: 612.921.8399

New Jersey
Red Bank
125 Half Mile Road
Suite 200
Red Bank, NJ 07701
Tel: 732.933.2656
Fax: 732.933.2643

Cherry Hill - Mint Technology
215 Longstone Drive
Cherry Hill, NJ 08003
Tel: 856.489.5530
Fax: 856.489.5531

New York
Fairport
550 Willowbrook Office Park
Fairport, NY 14450
Tel: 716.218.0020
Fax: 716.218.9010

North Carolina
Raleigh
Phase II
4601 Six Forks Road
Suite 528
Raleigh, NC 27609
Tel: 919.785.4520
Fax: 919.783.8909

Oregon
Beaverton
15455 NW Greenbrier Parkway
Suite 235
Beaverton, OR 97006
Tel: 503.645.0589
Fax: 503.645.6612

Texas
Austin
9020 Capital of TX Highway North
Building 1
Suite 150
Austin, TX 78759
Tel: 512.388.7294
Fax: 512.388.4171

Plano
500 North Central Expressway
Suite 440
Plano, TX 75074

♦Tel: 972.244.5000
Fax: 972.244.5001

Houston
20405 State Highway 249
Suite 450
Houston, TX 77070
Tel: 281.379.7800
Fax: 281.379.7818

Canada
Ontario
Ottawa
260 Hearst Way
Suite 400
Kanata, ON K2L 3H1

♦Tel: 613.592.1263
Fax: 613.592.3253

INTERNATIONAL

France
Paris
LSI Logic S.A.
Immeuble Europa
53 bis Avenue de l'Europe
B.P. 139
78148 Velizy-Villacoublay
Cedex, Paris

♦Tel: 33.1.34.63.13.13
Fax: 33.1.34.63.13.19

Germany
Munich
LSI Logic GmbH
Orleansstrasse 4
81669 Munich

♦Tel: 49.89.4.58.33.0
Fax: 49.89.4.58.33.108

Stuttgart
Mittlerer Pfad 4
D-70499 Stuttgart

♦Tel: 49.711.13.96.90
Fax: 49.711.86.61.428

Italy
Milan
LSI Logic S.P.A.
Centro Direzionale Colleoni Palazzo
Orione Ingresso 1
20041 Agrate Brianza, Milano

♦Tel: 39.039.687371
Fax: 39.039.6057867

Japan
Tokyo
LSI Logic K.K.
Rivage-Shinagawa Bldg. 14F
4-1-8 Kounan
Minato-ku, Tokyo 108-0075

♦Tel: 81.3.5463.7821
Fax: 81.3.5463.7820

Osaka
Crystal Tower 14F
1-2-27 Shiromi
Chuo-ku, Osaka 540-6014

♦Tel: 81.6.947.5281
Fax: 81.6.947.5287

Sales Offices and Design
Resource Centers
(Continued)

Korea
Seoul
LSI Logic Corporation of
Korea Ltd
10th Fl., Haesung 1 Bldg.
942, Daechi-dong,
Kangnam-ku, Seoul, 135-283
Tel: 82.2.528.3400
Fax: 82.2.528.2250

The Netherlands
Eindhoven
LSI Logic Europe Ltd
World Trade Center Eindhoven
Building ‘Rijder’
Bogert 26
5612 LZ Eindhoven
Tel: 31.40.265.3580
Fax: 31.40.296.2109

Singapore
Singapore
LSI Logic Pte Ltd
7 Temasek Boulevard
#28-02 Suntec Tower One
Singapore 038987
Tel: 65.334.9061
Fax: 65.334.4749

Sweden
Stockholm
LSI Logic AB
Finlandsgatan 14
164 74 Kista

♦Tel: 46.8.444.15.00
Fax: 46.8.750.66.47

Taiwan
Taipei
LSI Logic Asia, Inc.
Taiwan Branch
10/F 156 Min Sheng E. Road
Section 3
Taipei, Taiwan R.O.C.
Tel: 886.2.2718.7828
Fax: 886.2.2718.8869

United Kingdom
Bracknell
LSI Logic Europe Ltd
Greenwood House
London Road
Bracknell, Berkshire RG12 2UB

♦Tel: 44.1344.426544
Fax: 44.1344.481039

♦Sales Offices with
Design Resource Centers

International Distributors

Australia
New South Wales
Reptechnic Pty Ltd
3/36 Bydown Street
Neutral Bay, NSW 2089

