OKI semiconductor

MSM6949

ANALOG FRONT END LSI

GENERAL DESCRIPTION

The MSM6949 is an analog front end LSI which is fabricated by Oki's low power consumption CMOS silicon gate technology. The MSM6949 is used to implement an analog front-end function required in the modem set based on CCITT V. 26, V. 27 and V. 29 recommendations.

The MSM6949 performs all basic analog signal processing functions such as transmit and receive filters, selectable amplitude equalizers, transmit signal level attenuator, fast carrier detector, and A/D and D/A converter with 8-bit parallel input/output.

In addition to these functions, the MSM6949 performs analog loop test, the detection of call progress tones, 75 bps backward channel transmitter and automatic gain control (AGC). The AGC circuit is digitally controlled by the digital signal processor which performs the demodulating function.

By utilizing the MSM6949 together with Oki's digital signal processors, a cost effective modern can easily be designed.

FEATURES

- Performs all analog signal processing functions required for CCITT V. 26, V. 27 and V. 29.
- 75 bps backward channel FSK transmitter.
- Interfaces to digital signal processors with receive and transmit parallel data bus.
- Call progress tone monitoring.
- An chip AGC circuit controlled by external digital signals, over the received signal level range of 51 dB with 0.2 dB step.
- Analog loop test: A transmitting analog signal can be looped back as a receive analog signal within the chip.

- A set of carrier detection circuits, the on/off levels of which, are fixed at each of the compromised values within the chip, and also can be adjusted by external resistors.
- Two CD circuits are useful for Fall-Back operation.
- 3.456 MHz external clock for operation.
- On-chip voltage reference.
- Few external components required.
- Supply voltage, ±5V.
- Low power dissipation: 140 mW typical
- Power stand by mode available.
- 64 pin plastic Shrink DIP (SDIP64-P-750)
- 68 pin QFJ(PLCC) (QFJ68-P-S950)
- 64 pin-V1 plastic QFP (QFP64-P-1420-V1K)

BLOCK DIAGRAM

PIN CONFIGURATION (Top View)

PIN ASSIGNMENTS (SS ... 64 pin mini-size DIP, JS ... 68 pin PLCC, GS ... 64 pin FLAT)

O' - N	Name Pin No.		0.	F	
Pin Name	SS	JS	GS	Function	
BRS	1	2	59	Request to Send for backward channel (V.23)	
BTD	2	3	60	Transmit Data for backward channel (V.23)	
TRSW	3	4	61	Control signal for connection of DA input bus	
RDL	4	5	62	Latch clock for RD to input to DA within chip	
WRT	5	6	63	Control signal for writing TD to DA	
TD8	6	7	64		MSB
TD7	7	8	1		_
TD6	8	9	2		_
TD5	9	10	3	Transmit signal digital data has input to DA	
TD4	10	11	4	Transmit signal digital data bus input to DA	_
TD3	11	12	5		
TD2	12	13	6		
TD1	13	14	7		LSB
MCK	14	15	8	Master clock input 3.456 MHz	
VDD2	15	16	9	+5V power supply	
RD8	17	19	10		MSB
RD7	18	20	11		_
RD6	19	21	12		_
RD5	20	22	13	Receive signal digital data bus output from AD (3-state I/O)	
RD4	21	23	14	(3-3tate 1/0)	
RD3	22	24	15		_
RD2	23	25	16		_
RD1	24	26	17		LSB
RDB	25	27	18	Additional digit for RD bit shifting	
RDA	26	28	19	(3-state output)	
ST	27	29	20	Control signal for starting of AD conversion	
READ	28	30	21	Control signal for reading RD from AD	
AGCW	29	31	22	Writing clock for setting data to AGC circuit	
CSW	30	32	23	RD bit shifting enable	
LD1	31	33	24	Outputs of level comparators put to AGC circuit's of	•
LD2	32	34	25	These are used to set AGC at typical gain when dete ABRUPT changes.	ecting
CD1	33	35	26	Carrier detect for QAM/PSK signal	
CD2	34	36	27	Carrier detect for FSK signal (T.30)	

Dia Nama	Р	in N	0.	5
Pin Name	SS	JS	GS	Function
BWC1	35	37	28	Description of the state of the
BWC2	36	38	29	Receive filter bandwidth select
EQR1	37	39	30	Fixed compromise cable amplitude equalization select
EQR2	38	40	31	for receiving
DG	39	41	32	Digital ground (0V)
AG	40	42	33	Analog ground (0V)
VSS	41	43	34	-5V power supply
AGCC	42	44	35	External capacitor terminal for AGC circuit
AGCO	43	45	36	AGC circuit output
AGCI	44	47	37	AGC circuit input connected for RFO through external capacitor
RFO	45	48	38	Receive filter output connected to AGCI through external capacitor
CD1L	46	49	40	Carrier detect level select for CD1
CD1H	47	50	41	Carrier detect level select for CD1
CD2L	48	51	42	Carrier detect level select for CD2
CD2H	49	52	43	Gairle detect level select for GD2
VR1	50	53	44	On-chip reference voltage adjust using external resistors
VR2	51	54	45	On chip reference voltage adjust using external resistors
AIN	52	56	46	Receive analog signal input
AOUT	54	57	47	Transmit analog signal output
XIN	55	59	48	External analog signal input
BOUT	56	60	49	75 bps FSK transmit signal output
PWDN	57	61	51	Power down mode select
LT	58	62	52	Analog loop test
EQT1	59	63	53	Fixed compromise cable amplitude equalization select for
EQT2	60	64	54	transmitting
ATT1	61	65	55	- · · · · · · · · · · · · · · · · · · ·
ATT2	62	66	56	8 steps attenuator select for transmit signal level
ATT3	63	3 67 57		
VDD1	64	68	58	+5V power supply

