

Features

- 4 Low Voltage/Power Intel 1M x 8 FLASH Die in One MCM Package
- Overall Configuration is 1M x 32
- +5V Operation (Standard) or +3.3V (Consult Factory)
- Access Times of 80, 100 and 120 nS (5V Vcc)
- +5V or +12V Programing
- **■** Erase/Program Cycles
 - 100.000 Commercial
 - 10,000 Military and Industrial
- Sector Architecture (Each Die)
 - One 16K Protected Boot Block (Bottom Boot Block Standard, Top Boot Block Special Order)
 - Two 8K Parameter Blocks
 - One 96K Main Block
 - Seven 128K Main Blocks

- Single Block Erase (All bits set to 1)
- Hardware Data Protection Feature
- Independent Boot Block Locking
- MIL-PRF-38534 Compliant MCMs Available
- Packaging Hermetic Ceramic
 - 68 Lead, .94" x .94" x .180" Dual-Cavity Small Outline Gull Wing, Aeroflex code# "F14" (Drops into the 68 Lead JEDEC .99"SQ CQFJ footprint)
- Internal Decoupling Capacitors for Low Noise
- Commercial, Industrial and Military Temperature Ranges

General Description

Utilizing Intel's SmartVoltage Block Flash Memorv Boot SmartDie™, the ACT-F1M32 is a high speed, 32 megabit CMOS flash multichip module (MCM) designed for full temperature range military, space, or high reliability applications.

The ACT-F1M32 consists of four high-performance Intel X28F800BV 8 Mbit (8,388,608 Each die bit) memory die. contains separately erasable blocks, including a hardware lockable boot block (16,384 bytes), two parameter blocks (8,192 bytes each), and 8 main blocks (one block of 98,304 bytes and seven blocks of 131,072 bytes) This defines the block boot flash family architecture.

The command register is written by bringing WE to a logic low level (VIL), while CE is low and OE is high (VIH). Reading is

Data I/O

Ground

General Description, Cont'd,

accomplished by chip Enable (CE) and Output Enable (OE) being logically active. Access time grades of 80nS, 100nS and 120nS maximum are standard.

The ACT–F1M32 is packaged in a hermetically sealed co-fired ceramic 68 lead, .94" SQ Ceramic Gull Wing CQFP package. This allows operation in a military environment temperature range of -55°C to +125°C.

The ACT-F1M32 provides program and erase capability at 5V or 12V and allows reads with Vcc at 5V or 3.3V(Not tested). Since many designs read from flash memory a large percentage of the time, read operation using 3.3V can provide great power savings. Consult the factory for 3.3V tested parts. In applications where read performance is critical, faster access times are obtainable with the 5V VCC part detailed herein.

For program and erase operations, 5V Vpp operation eliminates the need for in system voltage converters. The 12V Vpp operation provides reduced (approx 60%) program and erase times where 12V is available in the system. For design simplicity, however, connect Vcc and Vpp to the same 5V ±10% source.

Each block can be independently

erased and programmed 100,000 times at commercial temperature or 10,000 times at extended temperature.

The boot block is located at either the bottom (Standard) or the top (Special Order) of the address map in order to accommodate different microprocessor protocols for boot code location. Locking and unlocking of the boot block is controlled by WP and/or RP.

Intel's boot block architecture provides a flexible solution for the different design needs various applications. of asymmetrically-blocked memory map allows the integration of several memory components into a single flash device. The boot block provides a secure boot PROM; parameter blocks can emulate EEPROM functionality for parameter store with proper software techniques; and the main blocks provide code and data storage with access times fast enough to execute code place, decreasing requirements.

For Detail Information regarding the operation of the 28F800BV Memory die, see the Intel datasheet (order number 290539-002).

