
56F8357

Preliminary Technical Data 56F8357 16-bit Digital Signal Processor

- Up to 60 MIPS at 60MHz core frequency
- DSP and MCU functionality in a unified, C-efficient architecture
- Access up to 4MB of off-chip program and 32MB of data memory
- Chip Select Logic for glueless interface to ROM and SRAM
- 256KB of Program Flash
- 4KB of Program RAM
- 8KB of Data Flash
- 16KB of Data RAM
- 16KB Boot Flash
- Two 6-channel PWM Modules

- Temperature Sensor
- Two Quadrature Decoders
- Optional on-chip regulator
- FlexCAN Module
- Two Serial Communication Interfaces (SCIs)
- Up to two Serial Peripheral Interfaces (SPIs)
- Up to four General Purpose Quad Timers
- Computer Operating Properly (COP) / Watchdog
- JTAG/Enhanced On-Chip Emulation (OnCE[™]) for unobtrusive, real-time debugging
- Up to 76 GPIO lines
- 160-pin LQFP Package

digitaldna

56F8357 Data Sheet Table of Contents

Part 1: Overview	3
1.1. 56F8357 Features	. 3
1.2. 56F8357 Description	. 4
1.3. Award-Winning Development	
Environment	. 5
1.4. Architecture Block Diagram	. 5
1.5. Product Documentation	
1.6. Data Sheet Conventions	. 9
Part 2: Signal/Connection Description	s 10
2.1. Introduction	
2.2. 56F8357 Signal Pins	
Part 3: On-Chip Clock Synthesis (OCC	(S) 31
3.1. Introduction	
3.2. External Clock Operation	
3.3. Registers	33
Part 4: Memory Operating Modes (ME	M) 22
4.1. Introduction	
4.1. Infoodction	
4.2. Program Map	
4.3. Interrupt vector rable	
4.5. Flash Memory Map	
4.6. EOnCE Memory Map	
4.7. Peripheral Memory Mapped Registers .	
	10
Part 5: Interrupt Controller (ITCN)	66
5.1. Introduction	66
5.1. Introduction	66 66
5.1. Introduction	66 66 66
5.1. Introduction	66 66 66 68
 5.1. Introduction	66 66 68 68
 5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 	66 66 68 68 68 69
 5.1. Introduction	66 66 68 68 68 69
 5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets 	66 66 68 68 68 69
5.1. Introduction5.2. Features5.3. Functional Description5.4. Block Diagram5.5. Operating Modes5.6. Register Descriptions5.7. Resets	66 66 68 68 69 93
5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets	66 66 68 68 69 93
5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets Part 6: System Integration Module (SIM) 6.1. Overview	66 66 68 68 69 93 94 94
5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets Part 6: System Integration Module (SIM) 6.1. Overview 6.2. Features	66 66 68 69 93 94 94 94
5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets Part 6: System Integration Module (SIM) 6.1. Overview 6.2. Features 6.3. Operating Modes	66 66 68 69 93 94 94 94 94
5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets Part 6: System Integration Module (SIM) 6.1. Overview 6.2. Features 6.3. Operating Modes 6.4. Operation Mode Register	66 66 68 69 93 94 94 94 94 94 95
5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets Part 6: System Integration Module (SIM) 6.1. Overview 6.2. Features 6.3. Operating Modes 6.4. Operation Mode Register 6.5. Register Descriptions	66 66 68 69 93 94 94 94 94 94 95 96
5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets Part 6: System Integration Module (SIM) 6.1. Overview 6.2. Features 6.3. Operating Modes 6.4. Operation Mode Register 6.5. Register Descriptions 6.6. Clock Generation Overview	66 66 68 69 93 94 94 94 94 95 96 108
5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets Part 6: System Integration Module (SIM) 6.1. Overview 6.2. Features 6.3. Operating Modes 6.4. Operation Mode Register 6.5. Register Descriptions 6.6. Clock Generation Overview 6.7. Power Down Modes Overview	66 66 68 69 93 94 94 94 94 94 95 96 108 108
5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets Part 6: System Integration Module (SIM) 6.1. Overview 6.2. Features 6.3. Operating Modes 6.4. Operation Mode Register 6.5. Register Descriptions 6.6. Clock Generation Overview	66 66 68 69 93 94 94 94 94 94 95 96 108 108 09
5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets Part 6: System Integration Module (SIM) 6.1. Overview 6.2. Features 6.3. Operating Modes 6.4. Operation Mode Register 6.5. Register Descriptions 6.6. Clock Generation Overview 6.7. Power Down Modes Overview 6.8. Stop and Wait Mode Disable Function 10 6.9. Resets	66 66 68 69 93 94 94 94 94 94 95 96 108 108 09 109
5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets Part 6: System Integration Module (SIM) 6.1. Overview 6.2. Features 6.3. Operating Modes 6.4. Operation Mode Register 6.5. Register Descriptions 6.6. Clock Generation Overview 6.7. Power Down Modes Overview 6.8. Stop and Wait Mode Disable Function 10	66 66 68 69 93 94 94 94 94 94 95 96 108 108 09 109
5.1. Introduction 5.2. Features 5.3. Functional Description 5.4. Block Diagram 5.5. Operating Modes 5.6. Register Descriptions 5.7. Resets Part 6: System Integration Module (SIM) 6.1. Overview 6.2. Features 6.3. Operating Modes 6.4. Operation Mode Register 6.5. Register Descriptions 6.6. Clock Generation Overview 6.7. Power Down Modes Overview 6.8. Stop and Wait Mode Disable Function 10 6.9. Resets	66 66 68 69 93 94 94 94 94 95 96 108 108 09 109 . 110

Part 8: General Purpose Input/Output
(GPIO)
8.1. Introduction
8.3. Memory Maps
Part 9: Joint Test Action Group (JTAG) 117 9.1. 56F8357 Information
Part 10: Specifications
10.1. General Characteristics
10.2. DC Electrical Characteristics123
10.3. AC Electrical Characteristics127
10.4. Flash Memory Characteristics127
10.5. External Clock Operation Timing 128
10.6. Phase Locked Loop Timing
10.7. Crystal Oscillator Timing
10.8. External Memory Interface Timing129
10.9. Reset, Stop, Wait, Mode Select, and Interrupt Timing132
10.10. Serial Peripheral Interface
(SPI) Timing
10.11. Quad Timer Timing
10.12. Quadrature Decoder Timing 138
10.13. Serial Communication Interface
(SCI) Timing 139
10.14. Controller Area Network
(CAN) Timing 140
10.15. JTAG Timing140
10.16. Analog-to-Digital Converter (ADC)
Parameters
10.17. Equivalent Circuit for ADC Inputs 143
10.18. Power Consumption 143
Part 11: Packaging
11.1. Package and Pin-Out Information
56F8357145
Part 12: Design Considerations 149
12.1. Thermal Design Considerations 149
12.2. Electrical Design Considerations 150
12.3. Power Distribution and I/O Ring
Implementation 151
Part 13: Ordering Information 151

Please see http://www.motorola.com/semiconductors for the most current Data Sheet revision.

Part 1 Overview

1.1 56F8357 Features

1.1.1 Digital Signal Processing Core

- Efficient 16-bit 56800E family hybrid controller engine with dual Harvard architecture
- As many as 60 Million Instructions Per Second (MIPS) at 60 MHz core frequency
- Single-cycle 16×16 -bit parallel Multiplier-Accumulator (MAC)
- Four 36-bit accumulators including extension bits
- Arithmetic and logic multi-bit shifter
- Parallel instruction set with unique DSP addressing modes
- Hardware DO and REP loops
- Three internal address buses and one external address bus
- Four internal data buses and one external data bus
- Instruction set supports both DSP and controller functions
- Controller style addressing modes and instructions for compact code
- Efficient C compiler and local variable support
- Software subroutine and interrupt stack with depth limited only by memory
- JTAG/EOnCE debug programming interface

1.1.2 Memory

- Harvard architecture permits as many as three simultaneous accesses to program and data memory
- Flash security protection feature
- On-chip memory including a low-cost, high-volume flash solution
 - 256KB of Program Flash
 - 4KB of Program RAM
 - 8KB of Data Flash
 - 16KB of Data RAM
 - 16KB of Boot Flash
- Off-chip memory expansion capabilities provide a simple method for interfacing additional external memory and/or peripheral devices
 - Access up to 4MB of external program memory or 32MB of external data memory
 - Chip select logic for glueless interface to ROM and SRAM
- EEPROM emulation capability

1.1.3 Peripheral Circuits for 56F8357

- Two Pulse Width Modulator modules each with six PWM outputs, three Current Sense inputs, and four Fault inputs, fault-tolerant design with dead time insertion, supports both center-aligned and edge-aligned modes
- Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions with quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized through Timer C, channels 2 and 3

- Temperature Sensor can be connected, on the board, to any of the ADC inputs to monitor the on-chip temperature
- Two four-input Quadrature Decoders or two additional Quad Timers
- Four dedicated General Purpose Quad Timers totaling dedicated six pins: Timer C with two pins and Timer D with four pins
- FlexCAN (CAN Version 2.0 B-compliant) Module with 2-pin port for transmit and receive
- Two Serial Communication Interfaces each with two pins (or four additional GPIO lines)
- Two Serial Peripheral Interfaces (SPIs) with configurable 4-pin port (or eight additional GPIO lines). SPI1 can also be used as Quadrature Decoder 1 or Quad Timer B
- Computer-Operating Properly (COP) / Watchdog timer
- Two dedicated external interrupt pins
- Up to 76 General Purpose I/O (GPIO) pins
- External reset input pin for hardware reset
- External reset output pin for system reset
- Integrated Low-Voltage Interrupt Module
- JTAG/Enhanced On-Chip Emulation (OnCETM) for unobtrusive, processor speed-independent debugging
- Software-programmable, Phase Lock Loop (PLL)-based frequency synthesizer for the core clock

1.1.4 Energy Information

- Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs
- On-board 3.3V down to 2.6V voltage regulator for powering internal logic and memories; can be disabled
- On-chip regulators for digital and analog circuitry to lower cost and reduce noise
- Wait and Stop modes available
- ADC smart power management
- Each peripheral can be individually disabled to save power

1.2 56F8357 Description

The 56F8357 is a member of the 56800E core-based family of hybrid controllers. It combines, on a single chip, the processing power of a DSP and the functionality of a microcontroller with a flexible set of peripherals to create an extremely cost-effective solution. Because of its low cost, configuration flexibility, and compact program code, the 56F8357 is well-suited for many applications. The 56F8357 includes many peripherals that are especially useful for applications such as motion control, smart appliances, steppers, encoders, tachometers, limit switches, power supply and control, automotive control, engine management, noise suppression, remote utility metering, industrial control for power, lighting, and automation.

The 56800E core is based on a Harvard-style architecture consisting of three execution units operating in parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and optimized instruction set allow straightforward generation of efficient, compact DSP and control code. The instruction set is also highly efficient for C/C++ Compilers to enable rapid development of optimized control applications.

The 56F8357 supports program execution from internal or external memories. Two data operands can be accessed from the on-chip data RAM per instruction cycle. The 56F8357 also provides two external dedicated interrupt lines and up to 76 General Purpose Input/Output (GPIO) lines, depending on peripheral configuration.

The 56F8357 hybrid controller includes 256KB of Program Flash and 8KB of Data Flash (each programmable through the JTAG port) with 4KB of Program RAM and 16KB of Data RAM.

A total of 16KB of Boot Flash is incorporated for easy customer-inclusion of field-programmable software routines that can be used to program the main Program and Data Flash memory areas. Both Program and Data Flash memories can be independently bulk erased or erased in page sizes. Program Flash page erase size is 1KB. Boot and Data Flash page erase size is 512 bytes. The Boot Flash memory can also be either bulk or page erased.

A key application-specific feature of the 56F8357 is the inclusion of two Pulse Width Modulator (PWM) modules. These modules each incorporate three complementary, individually programmable PWM signal output pairs (each module is also capable of supporting six independent PWM functions, for a total of 12 PWM outputs) to enhance motor control functionality. Complementary operation permits programmable dead time insertion, distortion correction via current sensing by software, and separate top and bottom output polarity control. The up-counter value is programmable to support a continuously variable PWM frequency. Edge-aligned and center-aligned synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors), both BDC and BLDC (Brush and Brushless DC motors), SRM and VRM (Switched and Variable Reluctance Motors), and stepper motors. The PWMs incorporate fault protection and cycle-by-cycle current limiting with sufficient output drive capability to directly drive standard optoisolators. A "smoke-inhibit", write-once protection feature for key parameters is also included. A patented PWM waveform distortion correction circuit is also provided. Each PWM is double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1 to 16. The PWM modules provide a reference output to synchronize the analog-to-digital converters through two channels of Quad Timer C.

The 56F8357 incorporates two Quadrature Decoders capable of capturing all four transitions on the two-phase inputs, permitting generation of a number proportional to actual position. Speed computation capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder can be programmed with a timeout value to alarm when no shaft motion is detected. Each input is filtered to ensure only true transitions are recorded.

This hybrid controller also provides a full set of standard programmable peripherals that include two Serial Communications Interfaces (SCIs), two Serial Peripheral Interfaces (SPIs), and four Quad Timers. Any of these interfaces can be used as General-Purpose Input/Outputs (GPIOs) if that function is not required. A Flex Controller Area Network interface (CAN Version 2.0 B-compliant) and an internal interrupt controller are included on the 56F8357.

1.3 Award-Winning Development Environment

Processor ExpertTM (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use component-based software application creation with an expert knowledge system.

The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation, compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards will support concurrent engineering. Together, PE, CodeWarrior and EVMs create a complete, scalable tools solution for easy, fast, and efficient development.

1.4 Architecture Block Diagram

The 56F8357 architecture is shown in **Figure 1-1** and **Figure 1-2**. **Figure 1-1** illustrates how the 56800E system buses communicate with internal memories, the external memory interface and the IP Bus Bridge. **Table 1-1** lists the internal buses in the 56800E architecture and provides a brief description of their function. **Figure 1-2** shows the peripherals and control blocks connected to the IP Bus Bridge. The figures do not show the on-board regulator and power and ground signals. They also do not show the multiplexing between peripherals or the dedicated GPIOs. Please see **Section 2, Signal/Connection Descriptions,** to see which signals are multiplexed with those of other peripherals.

Also shown in **Figure 1-2** are connections between the PWM, Timer C and ADC blocks. These connections allow the PWM and/or Timer C to control the timing of the start of ADC conversions. The Timer C channel indicated can generate periodic start (SYNC) signals to the ADC to start its conversions. In another operating mode, the PWM load interrupt (SYNC output) signal is routed internally to the Timer C input channel as indicated. The timer can then be used to introduce a controllable delay before generating its output signal. The timer output then triggers the ADC. To fully understand this interaction, please see the **56F8300 Peripheral User Manual** for clarification on the operation of all three of these peripherals.

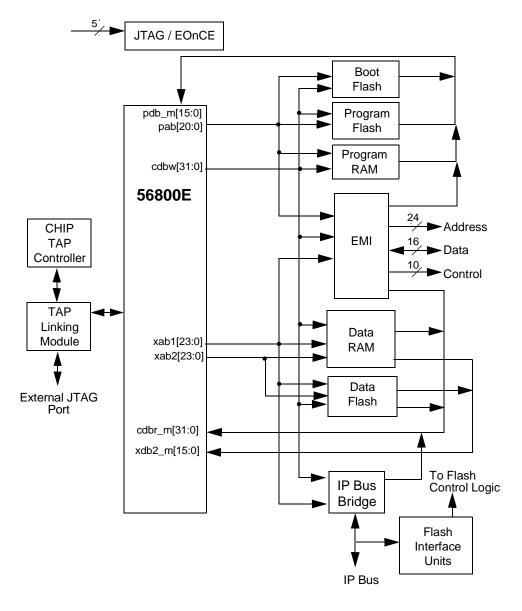
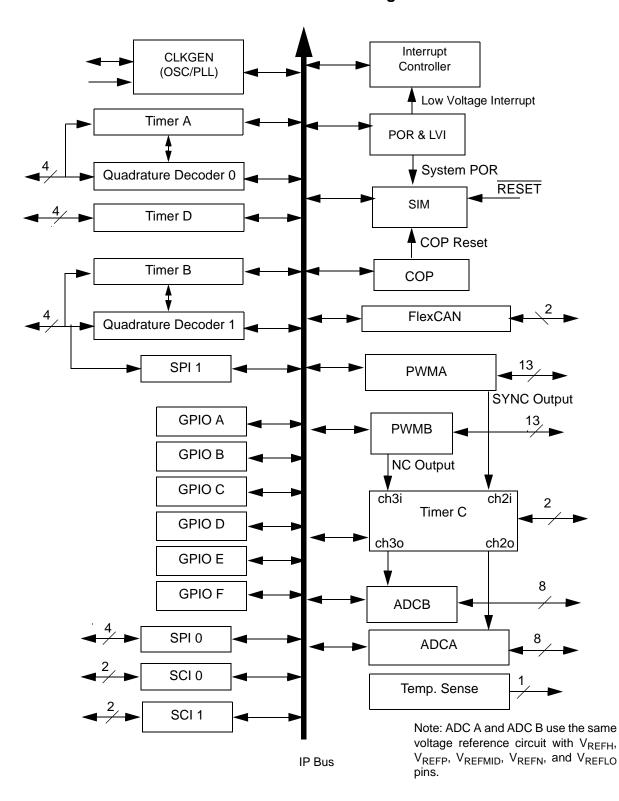



Figure 1-1 System Bus Interfaces

- **Note:** Flash memories are encapsulated within the Flash Interface Unit (FIU). Flash control is accomplished by the I/O to the FIU over the peripheral bus, while reads and writes are completed between the core and the Flash memories.
- Note: The primary data RAM port is 32 bits wide. Other data ports are 16 bits.

To/From IP Bus Bridge

Figure 1-2 Peripheral Subsystem

Name	Function					
Program Memory Interface						
pdb_m[15:0]	Program data bus for instruction word fetches or read operations.					
cdbw[15:0]	Primary core data bus used for program memory writes. (Only these 16 bits of the cdbw[31:0] bus are used for writes to program memory.)					
pab[20:0]	Program memory address bus. Data is returned on pdb_m bus.					
	Primary Data Memory Interface Bus					
cdbr_m[31:0]	Primary core data bus for memory reads. Addressed via xab1 bus.					
cdbw[31:0]	Primary core data bus for memory writes. Addressed via xab1 bus.					
xab1[23:0]	Primary data address bus. Capable of addressing bytes ¹ , words, and long data types. Data is written on cdbw and returned on cdbr_m. Also used to access memory mapped I/O.					
	Secondary Data Memory Interface					
xdb2_m[15:0]	Secondary data bus used for Secondary data address bus xab2 in the dual memory reads.					
xab2[23:0]	Secondary data address bus used for the second of two simultaneous accesses. Capable of addressing only words. Data is returned on xdb2_m.					
	Peripheral Interface Bus					
IPBus [15:0]	Peripheral Bus accesses all On-Chip peripherals registers. This bus operates at the same clock rate as the Primary Data Memory and therefore generates no delays when accessing the processor. Write data is obtained from cdbw. Read data is provided to cdbr_m.					

Table 1-1 Bus Signal Names

1. Byte accesses can only occur in the bottom half of the memory address space. The MSB of the address will be forced to 0.

1.5 Product Documentation

The four documents in **Table 1-2** are required for a complete description and proper design with the 56F8357. Documentation is available from local Motorola distributors, Motorola semiconductor sales offices, Motorola Literature Distribution Centers, or online at **http://www.motorola.com/semiconductors**.

Торіс	Description	Order Number
DSP56800E Reference Manual	Detailed description of the 56800E family architecture, and 16-bit hybrid controller core processor and the instruction set	DSP56800ERM/D
568300 Peripheral User Manual	Detailed description of peripherals of the 56F8300 devices	MC56F8300UM/D
56F8357 Technical Data Sheet	Electrical and timing specifications, pin descriptions, and package descriptions (this document)	MC56F8357/D
56F8357 Product Brief	Summary description and block diagram of the 56F8357 core, memory, peripherals and interfaces	MC56F8357PB/D
56F8357 Errata	Details any chip issues that might be present	MC56F8357E/D

Table 1-2 56F8357 Chip Documentation

1.6 Data Sheet Conventions

This data sheet uses the following conventions:

- OVERBARThis is used to indicate a signal that is active when pulled low. For example, the RESET pin is
active when low.
- "asserted" A high true (active high) signal is high or a low true (active low) signal is low.

"deasserted" A high true (active high) signal is low or a low true (active low) signal is high.

Examples:	Signal/Symbol	Logic State	Signal State	Voltage ¹
	PIN	True	Asserted	V _{IL} /V _{OL}
	PIN	False	Deasserted	V _{IH} /V _{OH}
	PIN	True	Asserted	V _{IH} /V _{OH}
	PIN	False	Deasserted	V _{IL} /V _{OL}

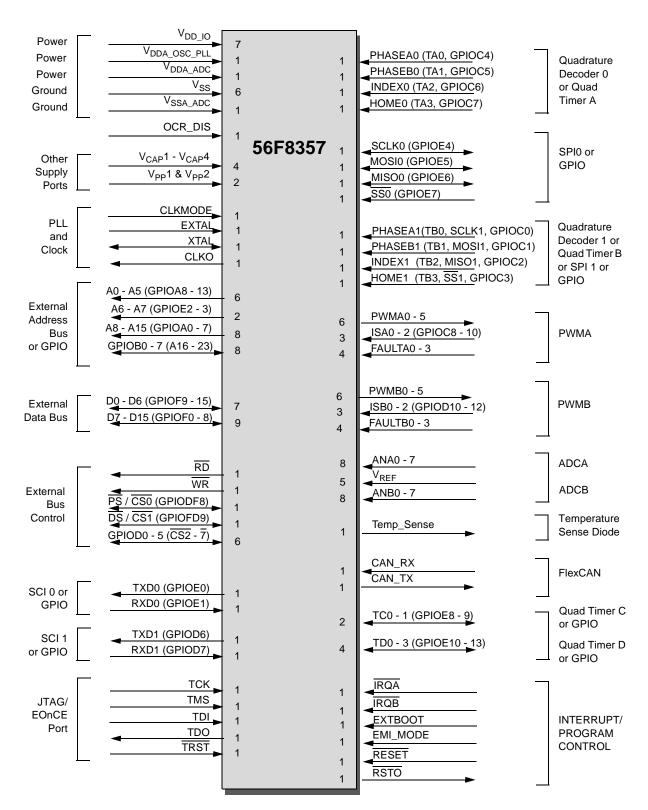
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.

Part 2 Signal/Connection Descriptions

2.1 Introduction

The input and output signals of the 56F8357 are organized into functional groups, as shown in **Table 2-1** and as illustrated in **Figure 2-1**. In **Table 2-2**, each table row describes the signal or signals present on a pin.

Functional Group	Number of Pins
Power (V _{DD} or V _{DDA}) ¹	9
Power Option Control	1
Ground (V _{SS} or V _{SSA})	7
Supply Capacitors & V _{PP}	6
PLL and Clock	4
Address Bus ²	24
Data Bus ²	16
Bus Control ²	10
Interrupt and Program Control	6
Pulse Width Modulator (PWM) Ports	26
Serial Peripheral Interface (SPI) Port 0 ²	4
Quadrature Decoder Port 0 ³	4
Quadrature Decoder Port 1 ⁴	4
Serial Communications Interface (SCI) Ports ²	4
CAN Ports	2
Analog-to-Digital Converter (ADC) Ports	21
Timer Module Ports	6
JTAG/Enhanced On-Chip Emulation (EOnCE)	5
Temperature Sense	1


Table 2-1 Functional Group	Pin Allocations
-----------------------------------	------------------------

1. If the on-chip regulator is disabled, the V_{CAP} pins serve as 2.5V V_{DD_CORE} power inputs

2. Some pins in this section are alternately GPIO pins

3. Alternately, can function as Quad Timer pins

4. Pins in this section can function as Quad Timer, SPI #1, or GPIO

Figure 2-1 56F8357 Signals Identified by Functional Group¹ (160-pin LQFP)

^{1.} Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.

2.2 56F8357 Signal Pins

After reset, all pins are by default the primary function. Any alternate functionality must be programmed.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
V _{DD_IO}	1	Supply		I/O Power — This pin supplies 3.3V power to the chip I/O
V _{DD_IO}	16			interface.
V _{DD_IO}	31			
V _{DD_IO}	42			
V _{DD_IO}	77			
V _{DD_IO}	96			
V _{DD_IO}	134			
V _{DDA_ADC}	114	Supply		ADC Power — This pin supplies 3.3V power to the ADC modules. It must be connected to a clean analog power supply.
V _{DDA_OSC_PLL}	92	Supply		Oscillator and PLL Power — This pin supplies 3.3V power to the OSC and to the internal regulator that in turn supplies the phase locked loop. It must be connected to a clean analog power supply.
V _{SS}	27	Supply		V _{SS} — These pins provide ground for chip logic and I/O
V _{SS}	41			drivers.
V _{SS}	74			
V _{SS}	80			
V _{SS}	125			
V _{SS}	160			
V _{SSA_ADC}	115	Supply		ADC Analog Ground — This pin supplies an analog ground to the ADC modules.
OCR_DIS	91	Input	Input	On-Chip Regulator Disable — Tie this pin to V_{SS} to enable the on-chip regulator Tie this pin to V_{DD} to disable the on-chip regulator This pin is intended to be a static DC signal from power-up to shut down. Do not try to toggle this pin for power savings during operation.

 Table 2-2 56F8357 Signal and Package Information for the 160-Pin LQFP

Signal Name	Pin No.	Туре	State During Reset	Signal Description
V _{CAP} 1	62	Supply	Supply	$V_{CAP}1 - 4$ — When OCR_DIS is tied to V_{SS} (regulator
V _{CAP} 2	144			enabled), connect each pin to a 2.2μ F or greater bypass capacitor in order to bypass the core logic voltage
V _{CAP} 3	95			regulator, required for proper chip operation. When OCR_DIS is tied to V_{DD} (regulator disabled), these pins
V _{CAP} 4	15			become $V_{DD_{CORE}}$ and should be connected to a regulated 2.5V power supply.
V _{PP} 1	141	Input	Input	V _{PP} 1 - V _{PP} 2 — These pins should be left unconnected as
V _{PP} 2	2			an open circuit for normal functionality.
CLKMODE	99	Input	Input	Clock Input Mode Selection — This input determines the function of the XTAL and EXTAL pins.
				1 = External clock input on XTAL is used to directly drive the input clock of the chip. The EXTAL pin should be grounded.
				0 = A crystal or ceramic resonator should be connected between XTAL and EXTAL.
EXTAL	94	Input	Input	External Crystal Oscillator Input — This input can be connected to an 8MHz external crystal. Tie this pin low if XTAL is driven by an external clock source.
XTAL	93	Input/ Output	Chip-driven	Crystal Oscillator Output — This output connects the internal crystal oscillator output to an external crystal.
				If an external clock is used, XTAL must be used as the input and EXTAL connected to GND.
				The input clock can be selected to provide the clock directly to the core. This input clock can also be selected as the input clock for the on-chip PLL.
СЦКО	3	Output	Tri-Stated	Clock Output — This pin outputs a buffered clock signal. Using the SIM CLKO Select Register (SIM_CLKOSR), this pin can be programmed as any of the following: disabled, CLK_MSTR (system clock), IP Bus clock, oscillator output, prescaler clock and postscaler clock. Other signals are also available for test purposes. See Section 6.5.7 for details.

Signal Name	Pin No.	Туре	State During Reset	Signal Description		
A0 (GPIOA8)	154	Output	Tri-stated	Address Bus — A0 - A5 specify six of the address lines for external program or data memory accesses. Depending		
A1 (GPIOA9)	10			upon the state of the DRV bit in the EMI bus control register (BCR), A0–A23 and EMI control signals are tri-stated when the external bus is inactive. Most designs will want to change		
A2 (GPIOA10)	11			the DRV state to DRV = 1instead of using the default setting.		
A3 (GPIOA11)	12			Port A GPIO — These six GPIO pins can be individually programmed as input or output pins.		
A4 (GPIOA12)	13					After reset, these pins default to address bus functionality. To deactivate the internal pull-up resistor, clear the
A5 (GPIOA13)	14			appropriate GPIO bit in the GPIOA_PUR register. Example: GPIOA8, clear bit 8 in the GPIOA_PUR register.		
A6 (GPIOE2)	17	Output	Tri-stated	Address Bus — A6 - A7 specify two of the address lines for external program or data memory accesses. Depending		
A7 (GPIOE3)	18	Schmitt Input/ Output	Input	upon the state of the DRV bit in the EMI bus control register (BCR), A0–A23 and EMI control signals are tri-stated when the external bus is inactive. Most designs will want to change the DRV state to DRV = 1instead of using the default setting.		
				Port E GPIO — These two GPIO pins can be individually programmed as input or output pins.		
				After reset, the default state is Address Bus.		
				To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOE_PUR register.		
				Example: GPIOE2, clear bit 2 in the GPIOE_PUR register.		

