Notice for TAIYO YUDEN Products

[For High Quality and/or Reliability Equipment (Automotive Electronic Equipment / Industrial Equipment)]

Please read this notice before using the TAIYO YUDEN products.

I REMINDERS

Product information in this catalog is as of October 2018. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

- Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available.
- Please conduct validation and verification of our products in actual condition of mounting and operating environment before using our products.
- The products listed in this catalog are intended for use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment), medical equipment classified as Class I or II by IMDRF, industrial equipment, and automotive interior applications, etc. Please be sure to contact TAIYO YUDEN for further information before using the products for any equipment which may directly cause loss of human life or bodily injury (e.g., transportation equipment including, without limitation, automotive powertrain control system, train control system, and ship control system, traffic signal equipment, medical equipment classified as Class III by IMDRF).

Please do not incorporate our products into any equipment requiring high levels of safety and/or reliability (e.g., aerospace equipment, aviation equipment*, medical equipment classified as Class IV by IMDRF, nuclear control equipment, undersea equipment, military equipment).

*Note: There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.

When our products are used even for high safety and/or reliability-required devices or circuits of general electronic equipment, it is strongly recommended to perform a thorough safety evaluation prior to use of our products and to install a protection circuit as necessary.

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

- Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.
- Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a fault or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement.
- The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

Automotive Application Guide

We classify automotive electronic equipment into the following four application categories and set usable application categories for each of our products. When using our products for automotive electronic equipment, please be sure to check such application categories and use our products accordingly. Should you have any questions on this matter, please contact us.

Category	Automotive Electronic Equipment (Typical Example)
	Engine ECU (Electronically Controlled Fuel Injector) Cruise Control Unit
	• 4WS (4 Wheel Steering)
POWERTRAIN	Automatic Transmission
	Power Steering
	HEV/PHV/EV Core Control (Battery, Inverter, DC-DC)
	Automotive Locator (Car location information providing device), etc.
	ABS (Anti-Lock Brake System)
SAFETY	ESC (Electronic Stability Control)
57 (i E i i	• Airbag
	ADAS (Equipment that directly controls running, turning and stopping), etc.
	• Wiper
	Automatic Door
	Power Window
	Keyless Entry System
BODY & CHASSIS	Electric Door Mirror
	Interior Lighting LED Headlight
	• TPMS (Tire Pressure Monitoring System)
	Anti-Theft Device (Immobilizer), etc.
	Car Infotainment System
	• ITS/Telematics System
INFOTAINMENT	Instrument Cluster
	• ADAS (Sensor, Equipment that is not interlocked with safety equipment or powertrain), etc.

MULTILAYER CERAMIC CAPACITORS

PART NUMBER

J	М	Κ	3	1	6	Δ	В	J	1	0	6	М	L	Н	Т	Δ
1										$\overline{\mathcal{O}}$		8				

①Rated voltage

Code	Rated voltage[VDC]
А	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

 Ode
 Series name

 M
 Multilayer ceramic capacitor

 V
 Multilayer ceramic capacitor for high frequency

 W
 LW reverse type multilayer capacitor

Image: Second system End termination Code End termination K Plated J Soft Termination S Cu Internal Electrodes (For High Frequency) F High Reliability Application

 $\Delta =$ Blank space

④Dimension(L×W)

Туре	Dimensions (L×W)[mm]	EIA (inch)
063	0.6 × 0.3	0201
105	1.0 × 0.5	0402
105	0.52 × 1.0 💥	0204
107	1.6 × 0.8	0603
	0.8 × 1.6 💥	0306
010	2.0 × 1.25	0805
212	1.25 × 2.0 💥	0508
316	3.2 × 1.6	1206
325	3.2 × 2.5	1210
432	4.5 × 3.2	1812

Note : &LW reverse type($\Box WK$) only

ode	Туре	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6±0.05	0.3±0.05	0.3±0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
A	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
	212	2.0+0.15/-0.05	$1.25 \pm 0.15 = 0.05$	0.85±0.10
	212	2.0+0.13/-0.03	1.25+0.15/-0.05	1.25+0.15/-0.05
	316	3.2 ± 0.20	1.6±0.20	1.6±0.20
	325	3.2 ± 0.30	2.5±0.30	2.5±0.30
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	1.6+0.20/-0	0.8+0.20/-0	0.8+0.20/-0
В 212		1.05 0.00 / 0	0.85±0.10	
	2.0+0.20/-0	1.25+0.20/-0	1.25+0.20/-0	
	316	3.2±0.30	1.6±0.30	1.6±0.30
	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0
С	107	1.6+0.25/-0	0.8+0.25/-0	0.8+0.25/-0
	212	2.0+0.25/-0	1.25+0.25/-0	1.25+0.25/-0
	212	2.0±0.15	1.25±0.15	0.85 ± 0.15
К 316	216	3.2 ± 0.20	1.6±0.20	1.15±0.20
	316	3.2±0.20	1.0±0.20	1.6±0.20
	325	3.2±0.50	2.5±0.30	2.5±0.30
		Note: cf. STANDARD EXTERN	IAL DIMENSIONS	_=

$\textcircled{\begin{tabular}{ll} 6 \end{tabular}} Temperature characteristics code \end{tabular}$

High dielectric	type								
Code	Applicable		Applicable standard		Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code
D.I.				05	1 150/	±10%	K		
BJ	EIA	X5R	$-55 \sim + 85$	25	±15%	±20%	м		
C6	EIA	X6S	$-55 \sim +105$	25	±22%	±10%	К		
00	LIA	703	55.4 1 105	25	± 22 %	±20%	М		
В7	EIA X7R -55~+125 25 ±15%		±15%	±10%	к				
Вл	LIA	7/1	33.4 1123	25	± 1370	±20%	М		
C7	EIA	X7S	$-55 \sim +125$	25	±22%	±10%	К		
07		7/5	33 * 1 123	25	<u> </u>	±20%	М		
D7	EIA		x7T −55~+12	$-55 \sim +125$	25	+22%/-33%	±10%	К	
07	LIA	~/1	55 * 1 125	25	1 22 /0/ 33 /0	±20%	М		

for High Quality Equipment

Temperature compensating type

Code		icable Idard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code												
		JIS CG	-55~+125	20		±0.1pF	В												
					0 L 20 /20	±0.25pF	С												
CG						$\pm 0.5 pF$	D												
UG		A COG													$-55 \sim +125$		0±30ppm∕°C	±1pF	F
	EIA			25		±2%	G												
						±5%	J												