Absolute Maximum Ratings

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Voltage on Any Pin with Respect to GND (except Vcc, Vpp, A9 and RP) (1)	-2.0 to +7.0	V
Voltage on Pins A9 or \overline{RP} with Respect to GND (except Vcc, Vpp, A9 and \overline{RP}) (1,2)	-2.0 to +13.5	V
VPP Program Voltage with Respect to GND during Block Erase/ and Word/Byte Write (1,2)	-2.0 to +14.0	V
Vcc Supply Voltage with Respect to Ground (1)	-2.0 to +7.0	V
Output Short Circuit Current (3)	100	mA

Notes:

- 1. Minimum DC voltage is -0.5V on input/output pins. During Transitions, inputs may undershoot to -2.0V for periods < 20nS. Maximum DC voltage on input/output
- pins is Voc + 0.5V, which may overshoot to Vcc + 2.0V for periods < 20nS.

 2. Maximum DC voltage on Vpp may overshoot to +14.0V for periods < 20nS. Maximum DC voltage on \(\overline{RP}\) or A9 may overshoot to Vcc + 0.5V for periods <20nS 3. Output shorted for no more than 1 second. No more than one output shorted at one time.

NOTICE: Stresses above those listed under "Absolute Maximums Rating" may cause permanent damage. These are stress rating only. Operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may effect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Minimum	Maximum	Units
Vcc	5V Power Supply Voltage (10%)	+4.5	+5.5	V
	3.3V Power Supply Voltage (±0.3V) (Consult Factory)	+3.0	+3.6	V
ViH	Input High Voltage (3.3V & 5V Vcc)	+2.0	V _{cc} + 0.5	V
VIL	Input Low Voltage (3.3V & 5V Vcc)	-0.5	+0.8	V
TA	Operating Temperature (Military)	-55	+125	°C

Capacitance

 $(f = 1MHz, TA = 25^{\circ}C)$

Symbol	Parameter	Maximum	Units
CAD	A0 – A19 Capacitance	50	pF
COE	OE Capacitance	50	pF
CCE	CE Capacitance	20	pF
CRP	RP Capacitance	50	pF
CWE	WE Capacitance	60	pF
CWP	WP Capacitance	50	pF
Cı/o	I/O0 – I/O31 Capacitance	20	pF

Capacitance Guaranteed by design, but not tested.

DC Characteristics - CMOS Compatible

(TA = -55°C to +125°C, Vcc = +4.5V to + 5.5V(5V Operation), or +3.6V(3.3V Operation), Unless otherwise specified)

			+3.3V	Vcc (1)	+5.0\	/ Vcc	
Parameter	Sym	Conditions	Тур	ical	Standard		Units
			Min	Max	Min	Max	
Input Load Current	lıL	Vcc = VccMax., Vin = Vcc or GND	-1	+1	-1	+1	μΑ
Output Leakage Current	ILO	Vcc = VccMax., Vin = Vcc or GND	-10	+10	-10	+10	μΑ
Vcc Standby Current	Iccs	$Vcc = VccMax., \overline{CE} = \overline{RP} = \overline{WP} = Vcc \pm 0.2V$		440		600	μΑ
Vcc Deep Power-Down Current	ICCD	Vcc = VccMax., Vin = Vcc or GND, RP = GND ± 0.2V		32		32	μΑ
Vcc Read Current	ICCR	$\label{eq:VCC} \begin{aligned} &\text{Vcc} = \text{VccMax.}, \overline{\text{CE}} = \text{GND, f} = 10 \text{MHz (5V), 5MHz (3.3V),} \\ &\text{IOUT} = 0 \text{ mA, Inputs} = \text{GND} \pm 0.2 \text{V or Vcc} \pm 0.2 \text{V} \end{aligned}$		120		260	mA
Vcc Write Current	Iccw1	VPP = VPPH1 (at 5V), Word Write in Progress (x32)		120		200	mA
	Iccw2	VPP = VPPH2 (at 12V), Word Write in Progress (x32)		100		180	mA
Vcc Erase Current	ICCE1	VPP = VPPH1 (at 5V),Block Erase in Progress		120		180	mA
	ICCE2	VPP = VPPH2 (at 12V),Block Erase in Progress		100		160	mA
Vcc Erase Suspend Current	Icces	CE = Vін, Block Erase Suspend		32		48	mA
VPP Standby Current	IPPS	VPP < VPPH2		60		60	μΑ

DC Characteristics – CMOS Compatible

(TA = -55°C to +125°C, VCC = +4.5V to + 5.5V(5V Operation), or +3.6V(3.3V Operation), Unless otherwise specified)

