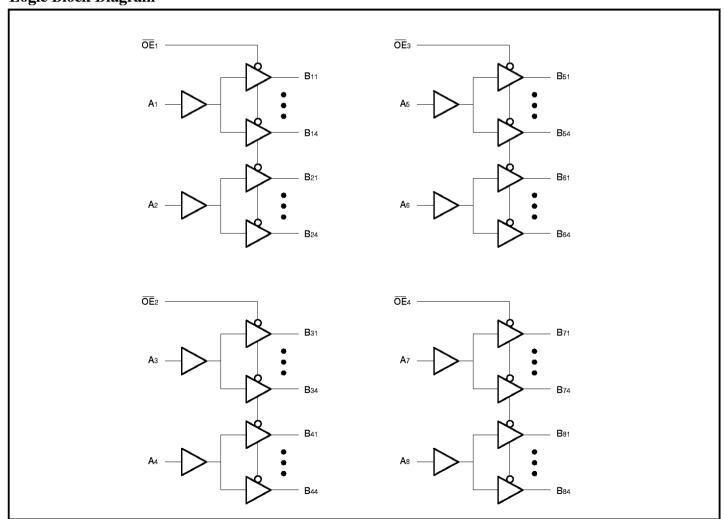
ADVANCE INFORMATION

PI74FCT163344

Fast CMOS Address/Clock Driver

Product Features:

- · Ideal for address line driving and clock distribution
- Eight banks with 1:4 fanout with 3-state control
- Typical tsk(o) output skew < 500 ps
- Balanced output drivers: ±24 mA
- · Hysteresis on all inputs
- · Packages available:
 - 56-pin 240-mil wide plastic TSSOP (A56)
 - 56-pin 300-mil wide plastic SSOP (V56)


Product Description:

Pericom Semiconductor's PI74FCT series of logic circuits are produced in the Company's advanced 0.6 micron CMOS technology, achieving industry leading speed grades.

The PI74FCT163344 is an address/clock driver designed to provide the ability to fanout to memory arrays. Eight banks, each with a fanout of four, and 3-state control, provide efficient address distribution. One or more banks may be used for clock distribution.

The PI74FCT163344 has balanced output drivers. It is designed with current limiting resistors at its outputs to control the output edge rate resulting in lower ground bounce and undershoot. This eliminates the need for external terminating resistors for most interface applications.

Logic Block Diagram

Product Pin Configuration

Product Pin Description

Pin Name	Description
OE x	3-State Output Enable Inputs (Active LOW)
Ax	Inputs
Bxx	3-State Outputs
GND	Ground
Vcc	Power

Truth Table⁽¹⁾

In	Outputs	
OE x Ax		Bxx
L	L	L
L	Н	Н
Н	X	Z

NOTE: 1. H = High Voltage Level

L = Low Voltage Level

X = Don't Care

Z = High Impedance

Capacitance ($T_A = 25$ °C, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур	Max.	Units
Cin	Input Capacitance	$V_{IN} = 0V$	3.5	6.0	pF
Соит	Output Capacitance	$V_{OUT} = 0V$	3.5	8.0	pF

2

Notes:

1. This parameter is determined by device characterization but is not production tested.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	–55°C to +125°C
Ambient Temperature with Power Applied	0°C to +70°C
Supply Voltage to Ground Potential	
DC Input Voltage	0.5V to +7.0V
DC Output Current	60 to +120 mA
Power Dissipation	0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range: $T_A = -40$ °C to +85 °C, $V_{CC} = 3.3 \text{V} \pm 0.3 \text{V}$)

Parameters	Description	Test	Conditions ⁽¹⁾		Min.	Typ ⁽²⁾	Max.	Units
Voh	Output HIGH Voltage	$V_{CC} = Min, V_{IN} = V$	'IH or VIL	IoH = -24 mA	2.4	3.3	_	V
Vol	Output LOW Voltage	$V_{CC} = Min., V_{IN} = V_{CC}$	VIH or VIL	IoL = 24 mA	_	0.3	0.55	V
VIH	Input HIGH Voltage	Guaranteed Logic H	IIGH Level		2.0	_	_	V
VIL	Input LOW Voltage	Guaranteed Logic L	OW Level		_	_	0.8	V
Іін	Input HIGH Current	Vcc = Max.	$V_{IN} = V_{CC}$ (1	nput Pins)	_	_	±1	μА
IIL	Input LOW Current	Vcc = Max.	$V_{IN} = GND$	(Input & I/O Pins)	_	_	±1	μА
Iozh	High Impedance	Vcc = Max.	Vcc = Max. $Vout = 2.7V$		_	_	±1	μА
Iozl	Output Current	(3-State Output Pins) Vour = 0.5V		_	_	±1		
Vik	Clamp Diode Voltage	Vcc = Min., Iin = -18 mA		_	-0.7	-1.2	V	
Iodh	Output HIGH Current	$V_{CC} = 3.3V, V_{IN} = V_{CC}$	$V_{CC} = 3.3V$, $V_{IN} = V_{IH}$ or V_{IL} , $V_{OUT} = 1.5V^{(3)}$		-60	-115	-150	mA
Iodl	Output LOW Current	$V_{CC} = 3.3V$, $V_{IN} = V_{IH}$ or V_{IL} , $V_{OUT} = 1.5V^{(3)}$		60	115	150	mA	
Ios	Short Circuit Current(4)	$V_{CC} = Max., V_{OUT} = GND^{(4)}$		-80	-140	-225	mA	
Iour	Output Drive Current	$Vcc = Max., Vout = 2.5V^{(3)}$		-50	_	-180	mA	
VH	Input Hysteresis				_	100	_	mV