⑦Nominal capacitance

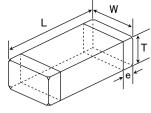
Code (example)	Nominal capacitance
0R5	0.5pF
010	1pF
100	10pF
101	100pF
102	1,000pF
103	0.01 <i>µ</i> F
104	0.1 <i>µ</i> F
105	1.0 <i>µ</i> F
106	10 <i>µ</i> F
107	100 <i>µ</i> F
Note : R=Decim	al point

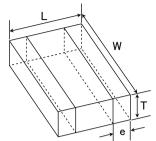
(9) Thickness Code Thickness[mm] Ρ 0.3 Т 0.5 V 0.7(107type or more) С А 0.8 D 0.85(212type or more) F 1.15 G 1.25 L 1.6 1.9 Ν М 2.5

Output to the second	blerance
Code	Capacitance tolerance
А	±0.05pF
В	±0.1pF
С	±0.25pF
D	±0.5pF
G	±2%
J	$\pm 5\%$
К	±10%
М	±20%

Н	MLCC for Industrial and Automotive				
11)Packaging	7				
Code	Packaging				
F	ϕ 178mm Taping (2mm pitch)				
R	ϕ 178mm Embossed Taping (4mm pitch)				
Т	ϕ 178mm Taping (4mm pitch)				
Р	ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)				
	325 type(Thickness code M)				

Special code


12Internal code


①Special code

Code

Winternal code	
Code	Internal code
Δ	Standard

for High Quality Equipment

※ LW reverse type

- ()		Dime	nsion [mm] (inch)		
Type(EIA)	L	W	Т	*1	е
□MK063(0201)	0.6 ± 0.03 (0.024 ± 0.001)	0.3 ± 0.03 (0.012 \pm 0.001)	0.3±0.03 (0.012±0.001)	т	0.15 ± 0.05 (0.006 ± 0.002)
□MK105(0402)	1.0±0.05	0.5 ± 0.05	0.5±0.05	v	0.25±0.10
□MF105(0402) □WK105(0204)※	(0.039 ± 0.002) 0.52 ± 0.05	(0.020 ± 0.002) 1.0 ± 0.05	(0.020 ± 0.002) 0.3 ± 0.05	Р	(0.010 ± 0.004) 0.18 ± 0.08
□MK107(0603)	(0.020 ± 0.002) 1.6 ± 0.10	(0.039±0.002) 0.8±0.10	(0.012±0.002) 0.8±0.10	A	(0.007±0.003) 0.35±0.25
□MF107(0603)	(0.063 ± 0.004) 1.6 \pm 0.10	(0.031 ± 0.004) 0.8 ± 0.10	(0.031 ± 0.004) 0.8 ± 0.10		(0.014 ± 0.010) $0.35 \pm 0.3/-0.25$
□MJ107(0603)	(0.063 ± 0.004) 1.6 ± 0.10	(0.031 ± 0.004) 0.8 ± 0.10	(0.031 ± 0.004) 0.7 ± 0.10	A	$(0.014 \pm 0.012 - 0.010)$ 0.35 ± 0.25
□VS107(0603)	(0.063 ± 0.004)	(0.031±0.004)	(0.028±0.004)	С	(0.014±0.010)
□WK107(0306)※	0.8±0.10 (0.031±0.004)	1.6 ± 0.10 (0.063 ± 0.004)	0.5 ± 0.05 (0.020 ± 0.002)	V	0.25 ± 0.15 (0.010 ± 0.006)
□MK212(0805)	2.0±0.10	1.25±0.10	0.85±0.10 (0.033±0.004)	D	0.5 ± 0.25
□MF212(0805)	(0.079±0.004)	(0.049±0.004)	1.25 ± 0.10 (0.049 ± 0.004)	G	(0.020±0.010)
	2.0±0.10	1.25±0.10	0.85 ± 0.10 (0.033 ± 0.004)	D	0.5+0.35/-0.25 (0.020+0.014/-0.010)
□MJ212(0805)	(0.079 ± 0.004)	(0.049 ± 0.004)	1.25 ± 0.10 (0.049 ± 0.004)	G	
□VS212(0805)	2.0 ± 0.10 (0.079 ± 0.004)	1.25 ± 0.10 (0.049 ± 0.004)	0.85±0.10 (0.033±0.004)	D	0.5±0.25 (0.020±0.010)
□WK212(0508)※	1.25 ± 0.15 (0.049 ± 0.006)	2.0 ± 0.15 (0.079 ± 0.006)	0.85 ± 0.10 (0.033 ± 0.004)	D	0.3±0.2 (0.012±0.008)
□MK316(1206)	3.2±0.15	1.6±0.15	1.15 ± 0.10 (0.045 ± 0.004)	F	0.5+0.35/-0.25
□MF316(1206)	(0.126±0.006)	(0.063 ± 0.006)	1.6±0.20 (0.063±0.008)	L	(0.020+0.014/-0.010)
□MJ316(1206)	3.2±0.15	1.6±0.15	1.15±0.10 (0.045±0.004)	F	0.6+0.4/-0.3
LIMU310(1200)	(0.126±0.006)	(0.063±0.006)	1.6±0.20 (0.063±0.008)	L	(0.024+0.016/-0.012)
			1.15±0.10 (0.045±0.004)	F	
□MK325(1210) □MF325(1210)	3.2 ± 0.30 (0.126 ± 0.012)	2.5 ± 0.20 (0.098 ± 0.008)	1.9 ± 0.20 (0.075 ± 0.008)	N	0.6 ± 0.3 (0.024 ± 0.012)
··-··		,	2.5±0.20 (0.098±0.008)	м	
	0.0 + 0.00	0.5 - 0.00	1.9±0.20	N	
□MJ325(1210)	3.2 ± 0.30 (0.126 ± 0.012)	2.5 ± 0.20 (0.098 ± 0.008)	$\begin{array}{r} (0.075 \pm 0.008) \\ 2.5 \pm 0.20 \\ (0.098 \pm 0.008) \end{array}$	м	$\begin{array}{c} 0.6 \!+\! 0.4 / \!-\! 0.3 \\ (0.024 \!+\! 0.016 / \!-\! 0.012) \end{array}$
	4.5±0.40	3.2±0.30	(0.098±0.008) 2.5±0.20	м	0.9±0.6

for High Quality Equipment

STANDARD QUANTITY

Туре	EIA (inch)	Dime	nsion	Standard qu	uantity[pcs]
туре	EIA (Inch)	[mm]	Code	Paper tape	Embossed tape
063	0201	0.3	Т	15000	-
105	0402	0.5	V	10000	
105	0204 💥	0.30	Р	10000	_
		0.7	С	4000	_
		0.8	A	4000	_
107	0603	0.8	A	3000 (Soft Termination)	-
		0.8	А	-	3000 (Soft Termination
	0306 💥	0.50	V	-	4000
		0.85	D	4000	_
	0005	1.25	G	-	3000
212	0805	1.25	G	-	2000 (Soft Termination
	0508 💥	0.85	D	4000	_
010	1000	1.15	F	-	3000
316	1206	1.6	L	-	2000
		1.15	F		2000
325	1210	1.9	Ν		2000
		2.5	М	-	500(T), 1000(P)
432	1812	2.5	М	_	500

