

APPROVAL SHEET

WR10, WR12, WR08, WR06, WR04

±1%, ±5%

Thick Film General Purpose Chip Resistors Size 1210, 1206, 0805, 0603, 0402

RoHS 2 Compliant with exemption 7C-1 Halogen free

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. High reliability and stability
- 2. Reduced size of final equipment
- 3. Lower assembly costs
- 4. Higher component and equipment reliability
- 5. RoHS 2 compliant with exemption 7C-1 and Halogen free products
- Flammability against UL94-V0

APPLICATION

- Consumer electrical equipment
- EDP, Computer application
- Telecom application

DESCRIPTION

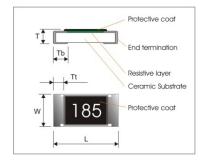
The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to within tolerance by laser cutting of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (lead free) alloy.



Fig 1. Construction of Chip-R

QUICK REFERENCE DATA


Item	General Specification						
Series No.	WR10	WR12	WR08	WR06	WR04		
Size code	1210(3225)	1206(3216)	0805(2012)	0603(1608)	0402(1005)		
Resistance Range		1Ω~10MΩ	ն (±5% tolerance), J	umper			
		1Ω~1	0MΩ (±1% tolerance	e),			
Resistance Tolerance			±1%, E96/E24				
	±5%, E24						
TCR (ppm/°C)							
10MΩ ≥R > 10Ω			≤ ± 100				
R≤10Ω			-200~+400				
Max. dissipation @ T _{amb} =70°C	1/3 W	1/4 W	1/8 W	1/10 W	1/16 W		
Max. Operation Voltage	200V 200V 150V 75V 50V						
Max. Overload Voltage	400V 400V 300V 150V 100V						
Operation temperature	-55 ~ +155°C						

Note:

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- Max. Operation Voltage: So called RCWV (Rated Continuous Working Voltage) is determined by
 RCWV = √Rated Power × Resistance Value or Max. RCWV listed above, whichever is lower.
- 3. The resistance of Jumper is defined $< 0.05\Omega$.

DIMENSIONS (unit: mm)

	WR10	WR12	WR08	WR06	WR04
L	3.10 ± 0.10	3.10 ± 0.10	2.00 ± 0.10	1.60 ± 0.10	1.00 ± 0.05
w	2.60 ± 0.10	1.60 ± 0.10	1.25 ± 0.10	0.80 ± 0.10	0.50 ± 0.05
Т	0.55 ± 0.10	0.55 ± 0.10	0.50 ± 0.15	0.45 ± 0.15	0.35 ± 0.05
Tb	0.50 ± 0.20	0.45 ± 0.20	0.40 ± 0.20	0.30 ± 0.15	0.25 ± 0.10
Tt	0.50 ± 0.20	0.50 ± 0.20	0.40 ± 0.20	0.30 ± 0.10	0.20 ± 0.10

MARKING

Size \ Nr. Of digit of code\tolerance	±5%	±1%		
1210 (3225)	3-digits marking	4-digits marking		
1206 (3216)	3-digits marking	4-digits marking		
0805 (2012)	3-digits marking	4-digits marking		
0603 (1608)	3-digits marking	3-digits marking		
0402 (1005)	NO MARKING			

3-digits marking ($\pm 5\%$: 1206 & 0805 & 0603)

Each resistor is marked with a three digits code on the protective coating to designate the nominal resistance value.

3-digits marking ($\pm 1\%:0603$)

Nomina	l resistan	ce			Description										
1.E-24 s	series			As 0603	s 0603 WR06X ±5%.										
2.E-96 s	series			The 1st two digit codes are referring to the CODE on the table, the 3rd code is the index of resis value : $Y=10^{-2} \ , \ X=10^{-1} \ , \ A=10^{0} \ , \ B=10^{1} \ , \ C=10^{2} \ , \ D=10^{3} \ , \ E=10^{4} \ , \ F=10^{5}$ $EX: 17.8\Omega = 25X \ , \ 178\Omega = 25A \ , \ 1K78 = 25B$ $17K8=25C \ , \ 178K=25D \ , \ 1M78=25E$						stance					
3. Rema	ark			There is	no marki	ng for th	ne items a	re not u	nder E-24	and E-	96 series				
CODE	R_value	CODE	R_value	CODE	R_Value	CODE	R_value	CODE	R_value	CODE	R_value	CODE	R_value	CODE	R_value
01	100	13	133	25	178	37	237	49	316	61	422	73	562	85	750
02	102	14	137	26	182	38	243	50	324	62	432	74	576	86	768
03	105	15	140	27	187	39	249	51	332	63	442	75	590	87	787
04	107	16	143	28	191	40	255	52	340	64	453	76	604	88	806
05	110	17	147	29	196	41	261	53	348	65	464	77	619	89	825
06	113	18	150	30	200	42	267	54	357	66	475	78	634	90	845
07	115	19	154	31	205	43	274	55	365	67	487	79	649	91	866
08	118	20	158	32	210	44	280	56	374	68	499	80	665	92	887
09	121	21	162	33	33 215 45 287 57 383 69 511 81 681 93							93	909		
10	124	22	165	34 221 46 294 58 392 70 523 82 698 94						94	931				
11	127	23	169	35	226	47	301	59	402	71	536	83	715	95	953
12	130	24	174	36	232	48	309	60	412	72	549	84	732	96	976