 $^1 \rm When$ the on-chip regulator is disabled, these 4 pins become 2.5V $\rm V_{DD_CORE}$

Signal Name	Pin No.	Туре	State During Reset	Signal Description					
A8 (GPIOA0)	19	Output	Tri-stated	Address Bus— A8 - A15 specify eight of the address lines for external program or data memory accesses. Depending					
A9 (GPIOA1)	20	Schmitt Input/	Input/	Input/	Input/	Input/	Input/	Input	upon the state of the DRV bit in the EMI bus control register (BCR), A0–A23 and EMI control signals are tri-stated when the external bus is inactive. Most designs will want to change
A10 (GPIOA2)	21	Output		the DRV state to DRV = 1 instead of using the default setting.					
A11 (GPIOA3)	22			Port A GPIO — These eight GPIO pins can be individually programmed as input or output pins.					
A12 (GPIOA4)	23			After reset, the default state is Address Bus. To deactivate the internal pull-up resistor, clear the					
A13 (GPIOA5)	24	appropriate GPIO bit in the GPIOA			appropriate GPIO bit in the GPIOA_PUR register. Example: GPIOA0, clear bit 0 in the GPIOA_PUR register.				
A14 (GPIOA6)	25								
A15 (GPIOA7)	26								
GPIOB0 (A16)	33	Schmitt Input/ Output	Input	Port B GPIO — These four GPIO pins can be programmed as input or output pins.					
GPIOB1 (A17)	34	OutputTri-statedAddress Bus — A16 - A19 specify one of the lines for external program or data memory ac Depending upon the state of the DRV bit in the control register (BCR), A0–A23 and EMI control tri-stated when the external bus is inactive. Mos want to change the DRV state to DRV = 1 inste the default setting.After reset, the startup state of GPIOB0 (GPIO is determined as a function of EXTBOOT, EMI the Flash security setting. See Table 4-4 for fu information on when this pin is configured as		Address Bus — A16 - A19 specify one of the address					
GPIOB2 (A18)	35			Depending upon the state of the DRV bit in the control register (BCR), A0–A23 and EMI control	Depending upon the state of the DRV bit in the EMI bus control register (BCR), A0–A23 and EMI control signals are				
GPIOB3 (A19)	36				tri-stated when the external bus is inactive. Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.				
				After reset, the startup state of GPIOB0 (GPIO or address) is determined as a function of EXTBOOT, EMI_MODE and the Flash security setting. See Table 4-4 for further information on when this pin is configured as an address pin at reset. In all cases, this state may be changed by writing to GPIOB_PER.					
				To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOB_PUR register.					

Signal Name	Pin No.	Туре	State During Reset	Signal Description	
GPIOB4 (A20)	37	Schmitt Input/ Output	Input	Port B GPIO — These four GPIO pins can be programmed as input or output pins.	
GPIOB5 (A21)	46	Output		Address Bus — A20 - A23 specify one of the address	
GPIOB6 (A22)	47	Output		lines for external program or data memory accesses. Depending upon the state of the DRV bit in the EMI bus control register (BCR), A0–A23 and EMI control signals are	
GPIOB7 (A23)	48			tri-stated when the external bus is inactive. Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.	
				Clock Outputs — can be used to monitor the prescaler_clock, sys_clk, sysclkx2 or oscillator clock on GPIOB4 through GPIOB7, respectively.	
				After reset, the default state is GPIO.	
				These pins can also be used to extend the external address bus to its full length or to view any of several system clocks. In these cases, the GPIO_B_PER can be used to individually disable the GPIO. The CLKOSR register in the SIM (see Section 6.5.7) can then be used to choose between address and clock functions.	
D0 (GPIOF9)	70	Input/ Output	Tri-stated	Data Bus — D0 - D6 specify part of the data for external program or data memory accesses.	
D1 (GPIOF10)	71			Port F GPIO — These six GPIO pins can be individually programmed as input or output pins.	
D2 (GPIOF11)	83			After reset, these pins default to the EMI Data bus function.	
D3 (GPIOF12)	86			To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOF_PUR register.	
D4 (GPIOF13)	88				Exam
D5 (GPIOF14)	89				
D6 (GPIOF15)	90				

Signal Name	Pin No.	Туре	State During Reset	Signal Description
D7 (GPIOF0)	28	Input/ Output	Tri-stated	Data Bus — D7 - D14 specify part of the data for external program or data memory accesses.
D8 (GPIOF1)	29	loout/	logut	Port F GPIO — These eight GPIO pins can be individually programmed as input or output pins.
D9 (GPIOF2)	30	Input/ Output	Input	At reset, these pins default to data bus functionality.
D10 (GPIOF3)	32			To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOF_PUR register.
D11 (GPIOF4)	149			Example: GPIOF0, clear bit 0 in the GPIOF_PUR register.
D12 (GPIOF5)	150			
D13 (GPIOF6)	151			
D14 (GPIOF7)	136			
D15 (GPIOF8)	153	Input/ Output	Tri-stated	Data Bus — D15 specifies part of the data for external program or data memory accesses.
				Port F GPIO — This GPIO pin can be individually programmed as an input or output pin.
				At reset, this pin defaults to the D15 function.
				To deactivate the internal pull-up resistor, clear bit 8 in the GPIOF_PUR register.
RD	52	Output	Tri-stated	Read Enable — $\overline{\text{RD}}$ is asserted during external memory read cycles. When $\overline{\text{RD}}$ is asserted low, pins D0 - D15 become inputs and an external device is enabled onto the data bus. When $\overline{\text{RD}}$ is deasserted high, the external data is latched inside the device. When $\overline{\text{RD}}$ is asserted, it qualifies the A0 - A23, $\overline{\text{PS}}$, $\overline{\text{DS}}$, and CSn pins. $\overline{\text{RD}}$ can be connected directly to the $\overline{\text{OE}}$ pin of a Static RAM or ROM.
				Depending upon the state of the DRV bit in the EMI bus control register (BCR), A0–A23 and EMI control signals are tri-stated when the external bus is inactive. Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.
				To deactivate the internal pull-up resistor, set the CTRL bit in the SIM_PUDR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
WR	51	Output	Tri-stated	Write Enable — \overline{WR} is asserted during external memory write cycles. When \overline{WR} is asserted low, pins D0 - D15 become outputs and the device puts data on the bus. When \overline{WR} is deasserted high, the external data is latched inside the external device. When \overline{WR} is asserted, it qualifies the A0 - A23, \overline{PS} , \overline{DS} , and CSn pins. \overline{WR} can be connected directly to the \overline{WE} pin of a static RAM.Depending upon the state of the DRV bit in the EMI bus
PS (CS0)	53	Output	Tri-stated	Program Memory Select — This signal is actually $\overline{CS0}$ in the EMI, which is programmed at reset for compatibility with the 56F80x PS signal. PS is asserted low for external program memory access.
(GPIOD8)				Depending upon the state of the DRV bit in the EMI bus control register (BCR), A0–A23 and EMI control signals are tri-stated when the external bus is inactive. Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.
				Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.CS0 resets to provide the PS function as defined on the
				56F80x devices. To deactivate the internal pull-up resistor, clear bit 8 in the GPIOD_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
DS (CS1)	54	Output	Tri-stated	Data Memory Select — This signal is actually $\overline{CS1}$ in the EMI, which is programmed at reset for compatibility with the 56F80x \overline{DS} signal. \overline{DS} is asserted low for external data memory access.
(GPIOD9)				Depending upon the state of the DRV bit in the EMI bus control register (BCR), A0–A23 and EMI control signals are tri-stated when the external bus is inactive. Most designs will want to change the DRV state to DRV = 1 instead of using the default setting.
				Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.
				To deactivate the internal pull-up resistor, clear bit 9 in the GPIOD_PUR register.
G <u>PIOD</u> 0 (CS2)	55	Input/ Output	Input	Port D GPIO — These six GPIO pins can be individually programmed as input or output pins.
G <u>PIOD</u> 1 (CS3)	56	Output		Chip Select — $\overline{CS2}$ - $\overline{CS7}$ may be programmed within the EMI module to act as chip selects for specific areas of the external memory map
G <u>PIOD</u> 2 (CS4)	57			external memory map. Depending upon the state of the DRV bit in the EMI bus
G <u>PIOD</u> 3 (CS5)	58			control register (BCR), A0–A23 and EMI control signals are tri-stated when the external bus is inactive. Most designs will want to change the DRV state to DRV = 1 instead of using
G <u>PIOD</u> 4 (CS6)	59			the default setting. At reset, these pins are configured as GPIO.
G <u>PIOD</u> 5 (CS7)	60			To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOD_PUR register.
				Example: GPIOD0, clear bit 0 in the GPIOD_PUR register.
TXD0	4	Output	Input	Transmit Data — SCI0 transmit data output
(GPIOE0)		Input/ Output	Input	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI output.
				To deactivate the internal pull-up resistor, clear bit 0 in the GPIOE_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
RXD0	5	Input	Input	Receive Data — SCI0 receive data input
(GPIOE1)		Input/ Output	Input	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI output.
				To deactivate the internal pull-up resistor, clear bit 1 in the GPIOE_PUR register.
TXD1	49	Output	Input	Transmit Data — SCI1 transmit data output
(GPIOD6)		Input/ Output	Input	Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI output.
				To deactivate the internal pull-up resistor, clear bit 6 in the GPIOD_PUR register.
RXD1	50	Input	Input	Receive Data — SCI1 receive data input
(GPIOD7)		Input/ Output	Input	Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI input.
				To deactivate the internal pull-up resistor, clear bit 7 in the GPIOD_PUR register.
тск	137	Schmitt Input	Input, pulled low internally	Test Clock Input — This input pin provides a gated clock to synchronize the test logic and shift serial data to the JTAG/EOnCE port. The pin is connected internally to a pull-down resistor.
TMS	138	Schmitt Input	Input, pulled high internally	Test Mode Select Input — This input pin is used to sequence the JTAG TAP controller's state machine. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.
				To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register.
TDI	139	Schmitt Input	Input, pulled high internally	Test Data Input — This input pin provides a serial input data stream to the JTAG/EOnCE port. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.
				To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
TDO	140	Output	Tri-stated	Test Data Output — This tri-stateable output pin provides a serial output data stream from the JTAG/EOnCE port. It is driven in the shift-IR and shift-DR controller states, and changes on the falling edge of TCK.
TRST	136	Schmitt Input	Input, pulled high internally	 Test Reset — As an input, a low signal on this pin provides a reset signal to the JTAG TAP controller. To ensure complete hardware reset, TRST should be asserted whenever RESET is asserted. The only exception occurs in a debugging environment when a hardware device reset is required and the EOnCE/JTAG module must not be reset. In this case, assert RESET, but do not assert TRST. To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register.
PHASEA0	155	Schmitt Input	Input	Phase A — Quadrature Decoder 0 PHASEA input
(TA0)		Schmitt Input/ Output	Input	TA0 — Timer A Channel 0
(GPIOC4)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is PHASEA0.
				To deactivate the internal pull-up resistor, clear bit 4 of the GPIOC_PUR register.
PHASEB0	156	Schmitt Input	Input	Phase B — Quadrature Decoder 0 PHASEB input
(TA1)		Schmitt Input/ Output	Input	TA1 — Timer A Channel
(GPIOC5)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is PHASEB0. To deactivate the internal pull-up resistor, clear bit 5 of the GPIOC_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
INDEX0	157	Schmitt Input	Input	Index — Quadrature Decoder 0 INDEX input
(TA2)		Schmitt Input/ Output	Input	TA2 — Timer A Channel 2
(GPOPC6)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is INDEX0.
				To deactivate the internal pull-up resistor, clear bit 6 of the GPIOC_PUR register.
HOME0	158	Schmitt Input	Input	Home — Quadrature Decoder 0 HOME input
(TA3)		Schmitt Input/ Output	Input	TA3 — Timer A Channel 3
(GPIOC7)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is HOME0.
				To deactivate the internal pull-up resister, clear bit 7 of the GPIOC_PUR register.
SCLK0	146	Schmitt Input/ Output	Input	SPI 0 Serial Clock — In the master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input.
(GPIOE4)		Schmitt Input/ Output	Input	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is SCLK0.
				To deactivate the internal pull-up resistor, clear bit 4 in the GPIOE_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
MOSIO	148	Input/ Output	Input	SPI 0 Master Out/Slave In — This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge the slave device uses to latch the data.
(GPIOE5)		Input/ Output	Input	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is MOSI0.
				To deactivate the internal pull-up resistor, clear bit 5 in the GPIOE_PUR register.
MISO0	147	Input/ Output	Input	SPI 0 Master In/Slave Out — This serial data pin is an input to a master device and an output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected. The slave device places data on the MISO line a half-cycle before the clock edge the master device uses to latch the data.
(GPIOE6)		Input/ Output	Input	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is MISO0.
				To deactivate the internal pull-up resistor, clear bit 6 in the GPIOE_PUR register.
<u>550</u>	145	Input	Input	SPI 0 Slave Select — $\overline{SS0}$ is used in slave mode to indicate to the SPI module that the current transfer is to be received.
(GPIOE7)		Input/ Output	Input	Port E GPIO — This GPIO pin can be individually programmed as input or output pin.
				After reset, the default state is \overline{SSO} .
				To deactivate the internal pull-up resistor, clear bit 7 in the GPIOE_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
PHASEA1	6	Schmitt Input	Input	Phase A1 — Quadrature Decoder 1 PHASEA input for decoder 1.
(ТВ0)		Schmitt Input/ Output	Input	TB0 — Timer B Channel 0
(SCLK1)		Schmitt Input/ Output	Input	SPI1 Serial Clock — In the master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input. To activate the SPI function, set the PHSA_ALT bit in the SIM_GPS register. For details, see Section 6.5.8 .
(GPIOC0)		Schmitt Input/ Output	Input	 Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is PHASEA1. To deactivate the internal pull-up resistor, clear bit 0 in the OPIOO PUP.
PHASEB1	7	Schmitt	Input	GPIOC_PUR register. Phase B1 — Quadrature Decoder 1 PHASEB input for
		Input		decoder 1.
(TB1)		Schmitt Input/ Output	Input	TB1 — Timer B Channel 1
(MOSI1)		Schmitt Input/ Output	Input	SPI 1 Master Out/Slave In — This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge the slave device uses to latch the data. To activate the SPI function, set the PHSB_ALT bit in the SIM_GPS register. For details, see Section 6.5.8.
(GPIOC1)		Schmitt Input/ Output	Input	 Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is PHASEB1. To deactivate the internal pull-up resistor, clear bit 1 in the
				GPIOC_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
INDEX1	8	Schmitt Input	Input	Index1 — Quadrature Decoder 1 INDEX input
(TB2)		Schmitt Input/ Output	Input	TB2 — Timer B Channel 2
(MISO1)		Schmitt Input/ Output	Input	SPI1 Master In/Slave Out — This serial data pin is an input to a master device and output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected. The slave device places data on the MISO line a half-cycle before the clock edge the master device uses to latch the data. To activate the SPI function, set the INDEX_ALT bit in the SIM_GPS register. For details, see Section 6.5.8.
(GPIOC2)		Schmitt Input/ Output	Input	 Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is INDEX1. To deactivate the internal pull-up resistor, clear bit 2 in the GPIOC_PUR register.
HOME1	9	Schmitt Input	Input	Home — Quadrature Decoder 1 HOME input
(TB3)		Schmitt Input/ Output	Input	TB3 — Timer B Channel 3
(SS1)		Schmitt Input	Input	SPI 1 Slave Select — In the master mode, this pin is used to arbitrate multiple masters. In slave mode, this pin is used to select the slave. To activate the SPI function, set the HOME_ALT bit in the SIM_GPS register. For details, see Section 6.5.8 .
(GPIOC3)		Schmitt Input/ Output	Input	 Port C GPIO — This GPIO pin can be individually programmed as input or output pin. After reset, the default state is HOME1. To deactivate the internal pull-up resistor, clear bit 3 in the GPIOC_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
PWMA0	73	Output	Tri-State	PWMA0 - 5 — These are six PWMA outputs.
PWMA1	75			
PWMA2	76			
PWMA3	78			
PWMA4	79			
PWMA5	81			
ISA0 (GPIOC8)	126	Schmitt Input	Input	ISA0 - 2 — These three input current status pins are used for top/bottom pulse width correction in complementary
ISA1 (GPIOC9)	127	Schmitt Input/		channel operation for PWMA. Port C GPIO — These GPIO pins can be individually
ISA2 (GPIOC10)	128	Output		programmed as input or output pins. At reset, these pins default to ISA functionality.
				To deactivate the internal pull-up resistor, clear the appropriate bit of the GPIOC_PUR register. For details, see Section 6.5.8 .
FAULTA0	82	Input	Schmitt Input	FAULTA0 - A2 — These three fault input pins are used for disabling selected PWMA outputs in cases where fault conditions originate off-chip.
FAULTA1	84			
FAULTA2	85			To deactivate the internal pull-up resistor, set the PWMA0 bit in the SIM_PUDR register. For details, see Section 6.5.8 .
FAULTA3	87	Input	Schmitt Input	FAULTA3 — This fault input pin is used for disabling selected PWMA outputs in cases where fault conditions originate off-chip.
				To deactivate the internal pull-up resistor, set the PWMA1 bit in the SIM_PUDR register. See Section 6.5.6 for details.
PWMB0	38	Output	Tri-State	PWMB0 - 5 — Six PWMB output pins.
PWMB1	39			
PWMB2	40			
PWMB3	43			
PWMB4	44			
PWMB5	45			
	1	L	1	

Signal Name	Pin No.	Туре	State During Reset	Signal Description
ISB0 (GPIOD10)	61	Schmitt Input	Input	ISB0 - 2 — These three input current status pins are used for top/bottom pulse width correction in complementary channel operation for PWMB.
ISB1 (GPIOD11)	63	Schmitt Input/		Port D GPIO — These GPIO pins can be individually
ISB2 (GPIOD12)	64	Output		 programmed as input or output pins. At reset, these pins default to ISA functionality. To deactivate the internal pull-up resistor, clear the appropriate bit of the GPIOD_PUR register. For details, see Section 6.5.8.
FAULTB0	67	Schmitt	Input	FAULTB0 - 3 — These four fault input pins are used for
FAULTB1	68	Input		disabling selected PWMB outputs in cases where fault conditions originate off-chip.
FAULTB2	69			To deactivate the internal pull-up resistor, set the PWMB
FAULTB3	72			bit in the SIM_PUDR register. For details, see Section 6.5.8 .
ANA0	100	Input	put Input	ANA0 - 3 — Analog inputs to ADC A, channel 0
ANA1	101			
ANA2	102			
ANA3	103			
ANA4	104	Input	Input	ANA4 - 7 — Analog inputs to ADC A, channel 1
ANA5	105			
ANA6	106			
ANA7	107			
V _{REFH}	113	Input	Input	V _{REFH} — Analog reference voltage high. V _{REFH} must be less than or equal to V _{DDA_ADC} .
V _{REFP}	112	I/O	I/O	V _{REFP} , V _{REFMID} & V _{REFN} — Internal pins for voltage
V _{REFMID}	111			reference which are brought off-chip so they can be bypassed. Connect to a $0.1\mu F$ low ESR capacitor.
V _{REFN}	110			
V _{REFLO}	109	Input	Input	V_{REFLO} — Analog reference voltage low. This should normally be connected to a low-noise V _{SSA} .

	1			1
Signal Name	Pin No.	Туре	State During Reset	Signal Description
ANB0	116	Input	Input	ANB0 - 3 — Analog inputs to ADC B, channel 0
ANB1	117			
ANB2	118			
ANB3	119			
ANB4	120	Input	Input	ANB4 - 7 — Analog inputs to ADC B, channel 1
ANB5	121			
ANB6	122			
ANB7	123			
Temp_Sense	108	Output	Output	Temp Sense Diode — This signal connects to an on-chip diode that can be connected to one of the ADC inputs and used to monitor the temperature of the die. Must be bypassed with a 0.01 μ F capacitor.
CAN_RX	143	Schmitt Input	Input	CAN Receive Data — This is the CAN input. This pin has an internal pull-up resistor. To deactivate the internal pull-up resistor, set the CAN bit
				in the SIM_PUDR register.
CAN_TX	142	Open Drain Output	Output	CAN Transmit Data — CAN output
TC0 (GPIOE8)	133	Schmitt Input/	Input	TC0 — Timer C Channel 0 and 1
TC1 (GPIOE9)	135	Output Schmitt Input/ Outpu		 Port E GPIO — These GPIO pins can be individually programmed as input or output pins. At reset, these pins default to Timer functionality. To deactivate the internal pull-up resistor, clear the appropriate bit of the GPIOE_PUR register.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
TD0 (GPIOE10)	129	Schmitt Input/ Output	Input	TD0 and TD1 — Timer D Channels 0, 1, 2 and 3
TD1 (GPIOE11)	130	Schmitt Input/		Port E GPIO — These GPIO pins can be individually
TD2 (GPIOE12)	131	Output		programmed as input or output pins. At reset, these pins default to Timer functionality.
TD3 (GPIOE13)	132			To deactivate the internal pull-up resistor, clear the appropriate bit of the GPIOE_PUR register. See Section 6.5.6 for details.
IRQA	65	Schmitt Input	Input	External Interrupt Request A and B — The IRQA and
IRQB	66	nput		IRQB inputs are asynchronous external interrupt requests during Stop and Wait mode operation. During other operating modes, they are synchronized external interrupt requests, which indicate an external device is requesting service. They can be programmed to be level-sensitive or negative-edge-triggered. To deactivate the internal pull-up resistor, set the IRQ bit in the SIM_PUDR register. See Section 6.5.6 for details.
RESET	98	Schmitt Input	Input	 Reset — This input is a direct hardware reset on the processor. When RESET is asserted low, the device is initialized and placed in the reset state. A Schmitt trigger input is used for noise immunity. When the RESET pin is deasserted, the initial chip operating mode is latched from the EXTBOOT pin. The internal reset signal will be deasserted synchronous with the internal clocks after a fixed number of internal clocks. To ensure complete hardware reset, RESET and TRST should be asserted together. The only exception occurs in a debugging environment when a hardware device reset is required and the JTAG/EOnCE module must not be reset. In this case, assert RESET but do not assert TRST. Note: The internal Power-On Reset will assert on initial power-up. To deactivate the internal pull-up resistor, set the RESET bit in the SIM_PUDR register. See Section 6.5.6 for details.
RSTO	97	Output	Output	Reset Output — This output reflects the internal reset state of the chip.

Signal Name	Pin No.	Туре	State During Reset	Signal Description
ЕХТВООТ	124	Schmitt Input	Input	 External Boot — This input is tied to V_{DD} to force the device to boot from off-chip memory (assuming that the on-chip Flash memory is not in a secure state). Otherwise, it is tied to ground. For details, see Table 4-4. Note: When this pin is tied low, the customer boot software should disable the internal pull-up resistor by setting the XBOOT bit of the SIM_PUDR; see Section 6.5.6.
EMI_MODE	159	Schmitt Input	Input	 External Memory Mode — This input is tied to V_{DD} in order to enable an extra four address lines, for a total of 20 address lines out of reset. This function is also affected by EXTBOOT and the Flash security mode. For details, see Table 4-4. If a 20-bit address bus is not desired, then this pin is tied to ground. Note: When this pin is tied low, the customer boot software should disable the internal pull-up resistor by setting the EMI_MODE bit of the SIM_PUDR; see Section 6.5.6.

Part 3 On-Chip Clock Synthesis (OCCS)

3.1 Introduction

Refer to the OCCS chapter of the **56F8300 Peripheral User Manual** for a full description of the OCCS. The material contained here identifies the specific features of the OCCS design that apply to the 56F8357 part. **Figure 3-1** shows the specific OCCS block diagram to reference from the OCCS chapter of the **DSP56F8300 Peripheral User Manual**.

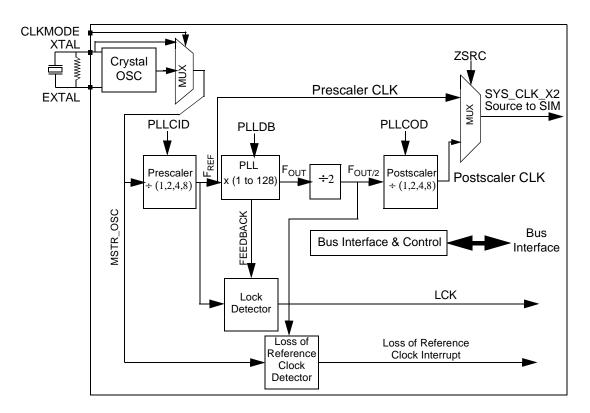
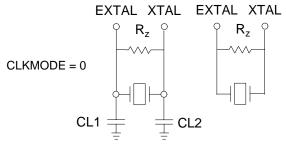


Figure 3-1 OCCS Block Diagram


3.2 External Clock Operation

The 56F8357 system clock can be derived from an external crystal, ceramic resonator, or an external system clock signal. To generate a reference frequency using the internal oscillator, a reference crystal or ceramic resonator must be connected between the EXTAL and XTAL pins.

3.2.1 Crystal Oscillator

The internal oscillator is also designed to interface with a parallel-resonant crystal resonator in the frequency range specified for the external crystal in **Table 10-14**. A recommended crystal oscillator circuit is shown in **Figure 3-2**. Follow the crystal supplier's recommendations when selecting a crystal, since crystal parameters determine the component values required to provide maximum stability and reliable start-up. The crystal and associated components should be mounted as close as possible to the EXTAL and XTAL pins to minimize output distortion and start-up stabilization time.

Crystal Frequency = 4 - 8MHz (optimized for 8MHz)

Sample External Crystal Parameters: $R_z = 750 \text{ K}\Omega$

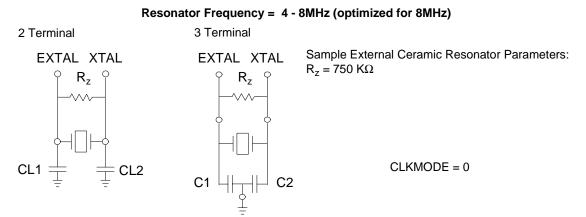

Note: If the operating temperature range is limited to below 85° C (105°C junction), then R_z = 10 Meg Ω

Figure 3-2 Connecting to a Crystal Oscillator

Note: The OCCS_COHL bit should be set to 1 when a crystal oscillator is used. The reset condition on the OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed in Section 5 of the **56F8300 Peripheral User Manual**.

3.2.2 Ceramic Resonator (Default)

It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system design can tolerate the reduced signal integrity. A typical ceramic resonator circuit is shown in **Figure 3-3**. Refer to supplier's recommendations when selecting a ceramic resonator and associated components. The resonator and components should be mounted as close as possible to the EXTAL and XTAL pins.

Figure 3-3 Connecting a Ceramic Resonator

Note: The OCCS_COHL bit must set to 0 when a ceramic resonator is used. The reset condition on the OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed in Section 5 of the **56F8300 Peripheral User Manual**.

3.2.3 External Clock Source

The recommended method of connecting an external clock is given in **Figure 3-4**. The external clock source is connected to XTAL and the EXTAL pin is grounded.

56F8357				
XT	AL	EXTAL		
	ernal ock	V _{SS}		

Note: When using an external clocking source with this configuration, the input "CLKMODE" should be high and the COHL bit in the OSCTL register should be set to 1.

Figure 3-4 Connecting an External Clock Signal

3.3 Registers

When referring to the register definitions for the OCCS in the **56F8300 Peripheral User Manual**, use the register definitions **without** the internal Relaxation Oscillator, since the 56F8357 does NOT contain this oscillator.

Part 4 Memory Operating Modes (MEM)

4.1 Introduction

The 56F8357 device is a 16-bit motor-control chip based on the 56800E core. It uses a Harvard-style architecture with two independent memory spaces for data and program. On-chip RAM and Flash memory are used in both data.

This chapter provides memory maps for:

- Program Address Space including the Interrupt Vector Table
- Data Address Space including the EOnCE Memory and Peripheral Memory Maps

On-chip memory sizes for each device are summarized in **Table 4-1**. Flash memories' restrictions are identified in the "Use Restrictions" column of **Table 4-1**.

On-Chip Memory 56F8357		Use Restrictions	
Program Flash	256KB	Erase/Program via Flash interface unit and word writes to CDBW	
Data Flash	8KB	Erase/Program via Flash interface unit and word writes to CDBW. Data Flash can be read via one of CDBR or XDB2, but not both simultaneously	
Program RAM	4KB	None	
Data RAM	16KB	None	
Program Boot Flash	16KB	Erase/Program via Flash Interface unit and word to CDWB	

Table 4-1	Chip	Memory	/ Configurations
-----------	------	--------	------------------

4.2 Program Map

The operating mode control bits (MA and MB) in the Operating Mode Register (OMR) control the Program memory map. At reset, these bits are set as indicated in **Table 4-2**. **Table 4-4** shows the memory map configurations that are possible at reset. After reset, the OMR MA bit can be changed and will have an effect on the P-space memory map, as shown in **Table 4-3**. Changing the OMR MB bit will have no effect

OMR MB = Flash Secured State ^{1, 2}	OMR MA = EXTBOOT Pin	Chip Operating Mode	
0	0	Mode 0 – Internal Boot; EMI is configured to use 16 address lines; Flash Memory is secured; external P-space is not allowed; the EOnCE is disabled	
0	1	Not valid; cannot boot externally if the Flash is secured and will actually configure to 00 state	
1	0	Mode 0 – Internal Boot; EMI is configured to use 16 address lines	
1	1	Mode 1 – External Boot; Flash Memory is not secured; EMI configuration determined by the state of the EMI_MODE bit	

Table 4-2 OMR	MA/MB	Value at	Reset
---------------	-------	----------	-------

1. This bit is only configured at reset. If the Flash secured state changes, this will not be reflected in MB until the next reset.

2. Changing MB in software will not affect Flash memory security.

Table 4-3 Changing OMR MA Value During Norma	I Operation
--	-------------

OMR MA	Chip Operating Mode		
0	Use internal P-space memory map configuration		
1	Use external P-space memory map configuration – If MB = 0 at reset, changing this bit has no effect.		

The 56F8357's external memory interface (EMI) can operate much like the 56F80x family's EMI, or it can be operated in a mode similar to that used on other products in the 56800E family. Initially, CS0 and CS1 are configured as PS and DS, in a mode compatible with earlier 56800 devices.

Eighteen address lines are required to shadow the first 192K of internal program space when booting externally for development purposes. Therefore, the entire complement of on-chip memory cannot be accessed using a 16-bit 56800-compatible address bus. To address this situation, the EMI_MODE bit can be used to configure four GPIO pins as Address[19:16] upon reset (Software reconfiguration of the highest address lines [A20-23] is required if the full address range is to be used.)

The EMI_MODE bit also affects the reset vector address, as provided in **Table 4-4.** Additional pins must be configured as address or chip select signals to access addresses at P:\$10 and above.