- · All the Multilayer Ceramic Capacitors of the catalog lineup are RoHS compliant.
- Capacitance tolerance code is applied to Π of part number
- All the Multilaver Ceramic Capacitors in the catalog lineup are applicable for reflow-soldering.

Note)

- The exchange of individual specifications is necessary depending on the application and circuit condition. Please contact Taiyo Yuden sales channels.
 *1: Automotive (AEC-Q200 Qualified) products for POWERTRAIN, and SAFETY. Please check "Automotive Application Guide" for further details before using the products. :AEC-Q200 qualified> <
- - All the Multilayer Ceramic Capacitors of *1 marks are tested based on the test conditions and methods defined in AEC-Q200 family item.
 - 125°C products: AEC-Q200 Grade1 (we conduct the evaluation at the test condition of Grade1.) Please consult with TAIYO YUDEN' s official sales channel for the details of the product specification and AEC-Q200 test results, etc.,
 - and please review and approve TAIYO YUDEN's product specification before ordering.
- *3: For standard case size, please kindly refer to @Dimension, @Dimension tolerance, @Thickness and STANDARD EXTERNAL DIMENSIONS.

High Reliability Application Multilayer Ceramic Capacitors

105TYPE (Demension:1.0 × 0.5mm JIS:1005 EIA:0402)

[Temperature Characteristic B7 : $X7R(-55 \sim +125^{\circ}C)$] 0.5mm thickness(V)

Part number 1	Part number 2	Rated voltage	Tempe	erature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Fart number i	Fart number 2	[V]	charact	teristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	Note
UMF105 B7102[]VHF				X7R	1000 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
UMF105 B7222[]VHF		50		X7R	2200 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
UMF105 B7472 VHF		50		X7R	4700 p	±10, ±20	2.5	150	0.5 ± 0.05	*1
UMF105 B7103[]VHF				X7R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1
TMF105 B7102[]VHF				X7R	1000 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
TMF105 B7222 UHF				X7R	2200 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
TMF105 B7472[]VHF		25		X7R	4700 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
TMF105 B7103[]VHF		25		X7R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1
TMF105 B7223 UHF				X7R	0.022 μ	±10, ±20	3.5	150	0.5 ± 0.05	*1
TMF105 B7473[]VHF				X7R	0.047 μ	±10, ±20	3.5	150	0.5 ± 0.05	*1
EMF105 B7102 VHF				X7R	1000 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
EMF105 B7222 VHF				X7R	2200 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
EMF105 B7472 VHF				X7R	4700 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
EMF105 B7103[]VHF		16		X7R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1
EMF105 B7223[]VHF				X7R	0.022 μ	±10, ±20	3.5	200	0.5 ± 0.05	*1
EMF105 B7473[]VHF				X7R	0.047 μ	±10, ±20	3.5	200	0.5 ± 0.05	*1
EMF105 B7104[]VHF				X7R	0.1 μ	±10, ±20	5	150	0.5 ± 0.05	*1
LMF105 B7102[]VHF				X7R	1000 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
LMF105 B7222 VHF				X7R	2200 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
LMF105 B7472[]VHF]		X7R	4700 p	±10, ±20	2.5	200	0.5 ± 0.05	*1
LMF105 B7103[]VHF		10		X7R	0.01 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1
LMF105 B7223[]VHF]		X7R	0.022 µ	±10, ±20	3.5	200	0.5 ± 0.05	*1
LMF105 B7473[]VHF]		X7R	0.047 μ	±10, ±20	3.5	200	0.5 ± 0.05	*1
LMF105 B7104[]VHF		1		X7R	0.1 μ	±10, ±20	5	200	0.5±0.05	*1

107TYPE (Dimension:1.6 × 0.8mm JIS:1608 EIA:0603)

[Temperature Characteristic B7 : $X7R(-55 \sim +125^{\circ}C)$] 0.8mm thickness(A)

Part number 1	Part number 2	Rated voltage	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
UMF107 B7223[]AHT		50		X7R	0.022 µ	±10, ±20	3.5	200	0.8±0.10	*1
UMF107 B7104[]AHT		50		X7R	0.1 μ	±10, ±20	3.5	200	0.8±0.10	*1
TMF107 B7223[]AHT		25		X7R	0.022 µ	±10, ±20	3.5	200	0.8±0.10	*1
TMF107 B7104[]AHT		23		X7R	0.1 μ	±10, ±20	3.5	200	0.8±0.10	*1
EMF107 B7223[]AHT				X7R	0.022 µ	±10, ±20	3.5	200	0.8±0.10	*1
EMF107 B7104[]AHT		16		X7R	0.1 μ	±10, ±20	3.5	200	0.8±0.10	*1
EMF107 B7105[]AHT				X7R	1 μ	±10, ±20	10	150	0.8±0.10	*1
LMF107 B7223[]AHT				X7R	0.022 µ	±10, ±20	3.5	200	0.8±0.10	*1
LMF107 B7104[]AHT		10		X7R	0.1 μ	±10, ±20	3.5	200	0.8±0.10	*1
LMF107 B7105[]AHT				X7R	1μ	±10, ±20	10	150	0.8±0.10	*1

212TYPE (Dimension:2.0 × 1.25mm JIS:2012 EIA:0805)

[Temperature Characteristic B7 : $X7R(-55 \sim +125^{\circ}C)$] 1.25mm thickness(G)