4-digits marking (±1%: 1206/0805)

Each resistor is marked with a four digits code on the protective coating to designate the nominal resistance value.

Example

RESISTANCE	10Ω	12Ω	100Ω	6800Ω	47000Ω
3-digits marking(1206 & 0805 & 0603 ±5%)	100	120	101	682	473
4-digits marking	10R0	12R0	1000	6801	4702

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of $\pm 5\%$, and E96 series for resistors with a tolerance of $\pm 1\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063"

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

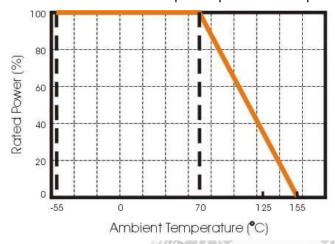


Figure 2 Maximum dissipation in percentage of rated power as a function of the ambient temperature for WR12, WR08, WR06, WR04

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

Storage and Handling Conditions:

- 1. Products are recommended to be used up within two years since operation date as ensured shelf life. Check solderability in case shelf life extension is needed.
- 2. To store products with following condition:

Temperature :5 to 40°C

Humidity :20 to 70% relative humidity

- 3. Caution:
 - a.Don't store products in a corrosive environment such as sulfide, chloride gas, or acid.

It may cause oxdization of electrode, which easily be resulted in poor soldering

- b.To store products on the shelf and avoid exposure to moisture.
- c.Don't expose products to excessive shock, vibration, direct sunlight and so on

SOLDERING CONDITION follows J-STD-020D

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

Fig 3. Infrared soldering profile for Chip Resistors

CATALOGUE NUMBERS

The resistors have a catalogue number starting with

WR12	x	472_	J	Т	L
Size code WR10 : 1210 WR12 : 1206 WR08 : 0805 WR06 : 0603 WR04 : 0402	Type code X: Jumper $\pm 5\%$, $1\Omega \sim 10 M\Omega$ $\pm 1\%$, $10\Omega \sim 1 M\Omega$ W: $\pm 1\%$, $< 10\Omega$; $> 1 M\Omega$	$ \begin{array}{lll} \textbf{Resistance code} \\ \pm 5\%, \ E24: \ 2 \ \text{significant digits} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Tolerance F:±1% J:±5% P:Jumper	Packaging code T: 7" Reeled taping E: 7" Reeled taping up side down Q: 10" Reeled taping G: 13" Reeled taping H: 13" reel 50Kpcs only for 0402 B: Bulk D: 7" reel 20Kpcs only for 0402 A: 7" reel 15Kpcs only for 0402	Termination code L= Sn base (lead free)

WR10, WR12, WR08, WR06:

1. Reeled tape packaging: 8mm width paper taping 5000pcs per 7" reel, 10kpcs per 10" reel, 20kpcs per 13" reel.

2. Bulk packaging : 5000pcs per poly-bag

WR04:

1. Reeled tape packaging: 8mm width paper taping 10,000pcs per 7" reel, 20,000pcs per 10" reel. 70,000pcs per 13" reel.

2. Bulk packaging : 10,000pcs per poly-bag

Page 6 of 9 ASC_WR_V29 Aug- 2023

TEST AND REQUIREMENTS

Essentially all tests are carried out according to the schedule of IEC publication 115-8, category LCT/UCT/56(rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also meets the requirements specified by EIA, EIAJ and JIS.

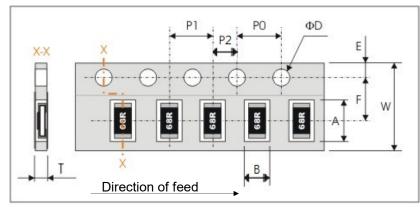
The tests are carried out in accordance with IEC publication 68, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to IEC 60068-1, subclause 5.3. Unless otherwise specified, the following value supplied:

Temperature: 15°C to 35°C. Relative humidity: 45% to 75%.