♦Tel: 612.9953.9844
Fax: 612.9953.9683

Belgium
Acal nv/sa
Lozenberg 4
1932 Zaventem
Tel: 32.2.7205983
Fax: 32.2.7251014

China
Beijing
LSI Logic International
Services Inc.
Beijing Representative
Office
Room 708
Canway Building
66 Nan Li Shi Lu
Xicheng District
Beijing 100045, China
Tel: 86.10.6804.2534 to 38
Fax: 86.10.6804.2521

France
Rungis Cedex
Azzurri Technology France
22 Rue Saarinen
Sillic 274
94578 Rungis Cedex
Tel: 33.1.41806310
Fax: 33.1.41730340

Germany
Haar
EBV Elektronik
Hans-Pinsel Str. 4
D-85540 Haar
Tel: 49.89.4600980
Fax: 49.89.46009840

Munich
Avnet Emg GmbH
Stahlgruberring 12
81829 Munich
Tel: 49.89.45110102
Fax: 49.89.42.27.75

Wuennenberg-Haaren
Peacock AG
Graf-Zepplin-Str 14
D-33181 Wuennenberg-Haaren
Tel: 49.2957.79.1692
Fax: 49.2957.79.9341

Hong Kong
Hong Kong
AVT Industrial Ltd
Unit 608 Tower 1
Cheung Sha Wan Plaza
833 Cheung Sha Wan Road
Kowloon, Hong Kong
Tel: 852.2428.0008
Fax: 852.2401.2105

Serial System (HK) Ltd
2301 Nanyang Plaza
57 Hung To Road, Kwun Tong
Kowloon, Hong Kong
Tel: 852.2995.7538
Fax: 852.2950.0386

India
Bangalore
Spike Technologies India
Private Ltd
951, Vijayalakshmi Complex,
2nd Floor, 24th Main,
J P Nagar II Phase,
Bangalore, India 560078

♦Tel: 91.80.664.5530
Fax: 91.80.664.9748

Israel
Tel Aviv
Eastronics Ltd
11 Rozanis Street
P.O. Box 39300
Tel Aviv 61392
Tel: 972.3.6458777
Fax: 972.3.6458666

Japan
Tokyo
Daito Electron
Sogo Kojimachi No.3 Bldg
1-6 Kojimachi
Chiyoda-ku, Tokyo 102-8730
Tel: 81.3.3264.0326
Fax: 81.3.3261.3984

Global Electronics
Corporation
Nichibei Time24 Bldg. 35 Tansu-cho
Shinjuku-ku, Tokyo 162-0833
Tel: 81.3.3260.1411
Fax: 81.3.3260.7100
Technical Center
Tel: 81.471.43.8200

Marubeni Solutions
1-26-20 Higashi
Shibuya-ku, Tokyo 150-0001
Tel: 81.3.5778.8662
Fax: 81.3.5778.8669

Shinki Electronics
Myuru Daikanyama 3F
3-7-3 Ebisu Minami
Shibuya-ku, Tokyo 150-0022
Tel: 81.3.3760.3110
Fax: 81.3.3760.3101

Yokohama-City
Innotech
2-15-10 Shin Yokohama
Kohoku-ku
Yokohama-City, 222-8580
Tel: 81.45.474.9037
Fax: 81.45.474.9065

Macnica Corporation
Hakusan High-Tech Park
1-22-2 Hadusan, Midori-Ku,
Yokohama-City, 226-8505
Tel: 81.45.939.6140
Fax: 81.45.939.6141

The Netherlands
Eindhoven
Acal Nederland b.v.
Beatrix de Rijkweg 8
5657 EG Eindhoven
Tel: 31.40.2.502602
Fax: 31.40.2.510255

Switzerland
Brugg
LSI Logic Sulzer AG
Mattenstrasse 6a
CH 2555 Brugg
Tel: 41.32.3743232
Fax: 41.32.3743233

Taiwan
Taipei
Avnet-Mercuries
Corporation, Ltd
14F, No. 145,
Sec. 2, Chien Kuo N. Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2516.7303
Fax: 886.2.2505.7391

Lumax International
Corporation, Ltd
7th Fl., 52, Sec. 3
Nan-Kang Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2788.3656
Fax: 886.2.2788.3568

Prospect Technology
Corporation, Ltd
4Fl., No. 34, Chu Luen Street
Taipei, Taiwan, R.O.C.
Tel: 886.2.2721.9533
Fax: 886.2.2773.3756

Wintech Microeletronics
Co., Ltd
7F., No. 34, Sec. 3, Pateh Road
Taipei, Taiwan, R.O.C.
Tel: 886.2.2579.5858
Fax: 886.2.2570.3123