Part number 1	Part number 2	Rated voltage	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Inickness [mm]	Note
HMF212 B7103[]GHT		100		X7R	0.01 µ	±10, ±20	3.5	200	1.25 ± 0.10	*1
HMF212 B7223[]GHT		100		X7R	0.022 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
UMF212 B7103[]GHT				X7R	0.01 µ	±10, ±20	3.5	200	1.25 ± 0.10	*1
UMF212 B7223[]GHT		Ι		X7R	0.022 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
UMF212 B7473[]GHT		50		X7R	0.047 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
UMF212 B7104[]GHT		50		X7R	0.1 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
UMF212 B7224[]GHT		Ι		X7R	0.22 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
UMF212 B7105[]GHT				X7R	1 μ	±10, ±20	10	150	1.25 ± 0.10	*1
TMF212 B7103[]GHT				X7R	0.01 µ	±10, ±20	3.5	200	1.25±0.10	*1
TMF212 B7223[]GHT		Ĩ		X7R	0.022 µ	±10, ±20	3.5	200	1.25±0.10	*1
TMF212 B7473[]GHT		25		X7R	0.047 μ	±10, ±20	3.5	200	1.25±0.10	*1
TMF212 B7104[]GHT		20		X7R	0.1 μ	±10, ±20	3.5	200	1.25±0.10	*1
TMF212 B7224[]GHT		Ĩ		X7R	0.22 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
TMF212 B7105[]GHT		Ĩ		X7R	1μ	±10, ±20	10	200	1.25 ± 0.10	*1
EMF212 B7473 GHT				X7R	0.047 μ	±10, ±20	3.5	200	1.25±0.10	*1
EMF212 B7104[]GHT		Ĩ		X7R	0.1 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
EMF212 B7224 GHT		16		X7R	0.22 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
EMF212 B7105[]GHT		Ĩ		X7R	1μ	±10, ±20	10	200	1.25 ± 0.10	*1
EMF212AB7475[]GHT		Ĩ		X7R	4.7 μ	±10, ±20	10	150	1.25+0.15/-0.05	*1
LMF212 B7473[]GHT				X7R	0.047 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
LMF212 B7104[]GHT		T I		X7R	0.1 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
LMF212 B7224[]GHT		10		X7R	0.22 μ	±10, ±20	3.5	200	1.25 ± 0.10	*1
LMF212 B7105[]GHT		T		X7R	1μ	±10, ±20	10	200	1.25±0.10	*1
LMF212 B7475[]GHT		Ţ		X7R	4.7 μ	±10, ±20	10	150	1.25 ± 0.10	*1

• 316TYPE (Dimension:3.2 × 1.6mm JIS:3216 EIA:1206)

[Temperature Characteristic B7 : $X7R(-55 \sim +125^{\circ}C)$] 1.15mm thickness(F)

Part number	1 Part number 2	Rated voltage	Tempe	erature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number	i Part number 2	[V]	charact	teristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
HMF316 B7102[]FH	IT			X7R	1000 p	±10, ±20	2.5	200	1.15±0.10	*1
HMF316 B7222[]FH	IT	100		X7R	2200 p	±10, ±20	2.5	200	1.15±0.10	*1
HMF316 B7472[]FH	IT	100		X7R	4700 p	±10, ±20	2.5	200	1.15±0.10	*1
HMF316 B7103[]FH	IT			X7R	0.01 µ	±10, ±20	2.5	200	1.15±0.10	*1
UMF316 B7102[]FH	IT			X7R	1000 p	±10, ±20	2.5	200	1.15±0.10	*1
UMF316 B7222[]FH	IT	50		X7R	2200 p	±10, ±20	2.5	200	1.15±0.10	*1
UMF316 B7472[]FH	IT	50		X7R	4700 p	±10, ±20	2.5	200	1.15±0.10	*1
UMF316 B7103[]FH	IT			X7R	0.01 µ	±10, ±20	2.5	200	1.15±0.10	*1

[Temperature Characteristic B7 : $X7R(-55 \sim +125^{\circ}C)$] 1.6mm thickness(L)

Part number 1	Part number 2	Rated voltage	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
HMF316 B7104[]LHT		100		X7R	0.1 μ	±10, ±20	3.5	200	1.6±0.20	*1
UMF316 B7104[]LHT		50		X7R	0.1 μ	±10, ±20	3.5	200	1.6±0.20	*1
UMF316 B7105[]LHT		50		X7R	1 μ	±10, ±20	3.5	150	1.6±0.20	*1
TMF316 B7104[]LHT		25		X7R	0.1 µ	±10, ±20	3.5	200	1.6±0.20	*1
TMF316AB7475[LHT		20		X7R	4.7 μ	±10, ±20	10	150	1.6 ± 0.20	*1
EMF316AB7106[LHT		16		X7R	10 <i>µ</i>	±10, ±20	10	150	1.6 ± 0.20	*1
JMF316AB7106[LHT		6.3		X7R	10 µ	±10, ±20	10	200	1.6 ± 0.20	*1

● 325TYPE (Dimension:3.2 × 2.5mm JIS:3225 EIA:1210)

[Temperature Characteristic B7 : $X7R(-55 \sim +125^{\circ}C)$] 2.5mm thickness(M)

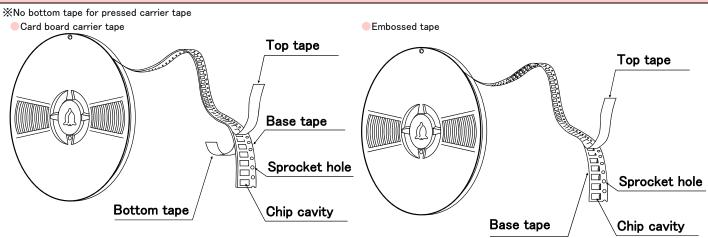
Part number 1	Part number 2	Rated voltage	Tempe	erature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Fart number 1	Fart number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Trickriess [mm]	Note
HMF325 B7225[]MHP		100		X7R	2.2 μ	±10, ±20	3.5	150	2.5±0.20	*1
UMF325 B7225[]MHP		50		X7R	2.2 μ	±10, ±20	3.5	200	2.5 ± 0.20	*1
UMF325 B7475[]MHP		50		X7R	4.7 μ	±10, ±20	5	150	2.5 ± 0.20	*1
TMF325 B7225[]MHP		25		X7R	2.2 μ	±10, ±20	3.5	200	2.5 ± 0.20	*1
TMF325 B7475[]MHP		25		X7R	4.7 μ	±10, ±20	5	200	2.5 ± 0.20	*1
EMF325 B7225[]MHP		16		X7R	2.2 μ	±10, ±20	3.5	200	2.5 ± 0.20	*1
EMF325 B7475[]MHP		10		X7R	4.7 μ	±10, ±20	5	200	2.5 ± 0.20	*1
LMF325 B7225[]MHP		10		X7R	2.2 μ	±10, ±20	3.5	200	2.5 ± 0.20	*1
LMF325 B7475[]MHP		10		X7R	4.7 μ	±10, ±20	5	200	2.5 ± 0.20	*1

