

DATA SHEET

AUTOMOTIVE GRADE SURGE CHIP RESISTORS

SR series

| %, 0.5% sizes 0402/0603/0805/1206/1210/1218/2010/2512 RoHS compliant & Halogen free

YAGEO Phicomp

SCOPE

This specification describes SR0402 to SR2512 chip resistors with lead-free terminations made by thick film process.

, Phi(comp

APPLICATIONS

- Telecommunications
- Power supplies
- Car electronics

FEATURES

- AEC-Q200 qualified
- Superior to RC series in pulse withstanding voltage and surge withstanding voltage.
- MSL class: MSL I
- Halogen free epoxy
- RoHS compliant
 - Products with lead-free terminations meet RoHS requirements
 - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous waste
- High component and equipment reliability

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

SR XXXX X X X XX XXXX L (7)

(2) (3) (4)

(I) SIZE

0402 / 0603 / 0805 / 1206 / 1210 / 1218 / 2010 / 2512

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

(3) PACKAGING TYPE

R = Paper taping reel

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.

(5) TAPING REEL & POWER

07 = 7 inch dia. Reel	$7W = 7$ inch dia. Reel & $2 \times standard$ power
13 = 13 inch dia. Reel	$7T = 7$ inch dia. Reel & $3 \times$ standard power

47 = 7 inch dia. Reel & $4 \times$ standard power

(6) RESISTANCE VALUE

$|\Omega \le R \le |M\Omega|$

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g.1K2, not 1K20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)

Resistance rule of global part number Resistance coding

rule	Example		
XRXX (1 to 9.76 Ω)	IR = I Ω IR5 = I.5 Ω 9R76 = 9.76 Ω		
XXRX (10 to 97.6 Ω)	IOR = IO Ω 97R6 = 97.6 Ω		
XXXR (100 to 976 Ω)	100R = 100 Ω		
XKXX (1 to 9.76 K Ω)	IK = I,000 Ω $9K76 = 9760 Ω$		
XXKX (10 to 97.6 KΩ)	10K = 10,000 Ω 97K6= 97,600 Ω		
XXXK (100 KΩ)	100Κ = 100,000 Ω		

ORDERING EXAMPLE

The ordering code for an SR0805 chip resistor, value $10 \text{ K}\Omega$ with ±1% tolerance, supplied in 7-inch tape reel is: SR0805FR-0710KL.

MARKING

SR0402

No Marking

Fig. I

SR1218

E-24 series: 3 digits

First two digits for significant figure and 3rd digit for number of zeros

SR0603 / SR0805 / SR1206 / SR1210 / SR2010 / SR2512

E-24 series: 3 digits

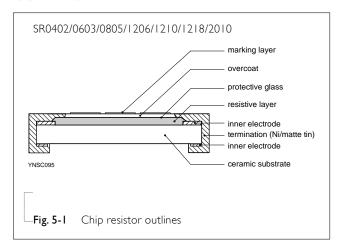
First two digits for significant figure and 3rd digit for number of zeros

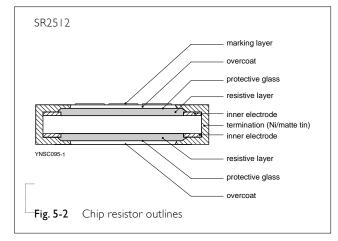
NOTE

For further marking information, please refer to data sheet "Chip resistors marking".

Table I

TAPING REEL & POWER

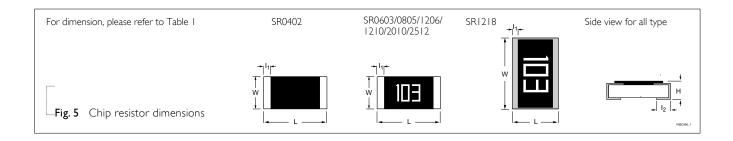

		F	POWER, W (P70)		
TYPE			CODING		
	07	7W	7T	47	
0402	1/16	1/8	1/5	-	
0603	1/10	1/5	1/4	-	
0805	1/8	1/4	1/3	1/2	
1206	1/4	1/2	3/4	1	
1210	1/2	1	-	-	
1218	1	1.5	-	-	
2010	3/4	1.25	-	-	
2512	1	2	-	-	


9

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a lead-free glass. The composition of the glaze is adjusted to give the approximately required resistance value. The whole element is covered by a protective overcoat. The top of overcoat is marked with the resistance value. Finally, the two external terminations (Ni/matte tin) are added, as shown in Fig.5.