United Kingdom
Maidenhead
Azzurri Technology Ltd
16 Grove Park Business Estate
Waltham Road
White Waltham
Maidenhead, Berkshire SL6 3LW
Tel: 44.1628.826826
Fax: 44.1628.829730

Milton Keynes
Ingram Micro (UK) Ltd
Garamonde Drive
Wymbush
Milton Keynes
Buckinghamshire MK8 8DF
Tel: 44.1908.260422

Swindon
EBV Elektronik
12 Interface Business Park
Bincknoll Lane
Wootton Bassett,
Swindon, Wiltshire SN4 8SY
Tel: 44.1793.849933
Fax: 44.1793.859555

♦Sales Offices with
Design Resource Centers

	L64364 ATMizer® II+ ATM�SAR Chip
	Preface
	Contents
	Chapter�1 Introduction
	1.1 Overview
	1.2 Functional Description
	1.3 Features

	Chapter�2 Functional Overview
	2.1 Major Functional Units
	Figure�2.1 L64364 Functional Block Diagram

	2.2 ATM Processing Unit (APU)
	2.3 Enhanced DMA (EDMA)
	2.4 ATM Cell Interface (ACI)
	2.5 Scheduler and Timer Units
	2.6 PCI Interface
	2.7 Endian Considerations
	Table 2.1 Big/Little Endian Mapping

	2.8 Secondary Bus Memory Controller (SBC)
	2.9 Other Features

	Chapter�3 Signal Descriptions
	3.1 I/O Signals Summary
	Figure�3.1 I/O Signals (Utopia Master)
	Figure�3.2 I/O Signals (Utopia Slave)

	3.2 PCI �Interface
	3.3 Secondary Memory Interface
	3.4 Utopia Interface
	3.5 Clocks and Utility Signals
	3.6 APU Signals
	3.7 Serial EPROM Interface
	3.8 JTAG Test Interface
	3.9 Power and Ground Pins

	Chapter�4 ATM Processing Unit
	4.1 APU Overview
	4.1.1 Block Diagram
	Figure�4.1 APU Block Diagram

	4.1.2 Features

	4.2 APU Architecture
	4.2.1 CW4011 Core
	Figure�4.2 CW4011 Block Diagram

	4.2.2 Cache and External Interface
	4.2.3 CW4011 Pipeline
	Figure�4.3 CW4011 Instruction Pipeline

	4.3 APU Instruction Set Summary
	Table 4.1 APU Instruction Set Summary�
	4.3.1 Instruction Set Formats
	Figure�4.4 Instruction Formats

	4.3.2 Load and Store Instructions
	Figure�4.5 Byte Specifications for Loads/Stores
	Table 4.2 Load and Store Instructions Summary�
	Table 4.3 Load and Store Instruction Summary–MIPS II ISA Extensions

	4.3.3 Computational Instructions
	Table 4.4 ALU Immediate Instruction Summary
	Table 4.5 Three-Operand, Register Type-Instruction Summary
	Table 4.6 Shift Instruction Summary
	Table 4.7 Multiply/Divide Instruction Summary
	Table 4.8 Execution Time of Multiply and Divide Instructions
	Table 4.9 Instruction Set Extensions�
	Table 4.10 CW4011 ISA Extensions Summary�
	Table 4.11 APU Rate Instruction Extensions

	4.3.4 Jump and Branch Instructions
	Table 4.12 Jump Instruction Summary
	Table 4.13 Branch Instruction Summary
	Table 4.14 Branch-Likely Instruction Summary–MIPS II ISA Extensions�

	4.3.5 Trap Instructions
	Table 4.15 Trap Instruction Summary–MIPS II ISA Extensions

	4.3.6 Special Instructions
	Table 4.16 Special Instruction Summary

	4.3.7 Coprocessor Instructions
	Table 4.17 Coprocessor Instruction Summary

	4.3.8 System Control Coprocessor (CP0) Instructions
	Table 4.18 CP0 Instruction Summary
	Table 4.19 CP0 Instruction Extension Summary

	4.3.9 Cache Maintenance Instructions
	Table 4.20 Cache Maintenance Instruction Summary

	4.3.10 APU and CW4011 Instruction Set Extensions
	4.3.11 ATMizer II+ Instruction Set Extensions

	4.4 CP0 Data Manipulation Registers
	4.4.1 Rotate Register (23)
	Figure�4.6 Rotate Register

	4.4.2 Circular Mask Register (24)
	Figure�4.7 CMask Register

	4.5 Cache Memory
	4.5.1 Cache States
	Figure�4.8 I-Cache and D-Cache State Diagram
	Table 4.21 D-Cache Write-Back Mode
	Figure�4.9 D-Cache Write Back State Diagram