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). CERAMIC CAPACITORS

[Temperature Characteristic B7 : $X7R(-55 \sim +125^{\circ}C)$] 1.9mm thickness(N)

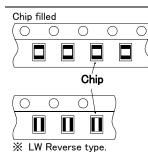
Part number 1	Part number 2	Rated voltage	Tempe	rature	Capacitance	Capacitance	tan δ	HTLT	Thickness ^{*3} [mm]	Note
Part number 1	Part number 2	[V]	charact	eristics	[F]	tolerance [%]	[%]	Rated voltage x %	Thickness [mm]	Note
HMF325 B7223[]NHT		100		X7R	0.022 μ	±10, ±20	2.5	200	1.9±0.20	*1
HMF325 B7473[]NHT		100		X7R	0.047 μ	±10, ±20	2.5	200	1.9±0.20	*1
UMF325 B7223[]NHT				X7R	0.022 μ	±10, ±20	2.5	200	1.9±0.20	*1
UMF325 B7473[]NHT				X7R	0.047 μ	±10, ±20	2.5	200	1.9±0.20	*1
UMF325 B7104[]NHT		50		X7R	0.1 μ	±10, ±20	3.5	200	1.9±0.20	*1
UMF325 B7224[]NHT		50		X7R	0.22 μ	±10, ±20	3.5	200	1.9±0.20	*1
UMF325 B7474[]NHT				X7R	0.47 μ	±10, ±20	3.5	200	1.9±0.20	*1
UMF325 B7105[]NHT				X7R	1μ	±10, ±20	3.5	200	1.9±0.20	*1
TMF325 B7224[]NHT				X7R	0.22 μ	±10, ±20	3.5	200	1.9±0.20	*1
TMF325 B7474[]NHT		25		X7R	0.47 μ	±10, ±20	3.5	200	1.9±0.20	*1
TMF325 B7105[]NHT				X7R	1μ	±10, ±20	3.5	200	1.9±0.20	*1
EMF325 B7224[]NHT				X7R	0.22 μ	±10, ±20	3.5	200	1.9±0.20	*1
EMF325 B7474[]NHT		16		X7R	0.47 μ	±10, ±20	3.5	200	1.9±0.20	*1
EMF325 B7105[NHT		Ī		X7R	1μ	±10, ±20	3.5	200	1.9±0.20	*1
LMF325 B7224[]NHT				X7R	0.22 μ	±10, ±20	3.5	200	1.9±0.20	*1
LMF325 B7474[]NHT		10		X7R	0.47 μ	±10, ±20	3.5	200	1.9±0.20	*1
LMF325 B7105[]NHT				X7R	1μ	±10, ±20	3.5	200	1.9±0.20	*1

Multilayer Ceramic Capacitors

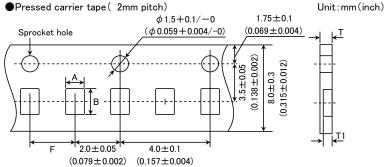

PACKAGING

①Minimum Quantity

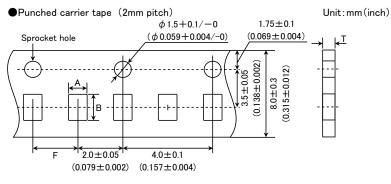
_ ()	Thick	ness	Standard o	uantity [pcs]
Type(EIA)	mm	code	Paper tape	Embossed tape
□MK021(008004)	0.105	к		50000
□VS021(008004)	0.125	n	_	50000
MK042(01005)	0.2	C, D		40000
□VS042(01005)	0.2	С		40000
□MK063(0201)	0.3	P,T	15000	_
□WK105(0204) 💥	0.3	Р	10000	_
	0.13	Н	_	20000
	0.18	E	_	15000
□MK105(0402)	0.2	С	20000	-
□MF105(0402)	0.3	Р	15000	-
	0.5	V	10000	_
□VK105(0402)	0.5	W	10000	-
MK107(0603)	0.45	К	4000	-
□WK107(0306) ※	0.5	V	-	4000
□MF107(0603)	0.8	А	4000	-
□VS107(0603)	0.7	С	4000	-
□MJ107(0603)	0.8	А	3000	3000
□MK212(0805)	0.45	К	4000	
□WK212(0508) ※	0.85	D	4000	_
□MF212(0805)	1.25	G	_	3000
□VS212(0805)	0.85	D	4000	_
	0.85	D	4000	_
□MJ212(0805)	1.25	G	-	2000
	0.85	D	4000	-
□MK316(1206)	1.15	F	_	3000
□MF316(1206)	1.6	L	-	2000
	1.15	F	-	3000
□MJ316(1206)	1.6	L	_	2000
	0.85	D		
	1.15	F		
□MK325(1210)	1.9	Ν	7 -	2000
]MF325(1210)	2.0max.	Y	1	
	2.5	М	_	1000
	1.9	Ν	—	2000
□MJ325(1210)	2.5	М	—	500(T), 1000(P)
□MK432(1812)	2.5	М	-	500


Note : 💥 LW Reverse type.

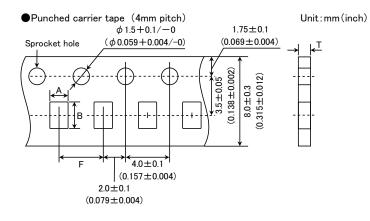
(2) Taping material


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

TAIYO YUDEN



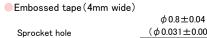
3 Representative taping dimensions

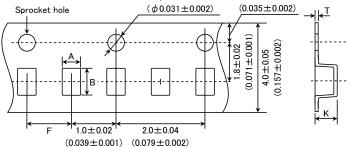


Type(EIA)	Chip	Cavity	Insertion Pitch	Tape Tł	nickness		
Type(EIA)	А	В	F	Т	T1		
□MK063(0201)	0.37	0.67		0.45max.	0.42max.		
□WK105(0204) ※			2.0 ± 0.05	0.45max.	0.42max.		
□MK105(0402) (*1 C)	0.65	1.15	2.0±0.05	0.4max.	0.3max.		
□MK105(0402) (*1 P)				0.45max.	0.42max.		
Note *1 Thickness, C:0.2mm ,P:0.3mm. X LW Reverse type. Unit:							

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	A	В	F	Т
□MK105 (0402) □MF105 (0402) □VK105 (0402)	0.65	1.15	2.0±0.05	0.8max.