♦ MODEM· MSM6949 ♦--

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	
Power supply	V _{DD}		-0.3 ~ +7		
Analog input voltage	VSS	T _a = 25°C	-7 ~ +0.3		
	VIA	With respect to AG or DG	V _{SS} -0.3 ∼ V _{DD} +0.3	٧	
Digital input voltage	VID		-0.3 ~ V _{DD} +0.3		
Operating temperature	T _{OP}	-	-40 ~ 85	°c	
Storage temperature	T _{STG}	-	-55 ~ 150		

2. Recommended Operating Conditions

Parameter	Symbol	Condition	Min	Тур	Max	Unit
	V _{DD}	With respect to	4.75	5.00	5.25	
Power Supply Voltage	VSS	AG or DG	-5.25	-5.00	-4.75	٧
	AG, DG	_	_	0	_	
Operating Temperature	T _{OP}	_	0	-	70	°C
R1	_	Transformer impedance (Hybrid)	_	600	_	
R2	_		_	600		Ω
R3	_	$\frac{600\Omega}{1}:600\Omega$	_	300	_	
R4.	_		_	51	_	
R5	_		-	51	_	
R6	_		-	51	-	40
R7	-	_	-	51		kΩ
R8	-		10	33	_	
R9	-		-	36		
C1	-		-	2.2	-	
C2	-		_	1	-	μF
C3	-		-	0.1	-	
C4	-	_	_	0.1		
C5, C7, C9	_		-	10	_	
C6, C8	_		_	1		
R10 ~ R17	-	_	_	10	-	kΩ
Reference Voltage	VREF	Ajusted by External Resistors	_	+2.50	_	٧
Master Clock Frequency	fMCK		3.4557	3.456	3.4563	MHz
MCK Duty Cycle	DMCK	50% to 50%	30	50	70	%
Digital Input Rise Time	t _r	RDL, WRT, MCK, ST, READ, AGCW	0	-	50	ns
Digital Input Fall Time	tf	See Figure 1	0	-	50	ns
ST Period	tPS		51	-	143	μs
ST Width	t _{ws}	See Figure 2, 3	0.4	-	tps-0.4	μs
READ Width	twre		0.3	_	_	μs

♦ MODEM: MSM6949 ♦----

Parameter	Symbol	Condition	Min	Тур	Max	Unit
ST → READ Timing	t _{SR}		51		tps+50	μs
ST → AGCW Timing	^t SA	San Figure 2-2	5		tpS-10	μs
AGCW Width	twA	See Figure 2, 3	0.3	_	tpS-0.3	μs
WRT Period	tpW		20	_	143	μs
WRT Width	tww		0.4	_	tpW-0.4	μs
RDL Period	tPRD		20	-	143	μs
RDL Width	tWRD	See Figure 3	0.3	-	tPRD-0.3	μs
RDL → WRT Timing	tRDW		0		tPRD-0.6	μs
Allowable XIN Input DC Offset Voltage	Vosxin	_	-100	_	+100	mV
Allowable AIN Input DC Offset Voltage	VOSAIN	_	-100	-	+100	mV

Refer to Figure 16.

3. Power Dissipation

 $(V_{DD} = +5V \pm 5\%, V_{SS} = -5V \pm 5\%, T_a = 0 \sim 70^{\circ}C)$

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Power-Down Current	DDS	PDWN = 1	_	0.2	0.5	mA
Power-Down Current	ISSS	1000 - 1	_	0.2	0.5	mA
Active Current	IDD	PDWN = 0	_	14	25	mA
Active darrent	ISS	1 5000 - 0	_	13	25	mA

NOTE) IDD means both of IDD1 and IDD2.

4. Digital Interface

 $\{V_{DD} = +5V \pm 5\%, V_{SS} = -5V \pm 5\%, T_a = 0 \sim 70^{\circ}C\}$

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Low Voltage	VIL	_	0	_	0.6	٧
Input High Voltage	VIH	_	2.2	-	V _{DD}	٧
Output Low Voltage	VOL	I _{OL} = 0.4 mA	0	_	0.4	٧
Output High Voltage	Voн	I _{OH} = 20 μA	2.4	_	V _{DD}	٧
Input Low Current	l _I L	$DG \le V_{IN} \le V_{IL}$	-10	_	10	μА
Input High Current	ЧН	V _{IH} ≤ V _{IN} ≤ V _{DD}	-10		10	μА
TD Data Set-up Time	^t STD		200	_		ns
TD Data Hold Time	tHTD	See Figure 2, 3	100		_	ns
AGC Data Set-up Time	^t SAG	See Figure 2, 3	100	_	_	ns
AGC Data Hold Time	tHAG		100	_	_	ns
RD Data Set-up Time	tSRD	Con Figure 2	200	_	_	ns
RD Data Hold Time	tHRD	See Figure 3	100	_	_	ns
AD Data	t _{D1}	Can Firma 2, 2		_	300	ns
Output Delay Time	t _{D2}	See Figure 2, 3	_	-	300	ns

5. Analog Interface

(ADD = +2A	±5%, \	vss = ·	-5V	±5%	, la	= 0	~ /(). (C)	
a alfata a									

Parameter Symbol Conditi		Condition	Min	Тур	Max	Unit
Reference Voltage			-		-	
Reference Voltage	VR	Without adjustment R ₈ = ∞	+1.02	+1.20	+1.38	٧

Backward Channel Transmit Signal Output (BOUT), External Signal Input (XIN)