	4.5.2 Address and Cache Tags
	Figure�4.10 Cache Address Format

	4.5.3 D-Cache Scratch-Pad RAM Mode
	Figure�4.11 Tag RAM Access Format

	4.5.4 I-Cache RAM Mode
	4.5.5 Cache Instructions
	Figure�4.12 Cache Instruction Format
	Table 4.22 Cache Control Bits
	Table 4.23 TAG and INV Encoding
	Figure�4.13 Tag Test Mode Format

	4.6 Exceptions
	Table 4.24 APU Exceptions�
	4.6.1 R3000 Exception Compatibility Mode
	4.6.2 Exception Handling Registers
	Table 4.25 CP0 Exception Processing Registers
	Figure�4.14 DCS Register
	Figure�4.15 Count Register
	Figure�4.16 Compare Register
	Figure�4.17 Status Register (R4000 Mode)
	Figure�4.18 Status Register (R3000 Mode)
	Figure�4.19 Cause Register
	Table 4.26 Exception Codes
	Figure�4.20 EPC Register
	Figure�4.21 PRId Register
	Figure�4.22 CCC Register
	Figure�4.23 LLAdr Register
	Figure�4.24 BPC Register
	Figure�4.25 BDA Register
	Figure�4.26 BPCM Register
	Figure�4.27 BDAM Register
	Figure�4.28 Error EPC Register

	4.6.3 CW4011 Exceptions
	Figure�4.29 Cold Reset Exception
	Figure�4.30 Warm Reset, NMI Exceptions
	Figure�4.31 Common Exceptions
	Figure�4.32 Debug Exception
	Figure�4.33 External Vectored Interrupt Exception
	Table 4.27 Exception Vector Base Addresses
	Table 4.28 Exception Vector Offset Addresses
	Table 4.29 Exception Priority Order

	4.7 Memory Map
	4.7.1 Operating Modes
	Figure�4.34 CW4011 Virtual Memory Map
	Table 4.30 Segment Properties

	4.7.2 ATMizer II+ Chip Memory Map
	Table 4.31 ATMizer II+ Chip Memory Map�

	4.7.3 Hardware Registers Map
	Table 4.32 ATMizer II+ Chip Hardware Register Map

	4.7.4 ATMizer II+ Chip Primary and Secondary Port Access
	Figure�4.35 APU_AddrMap Register
	Figure�4.36 Primary Port Address Formation
	Figure�4.37 Secondary Address Formation for Exception Vectors

	4.8 Interrupts
	4.8.1 External Nonvectored Interrupts
	Table 4.33 Nonvectored Interrupt Sources

	4.8.2 External Vectored Interrupt Sources
	Table 4.34 Vectored Interrupt Sources

	4.8.3 Enabling Vectored Interrupts
	Figure�4.38 APU_VIntEnable Register

	4.8.4 Vectored Interrupt Processing
	Figure�4.39 APU_VIntBase Register Format

	4.8.5 Status Checking
	Figure�4.40 APU Status Register Format

	4.8.6 Coprocessor Condition Signals
	Table 4.35 Coprocessor Condition Signals

	4.9 CW4011 OCA Bus Accesses
	4.10 Bus Watchdog Timers
	4.10.1 SC Bus Watchdog Timer
	Figure�4.41 APU_SCbus_Watchdog Register

	4.10.2 OCA Bus Watchdog Timer
	Figure�4.42 APU_OCAbus_Watchdog Register

	4.10.3 APU Priority Register
	Figure�4.43 APU_Priority Register

	4.10.4 APU_Error Register
	Figure�4.44 APU_Error Register

	4.10.5 OCA Error Register
	Figure�4.45 OCA_Err Register

	4.11 Boot Procedures
	4.11.1 Boot Location
	Table 4.36 Boot Sequence

	4.11.2 Serial Interface Boot Sequence
	4.11.3 Cell Buffer Memory Boot Sequence
	4.11.4 Secondary EPROM Boot Sequence
	4.11.5 APU Access to Serial EPROM

	Chapter�5 Enhanced DMA
	5.1 Overview
	Figure�5.1 EDMA Processors
	Table 5.1 EDMA Commands