	Mode 0 (MA = 0)	Mode 1 ¹	(MA = 1)	
Begin/End	Internal Boot	External Boot		
Address	Internal Boot 16-Bit External Address Bus	EMI_MODE = 0 ^{2,3} 16-Bit External Address Bus	EMI_MODE = 1 ⁴ 20-Bit External Address Bus	
P:\$1F FFFF P:\$10 0000	External Program Memory ⁵	External Program Memory ⁵	External Program Memory ⁵	
P:\$0F FFFF P:\$03 0000			External Program RAM	
P:\$02 FFFF P:\$02 F800	On-Chip Pr 4I			
P:\$02 F7FF P:\$02 2000	Rese 116			
P:\$02 1FFF P:\$02 0000	Boot Flash 16KB COP Reset Address = 02 0002 Boot Location = 02 0000	Boot Flash 16KB (Not Used for Boot in this Mode)	COP Reset Address = $02\ 0002^6$ Boot Location = $02\ 0000^6$	
P:\$01 FFFF P:\$01 0000	Internal Program Flash 256KB	Internal Program Flash ⁷ 128KB		
P:\$00 FFFF P:\$00 0000		External Program RAM COP Reset Address = 00 0002 Boot Location = 00 0000		

Table 4-4 Program Memory Map at Reset

1. If Flash Security Mode is enabled EXTBOOT Mode 1 cannot be used. See Security Features, Part 7.

2. This mode provides maximum compatibility with 56F80x parts while operating externally.

3. "EMI_MODE =0" when EMI_MODE pin is tied to ground at boot up.

4. "EMI_MODE =1" when EMI_MODE pin is tied to V_{DD} at boot up.

5. Not accessible in reset configuration since the address is above P:\$00 FFFF. The higher bit address/GPIO (and/or chip selects) pins must be reconfigured before this external memory is accessible.

6. Booting from this external address allows prototyping of the internal Boot Flash.

7. The internal Program Flash is relocated in this mode making it accessible.

4.3 Interrupt Vector Table

Table 4-5 provides the reset and interrupt priority structure, including on-chip peripherals. The table is organized with higher-priority vectors at the top and lower-priority interrupts lower in the table. The priority of an interrupt can be assigned to different levels, as indicated, allowing some control over interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For a selected priority level, the lowest vector number has the highest priority.

The location of the vector table is determined by the Vector Base Address (VBA) register. Please see Section **5.6.11** for the reset value of the VBA.

In some configurations, the reset address and COP reset address will correspond to vector 0 and 1 of the interrupt vector table. In these instances, the first two locations in the vector table must contain branch or JMP instructions. All other entries must contain JSR instructions.

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function
				Reserved for Reset Overlay ²
				Reserved for COP Reset Overlay ²
core	2	3	P:\$04	Illegal Instruction
core	3	3	P:\$06	SW Interrupt 3
core	4	3	P:\$08	HW Stack Overflow
core	5	3	P:\$0A	Misaligned Long Word Access
core	6	1-3	P:\$0C	OnCE Step Counter
core	7	1-3	P:\$0E	OnCE Breakpoint Unit 0
				Reserved
core	9	1-3	P:\$12	OnCE Trace Buffer
core	10	1-3	P:\$14	OnCE Transmit Register Empty
core	11	1-3	P:\$16	OnCE Receive Register Full
				Reserved
				Reserved
core	14	2	P:\$1C	SW Interrupt 2
core	15	1	P:\$1E	SW Interrupt 1
core	16	0	P:\$20	SW Interrupt 0
core	17	0-2	P:\$22	IRQA
core	18	0-2	P:\$24	IRQB
				Reserved
LVI	20	0-2	P:\$28	Low Voltage Detector (power sense)
PLL	21	0-2	P:\$2A	PLL
FM	22	0-2	P:\$2C	FM Error Interrupt
FM	23	0-2	P:\$2E	FM Command Complete
FM	24	0-2	P:\$30	FM Command, data and address Buffers Empty
				Reserved
FLEXCAN	26	0-2	P:\$34	FLEXCAN Bus Off
FLEXCAN	27	0-2	P:\$36	FLEXCAN Error
FLEXCAN	28	0-2	P:\$38	FLEXCAN Wake Up
FLEXCAN	29	0-2	P:\$3A	FLEXCAN Message Buffer Interrupt
GPIOF	30	0-2	P:\$3C	GPIO F
GPIOE	31	0-2	P:\$3E	GPIO E
GPIOD	32	0-2	P:\$40	GPIO D
GPIOC	33	0-2	P:\$42	GPIO C
GPIOB	34	0-2	P:\$44	GPIO B
GPIOA	35	0-2	P:\$46	GPIO A
				Reserved
				Reserved

Table 4-5 Interrupt Vector Table Contents¹

Table 4-5 Interrupt Vector Table Content	s ¹ (Continued)
--	----------------------------

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function
SPI1	38	0-2	P:\$4C	SPI 1 Receiver Full
SPI1	39	0-2	P:\$4E	SPI 1 Transmitter Empty
SPI0	40	0-2	P:\$50	SPI 0 Receiver Full
SPI0	41	0-2	P:\$52	SPI 0 Transmitter Empty
SCI1	42	0-2	P:\$54	SCI 1 Transmitter Empty
SCI1	43	0-2	P:\$56	SCI 1Transmitter Idle
				Reserved
SCI1	45	0-2	P:\$5A	SCI 1 Receiver Error
SCI1	46	0-2	P:\$5C	SCI 1 Receiver Full
DEC1	47	0-2	P:\$5E	Quadrature Decoder #1 Home Switch or Watchdog
DEC1	48	0-2	P:\$60	Quadrature Decoder #1 INDEX Pulse
DEC0	49	0-2	P:\$62	Quadrature Decoder #0 Home Switch or Watchdog
DEC0	50	0-2	P:\$64	Quadrature Decoder #0 INDEX Pulse
				Reserved
TMRD	52	0-2	P:\$68	Timer D Channel 0
TMRD	53	0-2	P:\$6A	Timer D Channel 1
TMRD	54	0-2	P:\$6C	Timer D Channel 2
TMRD	55	0-2	P:\$6E	Timer D Channel 3
TMRC	56	0-2	P:\$70	Timer C Channel 0
TMRC	57	0-2	P:\$72	Timer C Channel 1
TMRC	58	0-2	P:\$74	Timer C Channel 2
TMRC	59	0-2	P:\$76	Timer C Channel 3
TMRB	60	0-2	P:\$78	Timer B Channel 0
TMRB	61	0-2	P:\$7A	Timer B Channel 1
TMRB	62	0-2	P:\$7C	Timer B Channel 2
TMRB	63	0-2	P:\$7E	Timer B Channel 3
TMRA	64	0-2	P:\$80	Timer A Channel 0
TMRA	65	0-2	P:\$82	Timer A Channel 1
TMRA	66	0-2	P:\$84	Timer A Channel 2
TMRA	67	0-2	P:\$86	Timer A Channel 3
SCI0	68	0-2	P:\$88	SCI 0 Transmitter Empty
SCI0	69	0-2	P:\$8A	SCI 0 Transmitter Idle
				Reserved
SCI0	71	0-2	P:\$8E	SCI 0 Receiver Error
SCI0	72	0-2	P:\$90	SCI 0 Receiver Full
ADCB	73	0-2	P:\$92	ADC B Conversion Compete
ADCA	74	0-2	P:\$94	ADC A Conversion Complete
ADCB	75	0-2	P:\$96	ADC B Zero Crossing of Limit Error
ADCA	76	0-2	P:\$98	ADC A Zero Crossing of Limit Error
PWMB	77	0-2	P:\$9A	Reload PWM B

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function
PWMA	78	0-2	P:\$9C	Reload PWM A
PWMB	79	0-2	P:\$9E	PWM B Fault
PWMA	80	0-2	P:\$A0	PWM A Fault
core	81	- 1	P:\$A2	SW Interrupt LP

 Table 4-5 Interrupt Vector Table Contents¹ (Continued)

1. Two words are allocated for each entry in the Vector table. This does not allow the full address range to be referenced from the Vector table, providing only 19 bits of address.

2. If the VBA is set to \$0200 (or VBA = 0000 for Mode 1, EMI_MODE = 0), the first two locations of the vector table are the chip reset addresses; therefore, these locations are not interrupt vectors.

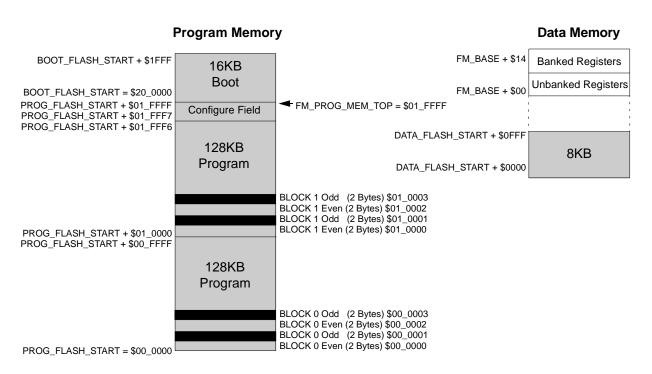
4.4 Data Map

Begin/End Address	$EX = 0^2$	EX = 1
X:\$FF FFFF X:\$FF 0000	EOnCE 256 locations allocated	EOnCE 256 locations allocated
X:\$FF FEFF X:\$01 0000	External Memory	External Memory
X:\$00 FFFF X:\$00 F000	On-Chip Peripherals 4096 location allocated	On-Chip Peripherals 4096 location allocated
X:\$00 EFFF X:\$00 3000	External Memory	External Memory
X:\$00 2FFF X:\$00 2000	On-Chip Data Flash 8KB	
X:\$00 1FFF X:\$00 0000	On-Chip Data RAM 16KB ³	

Table 4-6 Data Memory Map¹

1. All addresses are 16-bit Word addresses, not byte addresses.

2. In the Operation Mode Register (OMR).


3. The Data RAM is organized as a 2K x 32-bit memory to allow single-cycle, long-word operations.

4.5 Flash Memory Map

Figure 4-1 illustrates the Flash Memory (FM) map on the system bus.

The Flash Memory is divided into three functional blocks. The Program and boot memories reside on the Program Memory buses. They are controlled by one set of banked registers. Data Memory Flash resides on the Data Memory buses and is controlled separately, having its own set of banked registers.

The top nine words of the Program Memory Flash are treated as special memory locations. The content of these words is used to control the operation of the Flash Controller. Because these words are part of the Flash Memory content, their state is maintained during power down and reset. During chip initialization, the content of these memory locations is loaded into Flash Memory control registers, detailed in the Flash Memory chapter of the **DSP56F8300 Peripheral User Manual**. In the 56F8357, these configuration parameters are located between \$01_FFF7 and \$01_FFFF.

Figure 4-1 Flash Array Memory Maps

 Table 4-7 shows the page and sector sizes used within each Flash memory block on the chip.

	Flash Size	Sectors	Sector Size	Page Size
Program Flash	256KB	16	8K x 16 bits	512 x 16 bits
Data Flash	8KB	16	256 x 16 bits	256 x 16 bits
Boot Flash	16KB	4	2K x 16 bits	256 x 16 bits

Please see 56F8300 Peripheral User Manual for additional Flash information.

4.6 EOnCE Memory Map

Table 4-8 EOnCE Memory Map

Address	Register Acronym	Register Name
		Reserved
X:\$FF FF8A	OESCR	External Signal Control Register
		Reserved
X:\$FF FF8E	OBCNTR	Breakpoint Unit [0] Counter
		Reserved

Address	Register Acronym	Register Name		
X:\$FF FF90	OBMSK (32 bits)	Breakpoint 1 Unit [0] Mask Register		
X:\$FF FF91	—	Breakpoint 1 Unit [0] Mask Register		
X:\$FF FF92	OBAR2 (32 bits)	Breakpoint 2 Unit [0] Address Register		
X:\$FF FF93	_	Breakpoint 2 Unit [0] Address Register		
X:\$FF FF94	OBAR1 (24 bits)	Breakpoint 1 Unit [0] Address Register		
X:\$FF FF95	—	Breakpoint 1 Unit [0] Address Register		
X:\$FF FF96	OBCR (24 bits)	Breakpoint Unit [0] Control Register		
X:\$FF FF97	—	Breakpoint Unit [0] Control Register		
X:\$FF FF98	OTB (21-24 bits/stage)	Trace Buffer Register Stages		
X:\$FF FF99	—	Trace Buffer Register Stages		
X:\$FF FF9A	OTBPR (8 bits)	Trace Buffer Pointer Register		
X:\$FF FF9B	OTBCR	Trace Buffer Control Register		
X:\$FF FF9C	OBASE (8 bits)	Peripheral Base Address Register		
X:\$FF FF9D	OSR	Status Register		
X:\$FF FF9E	OSCNTR (24 bits)	Instruction Step Counter		
X:\$FF FF9F	—	Instruction Step Counter		
:X:\$FF FFA0	OCR (bits)	Control Register		
		Reserved		
X:\$FF FFFC	OCLSR (8 bits)	Core Lock/Unlock Status Register		
X:\$FF FFFD	OTXRXSR (8 bits)	Transmit and Receive Status and Control Register		
X:\$FF FFFE	OTX/ORX (32 bits)	Transmit Register / Receive Register		
X:\$FF FFF	OTX1/ORX1	Transmit Register Upper Word Receive Register Upper Word		

Table 4-8 EOnCE Memory Map (Continued)

4.7 Peripheral Memory Mapped Registers

On-chip peripheral registers are part of the data memory map on the 56800E series. These locations may be accessed with the same addressing modes used for ordinary data memory, except all peripheral registers should be read/written using word accesses only.

Table 4-9 summarizes base addresses for the set of peripherals on the 56F8357 device. Peripherals are listed in order of the base address.

The following tables list all of the peripheral registers required to control or access the peripherals.

Peripheral	Prefix	Base Address	Table Number
External Memory Interface	EMI	X:\$00 F020	4-10
Timer A	TMRA	X:\$00 F040	4-11
Timer B	TMRB	X:\$00 F080	4-12
Timer C	TMRC	X:\$00 F0C0	4-13
Timer D	TMRD	X:\$00 F100	4-14
PWM A	PWMA	X:\$00 F140	4-15
PWM B	PWMB	X:\$00 F160	4-16
Quadrature Decoder 0	DEC0	X:\$00 F180	4-17
Quadrature Decoder 1	DEC1	X:\$00 F190	4-18
ITCN	ITCN	X:\$00 F1A0	4-19
ADC A	ADCA	X:\$00 F200	4-20
ADC B	ADCB	X:\$00 F240	4-21
Temperature Sensor	TSENSOR	X:\$00 F270	4-22
SCI #0	SCI0	X:\$00 F280	4-23
SCI #1	SCI1	X:\$00 F290	4-24
SPI #0	SPI0	X:\$00 F2A0	4-25
SPI #1	SPI1	X:\$00 F2B0	4-26
COP	COP	X:\$00 F2C0	4-27
PLL, OSC	CLKGEN	X:\$00 F2D0	4-28
GPIO Port A	GPIOA	X:\$00 F2E0	4-29
GPIO Port B	GPIOB	X:\$00 F300	4-30
GPIO Port C	GPIOC	X:\$00 F310	4-31
GPIO Port D	GPIOD	X:\$00 F320	4-32
GPIO Port E	GPIOE	X:\$00 F330	4-33
GPIO Port F	GPIOF	X:\$00 F340	4-34
SIM	SIM	X:\$00 F350	4-35
Power Supervisor	LVI	X:\$00 F360	4-36
FM	FM	X:\$00 F400	4-37
FlexCAN	FC	X:\$00 F800	4-38

Table 4-9 Data Memory Peripheral Base Address Map Summary

Table 4-10 External Memory Integration Registers Address Map (EMI_BASE = \$00F020)

Register Acronym Address Offset Regis		Register Description	Reset Value
CSBAR 0	\$0	Chip Select Base Address Register 0	
CSBAR 1	\$1	Chip Select Base Address Register 1	
CSBAR 2	\$2	Chip Select Base Address Register 2	
CSBAR 3	\$3	Chip Select Base Address Register 3	
CSBAR 4	\$4	Chip Select Base Address Register 4	
CSBAR 5	\$5	Chip Select Base Address Register 5	
CSBAR 6	\$6	Chip Select Base Address Register 6	
CSBAR 7	\$7	Chip Select Base Address Register 7	
CSOR 0	\$8	Chip Select Option Register 0	0x5FCB programmed for chip select for program space, word wide, read and write, 11 waits
CSOR 1	\$9	Chip Select Option Register 1	0x5FAB programmed for chip select for data space, word wide, read and write, 11 waits
CSOR 2	\$A	Chip Select Option Register 2	
CSOR 3	\$B	Chip Select Option Register 3	
CSOR 4	\$C	Chip Select Option Register 4	
CSOR 5	\$D	Chip Select Option Register 5	
CSOR 6	\$E	Chip Select Option Register 6	
CSOR 7	\$F	Chip Select Option Register 7	
CSTC 0	\$10	Chip Select Timing Control Register 0	
CSTC 1	\$11	Chip Select Timing Control Register 1	
CSTC 2	\$12	Chip Select Timing Control Register 2	
CSTC 3	\$13	Chip Select Timing Control Register 3	
CSTC 4	\$14	Chip Select Timing Control Register 4	
CSTC 5	\$15	Chip Select Timing Control Register 5	
CSTC 6	\$16	Chip Select Timing Control Register 6	
CSTC 7	\$17	Chip Select Timing Control Register 7	
BCR	\$18	Bus Control Register	0x016B sets the default number of wait states to 11 for both read and write accesses

Register Acronym	Address Offset	Register Description
TMRA0_CMP1	\$0	Compare Register 1
TMRA0_CMP2	\$0	Compare Register 2
TMRA0_CMP2	\$1	Capture Register
	\$3	Load Register
TMRA0_HOLD	\$4	Hold Register
TMRA0_CNTR	\$5	Counter Register
TMRA0_CTRL	\$6	Control Register
TMRA0_SCR	\$7	Status and Control Register
TMRA0_CMPLD1	\$8	Comparator Load Register 1
TMRA0_CMPLD2	\$9	Comparator Load Register 2
TMRA0_COMSCR	\$A	Comparator Status and Control Register
		Reserved
TMRA1_CMP1	\$10	Compare Register 1
TMRA1_CMP2	\$11	Compare Register 2
TMRA1_CAP	\$12	Capture Register
TMRA1_LOAD	\$13	Load Register
TMRA1_HOLD	\$14	Hold Register
TMRA1_CNTR	\$15 Counter Register	
TMRA1_CTRL	\$16 Control Register	
TMRA1_SCR	\$17	Status and Control Register
TMRA1_CMPLD1	\$18	Comparator Load Register 1
TMRA1_CMPLD2	\$19	Comparator Load Register 2
TMRA1_COMSCR	\$1A	Comparator Status and Control Register
		Reserved
TMRA2_CMP1	\$20	Compare Register 1
TMRA2_CMP2	\$21	Compare Register 2
TMRA2_CAP	\$22	Capture Register
TMRA2_LOAD	\$23	Load Register
TMRA2_HOLD	\$24	Hold Register
TMRA2_CNTR	\$25 Counter Register	
TMRA2_CTRL	\$26	Control Register
TMRA2_SCR	\$27	Status and Control Register
TMRA2_CMPLD1	\$28	Comparator Load Register 1
TMRA2_CMPLD2	\$29	Comparator Load Register 2

Table 4-11 Quad Timer A Registers Address Map (TMRA_BASE = \$00F040)

Table 4-11 Quad Timer A Registers Address Map (TMRA_BASE = \$00F040) (Continued)

Register Acronym	Address Offset	Register Description
TMRA2_COMSCR	\$2A	Comparator Status and Control Register
		Reserved
TMRA3_CMP1	\$30	Compare Register 1
TMRA3_CMP2	\$31	Compare Register 2
TMRA3_CAP	\$32	Capture Register
TMRA3_LOAD	\$33	Load Register
TMRA3_HOLD	\$34	Hold Register
TMRA3_CNTR	\$35	Counter Register
TMRA3_CTRL	\$36	Control Register
TMRA3_SCR	\$37	Status and Control Register
TMRA3_CMPLD1	\$38	Comparator Load Register 1
TMRA3_CMPLD2	\$39	Comparator Load Register 2
TMRA3_COMSCR	\$3A	Comparator Status and Control Register

Table 4-12 Quad Timer B Registers Address Map (TMRB_BASE = \$00F080)

Register Acronym	Address Offset	Register Description
TMRB0_CMP1	\$0	Compare Register 1
TMRB0_CMP2	\$1	Compare Register 2
TMRB0_CAP	\$2	Capture Register
TMRB0_LOAD	\$3	Load Register
TMRB0_HOLD	\$4	Hold Register
TMRB0_CNTR	\$5	Counter Register
TMRB0_CTRL	\$6	Control Register
TMRB0_SCR	\$7	Status and Control Register
TMRB0_CMPLD1	\$8	Comparator Load Register 1
TMRB0_CMPLD2	\$9	Comparator Load Register 2
TMRB0_COMSCR	\$A	Comparator Status and Control Register
		Reserved
TMRB1_CMP1	\$10	Compare Register 1
TMRB1_CMP2	\$11	Compare Register 2
TMRB1_CAP	\$12	Capture Register
TMRB1_LOAD	\$13	Load Register
TMRB1_HOLD	\$14	Hold Register
TMRB1_CNTR	\$15	Counter Register

Table 4-12 Quad Timer B Registers Address Map (TMRB_BASE = \$00F080) (Continued)

Register Acronym	Address Offset	Register Description
TMRB1_CTRL	\$16	Control Register
TMRB1_SCR	\$17	Status and Control Register
TMRB1_CMPLD1	\$18	Comparator Load Register 1
TMRB1_CMPLD2	\$19	Comparator Load Register 2
TMRB1_COMSCR	\$1A	Comparator Status and Control Register
		Reserved
TMRB2_CMP1	\$20	Compare Register 1
TMRB2_CMP2	\$21	Compare Register 2
TMRB2_CAP	\$22	Capture Register
TMRB2_LOAD	\$23	Load Register
TMRB2_HOLD	\$24	Hold Register
TMRB2_CNTR	\$25	Counter Register
TMRB2_CTRL	\$26	Control Register
TMRB2_SCR	\$27	Status and Control Register
TMRB2_CMPLD1	\$28	Comparator Load Register 1
TMRB2_CMPLD2	\$29	Comparator Load Register 2
TMRB2_COMSCR	\$2A	Comparator Status and Control Register
		Reserved
TMRB3_CMP1	\$30	Compare Register 1
TMRB3_CMP2	\$31	Compare Register 2
TMRB3_CAP	\$32	Capture Register
TMRB3_LOAD	\$33	Load Register
TMRB3_HOLD	\$34	Hold Register
TMRB3_CNTR	\$35	Counter Register
TMRB3_CTRL	\$36	Control Register
TMRB3_SCR	\$37	Status and Control Register
TMRB3_CMPLD1	\$38	Comparator Load Register 1
TMRB3_CMPLD2	\$39	Comparator Load Register 2
TMRB3_COMSCR	\$3A	Comparator Status and Control Register

Register Acronym	Address Offset	Register Description
TMRC0_CMP1	\$0	Compare Register 1
TMRC0_CMP2	\$1	Compare Register 2
TMRC0_CAP	\$2	Capture Register
TMRC0_LOAD	\$3	Load Register
TMRC0_HOLD	\$4	Hold Register
TMRC0_CNTR	\$5	Counter Register
TMRC0_CTRL	\$6	Control Register
TMRC0_SCR	\$7	Status and Control Register
TMRC0_CMPLD1	\$8	Comparator Load Register 1
TMRC0_CMPLD2	\$9	Comparator Load Register 2
TMRC0_COMSCR	\$A	Comparator Status and Control Register
		Reserved
TMRC1_CMP1	\$10	Compare Register 1
TMRC1_CMP2	\$11	Compare Register 2
TMRC1_CAP	\$12	Capture Register
TMRC1_LOAD	\$13	Load Register
TMRC1_HOLD	\$14	Hold Register
TMRC1_CNTR	\$15	Counter Register
TMRC1_CTRL	\$16	Control Register
TMRC1_SCR	\$17	Status and Control Register
TMRC1_CMPLD1	\$18	Comparator Load Register 1
TMRC1_CMPLD2	\$19	Comparator Load Register 2
TMRC1_COMSCR	\$1A	Comparator Status and Control Register
		Reserved
TMRC2_CMP1	\$20	Compare Register 1
TMRC2_CMP2	\$21	Compare Register 2
TMRC2_CAP	\$22	Capture Register
TMRC2_LOAD	\$23	Load Register
TMRC2_HOLD	\$24	Hold Register
TMRC2_CNTR	\$25	Counter Register
TMRC2_CTRL	\$26	Control Register
TMRC2_SCR	\$27	Status and Control Register
TMRC2_CMPLD1	\$28	Comparator Load Register 1
TMRC2_CMPLD2	\$29	Comparator Load Register 2

Table 4-13 Quad Timer C Registers Address Map (TMRC_BASE = \$00F0C0)

Table 4-13 Quad Timer C Registers Address Map (TMRC_BASE = \$00F0C0) (Continued)

Register Acronym	Address Offset	Register Description
TMRC2_COMSCR	\$2A	Comparator Status and Control Register
		Reserved
TMRC3_CMP1	\$30	Compare Register 1
TMRC3_CMP2	\$31	Compare Register 2
TMRC3_CAP	\$32	Capture Register
TMRC3_LOAD	\$33	Load Register
TMRC3_HOLD	\$34	Hold Register
TMRC3_CNTR	\$35	Counter Register
TMRC3_CTRL	\$36	Control Register
TMRC3_SCR	\$37	Status and Control Register
TMRC3_CMPLD1	\$38	Comparator Load Register 1
TMRC3_CMPLD2	\$39	Comparator Load Register 2
TMRC3_COMSCR	\$3A	Comparator Status and Control Register

Table 4-14 Quad Timer D Registers Address Map (TMRD_BASE = \$00F100)

Register Acronym	Address Offset	Register Description
TMRD0_CMP1	\$0	Compare Register 1
TMRD0_CMP2	\$1	Compare Register 2
TMRD0_CAP	\$2	Capture Register
TMRD0_LOAD	\$3	Load Register
TMRD0_HOLD	\$4	Hold Register
TMRD0_CNTR	\$5	Counter Register
TMRD0_CTRL	\$6	Control Register
TMRD0_SCR	\$7	Status and Control Register
TMRD0_CMPLD1	\$8	Comparator Load Register 1
TMRD0_CMPLD2	\$9	Comparator Load Register 2
TMRD0_COMSCR	\$A	Comparator Status and Control Register
		Reserved
TMRD1_CMP1	\$10	Compare Register 1
TMRD1_CMP2	\$11	Compare Register 2
TMRD1_CAP	\$12	Capture Register
TMRD1_LOAD	\$13	Load Register
TMRD1_HOLD	\$14	Hold Register
TMRD1_CNTR	\$15	Counter Register

Table 4-14 Quad Timer D Registers Address Map (TMRD_BASE = \$00F100) (Continued)

Register Acronym	Address Offset	Register Description
TMRD1_CTRL	\$16	Control Register
TMRD1_SCR	\$17	Status and Control Register
TMRD1_CMPLD1	\$18	Comparator Load Register 1
TMRD1_CMPLD2	\$19	Comparator Load Register 2
TMRD1_COMSCR	\$1A	Comparator Status and Control Register
		Reserved
TMRD2_CMP1	\$20	Compare Register 1
TMRD2_CMP2	\$21	Compare Register 2
TMRD2_CAP	\$22	Capture Register
TMRD2_LOAD	\$23	Load Register
TMRD2_HOLD	\$24	Hold Register
TMRD2_CNTR	\$25	Counter Register
TMRD2_CTRL	\$26	Control Register
TMRD2_SCR	\$27	Status and Control Register
TMRD2_CMPLD1	\$28	Comparator Load Register 1
TMRD2_CMPLD2	\$29	Comparator Load Register 2
TMRD2_COMSCR	\$2A	Comparator Status and Control Register
		Reserved
TMRD3_CMP1	\$30	Compare Register 1
TMRD3_CMP2	\$31	Compare Register 2
TMRD3_CAP	\$32	Capture Register
TMRD3_LOAD	\$33	Load Register
TMRD3_HOLD	\$34	Hold Register
TMRD3_CNTR	\$35	Counter Register
TMRD3_CTRL	\$36	Control Register
TMRD3_SCR	\$37	Status and Control Register
TMRD3_CMPLD1	\$38	Comparator Load Register 1
TMRD3_CMPLD2	\$39	Comparator Load Register 2
TMRD3_COMSCR	\$3A	Comparator Status and Control Register

Register Acronym	Address Offset	Register Description
PWMA_PMCTL	\$0	Control Register
PWMA_PMFCTL	\$1	Fault Control Register
PWMA_PMFSA	\$2	Fault Status Acknowledge Register
PWMA_PMOUT	\$3	Output Control Register
PWMA_PMCNT	\$4	Counter Register
PWMA_PWMCM	\$5	Counter Modulo Register
PWMA_PWMVAL0	\$6	Value Register 0
PWMA_PWMVAL1	\$7	Value Register 1
PWMA_PWMVAL2	\$8	Value Register 2
PWMA_PWMVAL3	\$9	Value Register 3
PWMA_PWMVAL4	\$A	Value Register 4
PWMA_PWMVAL5	\$B	Value Register 5
PWMA_PMDEADTM	\$C	Dead Time Register
PWMA_PMDISMAP1	\$D	Disable Mapping Register 1
PWMA_PMDISMAP2	\$E	Disable Mapping Register 2
PWMA_PMCFG	\$F	Configure Register
PWMA_PMCCR	\$10	Channel Control Register
PWMA_PMPORT	\$11	Port Register
PWMA_PMICCR	\$12	PWM Internal Correction Control Register

Table 4-15 Pulse Width Modulator A Registers Address Map (PWMA_BASE = \$00F140)

Table 4-16 Pulse Width Modulator B Registers Address Map (PWMB_BASE = \$00F160)