Output Res	istance	R _{OB}			_	10	20	Ω
Load Resis	tance	RBOUT	_		10	_	_	kΩ
Load Capac	itance	CBOUT	воит —		_	_	100	PF
DC Offset	√oltage	V _{OSB}			-200	_	+200	mV
Output Car	rier Level	VBOUT	R _{BOUT} ≥ 10 kΩ V _{REF} = +2.50 V		1.74 -2	2.19 0	2.76 2	Vpp dBm
BWC Trans Level Ratio		LRBWC	VAOUT (450 Hz) VAOUT (390 Hz)		-1	0	1	dB
BWC Transmit	Mark "1"	fовм		BTD = 1	389	390	391	Hz
Carrier Frequency	Space ''0''	fовs		BTD = 0		450	451	Hz
Input Resis	tance	R _{XIN}	XIN		25	50	_	kΩ
Input Signa	l Level	VXIN			_	_	4.38 +6	Vpp dBm

NOTE) 0 dBm = 0.775 Vrms = 2.19 Vpp

Transmit Analog Signal Ouput (AOUT)

Output Re	esistance	R _{OT}	_			_	10	20	Ω
Load Resi	stance	RAOUT	_			10	_	-	kΩ
Load Capa	acitance	CAOUT	_			_	_	100	PF
DC Offset	Voltage	Vost	XIN = AG		-200	_	+200	mV	
Transmit Level (Single Tone)	Forward 1 Channel	VAOUT	EQT1 = 1 EQT2 = 1 ATT1 = 1 ATT2 = 1 ATT3 = 1 VREF = +2.50	f _{IN}	1.8 kHz Full scale	4.03 +5.3	5.08 +7.3	6.39 +9.3	Vpp dBm
Idle Chan	nel Noise	NIDLT	Using a 0.3 \sim 3.4 kHz flat weighted filter		_	-80		dBm	
Total Hari Distortion		THDT	-			_	-65	-50	dB

* Transmit data (TD1~TD8) determine this level essentially. If the D/A converter sends a single sine wave signal of which amplitude is ±2.5 Vop (Full scale of DA converter, equivalent +7 dBm) to the transmit filter, the transmit signal level at AOUT becomes +7.3 dBm (5.08Vpp). But, generally in PSK or QAM modulation, maximum peak factor of about 3 dB or 7 dB should be considered in the design. Therefore, the transmit signal in the QAM forward channel is designed to be 0 dBm. This value shows one example of designs.

Parameter	Symbol		Condition	Min	Тур	Max	Unit
Receive Analog Sign	al Input (A	IN)					
Input Resistance	RAIN		-	100	_	_	kΩ
Receive Signal		Single	Tone	4.36		1005	.,
Level Range (Single Tone)	VAIN		Allows the peak factor by PSK or QAM modulation.		_	1095	mVo-p
Receive Filter Outpu	ıt (RFO)					-	
Output Resistance	ROR		_		10	20	Ω
Load Resistance	R _{RFO}		_	50	_	_	kΩ
Load Capacitance	CRFO	_	_	-	_	100	PF
DC Offset Voltage	Vosr		AIN = AG	-200	-	+200	m۷
Output Signal Level	VRFO	EQF	R1 = 1, EQR2 = 1 f _{IN} = 1800 Hz	V _{AIN}	VAIN	V _{AIN} +2	dBm
Idle Channel Noise	NIDLR		sing a 0.3 ~ 3.4 kHz at weighted filter	_	-80	-	dBm
Total Harmonic Distortion	THDR		_	_	-65	-50	dB
AGC Circuit Input (AGCI), Out	tput (AC	GCO)				
Input Resistance	RAGCI		_	50	100	_	kΩ
Allowable Input DC Offset Voltage	Vosagci	AGCI	_	-0.5	_	+0.5	mV
Input Signal Level Range 2	VAGCI		_	-45.4	_	+5.6	dBm
Output Resitance	ROA		_		10	20	Ω
Load Resistance	RAGCO		V _{AGCO} = -6 dBm	10		_	kΩ
Load Capacitance	CAGCO	AGCO	_	-	_	100	PF
DC Offset Voltage	VOSA		-		_	+50	mV
Output Signal Level 2	VAGCO		Controlled by Demodulator	_	-6	_	dBm

 $^{2\,\}mbox{When V}_{\mbox{AGCI}}$ is within this range, the signal level output from AGC circuit should be about -6 dBm with digitally controlling by the demodulating DSP.

6. Attenuator, Amplitude Equalizers and Filters Characteristics

 $(V_{DD} = +5V \pm 5\%, V_{SS} = -5V \pm 5\%, T_a = 0 \sim 70^{\circ}C)$ Parameter Symbol Condition Min Тур Max Unit Attenuator Attenuation Accuracy (0 \sim 14 dB, 2 dB step) To the Designed Values -1 0 +1 dB ATT Amplitude Equalizer (Transmit and Receive Paths) 600 Hz -1 0 +1 1200 Hz -0.5 0 +0.5 EQ0 EQT(R)1 = 1(Through) EQT(R)2 = 12400 Hz -0.5 +0.5