	5.2 Data Structures
	Figure�5.2 Virtual Connection and Buffer Descriptors
	5.2.1 VC Descriptor Structure
	Figure�5.3 Virtual Connection Descriptor
	Table 5.2 VC Descriptor Fields�
	Figure�5.4 VC Descriptor Control Field
	Table 5.3 VC Descriptor Control Bits
	Figure�5.5 BuffPres and ConAct Bits Timing
	Figure�5.6 VCD_RxCtrl Usage

	5.2.2 Buffer Descriptor
	Figure�5.7 Buffer Descriptor
	Table 5.4 Buffer Descriptor Fields�
	Figure�5.8 Buffer Descriptor Control Field
	Table 5.5 Buffer Descriptor Control Bits

	5.3 EDMA Commands
	Figure�5.9 EDMA Request & Completion Queues
	5.3.1 RxCell Command
	Figure�5.10 EDMA_RxCell Register Format

	5.3.2 TxCell Command
	Figure�5.11 EDMA_TxCell Register Format

	5.3.3 Buff Command
	Figure�5.12 EDMA_Buff Register Format
	Table 5.6 BFS_BuffFree, BFS_BuffLarge, and BFS_FreeSel Encoding

	5.3.4 Move Command
	Figure�5.13 EDMA_MoveSrc and EDMA_MoveDst Register Format
	Figure�5.14 EDMA_MoveCount Register
	Figure�5.15 EDMA_MoveCount2 Register

	5.3.5 TxConClose/RxConClose Command
	Figure�5.16 Tx/RxConClose Command Format

	5.3.6 Checking Status
	Figure�5.17 EDMA_Status Register

	5.3.7 Buffer Completion
	Figure�5.18 Primary Completion Queue
	Figure�5.19 Auxiliary Completion Queue
	Figure�5.20 Buffer Status Bits
	Table 5.7 Tx Completion Queue Messages
	Table 5.8 Rx Completion Queue Messages�
	Table 5.9 Buff Completion Queue Messages

	5.4 Data Structure Locations
	5.4.1 VC Descriptors Address Calculation
	Figure�5.21 TX/RX_EDMA_VCD_Base Register
	Figure�5.22 VC Descriptor Address Calculation for PCI Memory
	Figure�5.23 VC Descriptor Address Calculation for Local or Cell Buffer Memory

	5.4.2 Buffer Descriptors
	Figure�5.24 Buffer Descriptor Address Calculation
	Figure�5.25 EDMA_BFD_FBase Register
	Figure�5.26 EDMA_BFD_LBase Register

	5.4.3 Buffer Payload

	5.5 Register Descriptions
	Table 5.10 EDMA Memory Mapped Registers�
	5.5.1 EDMA Control Register
	Figure�5.27 EDMA_Ctrl Register

	5.5.2 EDMA Error Mask Register
	Figure�5.28 EDMA_ErrMask Register

	5.5.3 EDMA Bus Error Register
	Figure�5.29 EDMA_BusErr Register

	5.6 AAL5 Mode Operation
	5.6.1 Transmit Cell Processing Requests
	5.6.2 Receive Cell Processing Requests
	5.6.3 Free Buffers
	5.6.4 Big Endian and Little Endian
	Figure�5.30 Byte Swapping

	5.7 AAL0 Mode Operation
	Figure�5.31 VC Descriptor Control Fields (AAL0 Mode Uses CRC32 Field)

	Chapter�6 ATM Cell Interface
	6.1 ACI Overview
	Figure�6.1 ACI Block Diagram

	6.2 Cell Size and Layout
	Table 6.1 Cell Size
	Figure�6.2 Cell Layout

	6.3 Cell �Descriptor
	Figure�6.3 Cell Descriptor Format

	6.4 Memory-Mapped ACI Registers
	Table 6.2 Memory Mapped ACI Registers
	6.4.1 ACI_Ctrl Register
	Figure�6.4 ACI_Ctrl Register

	6.4.2 ACI_FreeList Register
	Figure�6.5 ACI_Free List Register

	6.4.3 ACI_TxTimer Register
	Figure�6.6 ACI_TxTimer Register Format

	6.4.4 ACI_TxSize Register
	6.4.5 ACI_TxLimit and ACI_RxLimit Registers
	6.4.6 ACI_RxMask Register
	6.4.7 ACI_Free Register
	6.4.8 ACI_RxRead Register
	6.4.9 ACI_TxWrite Register
	Figure�6.7 ACI_TxWrite Register

	6.4.10 ACI_RxCells and ACI_TxCells Registers
	6.4.11 ACI_Error Register
	6.4.12 ACI_RxSize Register
	6.4.13 ACI_BadHEC Register
	Figure�6.8 ACI_BadHEC Register