OUTLINES



DIMENSIONS

Table 2

TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	I ₂ (mm)
SR0402	1.00±0.05	0.50±0.05	0.35±0.05	0.20±0.10	0.25±0.10
SR0603	1.60±0.10	0.80±0.10	0.45±0.10	0.25±0.15	0.25±0.15
SR0805	2.00±0.10	1.25±0.10	0.50±0.10	0.35±0.20	0.35±0.20
SR1206	3.10±0.10	1.60±0.10	0.55±0.10	0.45±0.20	0.40±0.20
SR1210	3.10±0.10	2.60±0.15	0.55±0.10	0.45±0.15	0.50±0.20
SR1218	3.10±0.10	4.60±0.10	0.55±0.10	0.45±0.20	0.40±0.20
SR2010	5.00±0.10	2.50±0.15	0.55±0.10	0.55±0.15	0.50±0.20
SR2512	6.35±0.10	3.10±0.15	0.55±0.10	0.60±0.20	0.50±0.20

Chip Resistor Surface Mount

ELECTRICAL CHARACTERISTICS

Table 3							
			CHARACTERISTICS				
TYPE	POWER	resistance range	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance
	1/16W						
SR0402	1/8W			50 V	100 V	100 V	
	1/5W		_				
	1/10W						
SR0603	1/5W			75V	150V	150V	
	1/4W		_				
	1/8 W						
SR0805	1/4W			150V	300V	300V	
5110005	1/3W						100 < D < 1MO
	1/2W		_				10Ω < R ≤ IMΩ ±100 ppm/°C
	1/4 W	E24/E96 0.5%, 1%	-55 °C to +155 °C				±100 ppi11// C
SR1206	1/2W	$I \Omega \le R \le IM \Omega$	-55 C 10 +155 C	200 V 400 V	400 \/	500 V	$1\Omega \le R \le 10\Omega$
31(1200	3/4W				300 V	±200 ppm/°C	
	IW		_				
SR1210	1/2W			200 V	400 V	500 V	
JK1210	IW		<u>-</u>	200 V	700 V	300 V	
SR1218	IW			200 V	400 V	500 V	
JK1210	1.5W		<u>-</u>	200 V	700 V	300 V	
SR2010	3/4W			200 V	V 400 V	500 V	
JN2010	1.25W			200 V	100 V	J00 V	
SR2512 —	I W			200 V	400 V	500 V	
	2W				100 V		

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

 Table 4
 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	SR0402	SR0603/0805/1206	SR1210	SR1218/2010/2512
Paper taping reel (R)	7" (178 mm)	10,000	5,000	5,000	
	13" (330 mm)	50,000	20,000	20,000	
Embossed taping reel (K)	7" (178 mm)				4,000

NOTE

I. For paper/embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

6 9

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

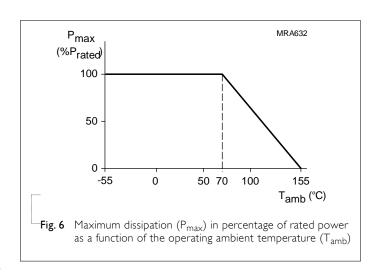
Range: -55 °C to +155 °C

POWER RATING

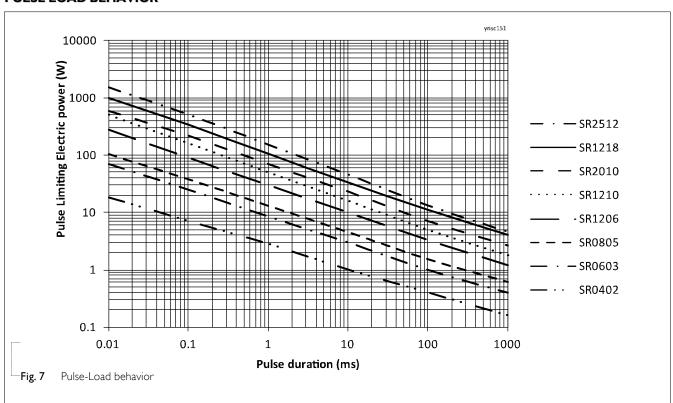
Each type rated power at 70 °C: SR0402: I/I6W, I/8W, I/5W SR0603: 1/10W, 1/5W, 1/4W SR0805: I/8W, I/4W, I/3W, I/2W SR1206: I/4W, I/2W, 3/4W, IW