Register Acronym	Address Offset	Register Description
PWMB_PMCTL	\$0	Control Register
PWMB_PMFCTL	\$1	Fault Control Register
PWMB_PMFSA	\$2	Fault Status Acknowledge Register
PWMB_PMOUT	\$3	Output Control Register
PWMB_PMCNT	\$4	Counter Register
PWMB_PWMCM	\$5	Counter Modulo Register
PWMB_PWMVAL0	\$6	Value Register 0
PWMB_PWMVAL1	\$7	Value Register 1
PWMB_PWMVAL2	\$8	Value Register 2
PWMB_PWMVAL3	\$9	Value Register 3

Table 4-16 Pulse Width Modulator B Registers Address Map (PWMB_BASE = \$00F160) (Continued)

Register Acronym	Address Offset	Register Description
PWMB_PWMVAL4	\$A	Value Register 4
PWMB_PWMVAL5	\$B	Value Register 5
PWMB_PMDEADTM	\$C	Dead Time Register
PWMB_PMDISMAP1	\$D	Disable Mapping Register 1
PWMB_PMDISMAP2	\$E	Disable Mapping Register 2
PWMB_PMCFG	\$F	Configure Register
PWMB_PMCCR	\$10	Channel Control Register
PWMB_PMPORT	\$11	Port Register
PWMB_PMICCR	\$12	PWM Internal Correction Control Register

Table 4-17 Quadrature Decoder 0 Registers Address Map (DEC0_BASE = \$00F180)

Register Acronym	Address Offset	Register Description
DEC0_DECCR	\$0	Decoder Control Register
DEC0_FIR	\$1	Filter Interval Register
DEC0_WTR	\$2	Watchdog Timeout Register
DEC0_POSD	\$3	Position Difference Counter Register
DEC0_POSDH	\$4	Position Difference Counter Hold Register
DEC0_REV	\$5	Revolution Counter Register
DEC0_REVH	\$6	Revolution Hold Register
DEC0_UPOS	\$7	Upper Position Counter Register
DEC0_LPOS	\$8	Lower Position Counter Register
DEC0_UPOSH	\$9	Upper Position Hold Register
DEC0_LPOSH	\$A	Lower Position Hold Register
DEC0_UIR	\$B	Upper Initialization Register
DEC0_LIR	\$C	Lower Initialization Register
DEC0_IMR	\$D	Input Monitor Register

Register Acronym	Address Offset	Register Description
DEC1_DECCR	\$0	Decoder Control Register
DEC1_FIR	\$1	Filter Interval Register
DEC1_WTR	\$2	Watchdog Timeout Register
DEC1_POSD	\$3	Position Difference Counter Register
DEC1_POSDH	\$4	Position Difference Counter Hold Register
DEC1_REV	\$5	Revolution Counter Register
DEC1_REVH	\$6	Revolution Hold Register
DEC1_UPOS	\$7	Upper Position Counter Register
DEC1_LPOS	\$8	Lower Position Counter Register
DEC1_UPOSH	\$9	Upper Position Hold Register
DEC1_LPOSH	\$A	Lower Position Hold Register
DEC1_UIR	\$B	Upper Initialization Register
DEC1_LIR	\$C	Lower Initialization Register
DEC1_IMR	\$D	Input Monitor Register

Table 4-18 Quadrature Decoder 1 Registers Address Map (DEC1_BASE = \$00F190)

Table 4-19 Interrupt Control Registers Address Map (ITCN_BASE = \$00F1A0)

Register Acronym	Address Offset	Register Description
IPR 0	\$0	Interrupt Priority Register 0
IPR 1	\$1	Interrupt Priority Register 1
IPR 2	\$2	Interrupt Priority Register 2
IPR 3	\$3	Interrupt Priority Register 3
IPR 4	\$4	Interrupt Priority Register 4
IPR 5	\$5	Interrupt Priority Register 5
IPR 6	\$6	Interrupt Priority Register 6
IPR 7	\$7	Interrupt Priority Register 7
IPR 8	\$8	Interrupt Priority Register 8
IPR 9	\$9	Interrupt Priority Register 9
VBA	\$A	Vector Base Address Register
FIM0	\$B	Fast Interrupt Match Register 0
FIVAL0	\$C	Fast Interrupt Vector Address Low 0 Register
FIVAH0	\$D	Fast Interrupt Vector Address High 0 Register
FIM1	\$E	Fast Interrupt Match Register 1
FIVAL1	\$F	Fast Interrupt Vector Address Low 1 Register

	-	
Register Acronym	Address Offset	Register Description
FIVAH1	\$10	Fast Interrupt Vector Address High 1 Register
IRQP 0	\$11	IRQ Pending Register 0
IRQP 1	\$12	IRQ Pending Register 1
IRQP 2	\$13	IRQ Pending Register 2
IRQP 3	\$14	IRQ Pending Register 3
IRQP 4	\$15	IRQ Pending Register 4
IRQP 5	\$16	IRQ Pending Register 5
		Reserved
ICTL	\$1D	Interrupt Control Register

Table 4-19 Interrupt Control Registers Address Map (ITCN_BASE = \$00F1A0) (Continued)

Table 4-20 Analog to Digital Converter Registers Address Map (ADCA_BASE = \$00F200)

Register Acronym	Address Offset	Register Description
ADCA_CR 1	\$0	Control Register 1
ADCA_CR 2	\$1	Control Register 2
ADCA_ZCC	\$2	Zero Crossing Control Register
ADCA_LST 1	\$3	Channel List Register 1
ADCA_LST 2	\$4	Channel List Register 2
ADCA_SDIS	\$5	Sample Disable Register
ADCA_STAT	\$6	Status Register
ADCA_LSTAT	\$7	Limit Status Register
ADCA_ZCSTAT	\$8	Zero Crossing Status Register
ADCA_RSLT 0	\$9	Result Register 0
ADCA_RSLT 1	\$A	Result Register 1
ADCA_RSLT 2	\$B	Result Register 2
ADCA_RSLT 3	\$C	Result Register 3
ADCA_RSLT 4	\$D	Result Register 4
ADCA_RSLT 5	\$E	Result Register 5
ADCA_RSLT 6	\$F	Result Register 6
ADCA_RSLT 7	\$10	Result Register 7
ADCA_LLMT 0	\$11	Low Limit Register 0
ADCA_LLMT 1	\$12	Low Limit Register 1
ADCA_LLMT 2	\$13	Low Limit Register 2
ADCA_LLMT 3	\$14	Low Limit Register 3

Register Acronym	Address Offset	Register Description
ADCA_LLMT 4	\$15	Low Limit Register 4
ADCA_LLMT 5	\$16	Low Limit Register 5
ADCA_LLMT 6	\$17	Low Limit Register 6
ADCA_LLMT 7	\$18	Low Limit Register 7
ADCA_HLMT 0	\$19	High Limit Register 0
ADCA_HLMT 1	\$1A	High Limit Register 1
ADCA_HLMT 2	\$1B	High Limit Register 2
ADCA_HLMT 3	\$1C	High Limit Register 3
ADCA_HLMT 4	\$1D	High Limit Register 4
ADCA_HLMT 5	\$1E	High Limit Register 5
ADCA_HLMT 6	\$1F	High Limit Register 6
ADCA_HLMT 7	\$20	High Limit Register 7
ADCA_OFS 0	\$21	Offset Register 0
ADCA_OFS 1	\$22	Offset Register 1
ADCA_OFS 2	\$23	Offset Register 2
ADCA_OFS 3	\$24	Offset Register 3
ADCA_OFS 4	\$25	Offset Register 4
ADCA_OFS 5	\$26	Offset Register 5
ADCA_OFS 6	\$27	Offset Register 6
ADCA_OFS 7	\$28	Offset Register 7
ADCA_POWER	\$29	Power Control Register
ADCA_CAL	\$2A	ADC Calibration Register

Table 4-20 Analog to Digital Converter Registers Address Map (ADCA_BASE = \$00F200) (Continued)

Table 4-21 Analog to Digital Converter Registers Address Map (ADCB_BASE = \$00F240)

Register Acronym	Address Offset	Register Description
ADCB_CR 1	\$O	Control Register 1
ADCB_CR 2	\$1	Control Register 2
ADCB_ZCC	\$2	Zero Crossing Control Register
ADCB_LST 1	\$3	Channel List Register 1
ADCB_LST 2	\$4	Channel List Register 2
ADCB_SDIS	\$5	Sample Disable Register
ADCB_STAT	\$6	Status Register
ADCB_LSTAT	\$7	Limit Status Register
ADCB_ZCSTAT	\$8	Zero Crossing Status Register

ADCB_RSLT 0\$9Result Register 0ADCB_RSLT 1\$AResult Register 1ADCB_RSLT 2\$BResult Register 2ADCB_RSLT 3\$CResult Register 3ADCB_RSLT 4\$DResult Register 4ADCB_RSLT 5\$EResult Register 6ADCB_RSLT 6\$FResult Register 7ADCB_LLMT 0\$11Low Limit Register 0ADCB_LLMT 1\$12Low Limit Register 3ADCB_LLMT 3\$14Low Limit Register 4ADCB_LLMT 4\$15Low Limit Register 4ADCB_LLMT 5\$16Low Limit Register 6ADCB_LLMT 7\$118Low Limit Register 7ADCB_LLMT 6\$17Low Limit Register 6ADCB_LLMT 7\$18Low Limit Register 6ADCB_LLMT 5\$16Low Limit Register 7ADCB_LLMT 6\$17Low Limit Register 7ADCB_LLMT 6\$17Low Limit Register 1ADCB_LLMT 7\$18Low Limit Register 1ADCB_HLMT 1\$14High Limit Register 1ADCB_HLMT 2\$18High Limit Register 3ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 3ADCB_HLMT 5\$1EHigh Limit Register 4ADCB_HLMT 6\$1FHigh Limit Register 3ADCB_HLMT 7\$20High Limit Register 7ADCB_GFS 1\$22Offset Register 7ADCB_GFS 2\$23Offset Register 7ADCB_GFS 3\$24Offset Register 7ADCB_GFS 4\$25O	Register Acronym	Address Offset	Register Description
ADCB_RSLT 1SAResult Register 1ADCB_RSLT 2SBResult Register 2ADCB_RSLT 3\$CResult Register 3ADCB_RSLT 4\$DResult Register 4ADCB_RSLT 5SEResult Register 6ADCB_RSLT 6\$FResult Register 6ADCB_RSLT 7\$10Result Register 7ADCB_LLMT 0\$11Low Limit Register 1ADCB_LLMT 1\$12Low Limit Register 3ADCB_LLMT 2\$13Low Limit Register 3ADCB_LLMT 3\$14Low Limit Register 4ADCB_LLMT 4\$15Low Limit Register 6ADCB_LLMT 5\$16Low Limit Register 6ADCB_LLMT 6\$17Low Limit Register 7ADCB_LLMT 7\$18Low Limit Register 7ADCB_LLMT 7\$19High Limit Register 7ADCB_LLMT 0\$19High Limit Register 0ADCB_LLMT 1\$1AHigh Limit Register 1ADCB_LLMT 2\$1BHigh Limit Register 3ADCB_LLMT 3\$1CHigh Limit Register 3ADCB_LLMT 4\$1DHigh Limit Register 3ADCB_LLMT 5\$1EHigh Limit Register 4ADCB_LLMT 6\$1FHigh Limit Register 5ADCB_LLMT 6\$1FHigh Limit Register 7ADCB_LLMT 6\$1FHigh Limit Register 6ADCB_LLMT 7\$20High Limit Register 1ADCB_LLMT 6\$1FHigh Limit Register 7ADCB_LLMT 7\$20High Limit Register 7ADCB_LLMT 6\$1FHigh Limit Register 7ADCB_LLMT 7 </td <td></td> <td></td> <td></td>			
ADCB_RSLT 2\$BResult Register 2ADCB_RSLT 3\$CResult Register 3ADCB_RSLT 4\$DResult Register 4ADCB_RSLT 5\$EResult Register 5ADCB_RSLT 6\$FResult Register 6ADCB_RSLT 7\$10Result Register 7ADCB_LLMT 0\$11Low Limit Register 1ADCB_LLMT 1\$12Low Limit Register 3ADCB_LLMT 2\$13Low Limit Register 3ADCB_LLMT 3\$14Low Limit Register 4ADCB_LLMT 4\$15Low Limit Register 6ADCB_LLMT 5\$16Low Limit Register 7ADCB_LLMT 6\$17Low Limit Register 7ADCB_LLMT 7\$18Low Limit Register 7ADCB_LLMT 7\$18Low Limit Register 7ADCB_LLMT 7\$18Low Limit Register 1ADCB_LLMT 1\$10High Limit Register 1ADCB_HLMT 2\$18High Limit Register 1ADCB_HLMT 3\$1CHigh Limit Register 2ADCB_HLMT 4\$1DHigh Limit Register 3ADCB_HLMT 5\$1EHigh Limit Register 5ADCB_HLMT 4\$1DHigh Limit Register 6ADCB_HLMT 5\$1EHigh Limit Register 7ADCB_GFS 0\$21Offset Register 7ADCB_GFS 1\$22Offset Register 7ADCB_GFS 2\$23Offset Register 7ADCB_GFS 3\$24Offset Register 7ADCB_GFS 4\$25Offset Register 3ADCB_GFS 5\$26Offset Register 6ADCB_GFS 6\$27Offset Re			-
ADCB_RSLT 3\$CResult Register 3ADCB_RSLT 4\$DResult Register 4ADCB_RSLT 5\$EResult Register 5ADCB_RSLT 6\$FResult Register 6ADCB_RSLT 7\$10Result Register 7ADCB_LLMT 0\$11Low Limit Register 0ADCB_LLMT 1\$12Low Limit Register 1ADCB_LLMT 2\$13Low Limit Register 3ADCB_LLMT 3\$14Low Limit Register 3ADCB_LLMT 4\$15Low Limit Register 6ADCB_LLMT 5\$16Low Limit Register 6ADCB_LLMT 6\$17Low Limit Register 7ADCB_LLMT 7\$18Low Limit Register 7ADCB_LLMT 6\$17Low Limit Register 7ADCB_LLMT 7\$18Low Limit Register 1ADCB_LLMT 0\$19High Limit Register 1ADCB_HLMT 1\$1AHigh Limit Register 3ADCB_HLMT 2\$1BHigh Limit Register 3ADCB_HLMT 3\$1CHigh Limit Register 4ADCB_HLMT 4\$1DHigh Limit Register 5ADCB_HLMT 5\$1EHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 7ADCB_OFS 1\$22Offset Register 7ADCB_OFS 2\$23Offset Register 7ADCB_OFS 3\$24Offset Register 7ADCB_OFS 4\$25Offset Register 3ADCB_OFS 5\$26Offset Register 4ADCB_OFS 6\$27Offset Register 5ADCB_OFS 6\$27Offset Re			
ADCB_RSLT 4SDResult Register 4ADCB_RSLT 5\$EResult Register 5ADCB_RSLT 6\$FResult Register 6ADCB_RSLT 7\$10Result Register 7ADCB_LLMT 0\$11Low Limit Register 0ADCB_LLMT 1\$12Low Limit Register 1ADCB_LLMT 2\$13Low Limit Register 3ADCB_LLMT 3\$14Low Limit Register 3ADCB_LLMT 4\$15Low Limit Register 4ADCB_LLMT 5\$16Low Limit Register 5ADCB_LLMT 6\$17Low Limit Register 6ADCB_LLMT 7\$18Low Limit Register 7ADCB_LLMT 6\$17Low Limit Register 7ADCB_LLMT 7\$18Low Limit Register 1ADCB_LLMT 1\$14High Limit Register 1ADCB_HLMT 2\$18High Limit Register 1ADCB_HLMT 3\$10High Limit Register 3ADCB_HLMT 4\$11DHigh Limit Register 3ADCB_HLMT 5\$1EHigh Limit Register 4ADCB_HLMT 5\$1EHigh Limit Register 5ADCB_HLMT 6\$1FHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 1ADCB_OFS 1\$22Offset Register 1ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Pow			
ADCB_RSLT 5\$EResult Register 5ADCB_RSLT 6\$FResult Register 6ADCB_RSLT 7\$10Result Register 7ADCB_LLMT 0\$11Low Limit Register 0ADCB_LLMT 1\$12Low Limit Register 1ADCB_LLMT 2\$13Low Limit Register 3ADCB_LLMT 3\$14Low Limit Register 3ADCB_LLMT 4\$15Low Limit Register 4ADCB_LLMT 5\$16Low Limit Register 5ADCB_LLMT 6\$17Low Limit Register 6ADCB_LLMT 7\$18Low Limit Register 7ADCB_LLMT 0\$19High Limit Register 7ADCB_HLMT 0\$19High Limit Register 1ADCB_HLMT 1\$1AHigh Limit Register 1ADCB_HLMT 2\$1BHigh Limit Register 3ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 3ADCB_HLMT 5\$1EHigh Limit Register 4ADCB_HLMT 4\$1DHigh Limit Register 5ADCB_HLMT 5\$1EHigh Limit Register 6ADCB_HLMT 6\$1FHigh Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 3ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 7ADCB_OFS 7\$28Offset Register 7ADCB_OFS 8\$29Power Control Register 7ADCB_OFS 7\$29 <td></td> <td>-</td> <td></td>		-	
ADCB_RSLT 6\$FResult Register 6ADCB_RSLT 7\$10Result Register 7ADCB_LLMT 0\$11Low Limit Register 0ADCB_LLMT 1\$12Low Limit Register 1ADCB_LLMT 2\$13Low Limit Register 2ADCB_LLMT 3\$14Low Limit Register 3ADCB_LLMT 4\$15Low Limit Register 4ADCB_LLMT 5\$16Low Limit Register 5ADCB_LLMT 6\$17Low Limit Register 6ADCB_LLMT 7\$18Low Limit Register 7ADCB_LLMT 0\$19High Limit Register 1ADCB_HLMT 0\$19High Limit Register 1ADCB_HLMT 1\$1AHigh Limit Register 2ADCB_HLMT 2\$1BHigh Limit Register 3ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 3ADCB_HLMT 5\$1EHigh Limit Register 4ADCB_HLMT 4\$1DHigh Limit Register 5ADCB_HLMT 5\$1EHigh Limit Register 5ADCB_HLMT 6\$1FHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 1\$22Offset Register 1ADCB_OFS 2\$23Offset Register 3ADCB_OFS 4\$25Offset Register 3ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Power Control Register 7ADCB_OFS 7\$2		-	
ADCB_RSLT 7\$10Result Register 7ADCB_LLMT 0\$11Low Limit Register 0ADCB_LLMT 1\$12Low Limit Register 1ADCB_LLMT 2\$13Low Limit Register 2ADCB_LLMT 3\$14Low Limit Register 3ADCB_LLMT 4\$15Low Limit Register 4ADCB_LLMT 5\$16Low Limit Register 6ADCB_LLMT 6\$17Low Limit Register 7ADCB_LLMT 7\$18Low Limit Register 0ADCB_LLMT 7\$18Low Limit Register 1ADCB_HLMT 0\$19High Limit Register 1ADCB_HLMT 1\$1AHigh Limit Register 3ADCB_HLMT 2\$1BHigh Limit Register 3ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 5ADCB_HLMT 5\$1EHigh Limit Register 5ADCB_HLMT 6\$1FHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 7ADCB_OFS 1\$22Offset Register 7ADCB_OFS 1\$22Offset Register 1ADCB_OFS 1\$22Offset Register 3ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Power Control Register 7ADCB_OFS 7\$29P			
ADCB_LLMT 0\$11Low Limit Register 0ADCB_LLMT 1\$12Low Limit Register 1ADCB_LLMT 2\$13Low Limit Register 2ADCB_LLMT 3\$14Low Limit Register 3ADCB_LLMT 4\$15Low Limit Register 3ADCB_LLMT 5\$16Low Limit Register 4ADCB_LLMT 6\$17Low Limit Register 6ADCB_LLMT 7\$18Low Limit Register 7ADCB_LLMT 7\$18Low Limit Register 0ADCB_HLMT 0\$19High Limit Register 1ADCB_HLMT 1\$1AHigh Limit Register 1ADCB_HLMT 2\$1BHigh Limit Register 3ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 5ADCB_HLMT 5\$1EHigh Limit Register 6ADCB_HLMT 6\$1FHigh Limit Register 7ADCB_HLMT 7\$20High Limit Register 7ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 7ADCB_OFS 1\$22Offset Register 1ADCB_OFS 2\$23Offset Register 3ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Power Control RegisterADCB_OFS 7\$29Power Control RegisterADCB_OWER\$29 <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td>			· · · · · · · · · · · · · · · · · · ·
ADCB_LLMT 1\$12Low Limit Register 1ADCB_LLMT 2\$13Low Limit Register 2ADCB_LLMT 3\$14Low Limit Register 3ADCB_LLMT 4\$15Low Limit Register 4ADCB_LLMT 5\$16Low Limit Register 5ADCB_LLMT 6\$17Low Limit Register 6ADCB_LLMT 7\$18Low Limit Register 7ADCB_HLMT 0\$19High Limit Register 0ADCB_HLMT 1\$1AHigh Limit Register 1ADCB_HLMT 2\$1BHigh Limit Register 1ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 4ADCB_HLMT 5\$1EHigh Limit Register 6ADCB_HLMT 6\$1FHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 3ADCB_OFS 5\$26Offset Register 4ADCB_OFS 6\$27Offset Register 5ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Power Contro			
ADCB_LLMT 2\$13Low Limit Register 2ADCB_LLMT 3\$14Low Limit Register 3ADCB_LLMT 4\$15Low Limit Register 4ADCB_LLMT 5\$16Low Limit Register 5ADCB_LLMT 6\$17Low Limit Register 6ADCB_LLMT 7\$18Low Limit Register 7ADCB_HLMT 0\$19High Limit Register 0ADCB_HLMT 1\$1AHigh Limit Register 1ADCB_HLMT 2\$1BHigh Limit Register 2ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 4ADCB_HLMT 5\$1EHigh Limit Register 6ADCB_HLMT 6\$1FHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 4ADCB_OFS 6\$27Offset Register 7ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Power Control Register 7ADCB_POWER\$29Power Control Register 7			-
ADCB_LLMT 3\$14Low Limit Register 3ADCB_LLMT 4\$15Low Limit Register 4ADCB_LLMT 5\$16Low Limit Register 5ADCB_LLMT 6\$17Low Limit Register 6ADCB_LLMT 7\$18Low Limit Register 7ADCB_HLMT 0\$19High Limit Register 0ADCB_HLMT 1\$1AHigh Limit Register 1ADCB_HLMT 2\$1BHigh Limit Register 3ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 5ADCB_HLMT 5\$1EHigh Limit Register 6ADCB_HLMT 6\$1FHigh Limit Register 7ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 3ADCB_OFS 5\$26Offset Register 4ADCB_OFS 6\$27Offset Register 7ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Power Control Register 7			
ADCB_LLMT 4\$15Low Limit Register 4ADCB_LLMT 5\$16Low Limit Register 5ADCB_LLMT 6\$17Low Limit Register 6ADCB_LLMT 7\$18Low Limit Register 7ADCB_HLMT 0\$19High Limit Register 0ADCB_HLMT 1\$1AHigh Limit Register 1ADCB_HLMT 2\$1BHigh Limit Register 3ADCB_HLMT 3\$1CHigh Limit Register 4ADCB_HLMT 4\$1DHigh Limit Register 5ADCB_HLMT 5\$1EHigh Limit Register 6ADCB_HLMT 6\$1FHigh Limit Register 7ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 1ADCB_OFS 1\$22Offset Register 2ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 3ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 7ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Power Control Register 7ADCB_OFS 7\$29Power Control Register 7			
ADCB_LLMT 5\$16Low Limit Register 5ADCB_LLMT 6\$17Low Limit Register 6ADCB_LLMT 7\$18Low Limit Register 7ADCB_HLMT 0\$19High Limit Register 0ADCB_HLMT 1\$1AHigh Limit Register 1ADCB_HLMT 2\$1BHigh Limit Register 2ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 4ADCB_HLMT 5\$1EHigh Limit Register 5ADCB_HLMT 6\$1FHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 7ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Power Control Register 7ADCB_POWER\$29Power Control Register 7	ADCB_LLMT 3	\$14	Low Limit Register 3
ADCB_LLMT 6\$17Low Limit Register 6ADCB_LLMT 7\$18Low Limit Register 7ADCB_HLMT 0\$19High Limit Register 0ADCB_HLMT 1\$1AHigh Limit Register 1ADCB_HLMT 2\$1BHigh Limit Register 2ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 5ADCB_HLMT 5\$1EHigh Limit Register 6ADCB_HLMT 6\$1FHigh Limit Register 7ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 1ADCB_OFS 1\$22Offset Register 2ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 3ADCB_OFS 5\$26Offset Register 4ADCB_OFS 6\$27Offset Register 5ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Power Control Register	ADCB_LLMT 4	\$15	Low Limit Register 4
ADCB_LLMT 7\$18Low Limit Register 7ADCB_HLMT 0\$19High Limit Register 0ADCB_HLMT 1\$1AHigh Limit Register 1ADCB_HLMT 2\$1BHigh Limit Register 1ADCB_HLMT 3\$1CHigh Limit Register 2ADCB_HLMT 4\$1DHigh Limit Register 3ADCB_HLMT 5\$1EHigh Limit Register 4ADCB_HLMT 6\$1FHigh Limit Register 5ADCB_HLMT 7\$20High Limit Register 6ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 2\$23Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 5ADCB_OFS 6\$27Offset Register 5ADCB_OFS 7\$28Offset Register 6ADCB_OFS 7\$29Power Control Register	ADCB_LLMT 5	\$16	Low Limit Register 5
ADCB_HLMT 0\$19High Limit Register 0ADCB_HLMT 1\$1AHigh Limit Register 1ADCB_HLMT 2\$1BHigh Limit Register 2ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 4ADCB_HLMT 5\$1EHigh Limit Register 5ADCB_HLMT 6\$1FHigh Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 2ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 5ADCB_OFS 7\$28Offset Register 5ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Power Control Register 7	ADCB_LLMT 6	\$17	Low Limit Register 6
ADCB_HLMT 1\$1AHigh Limit Register 1ADCB_HLMT 2\$1BHigh Limit Register 2ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 4ADCB_HLMT 5\$1EHigh Limit Register 5ADCB_HLMT 6\$1FHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 2\$23Offset Register 3ADCB_OFS 3\$24Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Power Control Register 7	ADCB_LLMT 7	\$18	Low Limit Register 7
ADCB_HLMT 2\$1BHigh Limit Register 2ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 4ADCB_HLMT 5\$1EHigh Limit Register 5ADCB_HLMT 6\$1FHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 2\$23Offset Register 2ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 7\$28Offset Register 7ADCB_OFS 7\$29Power Control Register 7	ADCB_HLMT 0	\$19	High Limit Register 0
ADCB_HLMT 3\$1CHigh Limit Register 3ADCB_HLMT 4\$1DHigh Limit Register 4ADCB_HLMT 5\$1EHigh Limit Register 5ADCB_HLMT 6\$1FHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 2\$23Offset Register 2ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_POWER\$29Power Control Register	ADCB_HLMT 1	\$1A	High Limit Register 1
ADCB_HLMT 4\$1DHigh Limit Register 4ADCB_HLMT 5\$1EHigh Limit Register 5ADCB_HLMT 6\$1FHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 2\$23Offset Register 3ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 5ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_POWER\$29Power Control Register	ADCB_HLMT 2	\$1B	High Limit Register 2
ADCB_HLMT 5\$1EHigh Limit Register 5ADCB_HLMT 6\$1FHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 2\$23Offset Register 2ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7	ADCB_HLMT 3	\$1C	High Limit Register 3
ADCB_HLMT 6\$1FHigh Limit Register 6ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 2\$23Offset Register 2ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_POWER\$29Power Control Register	ADCB_HLMT 4	\$1D	High Limit Register 4
ADCB_HLMT 7\$20High Limit Register 7ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 2\$23Offset Register 2ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_POWER\$29Power Control Register	ADCB_HLMT 5	\$1E	High Limit Register 5
ADCB_OFS 0\$21Offset Register 0ADCB_OFS 1\$22Offset Register 1ADCB_OFS 2\$23Offset Register 2ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_POWER\$29Power Control Register	ADCB_HLMT 6	\$1F	High Limit Register 6
ADCB_OFS 1\$22Offset Register 1ADCB_OFS 2\$23Offset Register 2ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_POWER\$29Power Control Register	ADCB_HLMT 7	\$20	High Limit Register 7
ADCB_OFS 2\$23Offset Register 2ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_POWER\$29Power Control Register	ADCB_OFS 0	\$21	Offset Register 0
ADCB_OFS 3\$24Offset Register 3ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_POWER\$29Power Control Register	ADCB_OFS 1	\$22	Offset Register 1
ADCB_OFS 4\$25Offset Register 4ADCB_OFS 5\$26Offset Register 5ADCB_OFS 6\$27Offset Register 6ADCB_OFS 7\$28Offset Register 7ADCB_POWER\$29Power Control Register	ADCB_OFS 2	\$23	Offset Register 2
ADCB_OFS 5 \$26 Offset Register 5 ADCB_OFS 6 \$27 Offset Register 6 ADCB_OFS 7 \$28 Offset Register 7 ADCB_POWER \$29 Power Control Register	ADCB_OFS 3	\$24	Offset Register 3
ADCB_OFS 6 \$27 Offset Register 6 ADCB_OFS 7 \$28 Offset Register 7 ADCB_POWER \$29 Power Control Register	ADCB_OFS 4	\$25	Offset Register 4
ADCB_OFS 7 \$28 Offset Register 7 ADCB_POWER \$29 Power Control Register	ADCB_OFS 5	\$26	Offset Register 5
ADCB_POWER \$29 Power Control Register	ADCB_OFS 6	\$27	Offset Register 6
	ADCB_OFS 7	\$28	Offset Register 7
ADCB_CAL \$2A ADC Calibration Register	ADCB_POWER	\$29	Power Control Register
	ADCB_CAL	\$2A	ADC Calibration Register

Table 4-21 Analog to Digital Converter Registers Address Map (ADCB_BASE = \$00F240) (Continued)