	6.4.14 ACI_ClearBytes Register
	6.4.15 ACI_FreeCount Register

	6.5 Cell Buffer �Manager
	6.5.1 Cell Buffer Initialization
	6.5.2 Requesting and Releasing a Free Cell Location
	6.5.3 Inserting and Removing Cells from the ACI FIFO
	6.5.4 Setting and Checking FIFO Sizes

	6.6 ACI Receiver
	6.6.1 ACI Receiver Operations
	6.6.2 Receive FIFO Status
	6.6.3 Receive Priority Scheme
	6.6.4 HEC Processing
	6.6.5 CRC10 Verifications
	6.6.6 Utopia Parity Checking

	6.7 ACI Transmitter
	6.7.1 ACI Transmitter Operations
	6.7.2 Transmit FIFO Status
	6.7.3 Idle Cell Generation
	6.7.4 PHY Port Selection and Port Polling
	6.7.5 HEC �Generation
	6.7.6 CRC10 Generation
	6.7.7 ACI Transmitter Time-Out
	6.7.8 Utopia Parity Generation

	6.8 Polling Scheme
	6.9 Loopback Mode
	6.10 Utopia Interface
	6.10.1 Utopia Clocks
	6.10.2 Unused Pins

	Chapter�7 Scheduler Unit
	7.1 Scheduler Overview
	7.2 Priority Mode Operation
	Figure�7.1 VC Descriptor Format (Word 0)
	7.2.1 Example of Priority Mode Operation
	Figure�7.2 Scheduler Calendar Table in Priority Mode
	Figure�7.3 Priority Mode - Calendar Table
	Figure�7.4 Priority Mode - Calendar Table

	7.2.2 Service Command
	Figure�7.5 Service Command Return Value

	7.2.3 Schedule Command
	Figure�7.6 SCD_Sched Register Format
	Figure�7.7 Format of SCD_HeadSel Register
	Figure�7.8 Priority Mode - Calendar Table

	7.2.4 Tic Command

	7.3 Flat Mode Operation
	7.3.1 Example of Flat Mode Operation
	Figure�7.9 Flat Mode - Calendar Table after Schedule Command
	Figure�7.10 Flat Mode - Calendar Table after Tic Command

	7.3.2 Service Command
	7.3.3 Schedule Command
	Figure�7.11 Flat Mode - Calendar Table with SCD_HeadSel0 Bit Set

	7.3.4 Tic Command

	7.4 Calendar Switching
	Figure�7.12 Format of the SCD_CalSwitch Register
	Figure�7.13 Flat Mode - Calendar Table 0
	Figure�7.14 Flat Mode - Calendar Table 1

	7.5 Command Execution
	7.6 Register Descriptions
	Table 7.1 Scheduler Registers�
	7.6.1 Scheduler Control Register
	Figure�7.15 Scheduler Control Register Format

	7.6.2 Calendar Size Register
	7.6.3 SCD_Now Register
	7.6.4 SCD_Serv, SCD_Sched, and SCD_Tic Registers
	7.6.5 SCD_HeadSel Register
	7.6.6 SCD_Err Register
	Figure�7.16 SCD_Err Register

	7.6.7 SCD_Class0–5 Registers
	Figure�7.17 SCD_Class0–5 Registers Format

	7.6.8 Calculating a VC Descriptor Address
	Figure�7.18 VC Descriptor Address Computations

	7.6.9 Calculating a Calendar Table Address
	Figure�7.19 Calendar Table Address Computations

	Chapter�8 Timer Unit
	8.1 Introduction
	Table 8.1 Timer Unit Registers�

	8.2 Timer Clock Selection
	Figure�8.1 Timer Clock Selection Registers Format
	8.2.1 TM_ClockSel Register
	8.2.2 TM_ClockSel2 Register

	8.3 Time-Out Events

	Chapter�9 PCI Interface
	9.1 PCI Interface Overview
	Figure�9.1 PCI Interface Block Diagram
	Table 9.1 PCI FIFO’s

	9.2 PCI Configuration Space Registers
	Figure�9.2 PCI Configuration Space Registers
	9.2.1 Vendor ID Register
	Figure�9.3 Vendor ID Register