Unit:mm

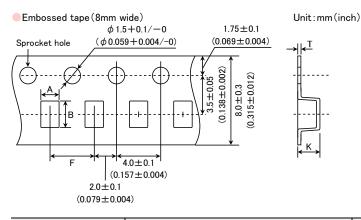




Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness	
Type(LIA)	А	В	F	Т	
□MK107(0603)					
□WK107(0306) 💥	1.0	1.8		1.1max.	
□MF107(0603)			40104		
MK212(0805)	1.05	0.4	4.0±0.1		
□WK212(0508) 💥	1.65	2.4		1.1max.	
DMK316(1206)	2.0	3.6			
Note:Taping size might	be different depending on	the size of the product.	※ LW Reverse type.	Unit : mm	

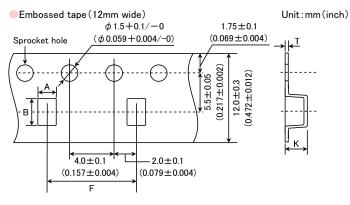
 0.9 ± 0.05

Note: Taping size might be different depending on the size of the product. % LW Reverse type.



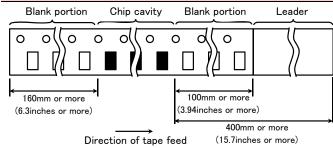
Type(EIA)	Chip Cavity		Insertion Pitch	Tape Thickness	
Type(EIA)	А	В	F	К	Т
□MK021(008004)	0.135	0.27	1.0±0.02	0.5max.	0.25max.
□VS021(008004)					
□MK042(01005)	0.23	0.42			
□VS042(01005)		0.43			

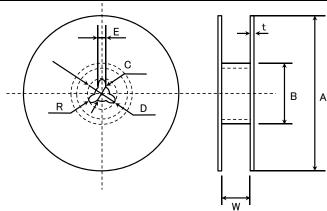
Unit:mm(inch)


Unit:mm

Type(EIA)	Chip Cavity		Insertion Pitch	Tape Thickness	
Type(EIA)	А	В	F	К	Т
□MK105(0402)	0.6	1.1	2.0±0.1	0.6max	0.2±0.1
□WK107(0306) ※	1.0	1.8		1.3max.	0.25 ± 0.1
□MK212(0805)	1.65	2.4			
DMF212(0805)	1.05	2.4			
□MK316(1206)	2.0	3.6	4.0±0.1	3.4max.	0.6max.
□MF316(1206)	2.0	5.0		3.4max.	0.0max.
□MK325(1210)	2.8	3.6			
□MF325(1210)	2.0	5.0			

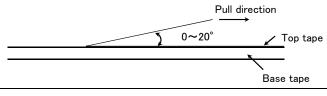
Note: 💥 LW Reverse type.


Unit:mm


Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Tł	nickness
	А	В	F	К	Т
□MK325(1210)	3.1	4.0	8.0±0.1	4.0max.	0.6max.
□MK432(1812)	3.7	4.9	8.0±0.1	4.0max.	0.6max.
					11.5

Unit : mm

④Trailer and Leader


⑤Reel size

А	В	С	D	E	R
ϕ 178±2.0	<i>ф</i> 50min.	ϕ 13.0±0.2	<i>ф</i> 21.0±0.8	2.0 ± 0.5	1.0
	Т	W			
4mm wide tape	1.5max.	5±1.0			
8mm wide tape	2.5max.	10±1.5			
12mm wide tape	2.5max.	14±1.5	Unit : mm		

6 Top Tape Strength

The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below.

RELIABILITY DATA

1. Operating Temperature Range		
Specified Value	$X7R(-55^{\circ}C \text{ to } +125^{\circ}C)$	
Test Methods and Remarks	Continuous use is available in this range. (reference temperature : 25°C)	

2.Highest Operating temperature Range			
Specified Value	X7R(-55°C to +125°C)		
Test Methods and Remarks	Maximum ambient temperature at which capacitors can be continuously used with rated voltage applied.		

3. Rated Voltage	
Specified Value	Please refer to the page of the "PART NUMBERS".
Test Methods and	Continuous maximum applied voltage. If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages should be lower than
Remarks	the rated voltage of the capacitor.

4. Shape and Dimensions				
Specified Value Please refer to the page of the "EXTERNAL DIMENSIONS".				

5. Heat Treatment	5. Heat Treatment (Class II)		
Test Methods and	Initial value shall be measured after test sample is heat-treated at $150+0/-10^{\circ}$ C for an hour and kept at room temperature for 24 \pm		
Remarks	2 hours.		

6. Voltage Treatment (Class II)		
Test Methods and	Initial value shall be measured after test sample is voltage-treated for an hour at temperature and voltage which are specified as test	
Remarks	conditions, and kept at room temperature for 24 ± 2 hours.	

7. Dielectric Withsta	7. Dielectric Withstanding Voltage(between terminals)		
Specified Value	No abnormality.		
Test Methods and Remarks	Applied voltage: Rated voltage × 2.5Duration: 1 to 5 seconds.Charging and discharging current shall be 50mA max.		

8. Insulation Resista	8. Insulation Resistance		
Specified Value	Larger than whichever smaller of 500 M Ω^{\star} $\mu\!F$ or 10^4 M Ω		
Test Methods and Remarks	Applied voltage Duration Charging and dischargir	: Rated voltage : 60±5 seconds. g current shall be 50mA max.	

9. Capacitance and	Tolerance	
Specified Value	Please refer to the page of the	"PART NUMBERS".
Test Methods and Remarks	Measurement frequency Measurement voltage Heat treatment specified in No.	: $1 \text{kHz} \pm 10\% (C \le 10 \mu\text{F})$: $1 \pm 0.2 \text{Vrms} (C \le 10 \mu\text{F})$ $0.5 \pm 0.1 \text{V} (6.3 \text{V} \text{ rated voltage})$ 5 of the specification shall be conducted prior to measurement.
10. Q or Dissipation	factor (tan Ø	
Specified Value	Please refer to the page of the	"PART NUMBERS".
Test Methods and Remarks	Measurement frequency Measurement voltage Heat treatment specified in No.	 : 1kHz±10%(C≦10 μF) : 1±0.2Vrms(C≤10 μF) 0.5±0.1V(6.3V rated voltage) 5 of the specification shall be conducted prior to measurement. NO DC bias is applied.