Table 4-22 Temperature Sensor Register Address Map (TSENSOR_BASE = \$00F270)

Register Acronym	Address Offset	Register Description
TSENSOR_CNTL	\$0	Control Register

Table 4-23 Serial Communication Interface 0 Registers Address Map (SCI0_BASE = \$00F280)

Register Acronym	Address Offset	Register Description
SCI0_SCIBR	\$0	Baud Rate Register
SCI0_SCICR	\$1	Control Register
		Reserved
SCI0_SCISR	\$3	Status Register
SCI0_SCIDR	\$4	Data Register

Table 4-24 Serial Communication Interface 1 Registers Address Map (SCI1_BASE = \$00F290)

Register Acronym	Address Offset	Register Description
SCI1_SCIBR	\$0	Baud Rate Register
SCI1_SCICR	\$1	Control Register
		Reserved
SCI1_SCISR	\$3	Status Register
SCI1_SCIDR	\$4	Data Register

Table 4-25 Serial Peripheral Interface 0 Registers Address Map (SPI0_BASE = \$00F2A0)

Register Acronym	Address Offset	Register Description
SPI0_SPSCR	\$0	Status and Control Register
SPI0_SPDSR	\$1	Data Size Register
SPI0_SPDRR	\$2	Data Receive Register
SPI0_SPDTR	\$3	Data Transmitter Register

Table 4-26 Serial Peripheral Interface 1 Registers Address Map (SPI1_BASE = \$00F2B0)

Register Acronym	Address Offset	Register Description
SPI1_SPSCR	\$0	Status and Control Register
SPI1_SPDSR	\$1	Data Size Register
SPI1_SPDRR	\$2	Data Receive Register
SPI1_SPDTR	\$3	Data Transmitter Register

Table 4-27 Computer Operating Properly Registers Address Map (COP_BASE = \$00F2C0)

Register Acronym	Address Offset	Register Description
COPCTL	\$0	Control Register
СОРТО	\$1	Time Out Register
COPCTR	\$2	Counter Register

Table 4-28 Clock Generation Module Registers Address Map (CLKGEN_BASE = \$00F2D0)

Register Acronym	Address Offset	Register Description
PLLCR	\$0	Control Register
PLLDB	\$1	Divide-By Register
PLLSR	\$2	Status Register
		Reserved
SHUTDOWN	\$4	Shutdown Register
OSCTL	\$5	Oscillator Control Register

Table 4-29 GPIOA Registers Address Map (GPIOA_BASE = \$00F2E0)

Register Acronym	Address Offset	Register Description	Reset Value
GPIOA_PUR	\$0	Pull-up Enable Register	0 x 3FFF
GPIOA_DR	\$1	Data Register	0 x 0000
GPIOA_DDR	\$2	Data Direction Register	0 x 0000
GPIOA_PER	\$3	Peripheral Enable Register	0 x 3FFF
GPIOA_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOA_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOA_IPOLR	\$6	Interrupt Polarity Register	0 x 0000

Register Acronym	Address Offset	Register Description	Reset Value
GPIOA_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOA_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOA_PPMODE	\$9	Push-Pull Mode Register	0 x 3FFF
GPIOA_RAWDATA	\$A	Raw Data Input Register	-

Table 4-29 GPIOA Registers Address Map (GPIOA_BASE = \$00F2E0)

Table 4-30 GPIOB Registers Address Map (GPIOB_BASE = \$00F300)

Register Acronym	Address Offset	Register Description	Reset Value
GPIOB_PUR	\$0	Pull-up Enable Register	0 x 00FF
GPIOB_DR	\$1	Data Register	0 x 0000
GPIOB_DDR	\$2	Data Direction Register	0 x 0000
GPIOB_PER	\$3	Peripheral Enable Register	0 x 0000 or 0 x 000F ¹
GPIOB_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOB_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOB_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOB_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOB_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOB_PPMODE	\$9	Push-Pull Mode Register	0 x 00FF
GPIOB_RAWDATA	\$A	Raw Data Input Register	-

1. Determined by EMI_MODE and EXTBOOT. Can be 0x00 or 0x0F, depending on address pin configuration. See Table 4-4.

(GPIOC_BASĔ = \$00F310)			
Register Acronym	Address Offset	Register Description	Reset Value
GPIOC_PUR	\$0	Pull-up Enable Register	0 x 07FF
GPIOC_DR	\$1	Data Register	0 x 0000
GPIOC_DDR	\$2	Data Direction Register	0 x 0000
GPIOC_PER	\$3	Peripheral Enable Register	0 x 07FF
GPIOC_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOC_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOC_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOC_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOC_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000

Table 4-31 GPIOC Registers Address Map (GPIOC_BASE = \$00F310)

	$(GFIOC_DASL = $00F310)$			
Register Acronym	Address Offset	Register Description	Reset Value	
GPIOC_PPMODE	\$9	Push-Pull Mode Register	0 x 07FF	
GPIOC_RAWDATA	\$A	Raw Data Input Register	-	

Table 4-31 GPIOC Registers Address Map (GPIOC_BASE = \$00F310)

Table 4-32 GPIOD Registers Address Map (GPIOD_BASE = \$00F320)

Register Acronym	Address Offset	Register Description	Reset Value
GPIOD_PUR	\$0	Pull-up Enable Register	0 x 1FFF
GPIOD_DR	\$1	Data Register	0 x 0000
GPIOD_DDR	\$2	Data Direction Register	0 x 0000
GPIOD_PER	\$3	Peripheral Enable Register	0 x 1FC0
GPIOD_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOD_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOD_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOD_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOD_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOD_PPMODE	\$9	Push-Pull Mode Register	0 x 1FFF
GPIOD_RAWDATA	\$A	Raw Data Input Register	-

Table 4-33 GPIOE Registers Address Map (GPIOE_BASE = \$00F330)

Register Acronym	Address Offset	Register Description	Reset Value
GPIOE_PUR	\$0	Pull-up Enable Register	0 x 3FFF
GPIOE_DR	\$1	Data Register	0 x 0000
GPIOE_DDR	\$2	Data Direction Register	0 x 0000
GPIOE_PER	\$3	Peripheral Enable Register	0 x 3FFF
GPIOE_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOE_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOE_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOE_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOE_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOE_PPMODE	\$9	Push-Pull Mode Register	0 x 3FFF
GPIOE_RAWDATA	\$A	Raw Data Input Register	-

Register Acronym	Address Offset	Register Description	Reset Value
GPIOF_PUR	\$0	Pull-up Enable Register	0 x FFFF
GPIOF_DR	\$1	Data Register	0 x 0000
GPIOF_DDR	\$2	Data Direction Register	0 x 0000
GPIOF_PER	\$3	Peripheral Enable Register	0 x FFFF
GPIOF_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOF_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOF_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOF_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOF_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOF_PPMODE	\$9	Push-Pull Mode Register	0 x FFFF
GPIOF_RAWDATA	\$A	Raw Data Input Register	-

Table 4-34 GPIOF Registers Address Map (GPIOF_BASE = \$00F340)

Table 4-35 System Integration Module Registers Address Map (SIM_BASE = \$00F350)

Register Acronym	Address Offset	Register Description
SIM_CONTROL	\$0	Control Register
SIM_RSTSTS	\$1	Reset Status Register
SIM_SCR0	\$2	Software Control Register 0
SIM_SCR1	\$3	Software Control Register 1
SIM_SCR2	\$4	Software Control Register 2
SIM_SCR3	\$5	Software Control Register 3
SIM_MSH_ID	\$6	Most Significant Half JTAG ID
SIM_LSH_ID	\$7	Least Significant Half JTAG ID
SIM_PUDR	\$8	Pull-up Disable Register
		Reserved
SIM_CLKOSR	\$A	Clock Out Select Register
SIM_GPS	\$B	Quad Decoder 1 / Timer B / SPI 1 Select Register
SIM_PCE	\$C	Peripheral Clock Enable Register
SIM_ISALH	\$D	I/O Short Address Location High Register
SIM_ISALL	\$E	I/O Short Address Location Low Register

Table 4-36 Power Supervisor Registers Address Map (LVI_BASE = \$00F360)

Register Acronym	Address Offset	Register Description
LVI_CONTROL	\$0	Control Register
LVI_STATUS	\$1	Status Register

Table 4-37 Flash Module Registers Address Map (FM_BASE = \$00F400)

Register Acronym	Address Offset	Register Description
FMCLKD	\$0	Clock Divider Register
FMMCR	\$1	Module Control Register
		Reserved
FMSECH	\$3	Security High Half Register
FMSECL	\$4	Security Low Half Register
FMMNTR	\$5	Monitor Data Register
		Reserved
FMPROT	\$10	Protection Register (Banked)
FMPROTB	\$11	Protection Boot Register (Banked)
		Reserved
FMUSTAT	\$13	User Status Register (Banked)
FMCMD	\$14	Command Register (Banked)
FMCTL	\$15	Control Register (Banked)
		Reserved
FMIFROPT 0	\$1A	16-Bit Information Option Register 0 Hot temperature ADC reading of Temp Sense; value set during factory test
FMIFROPT 1	\$1B	16-Bit Information Option Register 1 Not used
FMIFROPT 2	\$1C	16-Bit Information Option Register 2 Room temperature ADC reading of Temp Sense; value set during factory test

Register Acronym	Address Offset	Register Description
FCMCR	\$0	Module Configuration Register
		Reserved
FCCTL0	\$3	Control Register 0 Register
FCCTL1	\$4	Control Register 1 Register
FCTMR	\$5	Free Running Timer Register
FCMAXMB	\$6	Maximum Message Buffer Configuration Register
FCIMASK2	\$7	Interrupt Masks 2 Register
FCRXGMASK_H	\$8	Receive Global Mask High Register
FCRXGMASK_L	\$9	Receive Global Mask Low Register
FCRX14MASK_H	\$A	Receive Buffer 14 Mask High Register
FCRX14MASK_L	\$B	Receive Buffer 14 Mask Low Register
FCRX15MASK_H	\$C	Receive Buffer 15 Mask High Register
FCRX15MASK_L	\$D	Receive Buffer 15 Mask Low Register
		Reserved
FCSTATUS	\$10	Error and Status Register
FCIMASK1	\$11	Interrupt Masks 1 Register
FCIFLAG1	\$12	Interrupt Flags 1 Register
FCR/T_ERROR_CNTRS	\$13	Receive and Transmit Error Counters Register
		Reserved
FCIFLAG 2	\$1B	Interrupt Flags 2 Register
		Reserved
FCMB0_CONTROL	\$40	Message Buffer 0 Control/Status Register
FCMB0_ID_HIGH	\$41	Message Buffer 0 ID High Register
FCMB0_ID_LOW	\$42	Message Buffer 0 ID Low Register
FCMB0_DATA	\$43	Message Buffer 0 Data Register
FCMB0_DATA	\$44	Message Buffer 0 Data Register
FCMB0_DATA	\$45	Message Buffer 0 Data Register
FCMB0_DATA	\$46	Message Buffer 0 Data Register
		Reserved
FCMSB1_CONTROL	\$48	Message Buffer 1 Control/Status Register
FCMSB1_ID_HIGH	\$49	Message Buffer 1 ID High Register
FCMSB1_ID_LOW	\$4A	Message Buffer 1 ID Low Register
FCMB1_DATA	\$4B	Message Buffer 1 Data Register
FCMB1_DATA	\$4C	Message Buffer 1 Data Register

Table 4-38 FlexCAN Registers Address Map (FC_BASE = \$00F800)

Table 4-38 FlexCAN Registers Address Map (FC_BASE = \$00F800) (Continued)

Register Acronym	Address Offset	Register Description								
FCMB1_DATA	\$4D	Message Buffer 1 Data Register								
FCMB1_DATA	\$4E	Message Buffer 1 Data Register								
		Reserved								
FCMB2_CONTROL	\$50	Message Buffer 2 Control/Status Register								
FCMB2_ID_HIGH	\$51	Message Buffer 2 ID High Register								
FCMB2_ID_LOW	\$52	Message Buffer 2 ID Low Register								
FCMB2_DATA	\$53	Message Buffer 2 Data Register								
FCMB2_DATA	\$54	Message Buffer 2 Data Register								
FCMB2_DATA	\$55	Message Buffer 2 Data Register								
FCMB2_DATA	\$56	Message Buffer 2 Data Register								
		Reserved								
FCMB3_CONTROL	\$58	Message Buffer 3 Control/Status Register								
FCMB3_ID_HIGH	\$59	Message Buffer 3 ID High Register								
FCMB3_ID_LOW	\$5A	Message Buffer 3 ID Low Register								
FCMB3_DATA	\$5B	Message Buffer 3 Data Register								
FCMB3_DATA	\$5C	Message Buffer 3 Data Register								
FCMB3_DATA	\$5D	Message Buffer 3 Data Register								
FCMB3_DATA	\$5E	Message Buffer 3 Data Register								
		Reserved								
FCMB4_CONTROL	\$60	Message Buffer 4 Control/Status Register								
FCMB4_ID_HIGH	\$61	Message Buffer 4 ID High Register								
FCMB4_ID_LOW	\$62	Message Buffer 4 ID Low Register								
FCMB4_DATA	\$63	Message Buffer 4 Data Register								
FCMB4_DATA	\$64	Message Buffer 4 Data Register								
FCMB4_DATA	\$65	Message Buffer 4 Data Register								
FCMB4_DATA	\$66	Message Buffer 4 Data Register								
		Reserved								
FCMB5_CONTROL	\$68	Message Buffer 5 Control/Status Register								
FCMB5_ID_HIGH	\$69	Message Buffer 5 ID High Register								
FCMB5_ID_LOW	\$6A	Message Buffer 5 ID Low Register								
FCMB5_DATA	\$6B	Message Buffer 5 Data Register								
FCMB5_DATA	\$6C	Message Buffer 5 Data Register								
FCMB5_DATA	\$6D	Message Buffer 5 Data Register								
FCMB5_DATA	\$6E	Message Buffer 5 Data Register								
		Reserved								

Table 4-38 FlexCAN Registers Address Maperal Memory Mapped Registers (FC_BASE = \$00F800) (Continued)

Register Acronym	Address Offset	Register Description
FCMB6_CONTROL	\$70	Message Buffer 6 Control/Status Register
FCMB6_ID_HIGH	\$71	Message Buffer 6 ID High Register
FCMB6_ID_LOW	\$72	Message Buffer 6 ID Low Register
FCMB6_DATA	\$73	Message Buffer 6 Data Register
FCMB6_DATA	\$74	Message Buffer 6 Data Register
FCMB6_DATA	\$75	Message Buffer 6 Data Register
FCMB6_DATA	\$76	Message Buffer 6 Data Register
		Reserved
FCMB7_CONTROL	\$78	Message Buffer 7 Control/Status Register
FCMB7_ID_HIGH	\$79	Message Buffer 7 ID High Register
FCMB7_ID_LOW	\$7A	Message Buffer 7 ID Low Register
FCMB7_DATA	\$7B	Message Buffer 7 Data Register
FCMB7_DATA	\$7C	Message Buffer 7 Data Register
FCMB7_DATA	\$7D	Message Buffer 7 Data Register
FCMB7_DATA	\$7E	Message Buffer 7 Data Register
		Reserved
FCMB8_CONTROL	\$80	Message Buffer 8 Control/Status Register
FCMB8_ID_HIGH	\$81	Message Buffer 8 ID High Register
FCMB8_ID_LOW	\$82	Message Buffer 8 ID Low Register
FCMB8_DATA	\$83	Message Buffer 8 Data Register
FCMB8_DATA	\$84	Message Buffer 8 Data Register
FCMB8_DATA	\$85	Message Buffer 8 Data Register
FCMB8_DATA	\$86	Message Buffer 8 Data Register
		Reserved
FCMB9_CONTROL	\$88	Message Buffer 9 Control/Status Register
FCMB9_ID_HIGH	\$89	Message Buffer 9 ID High Register
FCMB9_ID_LOW	\$8A	Message Buffer 9 ID Low Register
FCMB9_DATA	\$8B	Message Buffer 9 Data Register
FCMB9_DATA	\$8C	Message Buffer 9 Data Register
FCMB9_DATA	\$8D	Message Buffer 9 Data Register
FCMB9_DATA	\$8E	Message Buffer 9 Data Register
		Reserved
FCMB10_CONTROL	\$90	Message Buffer 10 Control/Status Register
FCMB10_ID_HIGH	\$91	Message Buffer 10 ID High Register
FCMB10_ID_LOW	\$92	Message Buffer 10 ID Low Register
FCMB10_DATA	\$93	Message Buffer 10 Data Register

Table 4-38 FlexCAN Registers Address Map (FC_BASE = \$00F800) (Continued)

Register Acronym	Address Offset	Register Description						
FCMB10_DATA	\$94	Message Buffer 10 Data Register						
FCMB10_DATA	\$95	Message Buffer 10 Data Register						
FCMB10_DATA	\$96	Message Buffer 10 Data Register						
		Reserved						
FCMB11_CONTROL	\$98	Message Buffer 11 Control/Status Register						
FCMB11_ID_HIGH	\$99	Message Buffer 11 ID High Register						
FCMB11_ID_LOW	\$9A	Message Buffer 11 ID Low Register						
FCMB11_DATA	\$9B	Message Buffer 11 Data Register						
FCMB11_DATA	\$9C	Message Buffer 11 Data Register						
FCMB11_DATA	\$9D	Message Buffer 11 Data Register						
FCMB11_DATA	\$9E	Message Buffer 11 Data Register						
		Reserved						
FCMB12_CONTROL	\$A0	Message Buffer 12 Control/Status Register						
FCMB12_ID_HIGH	\$A1	Message Buffer 12 ID High Register						
FCMB12_ID_LOW	\$A2	Message Buffer 12 ID Low Register						
FCMB12_DATA	\$A3	Message Buffer 12 Data Register						
FCMB12_DATA	\$A4	Message Buffer 12 Data Register						
FCMB12_DATA	\$A5	Message Buffer 12 Data Register						
FCMB12_DATA	\$A6	Message Buffer 12 Data Register						
		Reserved						
FCMB13_CONTROL	\$A8	Message Buffer 13 Control/Status Register						
FCMB13_ID_HIGH	\$A9	Message Buffer 13 ID High Register						
FCMB13_ID_LOW	\$AA	Message Buffer 13 ID Low Register						
FCMB13_DATA	\$AB	Message Buffer 13 Data Register						
FCMB13_DATA	\$AC	Message Buffer 13 Data Register						
FCMB13_DATA	\$AD	Message Buffer 13 Data Register						
FCMB13_DATA	\$AE	Message Buffer 13 Data Register						
		Reserved						
FCMB14_CONTROL	\$B0	Message Buffer 14 Control/Status Register						
FCMB14_ID_HIGH	\$B1	Message Buffer 14 ID High Register						
FCMB14_ID_LOW	\$B2	Message Buffer 14 ID Low Register						
FCMB14_DATA	\$B3	Message Buffer 14 Data Register						
FCMB14_DATA	\$B4	Message Buffer 14 Data Register						
FCMB14_DATA	\$B5	Message Buffer 14 Data Register						

Register Acronym	Address Offset	Register Description
FCMB14_DATA	\$B6	Message Buffer 14 Data Register
		Reserved
FCMB15_CONTROL	\$B8	Message Buffer 15 Control/Status Register
FCMB15_ID_HIGH	\$B9	Message Buffer 15 ID High Register
FCMB15_ID_LOW	\$BA	Message Buffer 15 ID Low Register
FCMB15_DATA	\$BB	Message Buffer 15 Data Register
FCMB15_DATA	\$BC	Message Buffer 15 Data Register
FCMB15_DATA	\$BD	Message Buffer 15 Data Register
FCMB15_DATA	\$BE	Message Buffer 15 Data Register
		Reserved

Table 4-38 FlexCAN Registers Address Maperal Memory Mapped Registers (FC_BASE = \$00F800) (Continued)

Part 5 Interrupt Controller (ITCN)

5.1 Introduction

The Interrupt Controller (ITCN) module is used to arbitrate between various interrupt requests (IRQs) and to signal to the 56800E core when an interrupt of sufficient priority exists and what address to jump to in order to service this interrupt.

5.2 Features

The ITCN module design includes these distinctive features:

- Programmable priority levels for each IRQ
- Two programmable Fast Interrupts
- Notification to SIM module to restart clocks out of Wait and Stop modes
- Drives initial address on the address bus after reset

5.3 Functional Description

The Interrupt Controller is a slave on the IPBus. It contains registers allowing each of the 82 interrupt sources to be set to one of four priority levels, excluding certain interrupts of fixed priority. Next, all of the interrupt requests of a given level are priority encoded to determine the lowest numerical value of the active interrupt requests for that level. Within a given priority level, 0 is the highest priority, while number 81 is the lowest.

5.3.1 Normal Interrupt Handling

Once the ITCN has determined that an interrupt is to be serviced and which interrupt has the highest priority, an interrupt vector address is generated. Normal interrupt handling concatenates the VBA and the vector number to determine the vector address. In this way, an offset is generated into the vector table for each interrupt.

5.3.2 Interrupt Nesting

Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be serviced. The following tables define the nesting requirements for each priority level.

SR[9] ¹	SR[8] ¹	Permitted Exceptions	Masked Exceptions
0	0	Priorities 0, 1, 2, 3	None
0	1	Priorities 1, 2, 3	Priority 0
1	0	Priorities 2, 3	Priorities 0, 1
1	1	Priority 3	Priorities 0, 1, 2

Table 5-1 Interrupt Mask Bit Definition

1. Core status register bits indicating current interrupt mask within the core.

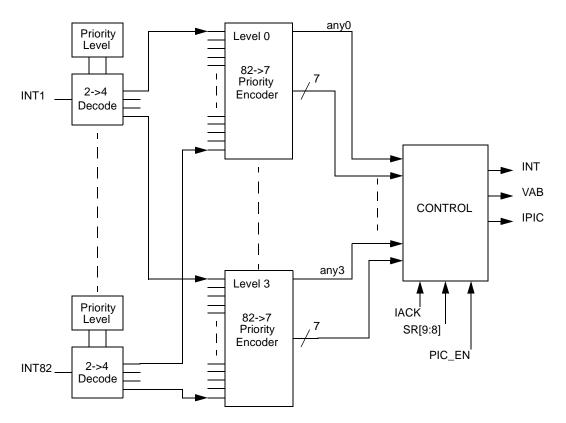
IPIC_LEVEL[1:0] ¹	Current Interrupt Priority Level	Required Nested Exception Priority
00	No Interrupt or SWILP	Priorities 0, 1, 2, 3
01	Priority 0	Priorities 1, 2, 3
01	Priority 1	Priorities 2, 3
11	Priorities 2 or 3	Priority 3

Table 5-2.	Interrupt Priority Encoding
------------	-----------------------------

1. See IPIC field definition in Section 5.6.30.2

5.3.3 Fast Interrupt Handling

Fast interrupts are described in the **DSP56800E Reference Manual**. The interrupt controller recognizes fast interrupts before the core does.


A fast interrupt is defined (to the ITCN) by:

- 1. Setting the priority of the interrupt as level 2, with the appropriate field in the IPR registers.
- 2. Setting the FIMn register to the appropriate vector number.
- 3. Setting the FIVALn and FIVAHn registers with the address of the code for the fast interrupt.

When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a match occurs, and it is a level 2 interrupt, the ITCN handles it as a fast interrupt. The ITCN takes the vector address from the appropriate FIVALn and FIVAHn registers, instead of generating an address that is an offset from the VBA.

The core then fetches the instruction from the indicated vector adddress and if it is not a JSR, the core starts its fast interrupt handling.

5.4 Block Diagram

Figure 5-1 Interrupt Controller Block Diagram

5.5 Operating Modes

The ITCN module design contains two major modes of operation:

• Functional Mode

The ITCN is in this mode by default.

• Wait and Stop Modes

During Wait and Stop modes, the system clocks and the 56800E core are turned off. The ITCN will signal a pending IRQ to the System Integration Module (SIM) to restart the clocks and service the IRQ. An IRQ can only wake up the core if the IRQ is enabled prior to entering the Wait or Stop mode. Also, the IRQA and IRQB signals automatically become low-level sensitive in these modes even if the control register bits are set to make them falling-edge sensitive. This is because there is no clock available to detect the falling edge.

A peripheral which requires a clock to generate interrupts will not be able to generate interrupts during <u>STOP</u> mode. The FlexCAN module can wake the device from STOP, and a reset will do just that, or IRQA and IRQB can wake it up.

5.6 Register Descriptions

A register address is the sum of a base address and an address offset. The base address is defined at the system level and the address offset is defined at the module level. The ITCN peripheral has 24 registers.

Register Acronym	Base Address +	Register Name	Section Location				
IPR0	\$0	Interrupt Priority Register 0	5.6.1				
IPR1	\$1	Interrupt Priority Register 1	5.6.2				
IPR2	\$2	Interrupt Priority Register 2	5.6.3				
IPR3	\$3	Interrupt Priority Register 3	5.6.4				
IPR4	\$4	Interrupt Priority Register 4	5.6.5				
IPR5	\$5	Interrupt Priority Register 5	5.6.6				
IPR6	\$6	Interrupt Priority Register 6	5.6.7				
IPR7	\$7	Interrupt Priority Register 7	5.6.8				
IPR8	\$8	Interrupt Priority Register 8	5.6.9				
IPR9	\$9	Interrupt Priority Register 9	5.6.10				
VBA	\$A	Vector Base Address Register	5.6.11				
FIM0	\$B	Fast Interrupt 0 Match Register	5.6.12				
FIVAL0	\$C	Fast Interrupt 0 Vector Address Low Register	5.6.13				
FIVAH0	\$D	Fast Interrupt 0 Vector Address High Register	5.6.14				
FIM1	\$E	Fast Interrupt 1 Match Register	5.6.15				
FIVAL1	\$F	Fast Interrupt 1 Vector Address Low Register	5.6.16				
FIVAH1	\$10	Fast Interrupt 1 Vector Address High Register	5.6.17				
IRQP0	\$11	IRQ Pending Register 0	5.6.18				
IRQP1	\$12	IRQ Pending Register 1	5.6.19				
IRQP2	\$13	IRQ Pending Register 2	5.6.20				
IRQP3	\$14	IRQ Pending Register 3	5.6.21				
IRQP4	\$15	IRQ Pending Register 4	5.6.22				
IRQP5	\$16	IRQ Pending Register 5	5.6.23				
Reserved							
ICTL		Interrupt Control Register	5.6.30				

Table 5-3 ITCN Register Summary (ITCN_BASE = \$00F1A0)

\$0			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	IPR0	R	0	0	BKPT_	U0 IPL	STPC	NT IPL	0	0	0	0	0	0	0	0	0	0	
		W R	0	0	0	0	0	0	0	0	0	0							
\$1	IPR1	W		-										g ipl	TX_REG IPL		TRBUF IPL		
\$2	IPR2	R W	FMC	BE IPL	FMC	C IPL	FMEF	rr ipl	LOC	LOCK IPL		LVI IPL		0	IRQB IPL		IRQA IPL		
\$3	IPR3	R W	GPIC	D IPL	GPIC	E IPL	GPIOF IPL		FCMSG	BUF IPL	FCWK	UP IPL	FCERR IPL		FCBO	FF IPL	0	0	
\$4	IPR4	R	SPIN F	RCV IPL		MIT IPL	SPI1	_RCV	0	0	0	0	GPIOA	IPI	GPIC	B IPL	GPI	OC IPL	
		W R						PL _RCV			0	0							
\$5	IPR5	W	DEC1_>	kirq ipl	DEC1_H	HRQ IPL		2	SCI1_R	ERR IPL			SCI1_TI		SCI1_X	MIT IPL	SPI0_2	XMIT IPL	
\$6	IPR6	R W	TMR	C0 IPL	TMR	D3 IPL	TMRI	D2 IPL	TMR	D1 IPL	TMR	D0 IPL	0	0	DEC0_>	(IRQ IPL	DEC0_	HIRQ IP	
\$7	IPR7	R W	TMR	A0 IPL	TMR	33 IPL	TMR	32 IPL	TMRE	31 IPL	TMRE	30 IPL	TMRC3	B IPL	TMRC	C2 IPL	TMR	C1 IPL	
\$8	IPR8	R W	_	RCV IPL		ERR IPL ERR IPL	0	0		IDL IPL	SCI0_X SCI0_X		TMRA3			A2 IPL A2 IPL		A1 IPL	
\$9	IPR9	R	_				PWM	IA_RL					ABCB_Z						
		W R	0	0	0		II	2					ADDRESS						
\$A	VBA	W R	0	0	0	0	0	0	0	0	0								
\$B	VBA0	W	0	0	0	0	0	0	0	0	0			FAST	INTERR	UPT 0			
\$C	FIVAL0	R W						FAS	T INTERI	RUPT 0 \	/ECTOR	ADDRES	SS LOW						
\$D	FIVAH0	R W	0	0	0	0	0	0	0	0	0	0	0	ſ	AST INT	ERRUPT DRESS H		OR	
\$E	FIM1	R	0	0	0	0	0	0	0	0	0			FAST	INTERR				
		W R	0	0	0	0	0	0	0 FAS	0 T INTERF		ECTOR		17.01					
\$F	FIVAL1	W	-							ADDR	ESS LOV	V							
\$10	FIVAH1	R W	0 0	0	0	0	0	0	0 0	0 0	0	0 0	0	ſ		ERRUPT DRESS H		I VECTOR IGH	
\$11	IRQP0	R W							PE	NDING [16:2]							1	
\$12	IRQP1	R								PENDI	NG [32:1]	7]							
		W R								PENDI	NG [48:3:	31							
\$13	IRQP2	W									-	-							
\$14	IRQP3	R W								PENDI	NG [64:49	9]							
\$15	IRQP4	R								PENDI	NG [80:6	5]							
ψ10 		W																PEND-	
\$16	IRQP5	R		1	1	1	1	1	1	1	1	1	1	1	1	1	1	ING [81]	
\$17	Reserved	W																_	
	Reserved Reserved																		
	Reserved																		
	Reserved																		
	Reserved Reserved																		
		R	INT	IF	PIC				VAB					1	IRQB	IRQA	IRQB	IRQA	
\$1D	ICTL	W							_				INT_DIS		STATE	STATE	EDG	EDG	
L		R		= Read a															