	9.2.2 Device ID Register
	Figure�9.4 Device ID Register

	9.2.3 Command Register
	Figure�9.5 Command Register

	9.2.4 Status Register
	Figure�9.6 Status Register

	9.2.5 Revision ID Register
	Figure�9.7 Revision ID Register

	9.2.6 Class Code Register
	Figure�9.8 Class Code Register

	9.2.7 Cache Line Size Register
	Figure�9.9 Cache Line Size Register

	9.2.8 Latency Timer Register
	Figure�9.10 Latency Timer Register

	9.2.9 Header Type Register
	Figure�9.11 Header Type Register

	9.2.10 Base Address Register 1
	Figure�9.12 Base Address Register 1

	9.2.11 Base Address Register 2
	Figure�9.13 Base Address Register 2

	9.2.12 Subsystem Vendor ID Register
	Figure�9.14 Subsystem Vendor ID Register

	9.2.13 Subsystem ID Register
	Figure�9.15 Subsystem ID Register

	9.2.14 Interrupt Line Register
	Figure�9.16 Interrupt Line Register

	9.2.15 Interrupt Pin Register
	Figure�9.17 Interrupt Pin Register

	9.2.16 Minimum Grant Register
	Figure�9.18 Minimum Grant Register

	9.2.17 Maximum Latency Register
	Figure�9.19 Maximum Latency Register

	9.2.18 TRDY_Timer Register
	Figure�9.20 TRDY_Timer Register

	9.2.19 Retry_Timer Register
	Figure�9.21 Retry_Timer Register

	9.2.20 Configuration Target Operation
	Figure�9.22 Configuration Space Read
	Figure�9.23 Configuration Space Write

	9.2.21 Configuration Master Operation

	9.3 Primary Port Registers
	9.3.1 XPP_Ctrl Register
	Figure�9.24 XPP_Ctrl Register

	9.3.2 PP_Ctrl Register
	Figure�9.25 PP_Ctrl Register

	9.3.3 Primary Port Slave Prefetch Register
	Figure�9.26 PP_SlavePFtch Register

	9.3.4 Primary Port Error Register
	Figure�9.27 PP_Err Register

	9.3.5 Primary Port Error Address Register
	Figure�9.28 PP_ErrAddr Register

	9.4 PCI Slave Transactions
	Table 9.2 ATMizer II+ Chip External Memory Map�
	9.4.1 Mailbox
	Figure�9.29 Mailbox Registers

	9.4.2 PCI Slave Write Timing
	Figure�9.30 Slave Write Timing
	Figure�9.31 Slave Write Stop Timing
	Figure�9.32 Parity Error Timing

	9.4.3 PCI Slave Read Timing
	Figure�9.33 PCI Slave Read Timing

	9.4.4 PCI Slave Errors

	9.5 PCI Master Transactions
	9.5.1 PCI Master Write Timing
	Figure�9.34 Master Write Timing
	Figure�9.35 Master Write Stop Timing

	9.5.2 Master Write Errors
	9.5.3 PCI Master Read Timing
	Figure�9.36 PCI Master Read Timing
	Figure�9.37 Master Read Stop Timing
	Figure�9.38 Master Read Error Timing

	9.5.4 Master Read Errors

	9.6 Balancing Bus Usage
	9.6.1 Master Write
	9.6.2 Master Read
	9.6.3 Slave Write
	9.6.4 Slave Read

	Chapter�10 Secondary Bus Memory Controller
	10.1 Overview
	Table�10.1 16 Mbyte Secondary Bus Memory Map
	Table�10.2 64 Mbyte Secondary Bus Memory Map

	10.2 SBC Configuration
	10.2.1 SP_Ctrl Register
	Figure�10.1 SP_Ctrl Register

	10.2.2 Secondary Bus Clock Control Register
	Figure�10.2 SB Clock Relationships
	Figure�10.3 Secondary Bus Clock Control Register
	Figure�10.4 Effects of SB_DCLK Delay Register
	Figure�10.5 Effects of SB_CLKO Delay Register

	10.3 Secondary Bus Performance Considerations
	Table�10.3 SBC Clocks per Data Word
	Table�10.4 SBC Transfer Lead-Off Cycles

	10.4 SDRAM Controller
	10.4.1 SDRAM Connections
	Table�10.5 ATMizer II+ Chip to SDRAM Interconnections�

	10.4.2 SDRAM Controller Configuration
	Figure�10.6 SP_SDRAM Register

	10.4.3 SDRAM Initialization
	Figure�10.7 SDRAM Mode Register

	10.4.4 SDRAM Refresh
	Figure�10.8 SP_Refresh Register
	Figure�10.9 SDRAM Refresh Timing

	10.4.5 Secondary Bus Time-Out
	10.4.6 SDRAM Command Summary
	Table�10.6 SDRAM Command Summary

	10.4.7 SDRAM Read Transfer
	Figure�10.10 SDRAM Read Timing

	10.4.8 SDRAM Write Transfer
	Figure�10.11 SDRAM Write Timing

	10.5 SSRAM Controller
	Table�10.7 SSRAM Configurations
	Table�10.8 SSRAM Interconnections�
	10.5.1 SSRAM Read Transfers
	Figure�10.12 SSRAM Read Timing