				2400 Hz	-0.5	U	+0.5	
				3000 Hz	-1	0	+1	
				600 Hz	-2.4	-1.4	-0.4	
	EQ1	EQT(R)1 = 1		1200 Hz	-1.2	-0.7	-0.2	
Frequency Characteristics	(1)	EQT(R)2 = 0		2400 Hz	+0.2	+0.7	+1.2	
/ =				3000 Hz	+0.1	+1.1	+2.1	-ID
(Relative gain to the gain at 1800 Hz)			fIN	600 Hz	-4.8	-3.3	-1.8	dB
	EQ2	EQT(R)1 = 0		1200 Hz	-2.8	-1.8	-0.8	
	(11)	EQT(R)2 = 1		2400 Hz	+0.4	+1.4	+2.4	
				3000 Hz	+1.2	+2.7	+4.2	
				600 Hz	-6.8	-5.3	-3.8	
See Figure 4	EQ3	EQT(R)1 = 0 EQT(R)2 = 0		1200 Hz	-3.7	-2.7	-1.7	
	(III)			2400 Hz	+1.0	+2.0	+3.0	
				3000 Hz	+2.3	+3.8	+5.3	
Gain Tolerance	G _{EQ1}	EQT(R)1 = 1 EQT(R)2 = 0			-0.5	0	+0.5	
(Relative gain to the gain of EQ0 at 1800 Hz	G _{EQ2}	EQT(R)1 = 0 EQT(R)2 = 1	fin	1800 Hz	-0.5	0	+0.5	dB
	G _{EQ3} EQT(R)1 = 0 EQT(R)2 = 0				-0.5	0	+0.5	

NOTE) This spec is applicable for only amplitude equalizers and does not include other filters' frequency characteristics.

Parameter	Symbol	Condition			Min	Тур	Max	Unit
BWC Transmit LPF								
2nd/3rd Harmonics Components Amplitude / Relative values to the fundamental			2·fOBM	780 Hz	_	-60	-55	dB
		BTD = 1	3·f _{OBM}	1170 Hz	_	-60	-55	dB dB
	HBMC	BTD = 0	2·fobs	900 Hz	_	-60	-55	dB
\component amplitude/			3·fOBS	1350 Hz	_	-60	-55	dB

Transmit LPF

Transmit LPF	C	EQT1, 2 = 1	390 Hz 450 Hz	-2	0	+2	dB
Voltage Gain	GTL	ATT1, 2, 3 = 1 V _{XIN} = −10 dBm	1700 Hz 1800 Hz	-0.8	+1.2	+3.2	dB
Frequency - Amplitude Characteristics	۸	EQT1, 2 = 1	2400 Hz	+0.5	+1.5	+2.5	dB
(Relative gain to G _{TL} at 390 Hz	ATL	ATT1, 2, 3 = 1 V _{XIN} = -10dBm	6000 Hz	_	-26	-23	dB
Group Delay Distortion	DTL	EQT1, 2 = 1 1100 Hz ≤ f _{IN} ≤ 230	00 Hz		-	120	μs

Receive BPF

Receive BPF Voltage Gain	GRB	EQR1, 2 = 1 VAIN = 0 dBm f _{IN} = 1700 Hz			-2	0	+2	dB
Frequency - Amplitude	-			150 Hz		-14	-11	dB
Characteristic	ARB	EQR1, 2 = 1 V _{AIN} = 0 dBm		300 Hz	-4.2	-2.2	-0.2	dB
(Relative gain to)			fin	3000 Hz	+3	+4	+6	dB
				6000 Hz	_	-19	-16	dB
Group Delay Distortion	D _{RB}	EQR1, 2 = 1 1100 Hz ≤ f _{IN} ≤	2300) Hz	_	_	100	μs

Parameter	Symbol	Condition			Min	Тур	Max	Unit
Receive HPF								
Receive HPF Voltage Gain	GRH	EQR1, 2 = 1 V _{AIN} = 0 dBm f _{IN} = 620 Hz			-2	0	+2	dB
Frequency — Amplitude				390 Hz	-	-77	-65	dB
Characteristics / Relative gain to \	ARH	EQR1, 2 = 1 V _{AIN} = 0 dBm	fIN	450 Hz	_	-71	-65	dB
(GRH *1		AIN		500 Hz	-	-40	-36	dB
Group Delay Distortion *1	DRH	EQR1, 2 = 1 1100 Hz \leq f _{IN} \leq 2300 Hz			-	_	750	μs

^{*1:} Includes Receive BPF's characteristics.

Receive LPF (for Call Progress Tone Detection)

Receive LPF Voltage Gain	GRL	EQR1, 2 = VAIN = 0 d f _{IN} = 400 H	Bm		-4	-2	0	dB
Frequency - Amplitude		EQR1, 2		150 Hz		-14	-11	dB
Characteristics / Relative gain to \	ARL	= 1	ו אוין ו	350 Hz	-2.5	-1.5	-0.5	dB
(G _{RL}) *1		VAIN = 0 dBm		910 Hz	_	-56	-53	dB

^{*1:} Includes Receive BPF's characteristics.

NOTE) Each Spec, is measured according to the following table.

Circuits	Signal Input	Signal Output	BWC1	BWC2	ATT 1,2,3	EQT 1,2	EQR 1,2	Measured Block	Reference Figure
Attenuator	XIN	AOUT	-	_	000	1	_	ATT + T·LPF	5
Transmit Amplitude Equalizer	XIN	AOUT	_	_	1	00 ≀ 11	-	AEQL + T·LPF	4,5
BWC Transmit LPF	BOUT →XIN	AOUT	1	1	1	1	_	BWC·LPF + T·LPF	5, 6
Transmit LPF	XIN	AOUT	_	+	1	1	_	T·LPF	5
Receive Amplitude Equalizer	AIN	RFO	1	1	-	_	00 ≀ 11	AEQL	4
Receive BPF	AIN	RFO	0	0		_	1	R•BPF	7
Receive HPF	AIN	RFO	0	1	_	_	1	R·HPF + R·BPF	7,8
Receive LPF	AIN	RFO	1	0		_	1	R·LPF + R·BPF	6, 7

Table 1

7. DA, AD Converter and AGC Circuit

 $(V_{DD} = +5V \pm 5\%, V_{SS} = -5V \pm 5\%, T_a = 0 \sim 70^{\circ}C)$

Parameter	Symbol	Condition	Min	Тур	Max	Unit

Transmit Digital to Analog Converter

Bits of F	Resolution	BREST		_		8	-	bit
DA Con Referen	version ce Voltage	VREF	_		_	+2.50	_	٧
Full	Plus Full Scale	PFVDA	V _{REF} =	TD8 ~ TD1: 01111111	+2.31	+2.367	+2.42	٧
Scale *	Minus Full Scale	NFVDA	+ 2.50 V	TD8 ~ TD1: 10000000	-2.44	-2.386	-2.33	٧
Linearit	/*	NLDA	_			0.5	1.0	%

^{*} This specification is defined as the voltage at the A_{OUT} terminal, but does not include the DC offset voltage at the terminal.

