Upper dimensions in incheslower dimensions in millimeters. Unless otherwise specified, tolerances are .005" (.127mm). Detailed mechanical drawings available by request.

Part Marking: Please note that the ESD Symbol marked on all of our packages identifies Pin 1.

VOLTAGE CONTROLLED

Dual In-Line, Crystal Oscillators

Please contact us for variations on these specifications

Q-Tech Corporation

tel (310) 836-7900 fax (310) 836-2157 www.q-tech.com

OT41V

QT6V

QT50V

Voltage Controlled Crystal Oscillators provide electronic control/shifting of the output frequency through the application of a voltage at the control terminal of the device. VCXOs are used for frequency synthesis, clock recovery, phase-lock loop applications, or any application requiring frequency modulation or electronic control of the oscillator frequency.

The following parameters need to be specified when selecting a VCXO:

- *Control Voltage*: The available voltage range at the input of the VCXO to vary the frequency (i.e., 0 5 V, ±4 V, etc.).
- Deviation (pull range): The change in the output frequency as a function of control voltage.
- *Transfer Function (sense):* Direction of change in frequency as a function of control voltage.
- Temperature Range: Operating temperature range.
- Stability vs. Temperature: Percentage, or ppm, change of out put frequency with respect to the temperature range at a constant control voltage.
- Input Impedance: A measure of isolation between the VCXO internal frequency control network and the control voltage source.
- *Linearity:* The deviation from the best straight line slope of the frequency vs. control voltage plot.
- Modulation Bandwidth (rate): The maximum allowable rate of change of the control voltage.

If the VCXO is intended for phase-lock applications, the required deviation of the VCXO can be determined by the following equation (see figure below):

DEVIATION > (VCXO STABILITY) + (SOURCE STABILITY)

In this equation, source stability is a system parameter while VCXO stability would be a function of temperature, time, load, and power supply variations.

* QT57V offers a broader range of capabilities. Consult the factory for details. ** Frequency range for QT50V is 50.000 kHz to 60.000 MHz for TTL, HC/ACMOS.

QT#	GND	OUT	Supply V	CONTROL V
QT6V	7	8	14	1
QT41V	7	8	14	1
QT50V	4	5	8	1
QT57V	8	9	16	1

FEATURES

- Wide Frequency Range
- Hermetically Sealed Packages
- Wide Pull Range (optional)
- Control Voltage and Polarity
- Special Linearity (optional)
- Product Level B M55310 Screening available upon request

FREQUENCY STABILITY VS TEMPERATURE*

CODE	±%	±PPM	TEMP
1	.01	100	0°C to + 70°C
3	.0005	5	0°C to + 50°C
4	.005	50	0°C to + 70°C
5	.0025	25	-20°C to + 70°C
6	.005	50	-55°C to +105°C
9	.005	50	-55°C to +125°C
10	.01	100	-55°C to +125°C

*All units operate from -55°C to + 125°C. Tolerance is not specified outside the temperature ranges shown above. For frequency stability vs. temperature options not listed herein, request a custom part number.

The Q-TECH double DIP VCXO, QT57V, offers a broader range of capabilities. Consult the factory for details.

ELECTRICAL

SPECIFICATIONS,

STANDARD

Frequency Range:

QT41V, QT6V, QT57V: up to 200 MHz

QT50V: 5 MHz to 60 MHz

Output: TTL, HC/ACMOS, ECL, PECL

Supply Voltage: 5 V ±10% (-5.2 V for 10K ECL) (-4.5 V for 100K ECL) (+5 V for PECL)

Deviation: ±100 ppm (min)

Control Voltage (Vc): 0 to 5 Volts

Transfer Function: Positive Modulation BW: Up to 10 kHz

Linearity: 10%

Input Impedance: >10 kohm

Temperature Range: See frequency stability table Stability vs. Temp.: See frequency stability table Stability vs. Supply and Load changes: ± 4 ppm Package: 14 pin/4 pin DIP/Half DIP/Double DIP

Q-TECH Corporation has developed various types of VCXOs, VCOs, and complete phase-locked loops in hermetically sealed as well as solder sealed packages.

OPTIONAL

Sinewave Output

10K, 100K ECL, or PECL

Frequency: >200 MHz (not available in QT50)

Deviation: $>\pm 100$ ppm (Vc=0 to 5 V) Modulation BW: 0 up to 100 kHz

Transfer Function: Negative

Linearity: <10%

Control Voltage: Bipolar

Supply Voltage: 3 to 15 V

Package: 16 and 18 pin DIP, Flat Pack, & LCC

The Non-Hybrid versions of these VCXOs are available in industry standard solder sealed packages.