Figure 5-2 ITCN Register Map Summary

5.6.1 Interrupt Priority Register 0 (IPR0)

Base + \$0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	BKPT		STDC	וחו דו	0	0	0	0	0	0	0	0	0	0
Write			DRF I_		3150	STPCNT IPL										
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-3 Interrupt Priority Register 0 (IPR0)

5.6.1.1 Reserved—Bits 15–14

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.1.2 EOnCE Breakpoint Unit 0 Interrupt Priority Level (BKPT_U0 IPL)— Bits13–12

This field is used to set the interrupt priority levels for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.1.3 EOnCE Step Counter Interrupt Priority Level (STPCNT IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.1.4 Reserved—Bits 9–0

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.2 Interrupt Priority Register 1 (IPR1)

Base + \$1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	RX_RI				TDBI	
Write													TX_REG IPL		TRBUF IPL	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-4 Interrupt Priority Register 1 (IPR1)

5.6.2.1 Reserved—Bits 15–6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.2.2 EOnCE Receive Register Full Interrupt Priority Level (RX_REG IPL)—Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.2.3 EOnCE Transmit Register Empty Interrupt Priority Level (TX_REG IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.2.4 EOnCE Trace Buffer Interrupt Priority Level (TRBUF IPL)— Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 1
- 10 = IRQ is priority level 2
- 11 = IRQ is priority level 3

5.6.3 Interrupt Priority Register 2 (IPR2)

Base + \$2	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	EMCE	CBE IPL FMCC I		וחו כ	FMERR IPL		LOCK IPL		LVI IPL		0	0	IRQE	וחו מ	IRQA	וסו
Write	FMCBE IPL						LOOKIIL						INQE		INQA	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-5 Interrupt Priority Register 2 (IPR2)

5.6.3.1 Flash Memory Command, Data, Address Buffers Empty Interrupt Priority Level (FMCBE IPL)—Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.2 Flash Memory Command Complete Priority Level (FMCC IPL)—Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.3 Flash Memory Error Interrupt Priority Level (FMERR IPL)—Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.4 PLL Loss of Lock Interrupt Priority Level (LOCK IPL)—Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.5 Low Voltage Detector Interrupt Priority Level (LVI IPL)—Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.6 Reserved—Bits 5-4

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.3.7 External IRQ B Interrupt Priority Level (IRQB IPL)—Bits 3–2

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0

- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.8 External IRQ A Interrupt Priority Level (IRQA IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4 Interrupt Priority Register 3 (IPR3)

Base + \$3	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	GPIO	וסו ח	GRIO	GPIOE IPL GPIOFIF			FCMSG		FCWK		FCER		FCBO		0	0
Write	GFIO	DIFL	GFIC		GFIC		T CIMBO	BOLIFE	TOWR		TOLK		I CBO			
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-6 Interrupt Priority Register 3 (IPR3)

5.6.4.1 GPIO D Interrupt Priority Level (GPIOD IPL)—Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.2 GPIO E Interrupt Priority Level (GPIOE IPL)—Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.3 GPIO F Interrupt Priority Level (GPIOF IPL)—Bits 11–10

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.4 FlexCAN Message Buffer Interrupt Priority Level (FCMSGBUF IPL)—Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.5 FlexCAN Wake Up Interrupt Priority Level (FCWKUP IPL)— Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.6 FlexCAN Error Interrupt Priority Level (FCERR IPL)— Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.7 FlexCAN Bus Off Interrupt Priority Level (FCBOFF IPL)— Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.4.8 Reserved—Bits 1–0

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.5 Interrupt Priority Register 4 (IPR4)

Base + \$4	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	SPI0	_RCV	SPI1_			_RCV	0	0	0	0	GPIO		GPIO		GPIO	
Write	IF	۳L	IF	SPI1_XMIT IPL		Ľ					GFIO		GFIO	DIFL	GFIO	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-7 Interrupt Priority Register 4 (IPR4)

5.6.5.1 SPI0 Receiver Full Interrupt Priority Level (SPI0_RCV IPL)— Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.2 SPI1 Transmit Empty Interrupt Priority Level (SPI1_XMIT IPL)— Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.3 SPI1 Receiver Full Interrupt Priority Level (SPI1_RCV IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.4 Reserved—Bits 9–6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.5.5 GPIO A Interrupt Priority Level (GPIOA IPL)—Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.6 GPIO B Interrupt Priority Level (GPIOB IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.5.7 GPIO C Interrupt Priority Level (GPIOC IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6 Interrupt Priority Register 5 (IPR5)

Base + \$5	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	DEC1	_XIRQ	DEC1	DEC1_HIRQ IPL		_RCV	SCI1_	RERR	0	0	SCI1_	TIDL	SCI1_	_XMIT	SPI0_	XMIT
Write	IF	۲L	IF	Ľ	IF	۲L	IP	Ľ			IF	Ľ	IF	Ľ	IP	۲L
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-8 Interrupt Priority Register 5 (IPR5)

5.6.6.1 Quadrature Decoder 1 INDEX Pulse Interrupt Priority Level (DEC1_XIRQ IPL)—Bits 15–14

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6.2 Quadrature Decoder 1 HOME Signal Transition or Watchdog Timer Interrupt Priority Level (DEC1_HIRQ IPL)—Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6.3 SCI1 Receiver Full Interrupt Priority Level (SCI1_RCV IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6.4 SCI1 Receiver Error Interrupt Priority Level (SCI1_RERR IPL)— Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6.5 Reserved—Bits 7–6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.6.6 SCI1 Transmitter Idle Interrupt Priority Level (SCI1_TIDL IPL)— Bits 5–4

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6.7 SCI1 Transmitter Empty Interrupt Priority Level (SCI1_XMIT IPL)— Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.6.8 SPI0 Transmitter Empty Interrupt Priority Level (SPI_XMIT IPL)— Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7 Interrupt Priority Register 6 (IPR6)

Base + \$6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	TMRC	וחו מ		TMRD3 IPL		02 IPL	TMRD		TMRE		0	0	DEC0	_XIRQ	DEC0_	_HIRQ
Write	INIKC	JUIFL	TWIRL	JSIFL			TWIRL		TIVIRL				IF	Ľ	IP	۲L
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-9 Interrupt Priority Register 6 (IPR6)

5.6.7.1 Timer C Channel 0 Interrupt Priority Level (TMRC0 IPL)— Bits 15–14

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.2 Timer D Channel 3 Interrupt Priority Level (TMRD3 IPL)— Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.3 Timer D Channel 2 Interrupt Priority Level (TMRD2 IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.4 Timer D Channel 1 Interrupt Priority Level (TMRD1 IPL)— Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.5 Timer D Channel 0 Interrupt Priority Level (TMRD0 IPL)— Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.6 Reserved—Bits 5–4

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.7.7 Quadrature Decoder 0 INDEX Pulse Interrupt Priority Level (DEC0_XIRQ IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.7.8 Quadrature Decoder 0 HOME Signal Transition or Watchdog Timer Interrupt Priority Level (DEC0_HIRQ IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8 Interrupt Priority Register 7 (IPR7)

Base + \$7	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	тмри	A0 IPL	тмре	TMRB3 IPL		32 IPL	TMRE		TMRE		TMRC	וםו גי	TMRC	וםו כי	TMRC	
Write											TWINC	5 IFL	TIMIKC		TIVIEC) IFL
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-10 Interrupt Priority Register (IPR7)

5.6.8.1 Timer A Channel 0 Interrupt Priority Level (TMRA0 IPL)— Bits 15–14

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.2 Timer B Channel 3 Interrupt Priority Level (TMRB3 IPL)— Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.3 Timer B Channel 2 Interrupt Priority Level (TMRB2 IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.4 Timer B Channel 1 Interrupt Priority Level (TMRB1 IPL)—Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.5 Timer B Channel 0 Interrupt Priority Level (TMRB0 IPL)—Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.6 Timer C Channel 3 Interrupt Priority Level (TMRC3 IPL)—Bits 5–4

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.7 Timer C Channel 2 Interrupt Priority Level (TMRC2 IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.8.8 Timer C Channel 1 Interrupt Priority Level (TMRC1 IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9 Interrupt Priority Register 8 (IPR8)

Base + \$8	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	SCI0	_RCV	SCI0_	SCI0_RERR		0	SCI0	TIDL	SCI0_	_XMIT	TMRA		TMRA		TMRA	
Write	IF	Ľ	IF	SCI0_RERR IPL			IF	Ľ	IF	۲L	T IVITY/		T IVITY/	12 IF L	T IVITY/	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-11 Interrupt Priority Register 8 (IPR8)

5.6.9.1 SCI0 Receiver Full Interrupt Priority Level (SCI0_RCV IPL)— Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.2 SCI0 Receiver Error Interrupt Priority Level (SCI0_RERR IPL)— Bits 13–12

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.3 Reserved—Bits 11–10

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.9.4 SCI0 Transmitter Idle Interrupt Priority Level (SCI0_TIDL IPL)— Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.5 SCI0 Transmitter Empty Interrupt Priority Level (SCI0_XMIT IPL)— Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.6 Timer A Channel 3 Interrupt Priority Level (TMRA3 IPL)—Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.7 Timer A Channel 2 Interrupt Priority Level (TMRA2 IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.9.8 Timer A Channel 1 Interrupt Priority Level (TMRA1 IPL)—Bits 1–0

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0

- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10 Interrupt Priority Register 9 (IPR9)

Base + \$9	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		FIPL	PWMB	E IDI	PWM	A_RL					ABCB		ADC		ADCE	3_CC
Write				_1 166	IF	۳L			ADCA_	ZUIFL	ADCD_	ZUIFL	IF	۲L	IP	۲L
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-12 Interrupt Priority Register 9 (IPR9)

5.6.10.1 PWM A Fault Interrupt Priority Level (PWMA_F IPL)—Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.2 PWM B Fault Interrupt Priority Level (PWMB_F IPL)—Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.3 Reload PWM A Interrupt Priority Level (PWMA_RL IPL)— Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.4 Reload PWM B Interrupt Priority Level (PWMB_RL IPL)—Bits 9–8

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.5 ADC A Zero Crossing Interrupt Priority Level (ADCA_ZC IPL)— Bits 7–6

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 0. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.6 ADC B Zero Crossing Interrupt Priority Level (ADCB_ZC IPL)— Bits 5–4

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.7 ADC A Conversion Complete Interrupt Priority Level (ADCA_CC IPL)—Bits 3–2

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.10.8 ADC B Conversion Complete Interrupt Priority Level (ADCB_CC IPL)—Bits 1–0

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.11 Vector Base Address Register (VBA)

Base + \$A	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0					V	ECTOP			9				
Write								v	LUTOK	DAGE P	DDRLO	5				
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-13 Vector Base Address Register (VBA)

5.6.11.1 Reserved—Bits 15–13

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.11.2 Interrupt Vector Base Address (VECTOR BASE ADDRESS)— Bits 12–0

The contents of this register determine the location of the Vector Address Table. The value in this register is used as the upper 13 bits of the interrupt Vector Address Bus (VAB[20:0]). The lower eight bits are determined based upon the highest-priority interrupt. They are then appended onto VBA before presenting the full VAB to the 56800E core; see Section 5.3.1 for details.

5.6.12 Fast Interrupt 0 Match Register (FIM0)

Base + \$B	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0			EAST	INTERR			
Write												FAST		UFIU		
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-14 Fast Interrupt 0 Match Register (FIM0)

5.6.12.1 Reserved—Bits 15-7

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.12.2 Fast Interrupt 0 Vector Number (FAST INTERRUPT 0)—Bits 6–0

This value determines which IRQ will be a Fast Interrupt 0. Fast interrupts vector directly to a service routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table first; see **Section 5.3.3**. IRQs used as fast interrupts *must* be set to priority level 2. Unexpected results will occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared as fast interrupt. Fast interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each IRQ, refer to Table 4-5.

5.6.13 Fast Interrupt 0 Vector Address Low Register (FIVAL0)

Base + \$C	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		FAST INTERRUPT 0 VECTOR ADDRESS LOW														
Write		FAST INTERRUPT 0 VECTOR ADDRESS LOW														
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-15 Fast Interrupt 0 Vector Address Low Register (FIVAL0)

5.6.13.1 Fast Interrupt 0 Vector Address Low (FIVAL0)—Bits 15–0

The lower 16 bits of the vector address are used for fast interrupt 0. This register is combined with FIVAH0 to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.

5.6.14 Fast Interrupt 0 Vector Address High Register (FIVAH0)

Base + \$D	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	0	FAST INTERRUPT 0 VECTOR ADDRESS HIGH				
Write													ADD	RESS H	ligh	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-16 Fast Interrupt 0 Vector Address High Register (FIVAH0)

5.6.14.1 Reserved—Bits 15-5

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.14.2 Fast Interrupt 0 Vector Address High (FIVAH0)—Bits 4–0

The upper five bits of the vector address are used for Fast Interrupt 0. This register is combined with FIVAL0 to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.

5.6.15 Fast Interrupt 1 Match Register (FIM1)

Base + \$E	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Read	0	0	0	0	0	0	0	0	0									
Write										– FAST INTERRUPT 1								
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Figure 5-17 Fast Interrupt 1 Match Register (FIM1)

5.6.15.1 Reserved—Bits 15-7

This bit field is reserved or not implemented. It is read as 0, but cannot be modified by writing.

5.6.15.2 Fast Interrupt 1 Vector Number (FAST INTERRUPT 1)—Bits 6–0

This value determines which IRQ will be a Fast Interrupt 1. Fast interrupts vector directly to a service routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table first; see **Section 5.3.3**. IRQs used as fast interrupts *must* be set to priority level 2. Unexpected results will occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared as fast interrupt. Fast interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each IRQ, refer to Table 4-5.

5.6.16 Fast Interrupt 1 Vector Address Low Register (FIVAL1)

Base + \$F	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		FAST INTERRUPT 1 VECTOR ADDRESS LOW														
Write								ADDRE	SS LOW	1						
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-18 Fast Interrupt 1 Vector Address Low Register (FIVAL1)

5.6.16.1 Fast Interrupt 1 Vector Address Low (FIVAL1)—Bits 15–0

The lower 16 bits of vector address are used for Fast Interrupt 1. This register is combined with FIVAL1 to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.

5.6.17 Fast Interrupt 1 Vector Address High Register (FIVAH1)

Base + \$10	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	0	FAST INTERRUPT 1 VECTOR ADDRESS HIGH				
Write												ADDRESS HIGH				
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-19 Fast Interrupt 1 Vector Address High Register (FIVAH1)

5.6.17.1 Reserved—Bits 15-5

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

5.6.17.2 Fast Interrupt 1 Vector Address High (FIVAH1)—Bits 4–0

The upper five bits of vector address are used for Fast Interrupt 1. This register is combined with FIVAH1 to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.

5.6.18 IRQ Pending 0 Register (IRQP0)

Base + \$11	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		PENDING [16:2]												1		
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-20 IRQ Pending 0 Register (IRQP0)

5.6.18.1 IRQ Pending (PENDING)—Bits 15–1

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 =No IRQ pending for this vector number

5.6.18.2 Reserved—Bit 0

This bit is reserved or not implemented. It is read as 1 and cannot be modified by writing.

5.6.19 IRQ Pending 1 Register (IRQP1)

\$Base + \$12	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		PENDING [32:17]														
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-21 IRQ Pending 1 Register (IRQP1)

5.6.19.1 IRQ Pending (PENDING)—Bits 32–17

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 = No IRQ pending for this vector number

5.6.20 IRQ Pending 2 Register (IRQP2)

Base + \$13	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		PENDING [48:33]														
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-22 IRQ Pending 2 Register (IRQP2)

5.6.20.1 IRQ Pending (PENDING)—Bits 48–33

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 = No IRQ pending for this vector number

5.6.21 IRQ Pending 3 Register (IRQP3)

Base + \$14	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		PENDING [64:49]														
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-23 IRQ Pending 3 Register (IRQP3)

5.6.21.1 IRQ Pending (PENDING)—Bits 64–49

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 =No IRQ pending for this vector number

5.6.22 IRQ Pending 4 Register (IRQP4)

Base + \$15	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		PENDING [80:65]														
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-24 IRQ Pending 4 Register (IRQP4)

5.6.22.1 IRQ Pending (PENDING)—Bits 80–65

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 = No IRQ pending for this vector number

5.6.23 IRQ Pending 5 Register (IRQP5)

Base + \$16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	PEND- ING [81]
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-25 IRQ Pending Register 5 (IRQP5)

5.6.23.1 Reserved—Bits 96-82

This bit field is reserved or not implemented. The bits are read as 1 and cannot be modified by writing.

5.6.23.2 IRQ Pending (PENDING)—Bit 81

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 = No IRQ pending for this vector number

- 5.6.24 Reserved—Base + 17
- 5.6.25 Reserved—Base + 18
- 5.6.26 Reserved—Base + 19
- 5.6.27 Reserved—Base + 1A
- 5.6.28 Reserved—Base + 1B
- 5.6.29 Reserved—Base + 1C

5.6.30 ITCN Control Register (ICTL)

Base + \$1D	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	INT	IP	IC	VAB						INT_DIS	1	IRQB STATE	IRQA STATE	IRQB	IRQA	
Write															EDG	EDG
RESET	0	0	0	1	0	0	0	0	0	0	0	1	1	1	0	0

Figure 5-26 ITCN Control Register (ICTL)

5.6.30.1 Interrupt (INT)—Bit 15

This *read-only* bit reflects the state of the interrupt to the 56800E core.

- 0 =No interrupt is being sent to the 56800E core
- 1 = An interrupt is being sent to the 56800E core

5.6.30.2 Interrupt Priority Level (IPIC)—Bits 14–13

These *read-only* bits reflect the state of the new interrupt priority level bits being presented to the 56800E core at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new interrupt service routine.

Note: Nested interrupts may cause this field to be updated before the original interrupt service routine can read it.

- 00 = Required nested exception priority levels are 0, 1, 2, or 3
- 01 = Required nested exception priority levels are 1, 2, or 3
- 10 = Required nested exception priority levels are 2 or 3
- 11 = Required nested exception priority level is 3

5.6.30.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6

This *read-only* field shows the vector number (VAB[7:1]) used at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new interrupt service routine.

Note: Nested interrupts may cause this field to be updated before the original interrupt service routine can read it.

5.6.30.4 Interrupt Disable (INT_DIS)—Bit 5

This bit allows all interrupts to be disabled.

- 0 = Normal operation (default)
- 1 =All interrupts disabled

5.6.30.5 Reserved—Bit 4

This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.

5.6.30.6 IRQB State Pin (IRQB STATE)—Bit 3

This *read-only* bit reflects the state of the external IRQB pin.

5.6.30.7 IRQA State Pin (IRQA STATE)—Bit 2

This *read-only* bit reflects the state of the external \overline{IRQA} pin.

5.6.30.8 IRQB Edge Pin (IRQB Edg)—Bit 1

This bit controls whether the external \overline{IRQB} interrupt is edge or level sensitive. During Stop and Wait modes, it is automatically level sensitive.

- $0 = \overline{\text{IRQB}}$ interrupt is a low-level sensitive (default)
- $1 = \overline{\text{IRQB}}$ interrupt is falling-edge sensitive.

5.6.30.9 IRQA Edge Pin (IRQA Edg)—Bit 0

This bit controls whether the external \overline{IRQA} interrupt is edge or level sensitive. During Stop and Wait modes, it is automatically level sensitive.

- $0 = \overline{IRQA}$ interrupt is a low-level sensitive (default)
- $1 = \overline{IRQA}$ interrupt is falling-edge sensitive.

5.7 Resets

5.7.1 Reset Handshake Timing

The ITCN provides the 56800E core with a reset vector address whenever $\overline{\text{RESET}}$ is asserted. The reset vector will be presented until the second rising clock edge after $\overline{\text{RESET}}$ is released.

5.7.2 ITCN After Reset

After reset, all of the ITCN registers are in their default states. This means all interrupts are disabled, except the core IRQs with fixed priorities: Illegal Instruction; SW Interrupt 3; HW Stack Overflow; Misaligned Long Word Access; SW Interrupt 2; SW Interrupt 1; SW Interrupt 0; and SW Interrupt LP. These interrupts are enabled at their fixed priority levels.

Part 6 System Integration Module (SIM)

6.1 Overview

The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls distribution of resets and clocks and provides a number of control features. The system integration module is responsible for the following functions:

- Reset sequencing
- Clock generation & distribution
- Stop/Wait control
- Pull-up Enables for Selected Peripherals
- System status registers
- Registers for software access to the JTAG ID of the chip
- Enforcing Flash security

6.2 Features

The SIM has the following features:

- Flash security feature prevents unauthorized access to code/data contained in on-chip Flash memory
- Power-saving clock gating for peripheral
- Three power modes (Run, Wait, Stop) to control power utilization
 - Stop mode shuts down 56800E core, system clock, peripheral clock, and PLL operation
 - Stop mode entry can optionally disable PLL and Oscillator (low power vs. fast restart); must be done explicitly
 - Wait mode shuts down the 56800E core, and unnecessary system clock operation
 - Run mode supports full part operation
- Controls to enable/disable the 56800E core WAIT and STOP instructions
- Calculates base delay for reset extension based upon POR and RESET values. Reset delay will be either 3 x 32 clocks (phased release of reset) or 2^21 clock cycles
- Controls Reset sequencing after reset
- Software-initiated reset
- Four 16-bit registers reset only by a Power-On Reset usable for general purpose software control
- System Control Register
- Registers for software access to the JTAG ID of the chip

6.3 Operating Modes

Since the SIM is responsible for distributing clocks and resets across the chip, it must understand the various chip operating modes and take appropriate action. These are:

- **Reset Mode,** which has two submodes:
 - Hardware Reset Mode
 - 56800E Core and all peripherals are reset. This occurs when the internal POR is asserted, the

RESET pin is asserted or when the COP timer times out.

— Software Reset Mode

Software reset occurs when a 1 is written into the software RESET (SWRST) bit in the SIM Control Register (SIM_CONTROL). This reset mode is identical to the H/W RESET mode save since the EMI_MODE and EXTBOOT pins are ignored at reset, EXTBOOT is ignored, and the state of the mA bit is conserved.

• Run Mode

This is the primary mode of operation for this device. In this mode, the 56800E controls chip operation

Debug Mode

The 56800E is controlled via JTAG/EOnCE when in debug mode. All peripherals continue to run except the COP and PWMs. COP is disabled and PWM outputs are optionally switched off to disable any motor from being driven; see the PWM chapter in the **56F8300 Peripheral User Manual** for details.

• Wait Mode

In Wait mode, the core clock and memory clocks are disabled. Optionally, the COP can be stopped. Similarly, it is an option to switch off PWM outputs to disable any motor from being driven. All other peripherals continue to run.

• Stop Mode

When in Stop mode, the 56800E core, memory, and most peripheral clocks are shut down. Optionally, the COP and CAN can be stopped. For lowest power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. The CAN (along with any non-gated interrupt) is capable of waking the chip up from Stop mode.

6.4 Operation Mode Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	NL							СМ	XP	SD	R	SA	EX	0	MB	MA
Туре	R/W							R/W	R/W	R/W	R/W	R/W	R/W		R/W	R/W
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-1 OMR

See Section 4.2 for detailed information on how the Operating Mode Register (OMR) MA and MB bits operate in this device. Additional information on the EX bit see Section 4.4. For all other bits see, Section 8.2.1 of the DSP56800E Reference Manual.

Note: The OMR is not a Memory Map register; it is directly accessible in code through the acronym OMR.

6.5 Register Descriptions

Address Acronym	Address Offset	Register Name	Section Location
SIM_CONTROL	Base + \$0	Control Register	6.5.1
SIM_RSTSTS	Base + \$1	Reset Status Register	6.5.2
SIM_SCR0	Base + \$2	Software Control Register 0	6.5.3
SIM_SCR1	Base + \$3	Software Control Register 1	6.5.3
SIM_SCR2	Base + \$4	Software Control Register 2	6.5.3
SIM_SCR3	Base + \$5	Software Control Register 3	6.5.3
SIM_MSH_ID	Base + \$6	Most Significant Half of JTAG ID	6.5.4
SIM_LSH_ID	Base + \$7	Least Significant Half of JTAG ID	6.5.5
SIM_PUDR	Base + \$8	Pull-up Disable Register	6.5.6
		Reserved	
SIM_CLKOSR	Base + \$A	CLKO Select Register	6.5.7
SIM_GPS	Base + \$B	GPIO Peripheral Select Register	6.5.8
SIM_PCE	Base + \$C	Peripheral Clock Enable Register	6.5.9
SIM_ISALH	Base + \$D	I/O Short Address Location High Register	6.5.10
SIM_ISALL	Base + \$E	I/O Short Address Location Low Register	6.5.10

Table 6-1 SIM Registers (SIM_BASE = \$00F350)

Add. Offset	Register Name		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\$0	SIM_ CONTROL	R W	0	0	0	0	0	0	0	0	0	0	Once Ebl	SW Rst	stop_o	disable	wait_c	lisable
\$1	SIM_	R	0	0	0	0	0	0	0	0	0	0	SWR	COPR	EXTR	POR	0	0
\$2	RSTSTS SIM_SCR0	W R								FIE	LD		-					
\$3	SIM_SCR1	W R W								FIE	ELD							
\$4	SIM_SCR2	R W								FIE	LD							
\$5	SIM_SCR3	R W								FIE	LD							
\$6	SIM_MSH_ ID	R W	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0
\$7	SIM_LSH_ID	R	0	1	0	0	0	0	0	0	0	0	0	1	1	1	0	1
\$8	SIM PUDR	R	0	PWMA 1	CAN	EMI_ MODE	RESE T	IRQ	XBOO T	PWMB	PWMA 0	DATA	CTRL	ADR	JTAG	TMRD	TMRC	TMRA
φo	_	W	0	PWMA 1	CAN	EMI_ MODE	RESE T	IRQ	XBOO T	PWMB	PWMA 0	DATA	CTRL	ADR	JTAG	TMRD	TMRC	TMRA
	Reserved																	
\$A	SIM_	R		0	0	0	0	0	A23	A22	A21	A20	CLKDI S		C	LKOSEI	-	
φ	CLKOSR	W		0	0	0	0	0	A23	A22	A21	A20	CLKDI S		C	LKOSEI	-	
\$В	SIM_GPS	R W	0	0	0	0	0	0	0	0	0	0	0	0	HOME _ALT	INDEX _ALT	PHSB _ALT	PHA _ALT
\$C	SIM_PCE	R W	EMI	ADCB	ADCA	CAN	DEC1	DEC0	TMRD	TMRC	TMRB	TMRA	SCI1	SCI0	SPI1	SPI0	PWM B	PWM
\$D	SIM_ISALH	R W	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ISAL[23:22]
\$E	SIM_ISALL	R W		ISAL[21:6]														

R0= Read as 0W= Reserved

Figure 6-2 SIM Register Map Summary

6.5.1 SIM Control Register (SIM_CONTROL)

Base + \$0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	Once	SW	stop_c	licablo	wait_c	licabla
Write											Ebl0	Rst	stop_c	lisable	wait_c	lisable
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-3 SIM Control Register (SIM_CONTROL)

6.5.1.1 Reserved—Bits 15–6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.1.2 OnCE Enable (OnCEEBL)—Bit 5

- 0 = OnCE clock to 56800E core enabled when core TAP is enabled
- 1 = OnCE clock to 56800E core is always enabled

6.5.1.3 Software Reset (SWRST)—Bit 4

Writing 1 to this field will cause the part to reset.

6.5.1.4 Stop Disable (STOP_DISABLE)—Bits 3–2

- 00 STOP mode will be entered when the 56800E core executes a STOP instruction
- 01 The 56800E STOP instruction will not cause entry into Stop mode; stop_disable can be reprogrammed in the future
- 10 The 56800E STOP instruction will not cause entry into Stop mode; stop_disable can then only be changed by resetting the device
- 11 Same operation as 10

6.5.1.5 Wait Disable (WAIT_DISABLE)—Bits 1–0

- 00 WAIT mode will be entered when the 56800E core executes a WAIT instruction
- 01 The 56800E WAIT instruction will not cause entry into Wait mode; wait_disable can be reprogrammed in the future
- 10 The HawkV2 WAIT instruction will not cause entry into Wait mode; wait_disable can then only be changed by resetting the device
- 11 Same operation as 10

6.5.2 SIM Reset Status Register (SIM_RSTSTS)

Bits in this register are set upon any system reset and are initialized only by a Power-On Reset (POR). A reset (other than POR) will only set bits in the register; bits are not cleared. Software should only clear this register.

Base + \$1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	SWR	COPR	EXTR	POR	0	0
Write											SWK	COFK	LAIN	FOR		
RESET	0	0	0	0	0	0	0	0	0	0					0	0

Figure 6-4 SIM Reset Status Register (SIM_RSTSTS)

6.5.2.1 Reserved—Bits 15–6

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.2.2 Software Reset (SWR)—Bit 5

When 1, this bit indicates that the previous reset occurred as a result of a software reset (write to SWRST bit in the SIM_CONTROL register). This bit will be cleared by any hardware reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it.

6.5.2.3 COP Reset (COPR)—Bit 4

When 1, the COPR bit indicates the Computer Operating Properly (COP) timer-generated reset has occurred. This bit will be cleared by a Power-On Reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it.

6.5.2.4 External Reset (EXTR)—Bit 3

If 1, the EXTR bit indicates an external system reset has occurred. This bit will be cleared by a Power-On Reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit position will clear it. Basically, when the EXTR bit is 1, the previous system reset was caused by the external RESET pin being asserted low.

6.5.2.5 Power on Reset (POR)—Bit 2

When 1, the POR bit indicates a Power-On Reset occurred some time in the past. This bit can only be cleared by software or by another type of reset. Writing a 0 to this bit will set the bit while writing a 1 to the bit position will clear the bit. In summary, if the bit is 1, the previous system reset was due to a Power-On Reset.