Receive Analog to Digital Converter

Bits of F	Resolution	BRESR	_	_	8		bit
AD Con Referen	version ce Voltage	VREF	-	-	+2.50	_	v
Full	Plus Full Scale	PFV _{AD}	V _{REF} = + 2.50 V	+2.42	+2.48	+2.54	v
Scale *	Minus Full Scale	NFV _{AD}	Equivalent values to the input voltage of AD converter	-2.56	-2.50	-2.44	٧
Linearit	y *	NLAD		_	0.5	1.0	%
Output	DC Offset*	VOSAD	Includes the AGC circuit	-3	_	+3	L\$B

^{*} This specification does not include the DC offset voltage at the input of the AD converter (AGCO).

AGC Circuit

Gain Control Bits of Resolution	BRESA	-		8	_	bit
Dynamic Range	DYAGC	-	_	51	_	dB
Gain Setting Minimum Step	G _{STP}	_	_	0.2	_	dB
Gain Setting Accuracy	GE	_	-0.4	0	+0.4	dB
Total Harmonic Distortion	THDAGC	-	-	_	-50	dB
Signal to Noise Ratio	SNAGC	Set Gain = Maximum Signal/Noise at AGCO	50	_	_	dB

8. Timing Characteristics

 $(V_{DD} = +5V \pm 5\%, V_{SS} = -5V \pm 5\%, T_a = 0 \sim 70^{\circ}C)$

Danasatan	C	0				
Parameter	Symbol	Condition	Min	Тур	Max	Unit

Carrier Detect and Level Comparator for AGC Circuit

					·				
	OFF→ON	TCDON1			V _{A1N} ≠ 0 dBm	_	2.1		ms
	ON →OFF	TCDOFF1		CD1L = 0	f _{IN} = 1700 Hz	_	9.6	_	ms
	$OFF \rightarrow ON$	TCDON2		BWC1 = 0	V _{AIN} = -36 dBm	_	2.7	-	ms
	ON →OFF	TCDOFF2		= 0	f _{IN} = 1700 Hz	_	6.7	_	ms
	OFF → ON	T _{CDON3}		CD1L = 1 BWC1 = 0 BWC1 = 1 BWC2 = 0	VAIN = 0 dBm	_	1.8	_	ms
CD1	ON →OFF	TCDOFF3	CD1H		f _{IN} = 1800 Hz	_	9.0	_	ms
See Figure 9-1	OFF → ON	TCDON4	= V _{SS}		V _{AIN} = -39 dBm	_	2.6	-	ms
3	ON →OFF	TCDOFF4			f _{IN} = 1800 Hz	_	5.4	· –	ms
	OFF → ON	TCDON5			VAIN = 0 dBm	_	1.7	+	ms
	ON →OFF	TCDOFF5			f _{IN} = 400 Hz	_	20.0	-	ms
	OFF → ON	TCDON6			V _{AIN} = -40 dBm	-	4.5	1	ms
	ON →OFF	TCDOFF6			f _{IN} = 400 Hz	_	5.0	1	ms
	OFF → ON	TCDON7			V _{AIN} = 0 dBm	_	1.2	1	ms
CD2 See	ON →OFF	TCDOFF7	CD	2H	f _{IN} = 1650 Hz		10	_	ms
Figure 9-1	OFF → ON	TCDON8	= \	'ss	V _{AIN} = -40 dBm	_	2.0	_	ms
	ON →OFF	TCDOFF8			f _{IN} = 1650 Hz	-	6.0	-	ms
LD1 See	OFF → ON	TLD10N				_	*	_	ms
Figure 9-2	ON → OFF	TLD10FF				_	*	_	ms
LD2 See	OFF→ON	T _{LD20N}				-	*	-	ms
Figure 9-2	ON →OFF	T _{LD20FF}				_	*		ms

*TBD

Power Down Control Timing

Power ON Time	T _{PWON}	PWDN: 1 → 0 See Figure 10	-	-	200	ms
Power Down Time	TPWOFF	PWDN: 0 → 1 See Figure 10	_	_	10	ms

9. Transmission Performance

$(V_{DD} = +5V \pm 5\%, V_{SS} = -5V \pm 5\%, T_a$
--

Parameter	Symbol	Condition	 	Min	Тур	Max	Unit
Fransmitter							
Out-of-Band Energy		EQT1, 2 = 1	4 ~ 8 kHz	_	_	- 20	dB
Referred to Carrier	EOT	V _{AOUT} = −10 dBm	8 ~ 12 kHz	-	_	-40	dB
_evel		See Figure 11	12 kHz ~		_	-60	dB

