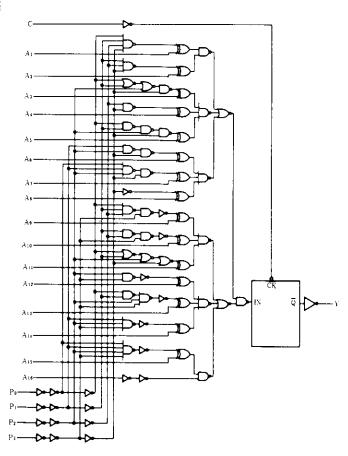

The HD74HC678 address comparator simplifies addressing of memory boards and/or other peripheral devices. The four P inputs are normally hard wired with a preprogammed address. An internal decoder determines what input information applied to the 16 A inputs must be low or high to cause a low state at the output (Y). For example, a positive-logic bit combination of 0111 (decimal 7) at the P input determines that inputs A_1 through A_7 must be low and that inputs A_8 through A_{16} must be high to cause the output to go low. Equality of the address applied at the A inputs to the preprogrammed address is indicated by the output being low. The HD74HC678 features a transparent latch and a latch enable input (C). When C is high, the device is in the transparent mode. When C is low, the previous logic state of Y is latched.


FEATURES

- High Speed Operation
- High Output Current: Fanout of 10 LSTTL Loads
- Wide Operating Voltage: V_{cc} =2~6V
- Low Input Current: 1µA max.
- Low Quiescent Supply Current: I_{cc} (static)=4μA max. (Ta=25°C)

PIN ARRANGEMENT

■ LOGIC DIAGRAM

■ FUNCTION TABLE

										Inp	uts										Output
C	P3	\mathbf{P}_2	\mathbf{P}_1	Po	\mathbf{A}_1	A ₂	Аз	A٠	A5	A_6	A?	A8	A۹	\mathbf{A}_{10}	A11	A12	A13	A14	A 15	A16	Y
Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
Н	L	L	L	Н	L	Η	Н	Н	Н	Н	Н	Н	H	Η	Н	Н	Н	Н	Н	H	L
H	L	L	Н	L	L	L	H	Н	Н	Н	Н	Н	H	Η	Η	Н	Η	H	Н	H	L
H	L	L	Η	Н	L	L	L	Н	Н	Н	Н	Н	Н	Η	Н	Н	Н	Н	Н	H	L
H	L	Н	L	L	L	L	L	L	Η	Н	H	Н	H	Н	H	Н	Н	Н	Н	Н	L
H	L	Η	L	Н	L	L	L	L	L	Н	Н	Η	Η	Η	Η	Н	Н	H	H	Н	L
Н	L	Н	Н	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	L
H	L	Н	Н	Н	L	L	L	L	L	L	L	Н	Н	H	Н	H	H	Н	Н	Н	L
Н	Н	L	L	L	IL.	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	L
Н	Н	L	L	H	L	L	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	L
Н	Н	L	Н	L	L	L	L	L	L	L	L	L	L	L	H	Н	Н	Н	Н	Н	L
Н	Н	L	Н	Н	L	L	L	L	L	L	L	L	L	L	L	Н	H	Н	Н	Н	L
Н	H	Н	L	L	L	L.	L	L	L	L	L	L	L	Ļ	L	L	H	Н	Н	Н	L
Н	Н	Η	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	Н	Н	L
H	Н	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	Н	L
H	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	L
Н	All other combinations												Н								
L									Any	com	bina	itior	1								Latched

III DC CHARACTERISTICS

Item	Symbol		Test C		Ta - 25°	С	Ta = -4	17.1.		
rtem	Symbol	$V_{cc}(V)$	Test C	min	typ	max	min	max	Unit	
		2.0			1.5	_	_	1.5	-	
	VIH	4.5			3.15	-		3.15	_	V
Input Voltage		6.0			4.2	_		4.2	_	
Input voitage		2.0			_	-	0.5	_	0.5	v
	VIL	4.5				_	1.35	_	1.35	
		6.0			_	_	1.8	_	1.8	
		2.0	V.x-ViH or ViL		1.9	2.0	-	1.9		v
		4.5		<i>Iон</i> − −20µА	1	4.5	_	4.4	_	
	Von	6.0			5.9	6.0		5.9	_	
		4.5		$I_{OH} = -4 \text{mA}$	4.18	_	_	4.13	-	
Output Voltage		6.0		I _{0 H} = -5.2 mA	5.68	_		5.63		
Output voitage		2.0	V.x-VIH or VIL	I _{0L} -20μA	_	0.0	0.1	_	0.1	
		4.5			_	0.0	0.1	_	0.1	
	VoL	6.0				0.0	0.1	_	0.1	
		4.5		Io = 4mA	_	_	0.26		0.33	
		6.0		IoL -5.2mA		_	0.26	-	0.33	
Input Current	I_{i}	6.0	V Vcc or GND	_	-	±0.1		±1.0	μA	
Quiescent Supply Current Icc 6.0 V Vcc or GND, I 0 #A				0 µA	-	-	4.0	_	40	μA

AC CHARACTERISTICS ($C_L = 50 \text{pF}$, Input $t_r = t_f = 6 \text{ns}$)

Item	Symbol		Test Conditions		$Ta=25^{\circ}$	Ĉ	Ta=-40	77.	
reem	5,111001	$V_{cc}(\mathbf{V})$	Test Conditions	min,	typ.	max.	min.	max.	Unit
	t _{PLH}	2.0		-	_	330	_	410	ns
	t PHL	4.5	P to Y	=	30	66	_	82	
	LFHL	6.0				56	-	70	
	tрін	2.0		_	_	210	-	265	ns
Propagation Delay Time	t PHL	4.5	A to Y	-	21	42	-	53	
		6.0		_	-	36	_	45	
	∴t PLH	2.0					190		
	t PHL	4.5	C to Y	_	13	30	-	38	ns
		6.0				26	-	33	
	t_{su}	2.0		100		_	125	_	ns
Set up time		4.5	A to C	20	12	_	25	_	
		6.0		17	-	_	21	_	
	t _{TLH}	2.0			_	75		95	
Output Rise/Fall Time	tTHL	4.5		_		15	_	19	ns
····		6.0		_		13	-	16	
Input Capacitance	Cin			_	5	10	_	10	рF