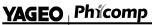
SR1210: 1/2W, 1W SR1218: IW, 1.5W SR2010: 3/4W, 1.25W SR2512: IW, 2W

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$$V = \sqrt{(P \times R)}$$

Where


V = Continuous rated DC or AC (rms) working voltage (V)


P = Rated power (W)

 $R = Resistance value (\Omega)$

PULSE LOAD BEHAVIOR

 Chip Resistor Surface Mount
 SR
 SERIES
 0402/0603/0805/1206/1210/1218/2010/2512

TESTS AND REQUIREMENTS

Table 5 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure	AEC-Q200 Test 3 MIL-STD-202 Method 108	1,000 hours at T_A = 155 °C, unpowered	±(2.0%+0.05Ω)
Moisture Resistance	AEC-Q200 Test 6 MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	±(0.5%+0.05Ω)
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103	I,000 hours; 85 °C / 85% RH I 0% of operating power Measurement at 24±4 hours after test conclusion.	±(1.0%+0.05Ω)
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	±(2.0%+0.05Ω)
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	±(1%+0.05Ω) No visible damage
Thermal Shock	AEC-Q200 Test 16 MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	±(0.5%+0.05Ω)
ESD	AEC-Q200 Test 17 AEC-Q200-002	Human Body Model, I pos. + I neg. discharges 0201: 500V 0402/0603: IKV 0805 and above: 2KV	±(3.0%+0.05Ω)

 Chip Resistor Surface Mount
 SR
 SERIES
 0402/0603/0805/1206/1210/1218/2010/2512

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability	AEC-Q200 Test 18	Electrical Test not required Magnification 50X	Well tinned (≥95% covered)
- Wetting	J-STD-002	SMD conditions:	No visible damage
		(a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds.	TVO VISIBLE durinage
		(b) Method B, steam aging 8 hours, dipping at 215 ± 3 °C for 5 ± 0.5 seconds.	
		(c) Method D, steam aging 8 hours, dipping at 260 ± 3 °C for 30 ± 0.5 seconds.	
Board Flex	AEC-Q200 Test 21	Chips mounted on a 90mm glass epoxy resin PCB (FR4)	±(1.0%+0.05Ω)
	AEC-Q200-005	Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm	
		Holding time: minimum 60 seconds	
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C	Refer to table 2
,,		Formula:	
		T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where t_1 =+25 °C or specified room temperature	
		t_2 =–55 °C or +125 °C test temperature	
		$\boldsymbol{R}_{l}\!=\!\!\text{resistance}$ at reference temperature in ohms	
		R ₂ =resistance at test temperature in ohms	
Short Time	IECCOLLE I 4 I 2	2. F. times of mtod voltage on populari	1/2 00/ 10 0E ()
JIIOI L TIITIE	IEC60115-1 4.13	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec	$\pm (2.0\% + 0.05\Omega)$

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 5	Aug. 09, 2021	-	- Upgrade to Automotive Grade
Version 4	Jul. 22, 2019	-	- Update power rating
			- Extend resistance range of 0402 ~ 2512 to 1Mohm
Version 3	Sep. 27, 2018	-	- Tighten TCR of all sizes for for $10\Omega < R \leq IM\Omega$ from $\pm~200$ ppm/°C to $\pm~100$ ppm/°C
			- Add SRI210, SRI218, SR2010 7W (double power)
Version 2	Oct. 02, 2017	-	- Add SR0402 7T (triple power), SR0805 47 (quadruple power), SR2512 7W (double power)
Version I	Nov. 11, 2016	-	- Update 7T power for I 206
Version 0	Dec. 01, 2015	-	- New product datasheet

[&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products are unchanged. Any product change will be announced by PCN."

[&]quot;The reimbursement is limited to the value of the products."

Chip Resistor Surface Mount

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.