			+3.3V	Vcc (1)	+5.0\	/ Vcc	
Parameter	Sym	Conditions	Тур	Typical		Standard	
			Min	Max	Min	Max	
VPP Deep Power Down Current	IPPD	$\overline{RP} = GND \pm 0.2V$		40		40	μΑ
VPP Read Current	IPPR	VPP ≥ VPPH2		800		800	μΑ
VPP Write Current	IPPW1	VPP = VPPH1 (at 5V), Word Write in Progress (x32)		120		120	mA
	IPPW2	VPP = VPPH2 (at 12V), Word Write in Progress (x32)		100		100	mA
VPP Erase Current	IPPE1	VPP = VPPH1 (at 5V), Block Erase in Progress		120		100	mA
	IPPE2	VPP = VPPH2 (at 12V), Block Erase in Progress		100		80	mA
VPP Erase Suspend Current	IPPES	VPP = VPPH, Block Erase Suspend in Progress		800		800	μΑ
RP Boot Block Unlock Current	IRP	RP = VHH, VPP = 12V		2		2	mA
Output Low Voltage	Vol	Vcc = VccMin., IoL = 5.8 mA (5V), 2 mA (3.3V)		0.45		0.45	V
Output High Voltage	Vон1	VCC = VCCMin., IOH = -2.5 mA	0.85 x Vcc		0.85 x Vcc		V
	Voн2	Vcc = VccMin., IoH = -100 μA	Vcc - 0.4V		Vcc - 0.4V		V
VPP Lock-Out Voltage	VPPLK	Complete Write Protection	0.0	1.5	0.0	1.5	V
V _{PP} (Program/Erase Operations)	VPPH1	VPP = at 5V	4.5	5.5	4.5	5.5	V
Vpp (Program/Erase Operations)	VPPH2	VPP = at 12V	11.4	12.6	11.4	12.6	V
Vcc Erase/Write Lock Voltage	VLKO	Locked Condition	0	2.0	0	2.0	V
RP Unlock Voltage	Vнн	Boot Block Write/Erase, VPP = 12V	11.4	12.6	11.4	12.6	V

Notes:

AC Characteristics – Write/Erase/Program Operations – WE Controlled

(TA = -55°C to +125°C, Vcc = +4.5V to + 5.5V(5V Operation), or +3.6V(3.3V Operation), Unless otherwise specified)

Parameter	Symbol	+3.3V Typ	Vcc ⁽²⁾ oical		+4.	5V to -	+5.5V \	Vcc		Units
Farameter	JEDEC Standard	120)nS	80	nS	100)nS	120)nS	Ullits
	Otarraara	Min	Max	Min	Max	Min	Max	Min	Max	
Write Cycle Time	tavav	120		80		100		120		nS
RP High Recovery to WE Going Low	tphwl	1.5		.45		.45		.45		μS
CE Setup to WE Going Low	telwl	0		0		0		0		nS
Boot Block Unlock Setup to WE Going High ⁽¹⁾	tрннwн	200		100		100		100		nS
VPP Setup to WE Going High (1)	tvpwh	200		100		100		100		nS
Address Setup to WE Going High	tavwh	90		60		60		60		nS
Data Setup to WE Going High	tоvwн	70		60		60		60		nS
WE Pulse Width	twLwH	90		60		60		60		nS
Data Hold Time from WE High	twndx	0		0		0		0		nS
Address Hold Time from WE High	twhax	0		0		0		0		nS
CE Hold Time from WE High	twhen	0		0		0		0		nS
WE Pulse Width High	twnwL	30		20		20		20		nS
Duration of Word Write Operation (1) (x32)	twnqv1	6		6		6		6		μS
Duration of Erase Operation (Boot) (1)	twnqv2	0.3		0.3		0.3		0.3		Sec
Duration of Erase Operation (Parameter) (1)	twnqv3	0.3		0.3		0.3		0.3		Sec
Duration of Erase Operation (Main) (1)	twnqv4	0.6		0.6		0.6		0.6		Sec
VPP Hold from Valid SRD (1)	tqvv∟	0		0		0		0		nS
RP Vнн Hold from Valid SRD ⁽¹⁾	tqvрн	0		0		0		0		nS
Boot Block Lock Delay (1)	tрнвк		200		100		100		100	nS

^{1.} Performance at Vcc = +4.5V to +5.5V is guaranteed. Performance at Vcc = +3.3V is typical (Not tested).