6.5.2.6 Reserved—Bits 1–0

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.3 SIM Software Control Registers (SIM_SCR0, SIM_SCR1, SIM_SCR2, and SIM_SCR3)

Only SIM_SCR0 is shown below. SIM_SCR1, SIM_SCR2, and SIM_SCR3 are identical in functionality.

Base + \$2	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		FIELD														
Write		FIELD														
POR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-5 SIM Software Control Register 0 (SIM_SCR0)

6.5.3.1 Software Control Data 1 (FIELD)—Bits 15–0

This register is reset only by the Power-On Reset (POR). It has no part-specific functionality and is intended for use by software developers to contain data that will be unaffected by the other reset sources (reset pin, software reset, and COP reset).

6.5.4 Most Significant Half of JTAG ID (SIM_MSH_ID)

This read-only register displays the most significant half of the JTAG ID for the chip. This register reads \$01F4.

Base + \$6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0
Write																
RESET	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0

Figure 6-6 Most Significant Half of JTAG ID (SIM_MSH_ID)

6.5.5 Least Significant Half of JTAG ID (SIM_LSH_ID)

This read-only register displays the least significant half of the JTAG ID for the chip. This register reads \$401D.

Base + \$7	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	1	0	0	0	0	0	0	0	0	0	1	1	1	0	1
Write																
RESET	0	1	0	0	0	0	0	0	0	0	0	1	1	1	0	1

Figure 6-7 Least Significant Half of JTAG ID (SIM_LSH_ID)

6.5.6 SIM Pull-up Disable Register (SIM_PUDR)

Most of the pins on the chip have on-chip pull-up resistors. Pins which can operate as GPIO can have these resistors disabled via the GPIO function. Non-GPIO pins can have their pull-ups disabled by setting the appropriate bit in this register. Disabling pull-ups is done on a peripheral-by-peripheral basis (for pins not muxed with GPIO). Each bit in the register (see **Figure 6-8**) corresponds to a functional group of pins. See **Table 2-2** to identify which pins can deactivate the internal pull-up resistor.

Base + \$8	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	PWMA1	CAN	EMI_	RESET	IRQ	XBOOT	PWMB	PWMA0	0	CTRL	0	JTAG	0	0	0
Write			OAN	MODE	INLOL I	iitte	ABOOT		I WINAU		OTIL		3170			
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-8 SIM Pull-up Disable Register (SIM_PUDR)

6.5.6.1 PWMA1

This bit controls the pull-up resistors on the FAULTA3 pin.

6.5.6.2 CAN

This bit controls the pull-up resistors on the CAN_RX pin.

6.5.6.3 EMI_MODE

This bit controls the pull-up resistors on the EMI_MODE pin.

6.5.6.4 RESET

This bit controls the pull-up resistors on the $\overline{\text{RESET}}$ pin.

6.5.6.5 IRQ

This bit controls the pull-up resistors on the \overline{IRQA} and \overline{IRQB} pins.

6.5.6.6 XBOOT

This bit controls the pull-up resistors on the EXTBOOT pin.

6.5.6.7 PWMB

This bit controls the pull-up resistors on the FAULTB0, FAULTB1, FAULTB2, and FAULTB3 pins.

6.5.6.8 PWMA0

This bit controls the pull-up resistors on the FAULTA0, FAULTA1, and FAULTA2 pins.

6.5.6.9 CTRL

This bit controls the pull-up resistors on the \overline{WR} and \overline{RD} pins.

6.5.6.10 JTAG

This bit controls the pull-up resistors on the $\overline{\text{TRST}}$, TMS and TDI pins.

6.5.7 CLKO Select Register (SIM_CLKOSR)

The CLKO select register can be used to multiplex out any one of the clocks generated inside the clock generation and SIM modules. The default value is SYS_CLK. All other clocks primarily muxed out are for test purposes only, and are subject to significant phase shift at high frequencies.

The upper four bits of the GPIO B register can function as GPIO, A[23:20], or as additional clock output signals. GPIO has priority and is enabled/disabled via the GPIOB_PER. If GPIO B[7:4] are programmed to operate as peripheral outputs, then the choice between A[23:20] and additional clock outputs is done here in the CLKOSR. The default state is for the peripheral function of GPIO B[7:4] to be programmed as A[23:20]. This can be changed by altering A23 through A20 below.

Base + \$A	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	A23	A22	A21	A20	CLK		C	LKOSEL		
Write							A23	A22	A21	A20	DIS		C	LNUGLI	-	
RESET	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

Figure 6-9 CLKO Select Register (SIM_CLKOSR)

6.5.7.1 Reserved—Bits 15–10

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.7.2 GPIO B[7] Peripheral Function Select (A23)—Bit 9

- 0 = Peripheral output function of GPIO B[7] is defined to be A[23]
- 1 = Peripheral output function of GPIO B[7] is defined to be the oscillator clock (MSTR_OSC in Figure 3-1)

6.5.7.3 GPIO B[6] Peripheral Function Select (A22)—Bit 8

- 0 = Peripheral output function of GPIO B[6] is defined to be A[22]
- 1 = Peripheral output function of GPIO B[6] is defined to be SYS_CLK_x2

6.5.7.4 GPIO B[5] Peripheral Function Select (A21)—Bit 7

- 0 = Peripheral output function of GPIO B[5] is defined to be A[21]
- 1 = Peripheral output function of GPIO B[5] is defined to be sys_clk

6.5.7.5 GPIO B[4] Peripheral Function Select (A20)—Bit 6

- 0 = Peripheral output function of GPIO B[4] is defined to be A[20]
- 1 = Peripheral output function of GPIO B[4] is defined to be the prescaler clock (FREF in Figure 3-4)

6.5.7.6 Clockout Disable (CLKDIS)—Bit 5

- 0 = CLKOUT output is enabled and will output the signal indicated by CLKOSEL
- 1 = CLKOUT is tri-stated

6.5.7.7 CLockout Select (CLKOSEL)—Bits 4–0

Selects clock to be muxed out on the CLKO pin.

- 00000 = SYS_CLK (from OCCS DEFAULT)
- 00001 = Reserved for factory test—56800E clock
- 00010 = Reserved for factory test—XRAM clock
- 00011 = Reserved for factory test—PFLASH odd clock
- 00100 = Reserved for factory test—PFLASH even clock
- 00101 = Reserved for factory test—BFLASH clock
- 00110 = Reserved for factory test—DFLASH clock
- 00111 = Oscillator output
- 01000 = Fout (from OCCS)
- 01001 = Reserved for factory test—IPB clock
- 01010 = Reserved for factory test—Feedback (from OCCS, this is path to PLL)
- 01011 = Reserved for factory test—Prescaler Clk (from OCCS)
- 01100 = Reserved for factory test—Postscaler Clk (from OCCS)
- 01101 = Reserved for factory test—SYS_CLK_x2 (from OCCS)
- 01110 = Reserved for factory test—SYS_CLK_DIV2
- 01111 = Reserved for factory test—SYS_CLK_D
- 10000 = ADCA Clk
- 10001 = ADCB Clk

6.5.8 GPIO Peripheral Select Register (SIM_GPS)

The GPIO Peripheral Select register can be used to multiplex out any one of the three alternate peripherals for GPIOC. The default peripheral is Quad Decoder 1 and Quad Timer B; these peripherals work together.

The four I/O pins associated with GPIO C can function as GPIO, Quad Decoder 1/Quad Timer B or as SPI 1 signals. GPIO is not the default and is enabled/disabled via the GPIOC_PER, as shown in **Figure 6-10** and **Table 6-2**. When GPIO C[3:0] are programmed to operate as peripheral I/O, then the choice between decoder/timer and SPI inputs/outputs is made in the SIM_GPS register and in conjunction with the Quad Timer Status and Control Registers (SCR). The default state is for the peripheral function of GPIO C[3:0] to be programmed as decoder functions. This can be changed by altering the appropriate controls in the indicated registers.

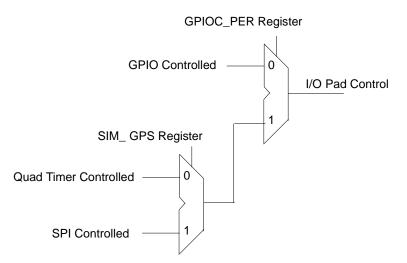


Figure 6-10 Overall Control of Pads Using SIM_GPS Control

		Contro	ol Registers		
Pin Function	GPIOC_PER	GPIOC_DTR	SIM_GPS	Quad Timer SCR register OEN bits	Comments
GPIO Input	0	0	—	—	
GPIO Output	0	1		_	
Quad Timer Input/Quad Decoder Input ²					See Table 11-1 in the DSP56F8300 Peripheral User Manual for the definition of the timer inputs based on the Quad Decoder Mode
Quad Timer Output / Quad Decoder Input ³	1		0	1	configuration.
SPI input	1		1		See SPI controls for determining the direction
SPI output	1		1		of each of the SPI pins.

Table 6-2 Control of Pads Using SIM_GPS Control ¹

1. This applies to the four pins that serve as Quad Decoder / Quad Timer / SPI / GPIOC functions. A separate set of control bits is used for each pin.

2. Reset configuration

3. Quad Decoder pins are always inputs and function in conjunction with the Quad Timer pins.

Base + \$B	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	0	0	0	0	0	0	0	0	0	0	0	0	C3	C2	C1	CO
Write													03	02	CI	0
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 6-11 GPIO Peripheral Select Register (SIM_GPS)

6.5.8.1 Reserved—Bits 15-4

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.8.2 GPIO C3 (C3)—Bit 3

This bit selects the alternate function for GPIOC3.

- 0 = HOME1/TB3 (default see "Switch Matrix Mode" bits of the Quad Decoder DECCR register)
- $1 = SS_B1$

6.5.8.3 GPIO C2 (C2)—Bit 2

This bit selects the alternate function for GPIOC2.

- 0 = INDEX1/TB2 (default)
- 1 = MISO1

6.5.8.4 GPIO C1 (C1)—Bit 1

This bit selects the alternate function for GPIOC1.

• 0 = PHASEB1/TB1 (default)

6.5.8.5 1 = MOSI1GPIO C0 (C0)—Bit 0

This bit selects the alternate function for GPIOC0.

- 0 = PHASEA1/TB0 (default)
- 1 = SCLK1

6.5.9 Peripheral Clock Enable Register (SIM_PCE)

The Peripheral Clock Enable register is used enable or disable clocks to the peripherals as a power savings feature. The clocks can be individually controlled for each peripheral on the chip.

Base + \$C	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	EMI	ADCB		CAN		DECO	TMRD	TMRC	TMRB	TMRA	SCI 1	SCI 0	SPI 1	SPI 0	PWMB	PWMA
Write		ADCB	ADCA	CAN	DECT	DECU	TIVIKU	TIVIRC	IWIND	IWIKA	3011	3010	3511	3510		FVVIVIA
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 6-12 Peripheral Clock Enable Register (SIM_PCE)

6.5.9.1 External Memory Interface Enable (EMI)—Bit 15

Each bit controls clocks to the indicated peripheral.

- 1 =Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.2 Analog-to-Digital Converter B Enable (ADCB)—Bit 14

Each bit controls clocks to the indicated peripheral.

- 1 =Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.3 Analog-to-Digital Converter A Enable (ADCA)—Bit 13

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.4 FlexCAN Enable (CAN)—Bit 12

Each bit controls clocks to the indicated peripheral.

- 1 =Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.5 Decoder 1 Enable (DEC1)—Bit 11

Each bit controls clocks to the indicated peripheral.

- 1 =Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.6 Decoder 0 Enable (DEC0)—Bit 10

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.7 Quad Timer D Enable (TMRD)—Bit 9

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.8 Quad Timer C Enable (TMRC)—Bit 8

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.9 Quad Timer B Enable (TMRB)—Bit 7

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.10 Quad Timer A Enable (TMRA)—Bit 6

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.11 Serial Communications Interface 1 Enable (SCI1)—Bit 5

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.12 Serial Communications Interface 0 Enable (SCI0)—Bit 4

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.13 Serial Peripheral Interface 1 Enable (SPI1)—Bit 3

Each bit controls clocks to the indicated peripheral.

- 1 =Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.14 Serial Peripheral Interface 0 Enable (SPI0)—Bit 2

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.15 Pulse Width Modulator B Enable (PWMB)—1

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.9.16 Pulse Width Modulator A Enable (PWMA)—0

Each bit controls clocks to the indicated peripheral.

- 1 = Clocks are enabled
- 0 = The clock is not provided to the peripheral (the peripheral is disabled)

6.5.10 I/O Short Address Location Register (SIM_ISALH and SIM_ISALL)

The I/O Short Address Location registers are used to specify the memory referenced via the I/O short address mode. The I/O short address mode allows the instruction to specify the lower six bits of address and the upper address bits are not directly controllable. This register set allows limited control of the full address, as shown in **Figure 6-13**.

Note: If this register is set to something other than the top of memory (EOnCE register space) and the EX bit in the OMR is set to 1, the JTAG port cannot access the on-chip EOnCE registers, and debug functions will be affected.

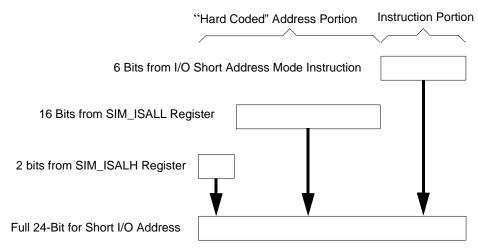


Figure 6-13 I/O Short Address Determination

With this register set, an interrupt driver can set the SIM_ISAL register pair to point to its peripheral registers and then use the I/O Short addressing mode to reference them. The ISR should restore this register to its previous contents prior to returning from interrupt.

- **Note:** The default value of this register set points to the EOnCE registers.
- **Note:** The pipeline delay between setting this register set and using short I/O addressing with the new value is three cycles.

Base + \$D	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ISAL[00.001
Write															юлц	23.22]
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 6-14 I/O Short Address Location High Register (SIM_ISALH)

6.5.10.1 Input/Output Short Address Low (ISAL[23:22])—Bit 1–0

This field represents the upper two address bits of the "hard coded" I/O short address.

Base + \$E	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read		ISAL[21:6]														
Write		ISAL[21:6]														
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 6-15 I/O Short Address Location Low Register (SIM_ISALL)

6.5.10.2 Input/Output Short Address Low (ISAL[21:6])—Bit 15–0

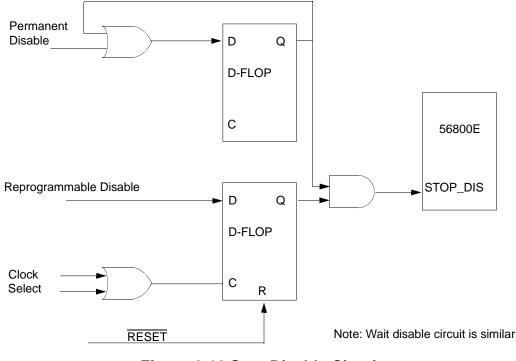
This field represents the lower 16 address bits of the "hard coded" I/O short address.

6.6 Clock Generation Overview

The SIM uses an internal master clock from the OCCS (CLKGEN) module to produce the peripheral and system (core and memory) clocks. The maximum master clock frequency is 120Mhz. Peripheral and system clocks are generated at half the master clock frequency and therefore at a maximum 60Mhz. The SIM provides power modes (STOP, WAIT) and clock enables (SIM_PCE register, CLK_DIS, ONCE_EBL) to control which clocks are in operation. The OCCS, power modes, and clock enables provide a flexible means to manage power consumption.

Power utilization can be minimized in several ways. In the OCCS, crystal oscillator, and PLL may be shut down when not in use. When the PLL is in use, its prescaler and postscaler can be used to limit PLL and master clock frequency. Power modes permit system and/or peripheral clocks to be disabled when unused. Clock enables provide the means to disable individual clocks. Some peripherals provide further controls to disable unused sub-functions. Refer to **Part 3 On-Chip Clock Synthesis (OCCS)** and the **DSP56F8300 Peripheral User Manual** for further details.

6.7 Power Down Modes Overview


The 56F8357 operates in one of three power-down modes as shown in Table 6-3.

Mode	Core Clocks	Peripheral Clocks	Description
Run	Active	Active	Device is fully functional
Wait	Core and memory clocks disabled	Active	Peripherals are active and can produce interrupts if they have not been masked off. Interrupts will cause the core to come out of its suspended state and resume normal operation. Typically used for power-conscious applications.
Stop	System clocks continue to be generated in the SIM, but most are gated prior to reaching memory, core and peripherals.		The only possible recoveries from Stop mode are: 1. CAN traffic (1st message will be lost) 2. Non-clocked interrupts 3. COP reset 4. External reset 5. Power-on reset

 Table 6-3 Clock Operation in Power Down Modes

All peripherals, except the COP/watchdog timer, run off the IPbus clock frequency, which is the same as the main processor frequency in this architecture. The maximum frequency of operation is $SYS_CLK = 60MHz$.

Refer to the PCE register in Section 6.5.9 and ADC power modes. Power is a function of the system frequency which can be controlled through the OCCS.

6.8 Stop and Wait Mode Disable Function

Figure 6-16 Stop Disable Circuit

The 56800E core contains both STOP and WAIT instructions. Both put the CPU to sleep. For lowest power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. When the PLL is shut down, the 56800E system clock must be set equal to the oscillator output.

Some applications require the 56800E STOP/WAIT instructions be disabled. To disable those instructions, write to the SIM control register (SIM_CONTROL) described in Section 6.5.1. This procedure can be on either a permanent or temporary basis. Permanently assigned applications last only until their next reset.

6.9 Resets

The SIM supports four sources of reset. The two asynchronous sources are the external reset pin and the Power-On Reset (POR). The two synchronous sources are the software reset, which is generated within the SIM itself by writting to the SIM_CONTROL register, and the COP reset.

Reset begins with the assertion of any of the reset sources. Release of reset to various blocks is sequenced to permit proper operation of the device. A POR reset is first extended for 2^{21} clock cycles to permit stabilization of the clock source, followed by a 32 clock window in which SIM clocking is initiated. It is then followed by a 32 clock window in which peripherals are released to implement flash security, and, finally, followed by a 32 clock window in which the core is initialized. After completion of the described reset sequence, application code will begin execution.

Resets may be asserted asynchronously, but are always released internally on a rising edge of the system clock.

Part 7 Security Features

The 56F8357 offers security features intended to prevent unauthorized users from reading the contents of the FM array. The 56F8357's Flash security consists of several hardware interlocks that block the means by which an unauthorized user could gain access to the Flash array.

However, part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program, as this code would defeat the purpose of security. At the same time, the user may also wish to put a "backdoor" in his program. As an example, the user downloads a security key through the SCI, allowing access to a programming routine that updates parameters stored in another section of the Flash.

7.1 Operation with Security Enabled

Once the user has programmed the Flash with his application code, the 56F8357 can be secured by programming the security bytes located in the FM configuration field, which occupies a portion of the FM array. These non-volatile bytes will keep the part secured through reset and through power-down of the device. Only two bytes within this field are used to enable or disable security. Refer to the Flash Memory section in the **56F8300 Peripheral User Manual** for the state of the security bytes and the resulting state of security. When Flash security mode is enabled in accordance with the method described in the Flash Memory module specification, the 56F8357 will disable external P-space accesses restricting code execution to internal memory, disable EXTBOOT=1 mode, and disable the core EOnCE debug capabilities. Normal program execution is otherwise unaffected.

7.2 Flash Access Blocking Mechanisms

The 56F8357 has several operating functional and test modes. Effective Flash security must address operating mode selection and anticipate modes in which the on-chip Flash can be compromised and read without explicit user permission. Blocking the three currently identified means for doing this are outlined in the next three subsections.

7.2.1 Forced Operating Mode Selection

At boot time, the SIM determines in which functional modes the 56F8357 will operate. These are:

- Internal Boot Mode
- External Boot Mode
- Secure Mode

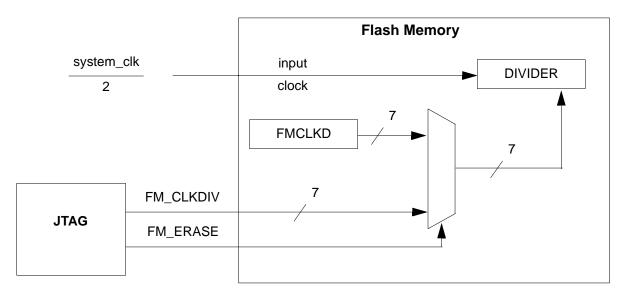
When Flash security is enabled as described in the Flash Memory module specification, the 56F8357 will boot in internal boot mode, disable all access to external P-space, and start executing code from the Boot Flash at address 0x02_0000.

This security affords protection only to applications in which the 56F8357 operates in internal Flash security mode. Therefore, the security feature cannot be used unless all executing code resides on-chip.

When security is enabled, any attempt to override the default internal operating mode by asserting the EXTBOOT pin in conjunction with reset will be ignored.

7.2.2 Disabling EOnCE Access

On-chip Flash can be read by issuing commands across the EOnCE port, which is the debug interface for the 56800E core. The TRST, TCLK, TMS, TDO, and TDI pins comprise a JTAG interface onto which the EOnCE port functionality is mapped. When the 56F8357 boots, the chip-level JTAG TAP (Test Access Port) is active and provides the chip's boundary scan capability and access to the ID register.


Proper implementation of Flash security requires that no access to the EOnCE port is provided when security is enabled. The 56800E core has an input which disables reading of internal memory via the EOnCE/JTAG. The FM sets this input at reset to a value determined by the contents of the FM security bytes.

7.2.3 Flash LOCKOUT_RECOVERY

If a user inadvertently enables security on the 56F8357, a lockout recovery mechanism is provided which allows the complete erasure of the internal Flash contents, including the configuration field, and thus disables security (the protection register is ignored). This does not compromise security, as the entire contents of the user's secured code stored in Flash are erased before security is disabled on the 56F8357 on the next reset or power-up sequence. To start the lockout recovery sequence, the JTAG public instruction (LOCKOUT_RECOVERY) must first be shifted into the chip-level TAP controller's instruction register.

The LOCKOUT_RECOVERY instruction will have an associated 7-bit Data Register (DR) that is used to control the clock divider circuit within the FM module. This divider, FM_CLKDIV[6:0], is used to control the period of the clock used for timed events in the FM erase algorithm. This register must be set with appropriate values before the lockout sequence can begin. Refer to the JTAG section of the **56F8300 Peripheral User Manual** for more details on setting this register value.

The value of the JTAG FM_CLKDIV[6:0] will replace the value of the FM register FMCLKD that divides down the system clock for timed events, as illustrated in **Figure 7-1**. FM_CLKDIV[6] will map to the PRDIV8 bit, and FM_CLKDIV[5:0] will map to the DIV[5:0] bits. The combination of PRDIV8 and DIV must divide the FM input clock down to a frequency of 150kHz-200kHz. The **"Writing the FMCLKD Register"** section in the Flash Memory chapter of the **56F8300 Peripheral User Manual** gives specific equations for calculating the correct values.

Figure 7-1 JTAG to FM Connection for LOCKOUT_RECOVERY

Two examples of FM_CLKDIV calculations follow.

EXAMPLE 1: If the system clock is the 8MHz crystal frequency because the PLL has not been set up, the input clock will be below 12.8MHz, so PRDIV8 = HFM_CLKDIV[6] = 0. Using the following equation yields a DIV value of 19 for a clock of 200kHz, and a DIV value of 20 for a clock of 190kHz. This translates into an HFM_CLKDIV[6:0] value of \$13 or \$14, respectively.

$$150[kHz] < \frac{\left(\frac{system_clk}{(2)}\right)}{(DIV+1)} < 200[kHz]$$

EXAMPLE 2: In this example, the system clock has been set up with a value of 32MHz, making the FM input clock 16MHz. Because that is greater than 12.8MHz, PRDIV8 = FM_CLKDIV[6] = 1. Using the following equation yields a DIV value of 9 for a clock of 200kHz, and a DIV value of 10 for a clock of 181kHz. This translates to an FM_CLKDIV[6:0] value of \$49 or \$4A, respectively.

$$150[kHz] < \frac{\left(\frac{\text{system}_{clk}}{(2)(8)}\right)}{(\text{DIV}+1)} < 200[kHz]$$

Once the LOCKOUT_RECOVERY instruction has been shifted into the instruction register, the clock divider value must be shifted into the corresponding 7-bit data register. After the data register has been updated, the user must transition the TAP controller into the RUN-TEST/IDLE state for the lockout sequence to commence. The controller must remain in this state until the erase sequence has completed. For details, see the JTAG Section in the **56F8300 Peripheral User Manual**.

Note: Once the lockout recovery sequence has completed, the user must reset both the JTAG TAP controller (by asserting TRST) and the 56F8357 (by asserting external chip reset) to return to normal unsecured operation.

7.2.4 Product Analysis

The recommended method of unsecuring a programmed 56F8357 for product analysis of field failures is via the backdoor key access. The customer would need to supply Motorola with the backdoor key and the protocol to access the backdoor routine in the Flash. Additionally, the KEYEN bit that allows backdoor key access must be set.

An alternative method for performing analysis on a secured microcontroller would be to mass-erase and reprogram the Flash with the original code, but modify the security bytes.

To insure that a customer does not inadvertently lock himself out of the 56F8357 during programming, it is recommended that he program the backdoor access key first, his application code second, and the security bytes within the FM configuration field last.

Part 8 General Purpose Input/Output (GPIO)

8.1 Introduction

This section is intended to supplement the GPIO information found in the **56F8300 Peripheral User Manual** and contains only chip-specific information. Any information contained here supercedes the generic information in the **56F8300 Peripheral User Manual**.

8.2 Configuration

There are six GPIO ports defined on the 56F8357. The width of each port and the associated peripheral function is shown in **Table 8-1**. The specific mapping of GPIO port pins is shown in **Table 8-2**.

GPIO Port	Port Width	Available Pins in 56F8347	Peripheral Function	Reset Function
A	14	14	14 pins - EMI Address pins	EMI Address
В	8	8	8pins - EMI Address pins	EMI Address
С	11	11	4 pins -DEC1 / TMRB / SPI1 4 pins -DEC0 / TMRA 3 pins -PWMA current sense	DEC1 / TMRB DEC0 / TMRA PWMA current sense
D	13	13	6 pins - EMI CSn 2 pins - SCI1 2 pins - EMI CSn 3 pins -PWMB current sense	EMI Chip Selects SCI1 EMI Chip Selects PWMB current sense
E	14	14	2 pins - SCI0 2 pins - EMI Address pins 4 pins - SPI0 2 pins - TMRC 4 pins - TMRD	SCI0 EMI Address SPI0 TMRC TMRD
F	16	16	16 pins - EMI Data	EMI Data

Table 8-1 GPIO Ports Configuration

GPIO Port	GPIO Bit	Reset Function	Functional Signal
	0	Peripheral	A8
	1	Peripheral	A9
	2	Peripheral	A10
	3	Peripheral	A11
	4	Peripheral	A12
	5	Peripheral	A13
GPIOA	6	Peripheral	A14
GLIOA	7	Peripheral	A15
	8	Peripheral	A0
	9	Peripheral	A1
	10	Peripheral	A2
	11	Peripheral	A3
	12	Peripheral	A4
	13	Peripheral	A5
	0	GPIO	A16
	1	GPIO	A17
	2	GPIO	A18
GPIOB	3	GPIO	A19
	4	GPIO	A20 / Prescaler_clock
	5	GPIO	A21 / SYS_CLK
	6	GPIO	A22 / SYS_CLKx2
	7	GPIO	A23 / Oscillator_Clock

Table 8-2 GPIO External Signals Map

GPIO Port	GPIO Bit	Reset Function	Functional Signal	
	0	Peripheral	PhaseA1 / TB0 / SCLK1 ¹	
	1	Peripheral	PhaseB1 / TB1 / MOSI1 ¹	
	2	Peripheral	Index1 / TB2 / MISO1 ¹	
	3	Peripheral	Home1 / TB3 / SSI1 ¹	
	4	Peripheral	PHASEA0 / TA0	
GPIOC	5	Peripheral	PHASEB0 / TA1	
	6	Peripheral	Index0 / TA2	
	7	Peripheral	Home0 / TA3	
	8	Peripheral	ISA0	
	9	Peripheral	ISA1	
	10	Peripheral	ISA2	
	0	GPIO	CS2	
	1	GPIO	CS3	
	2	GPIO	CS4	
	3	GPIO	CS5	
	4	GPIO	CS6	
	5	GPIO	CS7	
GPIOD	6	Peripheral	TXD1	
	7	Peripheral	RXD1	
	8	Peripheral	PS / CS0	
	9	Peripheral	DS / CS1	
	10	Peripheral	ISB0	
	11	Peripheral	ISB1	
	12	Peripheral	ISB2	

Table 8-2 GPIO External Signals Map (Continued)

GPIO Port	GPIO Bit	Reset Function	Functional Signal
	0	Peripheral	TXD0
	1	Peripheral	RXD0
	2	Peripheral	A6
	3	Peripheral	A7
	4	Peripheral	SCLK0
	5	Peripheral	MOSI0
GPIOE	6	Peripheral	MISO0
GFICE	7	Peripheral	SS0
	8	Peripheral	TC0
	9	Peripheral	TC1
	10	Peripheral	TD0
	11	Peripheral	TD1
	12	Peripheral	TD2
	13	Peripheral	TD3
	0	Peripheral	D7
	1	Peripheral	D8
	2	Peripheral	D9
	3	Peripheral	D10
	4	Peripheral	D11
	5	Peripheral	D12
	6	Peripheral	D13
	7	Peripheral	D14
GPIOF	8	Peripheral	D15
	9	Peripheral	D0
	10	Peripheral	D1
	11	Peripheral	D2
	12	Peripheral	D3
	13	Peripheral	D4
	14	Peripheral	D5
	15	Peripheral	D6

Table 8-2 GPIO External Signals Map (Continued)

1. See Section 6.5.8 to determine how to select peripherals from this set

8.3 Memory Maps

The width of the GPIO port defines how many bits are implemented in each of the GPIO registers. Based on this and the default function of each of the GPIO pins, the reset values of the GPIOx_PUR and GPIOx_PER registers will change from chip to chip. Tables 4-29 through 4-34 define the actual reset values of these registers for the 56F8357.