Air pressure: 86kPa to 106 kPa (860 mbar to 1060 mbar). All soldering tests are performed with midly activated flux.

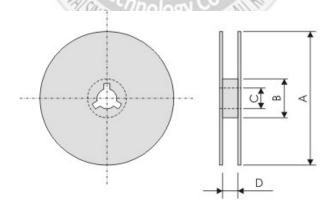
TEOT	DDOCEDUDE / TEST METUS	REQUIREMENT			
TEST	PROCEDURE / TEST METHOD	Resistor	0Ω		
Electrical Characteristics JISC5201-1: 1998 Clause 4.8	- DC resistance values measurement - Temperature Coefficient of Resistance (T.C.R) Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1(t_2-t_1)}\times 10^6 \text{ (ppm/°C)} t_1:20^\circ\text{C}+5^\circ\text{C}-1^\circ\text{C}; \ t_2:-55^\circ\text{C or }+155^\circ\text{C}}$ $R_1: \text{Resistance at reference temperature } (20^\circ\text{C}+5^\circ\text{C}/-1^\circ\text{C})$ $R_2: \text{Resistance at test temperature } (-55^\circ\text{C or }+155^\circ\text{C})$	Within the specified tolerance Refer to "QUICK REFERENCE DATA"	<50mΩ		
Resistance to soldering heat(R.S.H) JISC5201-1:1998 Clause 4.18	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at $260^\circ\!$	±5%:ΔR/Rmax.±(1%+0.05Ω) ±1%:ΔR/Rmax.±(0.5%+0.05Ω) no visible damage	<50mΩ		
Solderability JISC5201-1:1998 Clause 4.17	Un-mounted chips completely immersed for 2±0.5 second in a SAC solder bath at 235 $^\circ\!$	95% coverage min., good tinning visible damage	g and no		
Temperature cycling JISC5201-1:1998 Clause 4.19	30 minutes at -55°C±3°C, 2~3 minutes at 20°C+5°C-1°C, 30 minutes at +155°C±3°C, 2~3 minutes at 20°C+5°C-1°C, total 5 continuous cycles	±5%: ΔR/R max. ±(1%+0.05Ω) ±1%:ΔR/Rmax.±(0.5%+0.05Ω) No visible damage	<50mΩ		
High Temperature Exposure MIL-STD-202 method 108	1000+48/-0 hours; without load in a temperature chamber controlled 155±3°C	±5%:ΔR/Rmax.±(2%+0.1Ω) ±1%:ΔR/Rmax.±(1%+0.1Ω) No visible damage	<50mΩ		
Bending strength JISC5201-1:1998 Clause 4.33	Resistors mounted on a 90mm glass epoxy resin PCB(FR4), bending once 3mm for 10sec, 5mm for WR04	$\pm 5\%:\Delta R/Rmax.\pm(1\%+0.05\Omega)$ $\pm 1\%:\Delta R/Rmax.\pm(1\%+0.05\Omega)$ No visual damaged	<50mΩ		
Adhesion JISC5201-1:1998 Clause 4.32	Pressurizing force: 5N, Test time: 10±1sec.	No remarkable damage or remove terminations	val of the		

TEST	DROCEDURE / TEST METUOR	REQUIREMENT	
IESI	PROCEDURE / TEST METHOD	Resistor	0Ω
Short Time Overload (STOL) JISC5201-1:1998	2.5 times RCWV or max. overload voltage, for 5seconds	$\pm 5\%$: ΔR/R max. $\pm (2\% + 0.05\Omega)$ $\pm 1\%$: ΔR/R max. $\pm (1\% + 0.05\Omega)$ No visible damage	<50mΩ
Clause 4.13 Load life in Humidity JISC5201-1:1998 Clause 4.24	1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber controller at 40°C±2°C and 90~95% relative humidity, 1.5hours on and 0.5 hours off	$\pm 5\%$: Δ R/R max. $\pm (2\%+0.1\Omega)$ $\pm 1\%$: Δ R/R max. $\pm (1\%+0.1\Omega)$ No visible damage	<50mΩ
Load life (endurance) JISC5201-1:1998 Clause 4.25	1000 +48/-0 hours, loaded with RCWV or Vmax in chamber controller 70±2°C, 1.5 hours on and 0.5 hours off	\pm 5%: ΔR/R max. \pm (3%+0.1Ω) \pm 1%: ΔR/R max. \pm (1%+0.1Ω) No visible damage	<50mΩ
Insulation Resistance JISC5201-1:1998 Clause 4.6	Apply the maximum overload voltage (DC) for 1minute	R≧10GΩ	
Dielectric Withstand Voltage JISC5201-1:1998 Clause 4.7	Apply the maximum overload voltage (AC) for 1 minute	No breakdown or flashover	