Notes:

- 1. For conditions show as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device
- 2. Typical values are at Vcc = 3.3V, $+25^{\circ}C$ ambient and maximum loading.
- 3. This parameter is determined by device characterization but is not production tested.
- 4. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

Power Supply Characteristics

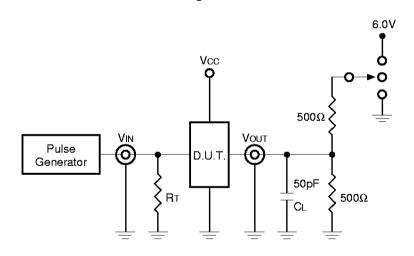
Parameters	Description	Test Condi	Test Conditions ⁽¹⁾		Typ ⁽²⁾	Max.	Units
Icc	Quiescent Power Supply Current	Vcc = Max.	VIN = GND or Vcc		0.1	10	μА
ΔIcc	Supply Current per Input @ TTL HIGH	Vcc = Max.	$V_{IN} = V_{CC} - 0.6V$		2.0	30	μА
Іссъ	Supply Current per Input per MHz ⁽⁴⁾	Vcc = Max., Outputs Open $\overline{OE}x = GND$ One Bit Toggling 50% Duty Cycle	Vin = Vcc Vin = GND		50	75	μΑ/ MHz
Ic	Total Power Supply Current ⁽⁶⁾	$Vcc = Max.,$ $Outputs Open$ $fi = 10 MHz$ $50\% Duty Cycle$ $\overline{OE}x = GND$ $One Bit Toggling$	$V_{IN} = V_{CC} - 0.6V$ $V_{IN} = GND$		0.6	2.3 ⁽⁵⁾	mA
		Vcc = Max., Outputs Open fi = 2.5 MHz 50% Duty Cycle $\overline{OE}x = GND$ 16 Bits Toggling	$V_{IN} = V_{CC} - 0.6V$ $V_{IN} = GND$		2.5	5.5 ⁽⁵⁾	

Notes:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device.

4

- 2. Typical values are at Vcc = 3.3V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V); all other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. Ic = Iquiescent + Inputs + Idynamic
 - $Ic = Icc + \Delta Icc DhNt + Iccd (fcp/2 + fiNi)$
 - Icc = Quiescent Current
 - Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)
 - DH = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - fi = Input Frequency
 - $N_I = Number of Inputs at fi$
 - All currents are in milliamps and all frequencies are in megahertz.


Switching Characteristics over Operating Range

			1633	544A	1633	344C	
			Co	m.	Co	m.	
Parameters	Description	Conditions ⁽¹⁾	Min	Max	Min	Max	Unit
TPLH TPHL	Propagation Delay Ax to Bx	$CL = 50 \text{ pF}$ $RL = 500\Omega$	1.5	4.8	1.5	4.3	ns
tezh tezl	Output Enable Time OEx to Bx		1.5	6.2	1.5	5.8	ns
TPHZ TPLZ	Output Disable Time OEx to Bx		1.5	5.6	1.5	5.2	ns
tsĸ1(o) ^(3,5)	Output Skew		_	0.5	_	0.35	ns
tsk2(o)(4,5)	Output Skew		_	0.5	_	0.5	ns

Notes:

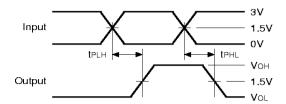
- 1. See test circuit and wave forms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Skew between outputs of the same bank and same package, switching in the same transition.
- 4. Skew between outputs of all banks of the same package with A1 through A8 tied together, switching in the same transition.
- 5. This parameter is guaranteed but not production tested.

Tests Circuits For All Outputs(1)

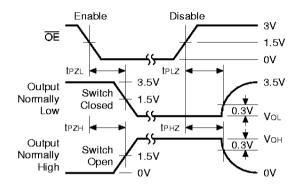
Switch Position

Test	Switch
Disable LOW Enable LOW	6V
Disable HIGH Enable HIGH	GND
All Other Inputs	Open

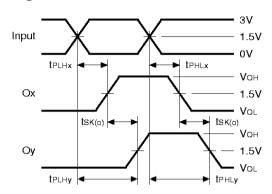
DEFINITIONS:


CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.



SWITCHING WAVEFORMS


Propagation Delay

Enable and Disable Times

Output Skew - tsk1(0), tsk2(0)

tsk(0) = |tPLHy - tPLHx|or|tPHLy - tPHLx|

Note:

 $ts\kappa l(o) = Ox$ and Oy are in the same bank. $ts\kappa 2l(o) = Ox$ and Oy are in a different bank on the same port.