11. Temperature Ch	aracteristic	c(without DC bias)	
Specified Value	X7R(-55	5°C to +125°C):±15%	
Test Methods and Remarks	Heat trea	g to EIA RS-198-D (1991) tment specified in No.5 of the specification shall b f the maximum capacitance deviation in step 1 to Temperature (°C) +25 Minimum operating temperature +25 Maximum operating temperature +25	

12. Adhesive Force of Terminal Electrodes

 Specified Value
 Appearance : Terminal electrodes shall be no exfoliation or a sign of exfoliation.

 Solder lands refer to fig.1.
 Solder lands refer to fig.1.

 Applying force
 5N

 Introduction
 30±5 seconds.

 Board
 Glass epoxy-resin substrate

 Thickness
 1.6mm

Test Methods an Remarks

Hooked jig Board

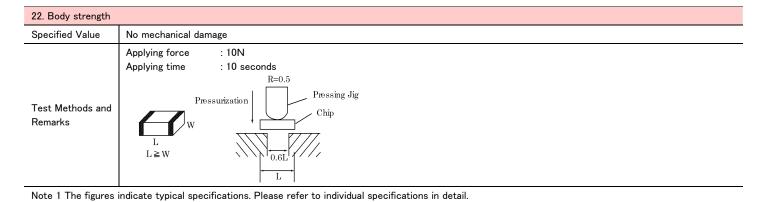
		Case	size	
Dimension	1608	2012	3216	3225
а	1.0	1.2	2.2	2.2
b	3.0	4.0	5.0	5.0
С	1.2	1.65	2.0	2.9

13. Vibration		
Specified Value	Capacitance change : I Dissipation factor : I	No abnormality nitial value shall be satisfied. nitial value shall be satisfied. nitial value shall be satisfied.
Test Methods and Remarks	heat treated as specified in No. Solder lands refer to figure 1. Direction of the vibration test Vibrationfrequency Total amplitude	 i of the specification shall be conducted prior to test. Measurement shall be conducted after test sample is 5. : X, Y, Z each of 3 orientations for 2 hours respectively (total 6 hours) : 10 to 55 to 10Hz (1 minutes each) : 1.5 mm II be made after test sample is kept at room temperature for 24 ±2 hours.

14. Resistance to S	oldering Heat	
	Appearance	: No abnormality
	Capacitance change	: ≦±7.5%
Specified Value	Dissipation factor	: Initial value shall be satisfied.
	Insulation resistance	: Initial value shall be satisfied.
	Dielectric withstanding vol	age (between terminals) : No abnormality
	Heat treatment specified in	n No.5 of the specification shall be conducted prior to test.
	Immerse test sample in an	solder solution (Sn-3Ag-0.5Cu).
	Soldering temperature	: 270℃±5℃
Test Methods and	Duration	: 3±0.5 seconds
Remarks	Soaking position	: Test sample is soaked until the termnal electrode is covered in solder solution.
	Preheating condition	: 3216 size or smaller size: 120 to 150° C for 1 minute,
		3225 size:100 to 120° C for 1 minute, 170 to 200° C for 1 minute.
	Measurement after the tes	t shall be made after test sample is kept at room temperature for 24 ± 2 hours.

15. Solderability			
Specified Value	More than 95% of terminal	electrode shall be covered with fresh solder.	
Test Methods and Remarks		n No.5 of the specification shall be conducted prior to test. solder solution(Sn-3Ag-0.5Cu). : 245℃±5℃ : 4±1 seconds : Test sample is immersed until the terminal electrode is covered in solder solution.	

16. Thermal shock									
Specified Value	Dissipati Insulation	nce nce change on factor n resistance c withstanding voltage	: No abnormality : $\leq \pm 7.5\%$: Initial value sha : Initial value sha (between termin	all be satist all be satist	ied.	:y			
	Measure	•	r test sample is h ture(°C)		l as specif Time	fied in No.	٦	Transfer time	1
	2		e temperature ge temperature			15 15		hin 20 seconds hin 20 seconds	-
Test Methods and Remarks		les:100 times. ment after the test shall be m	nade after test sa	mple is kep	ot at room	temperat	ure for 24	±2 hours.	-
		++ ^c			Case	size			
			Dimension	1608	2012	3216	3225		
			а	0.6	0.8	2.0	2.0		
	—	<mark></mark> ↑a	b	2.2	3.0	4.4	4.4		
	□ Fig.2		С	0.9	1.3	1.7	2.6]	

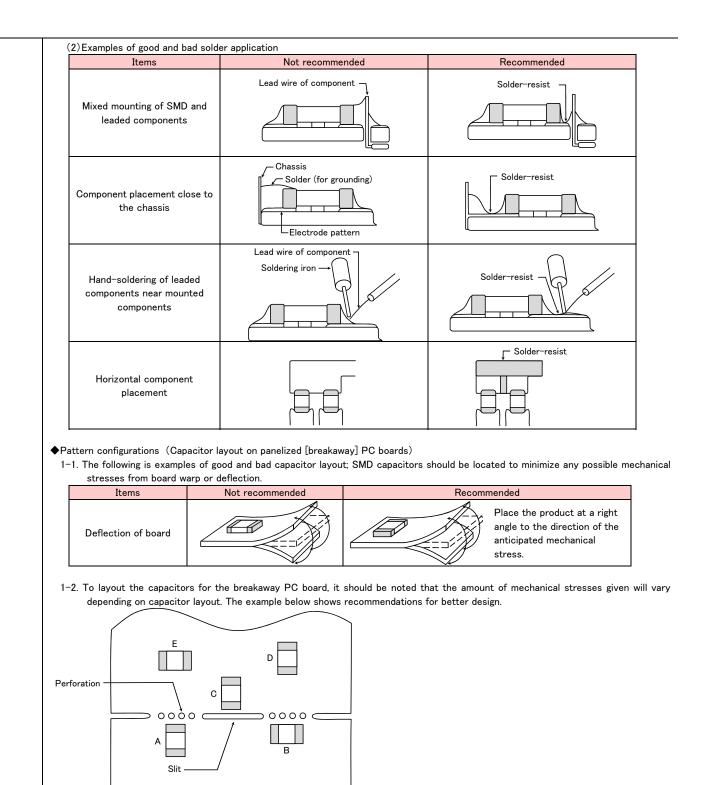

17. Humidity Loadin	g	
Specified Value Note1	Appearance Capacitance change Dissipation factor Insulation resistance	: No abnormality : \pm 12.5% : 5.0%max. : Larger than whichever smaller of 25M Ω • μ F or 500M Ω
Test Methods and Remarks		: 85°C/85%RH. : 1000 +48/-0 hours. : Applied rated voltage. :ified in No.6 of the specification shall be conducted prior to test. test shall be made after test sample is kept at room temperature for 24 ±2 hours.