	10.5.2 SSRAM Write Transfers
	Figure�10.13 SSRAM Write Timing

	10.6 32-Bit SRAM/EPROM Controller
	10.6.1 32-Bit SRAM/EPROM Read Transfer
	Figure�10.14 SRAM Read Timing

	10.6.2 32-Bit SRAM Write Transfers
	Figure�10.15 SRAM Write Timing

	10.6.3 32-Bit SRAM/EPROM SB_RDYn Timing
	Figure�10.16 32-Bit SRAM/EPROM Read Timing with SB_RDYn
	Figure�10.17 32-Bit SRAM/EPROM Write Timing with SB_RDYn

	10.7 PHY Controller
	Table�10.9 Secondary Bus to PHY Device Connections
	10.7.1 PHY Read Transfers
	Figure�10.18 PHY Read Timing

	10.7.2 PHY Write Transfers
	Figure�10.19 PHY Write Timing

	10.7.3 PHY SB_RDYn Timing
	Figure�10.20 PHY Read Timing with SB_RDYn
	Figure�10.21 PHY Write Timing with SB_RDYn

	10.8 8-Bit SRAM/EPROM Controller
	10.8.1 8-Bit SRAM/EPROM Read Transfers
	Figure�10.22 8-Bit SRAM/EPROM Read Timing

	10.8.2 8-Bit SRAM/EPROM Write Transfers
	Figure�10.23 8-Bit SRAM Write Timing

	10.8.3 8-Bit SRAM/EPROM SB_RDYn Timing
	Figure�10.24 8-Bit SRAM/EPROM Read Timing with SB_RDYn
	Figure�10.25 8-Bit SRAM/EPROM Write Timing with SB_RDYn

	10.9 External Bus Masters
	Figure�10.26 Secondary Bus Grant Timing

	10.10 Error Reporting
	Figure�10.27 SB_Err Register
	Figure�10.28 SB_ErrAddr Register

	Chapter�11 System Clock
	11.1 System Clock Options
	Figure�11.1 Clock Selection and Synthesis Circuit

	11.2 Clock Synthesis
	Figure�11.2 Phase-Locked Loop
	Table 11.1 Loop Filter Components

	11.3 Design Considerations
	Figure�11.3 PLL Supply Filtering

	Chapter�12 JTAG Interface
	12.1 JTAG Instructions
	Table 12.1 JTAG Instruction Register Encoding�
	12.1.1 BYPASS Instruction
	12.1.2 SAMPLE/PRELOAD Instruction
	12.1.3 EXTEST Instruction
	12.1.4 HI-Z Instruction

	12.2 Boundary Scan Chain Order
	Table 12.2 L64364 Boundary Scan Chain�

	Chapter�13 Specifications
	13.1 AC Timing
	Figure�13.1 Output Signal Timing Reference Points
	Figure�13.2 Input Signal Timing Reference Points
	Table 13.1 PCI Interface Timing�
	Table 13.2 Secondary Bus Timing�
	Table 13.3 Utopia Interface Transmit Timing�
	Table 13.4 Utopia Interface Receive Timing�
	Table 13.5 Miscellaneous Timing�

	13.2 Electrical Requirements
	13.2.1 I/O Pad Drivers and Receivers
	Table 13.6 I/O Pad Drivers and Receivers�

	13.2.2 I/O Level Requirements
	Table 13.7 DC Characteristics�

	13.3 Pin Summary
	Table 13.8 L64364 Pin Summary 240 Pin Alphabetical Pin List
	Figure�13.3 L64364 240 Pin PQUAD

	13.4 Package Information
	Table 13.9 PQUAD Electrical and Thermal Data
	Figure�13.4 240-pin PQUAD (NL) Mechanical Drawing (Sheet 1 of 2)

	Appendix A Register Summary
	Appendix B The ATM Cell
	B.1 ATM Cell Structure
	Figure B.1 The ATM Cell Layout at the UNI

	B.2 The AAL5 Trailer
	Figure B.2 The AAL5 Trailer Layout

	Appendix C Glossary of Abbreviations
	Customer Feedback

