DS36801 QUAD TELEPHONE RELAY DRIVER

D2758, MARCH 1986-REVISED MARCH 1990

- Designed for 52-V Battery Operation
- 50-mA Output Current Capability
- Input Compatible with TTL and CMOS
- High Common-Mode Input Voltage Range
- Very Low Input Current
- Fail-Safe Disconnect Feature
- Built-In Output Clamp Diode
- Direct Replacement for National DS3680 and Fairchild #A3680

D OR N PACKAGE

description

The DS3680I telephone relay driver is a monolithic integrated circuit designed to interface -48-V relay systems to TTL or other systems in telephone applications. It is capable of sourcing up to 50 mA from standard -52-V battery power. To reduce the effects of noise and IR drop between logic ground and battery ground, these drivers are designed to operate with a common-mode input range of ± 20 V referenced to battery ground. The common-mode input voltages for the four drivers can be different, so a wide range of input elements can be accommodated. The high-impedance inputs are compatible with positive TTL and CMOS levels or negative logic levels. A clamp network is included in the driver outputs to limit high-voltage transients generated by the relay coil during switching. The complementary inputs ensure that the driver output will be ''off'' as a fail-safe condition when either output is open.

The DS3680I is characterized for operation from ~40°C to 85°C.

symbol (each driver)

schematic diagram (each driver)

All resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range at BAT NEG, Vg (see Note 1)	-70 V to 0.5 V
Input voltage range with respect to BAT GND	70 V to 20 V
Input voltage range with respect to BAT NEG	-0.5 V to 70 V
Differential input voltage, VID (see Note 2)	± 20 V
Output current: resistive load	100 mA
inductive load	50 mA
Inductive output load	5 H
Continuous total power dissipation See Dissipation	
Operating free-air temperature range, TA	-40°C to 85°C
Storage temperature range	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

- NOTES: 1. All voltages are with respect to the BAT GND terminal unless otherwise specified.
 - 2. Differential input voltages are at the noninverting input terminal IN + with respect to the inverting input terminal IN -.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE TA = 25°C	TA = 70°C POWER RATING	TA = 85°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW
l N	1150 mW	9.2 mW/°C	736 mW	598 mW

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _B _	- 10	- 60	V
Input voltage, either input	- 20 [†]	20	
High-level differential input voltage, VIDH	2	20	V
Low-level differential input voltage, VIDL	- 20 [†]	0.8	V
Operating free-air temperature, TA	-40	85	°C

[†]The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for input voltage levels.

electrical characteristics over recommended operating free-air temperature range, $V_{B-} = -52 \text{ V}$ (unless otherwise noted)

PARAMETER TEST CONDITIONS		DITIONS	MIN	TYP‡	MAX	UNIT	
ligh High-level input current (into IN+)		V _{ID} = 2 V	V _{ID} = 2 V		40	100	,
		V _{ID} = 7 V			375	1000	μА
I _{IL} Low-level input current (into IN +)	V _{ID} = 0.4 V			0.01	5	μА	
	V _{ID} = -7 V			- 1	- 100		
VO(on)	On-state output voltage	l _O = ~50 mA,	V _{ID} = 2 V		- 1.6	~ 2.1	٧
	011.1.1.1	VO = VB-	V _{ID} = 0.8 V		- 2	100	_
'O(off)	Off-state output current		Inputs open		- 2	- 100	μА
^I R	Clamp diode reverse current	V _O = 0	•		2	100	μА
1/	Output alama valtage	10 = 50 mA			0.9	1.2	V
Vok	Output clamp voltage	$I_{O} = -50 \text{ mA},$	VB = 0		~0.9	- 1.2	ľ
IB(on)	On-state battery current	All drivers on			- 2	-4.4	mA
IB(off)	Off-state battery current	All drivers off			- 1	- 100	μА

 $^{^{\}ddagger}$ All typical values are at $T_{A} = 25 \,^{\circ}$ C.

switching characteristics $V_{B-} = -52 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
ton	Turn-on time	V _{ID} = 3-V pulse,	$R_L = 1 k\Omega$,		1	10	μS
toff	Turn-off time	L = 1 H,	See Figure 2		1	10	μS

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. GENERALIZED TEST CIRCUIT, EACH DRIVER

FIGURE 2. SWITCHING CHARACTERISTICS, EACH DRIVER

APPLICATION INFORMATION

FIGURE 3. RELAY DRIVER