18. High Temperatu	re Loading	
Specified Value	Appearance Capacitance change	: No abnormality : $\leq \pm 12.5\%$
Note1	Dissipation factor	: 5.0%max.
	Insulation resistance	: Larger than whichever smaller of 25M Ω • μ F or 500M Ω
		ified in No.6 of the specification shall be conducted prior to test. t in thermostatic oven with maximum temperature.
Test Methods and	Applied voltage	: Rated voltage x 2
Remarks	Duration	: 1000 +48/-0 hours.
	Charging and dischargin	g current shall be 50mA or less.
	Measurement after the	test shall be made after test sample is kept at room temperature for 24 ± 2 hours.

19. Resistance to F	lexure of substrate							
Specified Value	Appearance Capacitance change Dissipation factor Insulation resistance	: No abnormal : ≦±12.5% : 5.0%max. : Initial value s	ity shall be satisfied.					
	Warp Testing board Thickness Test board and solder lands	: 1mm : Grass epoxy : 1.6mm : Refer to fig.	– resin substrate 3.					
-					Case	size		_
Test Methods and			Dimension	1608	2012	3216	3225	R5
Remarks		∋ €	а	0.6	0.8	2.0	2.0	Board Warp
			b	2.2	3.0	4.4	4.4	
		\rightarrow \rightarrow \downarrow \downarrow \downarrow 1.6	с	0.9	1.3	1.7	2.6	<u>45±2</u> 45±2
	100							Fig.4
	Fig.3			Меа	asuremen	t shall be	made with	h board in the bent position.(fig.4)

20. High Temperatu	re Exposure	
Specified Value Note1	Appearance Capacitance change Dissipation factor Insulation resistance	: No abnormality : ≦±12.5% : 5.0%max. : Larger than whichever smaller of 500MΩ• μF or 10000MΩ
Test Methods and Remarks	Test sample shall be put in Duration : 1000 +48/-0 Initial value shall be measu	No.5 of the specification shall be conducted prior to test. thermostatic oven with maximum temperature. nours. red after test sample is heat—treated specified No.5. t shall be made after test sample is kept at room temperature for 24 \pm 2 hours.

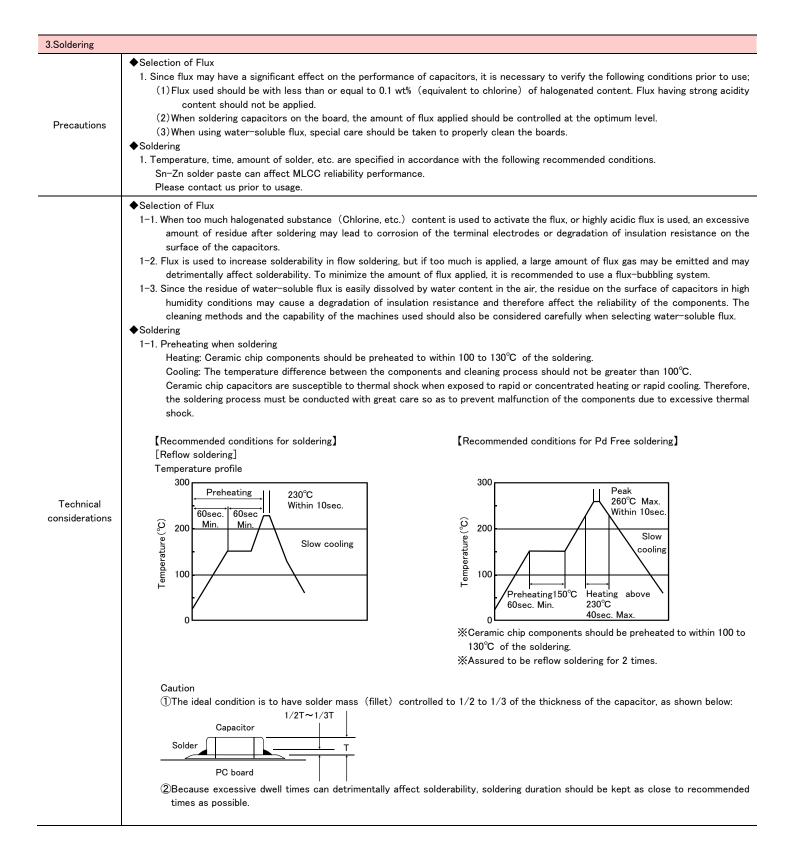
21. Temperature Cy	cling			
	Appearance	: No abnormality		
Specified Value	Capacitanc	e change : $\leq \pm 7.5\%$		
Note1	Dissipation	factor : Initial value shall be satis	fied	
	Insulation r	esistance : Initial value shall be satis	fied	
	Measureme	nent specified in No.5 of the specification shall be nt shall be conducted after test sample is heat to f the one cycle	reated as specified in No.5.	
	Step	Temperature (°C)	Time(min.)	
Test Methods and	1	Minimum usage temperature	30±3	
Remarks	2	+25	2 to 3	
Remarks	3	Maximum usage temperature	30±3	
	4	+25	2 to 3	
	Test cycles	::200 times		
	Solder land	s refer to fig. 2.		
	Measureme	nt after the test shall be made after test sample	is kept at room temperature	for 24 \pm 2 hours.



Precautions on the use of High Reliability Application Multilayer Ceramic Capacitors

PRECAUTIONS

2. PCB Design	
Precautions	 Pattern configurations (Design of Land-patterns) 1. When capacitors are mounted on a PCB, the amount of solder used (size of fillet) can directly affect capacitor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist. Pattern configurations (Capacitor layout on panelized [breakaway] PC boards) After capacitors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD capacitors should be carefully performed to minimize stress.
Technical considerations	 ◆Pattern configurations (Design of Land-patterns) 1. The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts. (larger fillets which extend above the component end terminiations) Examples of improper pattern designs are also show. (1) Recommended land dimensions for a typical chip capacitor land patterns for PCBs Recommended land dimensions for reflow-soldering (unit: mm) Table 0.8 0.8 0.1 0.0 8 0.1 2.1 18 - 2.5 1.8 - 2.


1-3. When breaking PC boards along their perforations, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD capacitor layout must also consider the PCB splitting procedure.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

A>B=C>D>E

Magnitude of stress