Receiver

Dynamic Range	DYR		As a single to	ne		-48	_	0	dBm/ 600Ω
	THCDON1		CD1L = 0		ОИ	_	-39.2	1	dBm
	THCDOFF1		BWC1 = 0 f _{IN} =1700 Hz	CD1	OFF	_	-49.3		dBm
Carrier Detect	TH _{CDON2}	CD1H	CD1L = 1		ON		~41.8	-	dBm
Threshold *3	TH _{CDOFF2} = V		BWC1 = 0 f _{IN} = 1800 Hz	CD1	OFF	_	-46.8	-	dBm
	THCDON/ OFF3		BWC1 = 1 BWC2 = 0 f _{IN} = 400 Hz	CD1	ON/ OFF	_	-45* ¹	-	dBm
	THCDON4		= V _{SS}	CD2	ON	_	-45	ì	dBm
	THCDOFF4	f _{IN} =	1650 Hz	CDZ	OFF	_	-50	1	dBm
*2 Optional Carrier	TH _{CDON5}	CD1L:	0 ~ V _{DD}	CD1	ON	Adjustable		е	dBm
Detect	THCDOFF5	CD1H:	0 ~ V _{DD}		OFF	Adjustable		e	dBm
Threshold	THCDON6	CD2L:	0 ~ V _{DD}	CD2	ON	Adjustable			dBm
Potentials	THCDOFF6	CD2H:	0 ~ V _{DD}	002	OFF	Adjustable			dBm

^{*1} This operating mode is used during the call progress tone monitoring and does not provide the hysteresis of the detect ON and OFF level.

^{*2} In this mode, CD1's ON/OFF and CD2's ON/OFF levels are determined by external adjustments. It is impossible to use the optional threshold either for CD1 or CD2.

^{*3} Threshold levels are defined by a single tone input on the AIN terminal. In actual applications, however, input analog signal is not a single tone but a modulated signal by FSK, PSK or QAM. Therefore, the hysteresis values (CD/OFF-CD/ON) become less than the differences of CD/ON and CD/OFF levels shown in the specification table.

NOTE) Figure 2-1 and Figure 2-2 show the timing when transmit data is input to the chip via TD1 through TD8.

NOTE) Figure 3 shows the timing when transmit, receive and AGC data are interfaced via RD1 through RD8 as a common data bus.

PIN DESCRIPTION

Pin Name	Р	in N	о.	Function
rinivaille	SS	JS	GS	Function
BRS	1	2	59	The chip contains 75 bps FSK modulator $(420 \pm 30 \text{ Hz})$ that is useful for some kinds of applications, such as videotex systems.
BTD	2	3	60	BRS controls the modulator to send FSK signal over telephone line through AOUT.
				BRS FSK signal transmit
				Digital 0 Enable
				Digital 1 Disable
				Table 2
			<u> </u>	BTD is the transmit data that should be converted to the modulated FSK signal to be sent over telephone line.
			i	BTD FSK signal frequency
				Digital 0 "Space" 450 Hz
				Digital 1 "Mark" 390 Hz
				Table 3
TRSW	3	4	61	On-chip D/A converter can operate according to not only TD, but also RD for its input data. This function is significant in the special application where both RD and TD are connected to and taken from the same data bus line. In this case, it is required that TRSW be applied to digital 1 state for connecting the input of DA to RD terminals internally in place of TD terminals.
RDL	4	5	62	A clock pulse should be input to RDL to latch RD on it's positive edge. Refer to Figure 12.
				Digital 1 TRSW RDL WRT Transmit/ Receive Data bus RECEIVE RECEIVE Filter
ļ				Figure 12

Pin Name	Р	in N	ο.			Fun	ction							
	SS	JS	GS											
WRT	5	6	63	This signal controls v the D/A converter. This data is latched o								0		
TD1 \(\) TD8	13 } 6	14 \(\)	7 5 1, 64	Transmit signal digital data input for D/A conversion. These pins are 8-bit parallel two's complement data input pins, and the data is loaded into the D/A converter on th positive edge of WRT. TD1 is the LSB and TD8 is the MSB. Refer to Table 4.										
				TD/RD	8	7	6	5	4	3	2	1		
	i			Plus Full Scale	0	1	1	1	1	1	1	1		
				Plus 0	0	0	0	0	0	0	0	0		
				Minus 0	1	1	1	1	1	1	1	1		
				1							,	,		
				Minus Full Scale	1	0	0	0	0	0	0	0		
				Table 4 8-c	ligit	Data	Tab	le fo	r TC) and	I RD			
MCK	14	15	8	A 3.456 MHz clock s This is the time base is divided down withi	for t	he o	perat	tion	of M	SM6	949	and	es.	
V _{DD2}	15	16	9		con	necte						utpu	t	
RD1 \$ RD8	24 \ 17	26 \$ 19	17	state, these pins beco the A/D conversion w complement format When READ is held i input terminals and t	This pin is internally connected only to the digital output logic circuitry for RD1 ~ RD8, RDA and RDB. These are I/O terminals. When READ is held in a digital 0 state, these pins become output terminals and the result of the A/D conversion with 8-bit (or 10-bit) parallel two's complement format appears. Refer to Table 4. When READ is held in a digital 1 state, these pins becomes input terminals and the data input to these pins is loaded into the register storing them as the gain setting data for the									