Guaranteed by design, not tested.
 Performance at Vcc = +4.5V to +5.5V is guaranteed. Performance at Vcc = +3.3V is typical (Not tested).

AC Characteristics – Write/Erase/Program Operations, CE Controlled

(TA = -55°C to +125°C, Vcc = +4.5V to + 5.5V(5V Operation), or +3.6V(3.3V Operation), Unless otherwise specified)

Parameter	Symbol JEDEC	Vc	.3V c ⁽²⁾ pical		+4.	.5V to	+5.5V \	Vcc		Units
	Standard		0nS Max		nS Max		0nS Max		OnS Max	
Write Cycle Time	tavav	120	IVIAX	80	IVIAX	100	IVIAX	120	IVIAA	nS
RP High Recovery to CE Low	t PHEL	1.5		.45		.45		.45		μS
WE Setup to CE Going Low	twlel	0		0		0		0		nS
Boot Block Unlock Setup to CE Going High (1)	tрннен	200		100		100		100		nS
VPP Setup to CE Going High (1)	tvpeh	200		100		100		100		nS
Address Setup to CE Going High	taveh	90		60		60		60		nS
Data Setup to CE Going High	tdveh	70		60		60		60		nS
CE Pulse Width	teleh	90		60		60		60		nS
Data Hold Time from CE High	tehdx	0		0		0		0		nS
Address Hold Time from $\overline{\text{CE}}$ High	tehax	0		0		0		0		nS
WE Hold Time from CE High	tehwh	0		0		0		0		nS
CE Pulse Width High	tehel	20		20		20		20		nS
Duration of Word Write Operation (1) (x32)	tehqv1	6		6		6		6		μS
Duration of Erase Operation (Boot) (1)	tehqv2	0.3		0.3		0.3		0.3		Sec
Duration of Erase Operation (Parameter) (1)	tehqv3	0.3		0.3		0.3		0.3		Sec
Duration of Erase Operation (Main) (1)	tehqv4	0.6		0.6		0.6		0.6		Sec
VPP Hold from Valid SRD (1)	tqvvl	0		0		0		0		nS
RP VHH Hold from Valid SRD (1)	tqvрн	0		0		0		0		nS
Boot Block Lock Delay (1)	tрнвк		200		100		100		100	nS

NOTES:

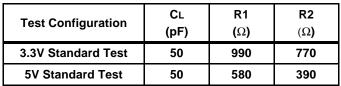
AC Characteristics – Read Only Operations

 $(TA = -55^{\circ}C \text{ to } +125^{\circ}C, VCC = +4.5V \text{ to } +5.5V(5V \text{ Operation}), \text{ or } +3.6V(3.3V \text{ Operation}), \text{ Unless otherwise specified})$

Parameter	Symbol JEDEC	Vc	.3V c ⁽²⁾ oical		+	4.5V to	+5.5V V	сс		Units
	Standard		0nS Max		nS Max		00nS n Max		OnS Max	
Read Cycle Time	tavav	120	III UX	80	III GX	100	- Max	120	IIIGX	nS
Address to Output Delay	tavqv		120		80		100		120	nS
CE to Output Delay	telqv		120		80		100		120	nS
RP to Output Delay	tphqv		1.5		.45		.45		.45	μS
OE to Output Delay	tgLQV		65		40		40		40	nS
CE to Output in Low Z (1)	tELQX	0		0		0		0		nS
CE to Output in High Z (1)	tehqz		55		30		30		30	nS
OE to Output in Low Z (1)	tgLQX	0		0		0		0		nS
OE to Output in High Z (1)	tgнqz		45		30		30		30	nS
Output Hold from Address, CE, or OE Change, Whichever Occurs First (1)	toн	0		0		0		0		nS

Notes:

^{1.} Sampled, but not 100% tested.