JUMPER SPEC (0 Ω)

	CA IIII VOII				
Item	WR10	WR12	WR08	WR06	WR04
Power Rating At 70°C	1/3W(5)	1/4W	1/8W	1/10W	1/16W
Resistance	110	CHNOLOGY MRPOR	MAX.50m $Ω$		
Rated Current	2.5A	2A	1.6A	1A	1A
Peak Current	6A	5A	3.2A	3A	2A
Operating Temperature	-55 ~ +155°C				

PACKAGING


Paper Tape specifications (unit :mm)

Series No.	Α	В	W	F	E
WR10	3.60±0.20	3.00±0.20			
WR12	3.60±0.20	2.00±0.20			
WR08	2.40±0.20	1.65±0.20	8.00±0.30	3.50±0.20	1.75±0.10
WR06	1.90±0.20	1.10±0.20			
WR04	1.20±0.10	0.70±0.10	有心气		'

Series No.	P1	P0	P2	ΦD	Т
WR10/12/08	1 00 10 10				0.80±0.1
WR06	4.00±0.10	4.00±0.10	P2=1/2P0	Φ1.50±0.1	0.70±0.05
WR04	2.00±0.10	皇る		夏夏	0.50±0.05

Reel dimensions

Symbol	Α	В	С	D
7" reel	Ф178.0±2.0	Φ60.0±1.0	13.0±0.2	9.0±0.5
10" reel	Ф254.0±2.0	Φ100.0±1.0	13.0±0.2	9.0±0.5
13" reel	Ф330.0±2.0	Φ100.0±1.0	13.0±0.2	9.0±0.5

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kamaya:

WR04W_FTL WR04X_FTL WR04X_JTL WR06W_FTL WR06X_FTL WR06X_JTL WR08W_FTL WR08X_FTL WR08X_JTL WR10W_FTL WR10X_JTL WR12W_FTL WR12X_FTL WR12X_JTL WR18W_FTL WR18X_FTL WR18X_JTL WR20W_FTL WR20X_FTL WR20X_JTL WR04W_FGL WR04X_FGL WR04X_JGL WR04X_PGL WR04X_PGL WR06W_FGL WR06X_FGL WR06X_JGL WR06X_PGL WR06X_PTL WR08W_FGL WR08X_FGL WR08X_PGL WR08X_PGL WR08X_PGL WR08X_PGL WR10X_FGL WR10X_FGL WR10X_JGL WR10X_PGL WR10X_PGL WR10X_PGL WR12X_PGL WR12X_PGL WR12X_PGL WR18X_FGL WR18X_FGL WR18X_PGL WR18X_PGL WR18X_PGL WR18X_PGL WR20X_PGL WR20X_

Walsin:

 WR04W1004FTL
 WR04W2005FTL
 WR04W2431FTL
 WR04W3R39FTL
 WR04W6604FTL
 WR04X0000FTL

 WR04X1105FTL
 WR04X1261FTL
 WR04X1311FTL
 WR04X1322FTL
 WR04X2404FTL
 WR04X3101FTL

 WR04X3502FTL
 WR04X4002FTL
 WR04X4502FTL
 WR04X5104FTL
 WR04X5403FTL
 WR04X5620JTL

 WR04X5R10FTL
 WR04X6601FTL
 WR04X66R0FTL
 WR04X7510FTL
 WR06X408R20FTL
 WR06W1006FTL

 WR06W1305FTL
 WR06W1505FTL
 WR06W1805FTL
 WR06W6R40FTL
 WR06X0000FTL
 WR06X1323FTL

 WR06X2843FTL
 WR06X3123FTL
 WR06X4003FTL
 WR06X49K9FTL
 WR06X4R71FTL
 WR06X6021FTL

 WR06X78500FTL
 WR08W1505FTL
 WR08W3005FTL
 WR08W33165FTL
 WR08X30000FTL
 WR08X50000FTL

 WR08X1991FTL
 WR08X1R00JTL
 WR08X35R2FTL
 WR08X4733FTL
 WR08X5263FTL
 WR08X5263FTL

 WR10X0000FTL
 WR10XR500JTL
 WR12W1006FTL
 WR12W1305FTL
 WR12W1505FTL
 WR04X5R0 JTL
 WR06X226

 JTL
 WR06X404 JTL
 WR06X473 FTL
 WR06X644 JTL
 WR08X116 JTL
 WR08X126 JTL

 WR08X644 J