Pin Name	F	in N	o.						F	unc	tion			
	SS	JS	GS									····		
												ID1 ~ RD8 GC circuit.	means the	
					Pin		G	ain		Pi	n	Gain		
				F	RD1		+0.2	dB		RE)5	+3.2 dB		
					2		+0.4	1			6	+6.4		
					3	\perp	+0.8	3			7	+12.8		
					4		+1.6	;			8	+25.6		
									Tabl	e 5				
					The actual values of AGC circuit's relative and absolute gain are as shown in Table 6. RD Gain (dB)									
				8	7	6	5	4	3	2	1	Relative	Absolute	
				1	0	0	0	0	0	0	0	- 25.5	-11.6	
				1	0	0	0	0	0	0	1	-25.3	-11.4	
							_	i } 		1				
				1	1	1	1	1	1	1	1	-0.1	+13.8	
				0	0	0	0	0	0	0	0	+0.1	+14.0	
				-	_	- :-		<u> </u>		T	I _	 		
				0	1	1	1	1	1	1	0	+25.3	+39.2	
				0	1	1	1	1	1	1	1	+25.5	+39.4	
									-	Γabl∈	6			
RDB	25	27	18	whe	n CS	W is	set a	t a d	igita	l 1 st	ate.	end the RD When CSW	is set at a	
RDA	26	28	19	less : LSB the s	digital 1 state, each digit of RD8 ~ RD1 is shifted toward less significant bit by 2 bits and this causes RDA become LSB and the MSB appears on RD6, RD7 and RD8 with the same data. This processing is useful in attenuating the received signal level for the demodulator.									
ST	27	29	20	on th with	ne ne in 51	gativ ~ 1	/e ed 43 μ	ge o	f ST. ne la	The	con 4/D			

Pin Name	Р	in N	о.	Function									
Pili Name	SS	JS	GS	Function									
READ	28	30	21	This is a control signal for the 3-state output data bus line RD8 ~ RD1, RDA and RDB.									
				While this pin is in the digital 0 state, the output bus is active and the result of the A/D conversion appears at RD8 \sim RD1,									
				While this pin is in the digital 1 state, the output bus is inactive and RD8 \sim RD1, RDA and RDB become input terminals.									
AGCW	29	31	22	This signal loads the gain setting data into the register for AGC circuit through RD8 \sim RD1 on the positive edge of AGCW. At this time, READ must be in the digital 1 state.									
CSW	30	32	23	As mentioned in the description of RDA and RDB, the RD bit length is extended from 8-bits to 10-bits and the position of each digit is shifted by 2-bits toward the less significant digit when CSW is set at the digital 1 state.									
LD1	31	33	24	These output signals are from comparators each of which have different threshold levels and the inputs are connected to the output of AGC circuitry (AGCO).									
LD2	32	34	25	When AGCO shows a level shift caused by the abrupt change in the received signal level, LD1 and LD2 can be used as a warning signal for the demodulator and the AGC circuit.									
				Signal level on AGCO (dBm)									
				+2 +1 -14.5 -15.5									
				LD1 0 1									
				LD2 0 1									
				Table 7									
				For example, the demodulator should be reset when LD1 indicates the digital 0 state.									
				In another case when LD2 indicates the digital 1 state, the AGC circuit can be set at the nominal gain by setting all of the RD digits to 0. This allows for quick escape from the abnormal state. Refer to Table 7 and Figure 13.									
				+2 dBm -6 dBm -15.5 dBm									
				LD2 Figure 13									

Pin Name	Р	in N	ο,			Function								
rin Name	SS	JS	GS			runction								
CD1	33	35	26	each •		949 provides a pair of carrie ch has a inherent detect lev xed.								
CD2	34	36	27	deter		r hand, their carrier detect by an external circuit by us CD2H.								
				data t is use state	Usually, CD1 is used for 2400, 4800, 7200 and 9600 bps data transmission, or for call progress tone monitoring. CD2 is used for FSK transmission, such as CCITT T. 30. The state of digital 1 means that the received signal is within the level range to be demodulated.									
				be ign	ored a	iting the digital 0 state, the is meaningless information. edescriptions for CD1L, CD								
BWC1	35	37	28	accor	These control signals determine the receive filter bandwidth according to the application's requirement. Refer to Figure 6, 7 and 8.									
BWC2	36	38	29	BWC1	BWC2	Application								
				0	0	+O OLPFO OLPFO OBPFO	0.3 ~ 3.4 kHz	No backward channel transmitting						
				0	1	+O-O-HPF O-LPF O-BPF O-O-	0.6 ~ 3.4 kHz	Backward channel transmitting						
				1	0	O HPF O LPF O BPF O O	0.3 ~ 0.65 kHz	Call progress tone monitor- ing						
				1	1	O O O O O O O O O O O O O O O O O O O	Through	Special case (External) Filter						
	Ì					Table 8								
				0.6 kHz										

Pin Name	F	in N	0.		Func	ntion .							
1 III IVallie	SS	JS	GS										
			1 :	transmiting, rec to 0.3 kHz for modem operate must reject the transmitter thre facilities. As backward ch exsist below 0.0	ceive signal ban- better transmises with BWC tra BWC signal whough the hybrid nannel transmit 6 kHz, the rece	but backward channel (BWC) dwidth should be extended sion data quality. When a ansmitting, the receive filter ich leaks from its own BWC d circuit in the 2-wire ting signal's components ived data quality would							
				be deteriorated if the HPF to eliminate them is not used. Usually, the frequencies of call progress tones are included in the range from 0.3 kHz to 0.65 kHz. The MSM6949 has the filter for detecting those tones.									
EQR1	37	39	30	For better transmission data quality, amplitude equalizers are provided about MSM6949 in both transmitter and receiver.									
EQR2	38	40	31	EQR1 EQT1	EQR1 EQR2 Equalizing Characteristics								
				0	0	Ш							
				0	1	II							
				1	0	I							
				1	1	Through							
					Tab	le 9							
				Refer to Figure	4.								
DG	39	41	32	Digital ground,	0V.								
AG	40	42	33	same chip, anal deteriorated by digital noise is a analog circuitry D/A converter, It is important	d analog circuit og functional p the digital nois asynchronous to such as switch the chip's perfonot to mix the	try are implemented in the erformances are easily se. Especially, when the othe operating timing for ned capacitor filter, or A/D and ormance becomes deteriorated, noise to AG and design of digital and analog signals.							
V _{SS}	41	43	34	Negative power supply, -5V.									