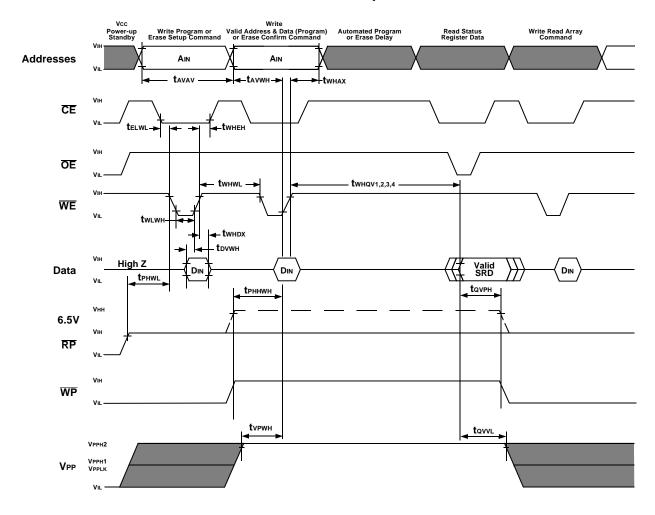

^{2.} Performance at VCC = +4.5V to +5.5V is guaranteed. Performance at VCC = +3.3V is typical (Not Tested).

^{1.} Guaranteed by design, but not tested.

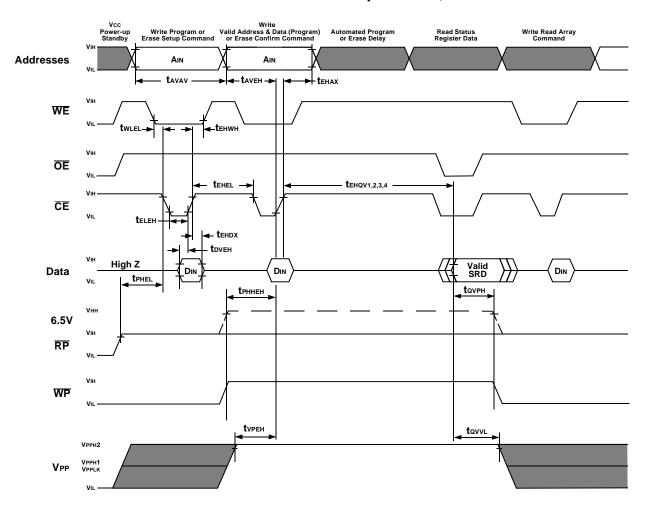
^{2.} Performance at VCC = +4.5V to +5.5V is guaranteed. Performance at VCC = +3.3V is typical (Not Tested).

AC Test Circuit

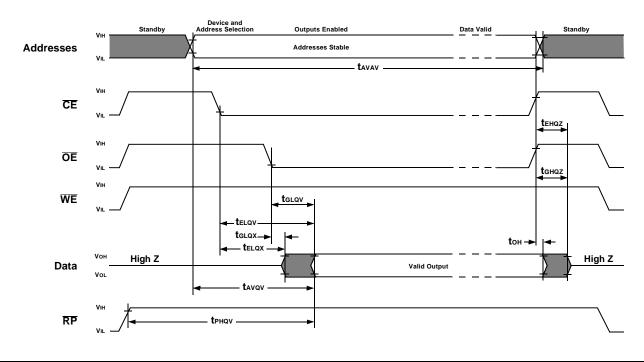
Test Configuration Component Values



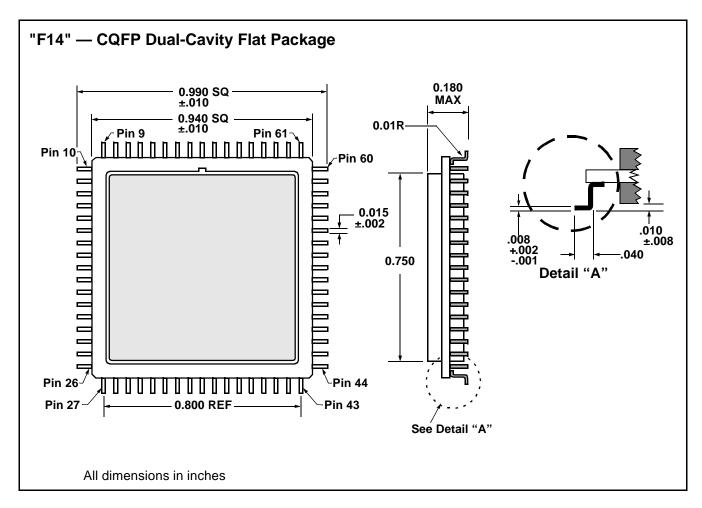
NOTES: CL includes jig capacitance.


Parameter	Typical	Units
Input Pulse Level	0 – 3.0	V
Input Rise and Fall	5	nS
Input and Output Timing Reference Level	1.5	٧

Device О О ОТ Under Test R2


AC Waveforms for Write and Erase Operations, WE Controlled

AC Waveforms for Write and Erase Operations, CE Controlled


AC Waveform For Read Operations

Pin Numbers & Functions

	68 Pins — Dual-Cavity CQFP (Standard Configuration)							
Pin#	Function	Pin #	Function	Pin #	Function	Pin #	Function	
1	GND	18	GND	35	ŌĒ	52	GND	
2	CE ₃	19	I/O8	36	CE ₂	53	I/O23	
3	A 5	20	I/O9	37	A17	54	I/O22	
4	A4	21	I/O10	38	WP	55	I/O21	
5	Аз	22	I/O11	39	NC	56	I/O20	
6	A2	23	I/O12	40	NC	57	I/O19	
7	A1	24	I/O13	41	A18	58	I/O18	
8	Ao	25	I/O14	42	A19	59	I/O17	
9	RP	26	I/O15	43	VPP	60	I/O16	
10	I/Oo	27	Vcc	44	I/O31	61	Vcc	
11	I/O1	28	A11	45	I/O30	62	A10	
12	I/O2	29	A12	46	I/O29	63	A 9	
13	I/O3	30	A13	47	I/O28	64	A8	
14	I/O4	31	A14	48	I/O27	65	A7	
15	I/O5	32	A15	49	I/O26	66	A6	
16	I/O6	33	A16	50	I/O25	67	WE	
17	I/O7	34	CE ₁	51	I/O24	68	CE ₄	

Consult Factory for Special order *(Optional Configuration)*: Pin 38 - WE2, Pin 39 - WE3, Pin 40 - WE4 and Pin 67 - WE1



Ordering Information

Model Number	Screening	Speed	Package
ACT-F1M32B-080F14C	Commercial (0°C to +70°C)	80 nS	CQFP
ACT-F1M32B-100F14C	Commercial (0°C to +70°C)	100 nS	CQFP
ACT-F1M32B-120F14C	Commercial (0°C to +70°C)	120 nS	CQFP
ACT-F1M32B-080F14I	Industrial (-40°C to +85°C)	80 nS	CQFP
ACT-F1M32B-100F14I	Industrial (-40°C to +85°C)	100 nS	CQFP
ACT-F1M32B-120F14I	Industrial (-40°C to +85°C)	120 nS	CQFP
ACT-F1M32B-080F14M	Military (-55°C to +125°C)	80 nS	CQFP
ACT-F1M32B-100F14M	Military (-55°C to +125°C)	100 nS	CQFP
ACT-F1M32B-120F14M	Military (-55°C to +125°C)	120 nS	CQFP
ACT-F1M32B-080F14Q	DESC Drawing Pending MIL-PRF-38534 Compliant	80 nS	CQFP
ACT-F1M32B-100F14Q	DESC Drawing Pending MIL-PRF-38534 Compliant	100 nS	CQFP
ACT-F1M32B-120F14Q	DESC Drawing Pending MIL-PRF-38534 Compliant	120 nS	CQFP

Part Number Breakdown

Specifications subject to change without notice

Aeroflex Circuit Technology 35 South Service Road Plainview New York 11830 www.aeroflex.com/act1.htm Telephone: (516) 694-6700 FAX: (516) 694-6715 Toll Free Inquiries: (800) 843-1553 E-Mail: sales-act@aeroflex.com This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.