Pin Name	Р	in N	0.	_					Eun	ction	_			
Till Name	SS	JS	GS											
AGCC	42	44	35	betw com	An external capacitor of 0.1 μ F should be connected between AGCC and AG. This capacitor is necessary to compensate the DC offset voltage generated in the AGC circuit.									
AGCO	43	45	36	chip the c	The output of the AGC circuit. This pin is used for the chip test, etc. The gain setting data should be loaded into the chip through RD8 \sim RD1 so that the signal level at AGCO becomes -6 dBm.									
AGCI	44	47	37	recei	AGCI is the input of the AGC circuit and RFO is the receive filter's output. These pins should be mutually connected via an external connected via a									
RFO	45	48	38	capa the D	connected via an external capacitor of 0.1 μ F. This capacitor is required as an AC-coupling not to transfer the DC offset voltage to the AGC-circuit. The input impedance of AGCI is typically 100 k Ω .									
CD1L	46	49	40	of ca	As described in the description of CD1 and CD2, a pair of carrier detect circuits can be used with the internally fixed inherent detect levels.									
CD1H	47	50	41	adjus	ted f	or va	rious	kind	ct leve ds of a stmen	applio	cation	ıs. In	terna	l fixed
CD2L	48	51	42	25.41	004		-			CI	 D1	CI	02	Operating
-		٠.		CD1L	CD1H	CD2L	CD2H	BWC1	BWC2	ON	OFF	ON	OFF	MODE
				0	vss		•	0	*	-39.2	-49.3	_	_	7200/9600 bps
CD2H	49	52	43	1	vss	•	•	0		-41.8	- 46 .8	_	-	2400/4800 bps
				•	vss			1	0	-45	-	_	_	Call Progress Tone
					٠	•	vss	•	*	-	_	-45	-50	300 bps (T, 30)
				>0V	>0V	*	•	0	•	VCE VCE)1L	-	_	
				>0V	>0V	•	*	1	0	Depe	nd on	_	-	External Adjustment
			:		*	>0V	>0V		•	_	-		nd on D2L, D2H	
				NOTI					letect define).775 Vrms)
									Tab	ie 10				

Pin Name	Р	in N	0.	Function					
	SS JS GS		GS	Function					
				If an external adjustment is required, each of these terminals should be connected to the appropriate potential, which is over OV, and this determines the carrier detect ON/OFF level. Four different kind of potentials determine the level as follows.					
				Terminal Carrier As an aim for external adjust- ment, it can be forecast that the carrier detect threshold					
				CD1L CD1 OFF level becomes about -40 dBm					
				CD1H CD1 ON when the input potential is plus 2,5 V. The relation					
				CD2L CD2 OFF between the potential and					
				CD2H CD2 ON the level is linear.					
		Table 11							
VR1	50	53	44	The MSM6949 provides the voltage reference which is used for A/D and D/A conversions, carrier detect, backward channel transmitter, etc.					
VR2	The potential is stabilized to variations of temperature or supply voltages, but tends to be different from chip to chip. Therefore, an external adjustment is necessary.								
				The resistors used to adjust the reference voltage are connected to these pins as follows. $ \begin{array}{c c} & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$					
	Figure 14								
				A bypass capacitor is required to keep this reference potential in the silent condition and the value of 1 μ F is recommended. The reference voltage on VR2 (VREF) is approximately determined by the following equation and the typical value is +2.5V.					
				$V_{REF} \simeq 1.2 \times \frac{R8 + R9}{R8} [V]$					
AIN	52	56	46	This pin is the receive analog signal input.					

Pin Name	Pin No.			Function			
T III IVallic	SS JS GS						
AOUT	54	57	47	This is the transmit analog signal output pin. The output resistance is about 10 Ω and the load resistance should be more than 10 k Ω .			
XIN	55	59	48	This is an external analog signal input. Usually, XIN is used as the input for the backward channel transmitter, and frequently for an external DTMF tone. This signal is routed to the transmit filter's input via an adder same as the signal from the DA converter. B.W. Transmitter DA SOK Figure 15 An external operational amplifier can be omitted when the DTMF tone is not input to XIN, and BOUT is connected to XIN directly.			
BOUT	56	60	49	This is an output terminal of the backward channel transmitter. Refer to the description for XIN. The signal level is about 0 dBm. While call progress tone monitoring is proceeding, BOUT is internally connected to AG, because LPF is used in the receiver side.			
PWDN	57	61	51	When digital 1 is input to PWDN, whole functions in the MSM6949 are disabled and the MSM6949 goes into the power standby mode. At this time, AOUT and RFO become high impedance state.			
LT	58	62	52	LT is used to provide the signal path for the local analog loop (AC) test function. When digital 1 is input to LT, the transmit analog signal is routed to the input of the receive filter and AOUT is connected to AG internally.			

Pin Name	Pin No.			Function						
	SS	JS	GS	. 2.13131						
EQT1	59	63	53	Refer to the description of EQR1 and EQR2.						
EQT2	60	64	54							
ATT1	61	65	55	The MSM6949 provides attenuator for transmit signal.						
ATT3	63	67	57	ATT1	ATT2	ATT3	Signal Level Loss (dB)			
				0	0	0	14			
				0	0	1	12			
i				0	1	0	10			
				0	1	1	8			
				1	0	0	6			
				1	0	1	4			
				1	1	0	2			
į				1	1	1	0			
					Та	able 12				
V _{DD1}	64	68	58	Positive power supply, +5V.						

CIRCUIT WIRING ILLUSTRATION