Part 9 Joint Test Action Group (JTAG)

9.1 56F8357 Information

Please contact your Motorola marketing representative for device/package-specific BSDL information.

Part 10 Specifications

10.1 General Characteristics

The 56F8357 is fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital inputs. The term "5V-tolerant" refers to the capability of an I/O pin, built on a 3.3V-compatible process technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V- and 5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of $3.3V \pm 10\%$ during normal operation without causing damage). This 5V-tolerant capability therefore offers the power savings of 3.3V I/O levels combined with the ability to receive 5V levels without damage.

Absolute maximum ratings in **Table 10-1** are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to the device.

The 56F8357 DC/AC electrical specifications are preliminary and are from design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after complete characterization and device qualifications have been completed.

CAUTION

This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level.

Table 10-1 Absolute Maximum Ratings

Characteristic	Symbol	Notes	Min	Max	Unit	
Supply Voltage	V _{DD_IO}		-0.3	4.0	V	
ADC Supply Voltage	V _{DDA_ADC} , V _{REFH}	V _{REFH} must be less than or equal to V _{DDA_ADC}	-0.3	4.0	V	
Oscillator/PLL Supply Voltage	V _{DDA_OSC_PLL}		-0.3	4.0	V	
Internal Logic Core Supply Voltage	V _{DDA_CORE}	OCR_DIS is High	-0.3	3.0	V	
Input Voltage (digital)	V _{IN}	Pin Groups 1, 2, 5, 6, 9, 10, 14	-0.3	6.0	V	
Input Voltage (analog)	V _{INA}	Pin Groups 11, 12, 13	-0.3	4.0	V	
Output Voltage	V _{OUT}	Pin Groups 1, 2, 3, 5, 6, 7, 8	-0.3	4.0	V	
Output Voltage (open drain)	V _{OD}	Pin Groups 4, 14	-0.3	6.0	V	
Ambient Temperature (Automotive)	T _A		-40	125	°C	
Ambient Temperature (Industrial)	T _A		-40	105	°C	
Junction Temperature (Automotive)	Τ _J		-40	150	°C	
Junction Temperature (Industrial)	TJ		-40	125	°C	
Storage Temperature (Automotive)	T _{STG}		-55	150	°C	
Storage Temperature (Industrial)	T _{STG}		-55	150	°C	

 $(\mathsf{V}_{\mathsf{SS}}=\mathsf{V}_{\mathsf{SSA}_\mathsf{ADC}}=0)$

Pin Group 1: TXD0-1, RXD0-1, SS0, MISO0, MOSI0 Pin Group 2: PHASEA0-1, PHASEB0-1, INDEX0-1, HOME0-1, ISB0-2, ISA0-2, TD2-3, TC0-1, SCLK0 Pin Group 3: RSTO, TDO Pin Group 4: CAN_TX Pin Group 5: A0-5, D0-15, GPIOD0-5, PS, DS Pin Group 6: A6-15, GPIOB0-7, TD0-1 Pin Group 7: CLKO, WR, RD Pin Group 8: PWMA0-5, PWMB0-5 Pin Group 9: IRQA, IRQB, RESET, EXTBOOT, TRST, TMS, TDI, CAN_RX, EMI_MODE, FAULTA0-3, FAULTB0-3 Pin Group 10: TCK Pin Group 11: XTAL, EXTAL Pin Group 12: ANA0-7, ANB0-7 Pin Group 13: OCR_DIS, CLKMODE Pin Group 14: DE Although the 56F8357 is specified to operate correctly over the full -40°C to 125°C temperature range, it is assumed not to be at the extremes of this range 100% of the time. Specifically, **Table 10-2** lists the temperature profile which will be used for the purposes of sizing on-chip interconnects.

Temperature	Hours of Operation
40°C	99000
80°C	27000
110°C	5400
125°C	2700
150°C	900
Total	135000

Table 10-2 Junction Temperature Profile

Table 10-3 Electrostatic Discharge Protection

Characteristic	Min	Тур	Мах	Unit
ESD for Human Body Model (HBM)	2000			V
ESD for Machine Model (MM)	200	—	—	V
ESD for Charge Device Model (CDM)	500	—	_	V

Characteristic	Comments	Symbol	Value	Unit	Notes	
	Comments	Cymson	160-pin LQFP	onic		
Junction to ambient Natural convection		$R_{ extsf{ heta}JA}$	47.1	°C/W	2	
Junction to ambient (@1m/sec)		R _{θJMA}	43.8	°C/W	2	
Junction to ambient Natural convection	Four layer board (2s2p)	R _{θJMA} (2s2p)	40.8	°C/W	1,2	
Junction to ambient (@1m/sec)	Four layer board (2s2p)	$R_{ extsf{ heta}JMA}$	39.2	°C/W	1,2	
Junction to case		R _{θJC}	11.8	°C/W	3	
Junction to center of case		Ψ_{JT}	1	°C/W	4, 5	
I/O pin power dissipation		P _{I/O}	User Determined	W		
Power dissipation		P _D	$P_D = (I_DD \times V_DD + P_{I/O})$	W		
Junction to center of case		P _{DMAX}	(TJ - TA) /θJA	°C		

Table 10-4 Thermal Characteristics⁶

Notes:

- 1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on 2s2p thermal test board.
- 2. Junction to ambient thermal resistance, Theta-JA ($R_{\theta JA}$) was simulated to be equivalent to the JEDEC specification JESD51-2 in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board with two internal planes (2s2p where "s" is the number of signal layers and "p" is the number of planes) per JESD51-6 and JESD51-7. The correct name for Theta-JA for forced convection or with the non-single layer boards is Theta-JMA.
- 3. Junction to case thermal resistance, Theta-JC ($R_{\theta JC}$), was simulated to be equivalent to the measured values using the cold plate technique with the cold plate temperature used as the "case" temperature. The basic cold plate measurement technique is described by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when the package is being used with a heat sink.
- 4. Thermal Characterization Parameter, Psi-JT (Ψ_{JT}), is the "resistance" from junction to reference point thermocouple on top center of case as defined in JESD51-2. Ψ_{JT} is a useful value to use to estimate junction temperature in steady state customer environments.
- 5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 6. See Section 12.1 for more details on thermal design considerations.

Table 10-5 Recommended Operating Conditions

Characteristic	Symbol	Notes	Min	Тур	Max	Unit
Supply voltage	V _{DD_IO}		3	3.3	3.6	V
ADC Supply Voltage	V _{DDA_ADC} , V _{REFH}	V _{REFH} must be less than or equal to V _{DDA_ADC}	3	3.3	3.6	V
Oscillator/PLL Supply Voltage	V _{DDA_OSC} _PLL		3	3.3	3.6	V
Internal Logic Core Supply Voltage	V _{DD_CORE}	OCR_DIS is High	2.25	2.5	2.75	V
Device Clock Frequency	FSYSCLK		0		60	MHz
Input High Voltage (digital)	V _{IH}	Pin Groups 1, 2, 5, 6, 9, 10, 14	2	—	5.5	V
Input High Voltage (analog)	V _{IHA}	Pin Group13	2		V _{DDA} +0.3	V
Input High Voltage (XTAL/EXTAL, XTAL is not driven by an external clock)	V _{IHC}	Pin Group11	V _{DDA} -0.8	_	V _{DDA} +0.3	V
Input high voltage (XTAL/EXTAL, XTAL is driven by an external clock)	V _{IHC}	Pin Group 11	2	_	V _{DDA} +0.3	V
Input Low Voltage	V _{IL}	Pin Groups 1, 2, 5, 6, 9, 10, 11, 13, 14	-0.3	_	0.8	V
Output High Source Current	I _{ОН}	Pin Groups 1, 2, 3		—	-4	mA
$V_{OH} = 2.4V (V_{OH} min.)$		Pin Groups 5, 6, 7		_	-8	
		Pin Groups 8			-12	
Output Low Sink Current V _{OL} = 0.4V (V _{OL} max)	I _{OL}	Pin Groups 1, 2, 3, 4, 14		—	4	mA
		Pin Groups 5, 6, 7			8	
		Pin Groups 8			12	
Ambient Operating Temperature (Automotive)	Τ _Α		-40	—	150 - (R _{θJA} X P _D)	°C
Ambient Operating Temperature (Industrial)	Τ _Α		-40	_	125 - (R _{θJA} X P _D)	°C
Flash Endurance (Automotive) (Program Erase Cycles)	N _F	T _A = -40°C to 125°C	10,000	_	—	Cycles
Flash Endurance (Industrial) (Program Erase Cycles)	N _F	T _A = -40°C to 105°C	10,000	_	—	Cycles
Flash Data Retention	T _R	T _J <= 70°C avg	15		—	Years

 $(V_{REFLO} = 0V, V_{SS} = V_{SSA_ADC} = 0V, V_{DDA} = V_{DDA_ADC} = V_{DDA_OSC_PLL})$

Pin Group 1: TXD0-1, RXD0-1, SS0, MISO0, MOSI0 Pin Group 2: PHASEA0-1, PHASEB0-1, INDEX0-1, HOME0-1, ISB0-2, ISA0-2, TD2-3, TC0-1, SCLK0 Pin Group 3: RSTO, TDO Pin Group 4: CAN_TX Pin Group 5: A0-5, D0-15, GPIOD0-5, PS, DS Pin Group 6: A6-15, GPIOB0-7, TD0-1 Pin Group 7: CLKO, WR, RD Pin Group 8: PWMA0-5, PWMB0-5 Pin Group 9: IRQA, IRQB, RESET, EXTBOOT, TRST, TMS, TDI, CAN_RX, EMI_MODE, FAULTA0-3, FAULTB0-3 Pin Group 10: TCK Pin Group 11: XTAL, EXTAL Pin Group 12: ANA0-7, ANB0-7 Pin Group 13: OCR_DIS, CLKMODE Pin Group 14: DE

10.2 DC Electrical Characteristics

Table 10-6 DC Electrical Characteristics

Over Recommended Operating Conditions, $V_{DDA} = V_{DDA_ADC,_}V_{DDA_OSC_PLL}$

Characteristic	Symbol	Notes	Min	Тур	Max	Unit	Test Conditions
Output High Voltage	V _{OH}		2.4	—	—	V	I _{OH} =I _{OHmax}
Output Low Voltage	V _{OL}		_		0.4	V	I _{OL} =I _{OLmax}
Digital Input Current High pull-up enabled or disabled	I _{IH}	Pin Groups 1, 2, 5, 6, 9, 14	_	0	+/- 2.5	μΑ	V _{IN} = 3.0V to 5.5V
Digital Input Current High with pull-down	I _{IH}	Pin Group 10	40	80	160	μΑ	V _{IN} = 3.0V to 5.5V
Analog Input Current High	I _{IHA}	Pin Group 13	—	0	+/- 2.5	μΑ	$V_{IN} = V_{DDA}$
ADC Input Current High	I _{IHADC}	Pin Group 12	—	0	+/- 10	μA	$V_{IN} = V_{DDA}$
Digital Input Current Low pull-up enabled	I _{IL}	Pin Groups 1, 2, 5, 6, 9, 14	-50	-100	-200	μΑ	V _{IN} = 0V
Digital Input Current Low pull-up disabled	I _{IL}	Pin Groups 1, 2, 5, 6, 9, 14	_	0	+/- 2.5	μΑ	V _{IN} = 0V
Digital Input Current Low with pull-down	I _{IL}	Pin Group 10	_	0	+/- 2.5	μΑ	V _{IN} = 0V
Analog Input Current Low	I _{ILA}	Pin Group 13	—	0	+/- 2.5	μΑ	$V_{IN} = 0V$
ADC Input Current Low	I _{ILADC}	Pin Group 12	—	0	+/- 10	μΑ	$V_{IN} = 0V$
EXTAL Input Current Low clock input	I _{EXTAL}		—	0	+/- 2.5	μΑ	V _{IN} = V _{DDA} or 0V
XTAL Input Current Low clock input	I _{XTAL}	CKLMODE = High	—	0	+/- 2.5	μΑ	V _{IN} = V _{DDA} or 0V
		CKLMODE = Low	_	_	200	μA	V _{IN} = V _{DDA} or 0V
Output Current High Impedance State	I _{OZ}	Pin Groups 1, 2, 3, 4, 5, 6, 7, 8,14	_	0	+/- 2.5	μΑ	V _{OUT} = 3.0V to 5.5V or 0V
Schmitt Trigger Input Hysteresis	V _{HYS}	Pin Groups 2, 6, 9, 10	—	0.3	—	V	
Input Capacitance (EXTAL/XTAL)	C _{INC}		_	4.5	_	pF	
Output Capacitance (EXTAL/XTAL)	C _{OUTC}		—	5.5	_	pF	
Input Capacitance	C _{IN}		—	6	—	pF	
Output Capacitance	C _{OUT}		_	6	—	pF	

See Pin Groups in Table 10-5.

Characteristic	Symbol	Min	Тур	Max	Units
POR Trip Point	POR	1.75	1.8	1.9	V
POR Hysterisis		—	none	—	
LVI, 2.5 volt Supply, trip point ¹	V _{EI2.5}	2.05	2.14	2.25	V
LVI, 2.5 Hysteresis			50	—	mV
LVI, 3.3 volt supply, trip point ²	V _{EI3.3}	2.6	2.7	2.8	V
LVI, 3.3 Hysteresis			50	—	mV
Bias Current	l _{bias}		110	130	uA

Table 10-7 Power-On Reset Low Voltage Parameters

1. When V_{DD} drops below $V_{El2.5}$, an interrupt is generated.

2. When $V_{\mbox{\scriptsize DD}}$ drops below $V_{\mbox{\scriptsize El3.3}},$ an interrupt is generated.

Table 10-8 Current Consumption per Power Supply Pin (Typical)
On-Chip Regulator Enabled (OCR_DIS = Low)

Mode	I _{DD_IO} 1	I _{DD_ADC}	I _{DD_OSC_PLL}	Test Conditions
RUN1_MAC	125mA	50mA	2.5mA	60MHz Device Clock
				All peripheral clocks are enabled
				Continuous MAC instructions with fetches from Data RAM
				ADC powered on and clocked
Wait3	86mA	0uA	3mA	60MHz Device Clock
				All peripheral clocks are enabled
				ADC powered off
Stop1	5mA	0uA	200uA	8MHz Device Clock
				All peripheral clocks are off
				ADC powered off
				PLL powered off
Stop2	5mA	0uA	150uA	External Clock is off
				All peripheral clocks are off
				ADC powered off
				PLL powered off

1. No Output Switching

Mode	I _{DD_Core}	I _{DD_IO} 1	I _{DD_ADC}	I _{DD_OSC_PLL}	Test Conditions					
RUN1_MAC	120 mA	13µA	50mA	3mA	60MHz Device Clock					
					• All peripheral clocks are enabled					
					Continuous MAC instructions with fetches from Data RAM					
					ADC powered on and clocked					
Wait3	81mA	13µA	0µA	3mA	60MHz Device Clock					
					• All peripheral clocks are enabled					
					• ADC powered off					
Stop1	500µA	13uA	0µA	200uA	8MHz Device Clock					
					• All peripheral clocks are off					
					• ADC powered off					
					PLL powered off					
Stop2	100µA	13µA	0µA	150µA	External Clock is off					
				-	• All peripheral clocks are off					
					ADC powered off					
					PLL powered off					

Table 10-9 Current Consumption per Power Supply Pin (Typical) On-Chip Regulator Disabled (OCR_DIS = High)

1. No Output Switching

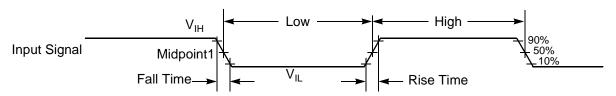
Table 10-10.	Regulator Parameters
--------------	-----------------------------

Characteristic	Symbol	Min	Typical	Мах	Unit
Unloaded Output Voltage (0mA Load)	V _{RNL}	2.25	_	2.75	V
Loaded Output Voltage (250 mA load)	V _{RL}	2.25	_	2.75	V
Line Regulation @ 250 mA load (V _{DD} 33 ranges from 3.0 to 3.6)	V _R	2.25	—	2.75	V
Short Circuit Current (output shorted to ground)	lss	_	_	700	mA
Bias Current	I _{bias}	—	5.8	7	mA
Power-down Current	I _{pd}	—	0	2	μΑ
Short-Circuit Tolerance (output shorted to ground)	T _{RSC}	30	—	—	minutes

Characteristics	Symbol	Min	Typical	Max	Unit
PLL Startup time	T _{PS}	0.3	0.5	10	ms
Resonator Startup time	T _{RS}	0.1	0.18	1	ms
Min-Max Period Variation	T _{PV}	120	—	200	ps
Peak-to-Peak Jitter	T _{PJ}	—	—	175	ps
Bias Current	I _{BIAS}	—	1.5	2	mA
Quiescent Current, power-down mode	I _{PD}	—	100	150	μA

Table 10-11. PLL Parameters

Table 10-12 Temperature Sense Parametrics


Characteristics	Symbol	Min	Typical	Max	Unit
K-factor ¹	К	7	7.2		mV/°C
Supply Voltage	V _{DDA}	3.0	3.3	3.6	V
Supply Current - OFF	I _{DD-OFF}	—	—	10	μA
Supply Current - ON	I _{DD-ON}	—	—	250	μA
Accuracy	T _{ACC}	-2	—	+2	°C
Resolution	R _{ES}	—	—	1	°C / bit ²

1. This is the inverse of the parameter "m" in Figure 14-1 of the 56F8300 Peripheral User Manual.

2. Assuming a 10-bit range from 0V to 3.6V.

10.3 AC Electrical Characteristics

Tests are conducted using the input levels specified in **Table 10-6**. Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured between the 10% and 90% points, as shown in **Figure 10-1**.

Note: The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 10-1 Input Signal Measurement References

Figure 10-2 shows the definitions of the following signal states:

- Active state, when a bus or signal is driven, and enters a low impedance state
- Tri-stated, when a bus or signal is placed in a high impedance state
- Data Valid state, when a signal level has reached V_{OL} or V_{OH}
- Data Invalid state, when a signal level is in transition between V_{OL} and V_{OH}

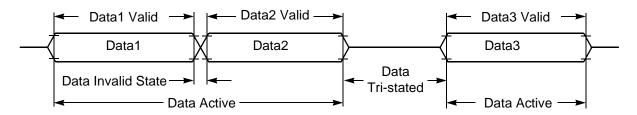


Figure 10-2 Signal States

10.4 Flash Memory Characteristics

Characteristic	Symbol	Min	Тур	Мах	Unit
Program time ^{1, 2}	Tprog	20	—		us
Erase time ^{3, 4}	Terase	20	—	—	ms
Mass erase time ⁵	Tme	100	—	—	ms

Table 10-13 Flash Timing Parameters

1. Program specification guaranteed from $TA = 0^{\circ}C$ to $85^{\circ}C$

2. There is additional overhead which is part of the programming sequence. See the **DSP56F8300 Peripheral User Manual** for details. Program time is per 16-bit word in Flash memory. Two words at a time can be programmed within the Program Flash Module, as it contains two interleaved memories.

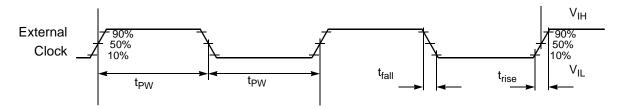
3. Erase specification guaranteed from TA = 0° C to 85° C

4. Specifies page erase time. There are 512 bytes per page in the Data and Boot Flash memories. The Program Flash Module uses two interleaved Flash memories, increasing the effective page size to 1024 bytes.

5. Mass erase specification guaranteed from TA = 0° C to 85° C

10.5 External Clock Operation Timing

Characteristic	Symbol	Min	Тур	Мах	Unit
Frequency of operation (external clock driver) ²	f _{osc}	0	_	240	MHz
Clock Pulse Width ³	t _{PW}	2.0	_	—	ns
External clock input rise time ⁴	t _{rise}	_	_	10	ns
External clock input fall time ⁵	t _{fall}	_	_	10	ns


1. Parameters listed are guaranteed by design.

2. See Figure 10-3 for details on using the recommended connection of an external clock driver.

3. The high or low pulse width must be no smaller than 8.0ns or the chip will not function.

4. External clock input rise time is measured from 10% to 90%.

5. External clock input fall time is measured from 90% to 10%.

Note: The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 10-3 External Clock Timing

10.6 Phase Locked Loop Timing

Table 10-15 PLL Timing

Characteristic	Symbol	Min	Тур	Max	Unit
External reference crystal frequency for the PLL ¹	f _{osc}	4	8	8	MHz
PLL output frequency ² (f _{OUT} /2)	f _{op}	160	_	260	MHz
PLL stabilization time ³ 0° to +85°C	t _{plls}		1	10	ms

1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The PLL is optimized for 8MHz input crystal.

2. ZCLK may not exceed 60MHz. For additional information on ZCLK and $(f_{OUT})/2$, please refer to the OCCS chapter in the 56F8300 Peripheral User Manual.

3. This is the minimum time required after the PLL set-up is changed to ensure reliable operation.

10.7 Crystal Oscillator Timing

Characteristic	Symbol	Min	Тур	Max	Unit
Crystal Startup time	T _{CS}	4	5	10	ms
Resonator Startup time	T _{RS}	0.1	0.18	1	ms
Crystal ESR	R _{ESR}	_	_	120	ohms
Crystal Peak-to-Peak Jitter	T _D	70	—	250	ps
Crystal Min-Max Period Variation	T _{PV}	0.12	_	1.5	ns
Resonator Peak-to-Peak Jitter	T _{RJ}	_	_	300	ps
Resonator Min-Max Period Variation	T _{RP}	_	_	300	ps
Bias Current, high-drive mode	I _{BIASH}	—	250	290	μA
Bias Current, low-drive mode	I _{BIASL}	—	80	110	μA
Quiescent Current, power-down mode	I _{PD}	—	0	1	μΑ

Table 10-16 Crystal Oscillator Parameters

10.8 External Memory Interface Timing

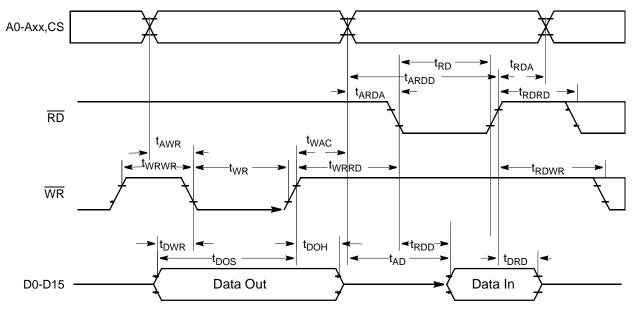
The External Memory Interface is designed to access static memory and peripheral devices. **Figure 10-4** shows sample timing and parameters that are detailed in **Table 10-17**.

The timing of each parameter consists of both a fixed delay portion and a clock related portion; as well as user controlled wait states. The equation:

$$t = D + P * (M + W)$$

should be used to determine the actual time of each parameter. The terms in the above equation are defined as:

- t parameter delay time
- D fixed portion of the delay, due to on-chip path delays.
- P the period of the system clock, which determines the execution rate of the part (i.e. when the device is operating at 120 MHz, P = 8.33 ns).
- M Fixed portion of a clock period inherent in the design. This number is adjusted to account for possible clock duty cycle derating.
- W the sum of the applicable wait state controls. See the "Wait State Controls" column of **Table 10-17** for the applicable controls for each parameter. See the EMI chapter of the 83x Peripheral Manual for details of what each wait state field controls.


DCA = 0.5 - (XTAL duty cycles), if ZSRC selects prescale clock and prescaler set to $\div 1$.

= 0.0 all other cases

ie. if XTAL duty cycle is 60%, use 0.6

Some of the parameters contain two sets of numbers. These parameters have two different paths and clock edges that must be considered. Check both sets of numbers and use the smaller result. The appropriate entry may change if the operating frequency of the part changes.

The timing of write cycles is different when WWS = 0 than when WWS > 0. Therefore, some parameters contain two sets of numbers to account for this difference. The "Wait States Configuration" column of **Table 10-17** should be used to make the appropriate selection.

Note: During read-modify-write instructions and internal instructions, the address lines do not change state.

Figure 10-4 External Memory Interface Timing

Table 10-17 External Memory Interface Timing

Operating Conditions: $V_{SS} = V_{SSIO} = V_{SSA} = 0$ V, $V_{DD} = 1.62 - 1.98$ V, $V_{DDIO} = V_{DDA} = 3.0 - 3.6$ V, $T_A = -40^{\circ}$ to $+120^{\circ}$ C, $C_L \le 50$ pF, P = 8.333 ns

Characteristic	Symbol	Wait States Configuration	D	Μ	Wait States Controls	Unit		
Address Valid to WR Asserted	tuur	WWS=0	TBD	TBD	wwss	ns		
	t _{AWR}	WWS>0	TBD	TBD	00035	115		
\overline{WR} Width Asserted to \overline{WR}	t	WWS=0	TBD	TBD	WWS	20		
Deasserted	t _{WR}	WWS>0	TBD	TBD	00003	ns		
Data Out Valid to WR Asserted		WWS=0	TBD	TBD				
	t _{DWR}	WWS=0	TBD	TBD	wwss	ns		
		WWS>0	TBD	TBD	00033			
		WWS>0	TBD	TBD				
Valid Data Out Hold Time after $\overline{\text{WR}}$ Deasserted	t _{DOH}		TBD	TBD	WWSH	ns		

Table 10-17 External Memory Interface Timing (Continued)

 $Operating \ Conditions: \ V_{SS} = V_{SSIO} = V_{SSA} = 0 \ V, \ V_{DD} = 1.62 - 1.98 \ V, \ V_{DDIO} = V_{DDA} = 3.0 - 3.6 \ V, \ T_A = -40^\circ \ to \ +120^\circ \ C, \ C_L \leq 50 \ pF, \ P = 8.333 \ ns = 1.00 \ rs = 1.00 \ rs$

Characteristic	Symbol	Wait States Configuration	D	м	Wait States Controls	Unit
Valid Data Out Set Up Time to WR Deasserted	t _{DOS}		-2.051 -8.995	0.5 + DCA 0.5	WWS,WWSS	ns
Valid Address after WR Deasserted	t _{WAC}		TBD	TBD	WWSH	ns
RD Deasserted to Address Invalid	t _{RDA}		TBD	TBD	RWSH	ns
Address Valid to RD Deasserted	t _{ARDD}		TBD	TBD	RWSS,RWS	ns
Valid Input Data Hold after RD Deasserted	t _{DRD}		TBD	N/A ¹	_	ns
RD Assertion Width	t _{RD}		TBD	TBD	RWS	ns
Address Valid to Input Data Valid	t _{AD}		-14.798 -19.661	1.00 1.25 + DCA	RWSS,RWS	ns
Address Valid to RD Asserted	t _{ARDA}		TBD	TBD	RWSS	ns
RD Asserted to Input Data Valid	t _{RDD}		TBD TBD	TBD TBD	RWSS,RWS	ns
WR Deasserted to RD Asserted	t _{WRRD}		TBD	TBD	WWSH,RWSS	ns
RD Deasserted to RD Asserted	t _{RDRD}		TBD ²	TBD	RWSS,RWSH MDAR,BMDAR	ns
WR Deasserted to WR Asserted	t _{WRWR}	WWS=0	TBD	TBD	WWSS, WWSH	ns
		WWS>0	TBD	TBD		110
RD Deasserted to WR Asserted	t _{RDWR}		TBD TBD	TBD TBD	MDAR, BMDAR, RWSH, WWSS	ns

1. N/A since device captures data before it deasserts RD

2. If RWSS = RWSH = 0, RD does not deassert during back-to-back reads and D=0.00 should be used.

10.9 Reset, Stop, Wait, Mode Select, and Interrupt Timing

Characteristic	Symbol	Typical Min	Typical Max	Unit	See Figure
RESET Assertion to Address, Data and Control Signals High Impedance	t _{RAZ}	_	21	ns	10-5
Minimum RESET Assertion Duration	t _{RA}	16T	—	ns	10-5
RESET Deassertion to First External Address Output ³	t _{RDA}	63T	64T	ns	10-5
Edge-sensitive Interrupt Request Width	t _{IRW}	1.5T	—	ns	10-6
IRQA, IRQB Assertion to External Data Memory Access Out Valid, caused by first instruction execution in the interrupt service routine	t _{IDM}	TBD	TBD	ns	10-7
	t _{IDM} - FAST	TBD	TBD		
IRQA, IRQB Assertion to General Purpose Output Valid, caused by first instruction	t _{IG}	TBD	TBD	ns	10-7
execution in the interrupt service routine	t _{IG} - FAST	TBD	TBD		
IRQA Low to First Valid Interrupt Vector	t _{IRI}	TBD	TBD	ns	10-8
Address Out recovery from Wait State ⁴	t _{IRI} -FAST	TBD	TBD		
IRQA Width Assertion to Recover from Stop State ⁵	t _{IW}	1.5T	—	ns	10-9
Delay from IRQA Assertion to Fetch of first instruction (exiting Stop) from external	t _{IF}	—	TBD	ns	10-9
memory	t _{IF} - FAST	—	TBD		

Table 10-18 Reset, Stop, Wait, Mode Select, and Interrupt Timing^{1,2}

1. In the formulas, T = clock cycle. For an operating frequency of 60MHz, T = 16.67ns. At 8MHz (used during Reset and Stop modes), T = 125ns.

2. Parameters listed are guaranteed by design.

3. During Power-On Reset, it is possible to use the 56F8357 internal reset stretching circuitry to extend this period to 2²¹T.

4. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This is not the minimum required so that the IRQA interrupt is accepted.

5. The interrupt instruction fetch is visible on the pins only in Mode 3.

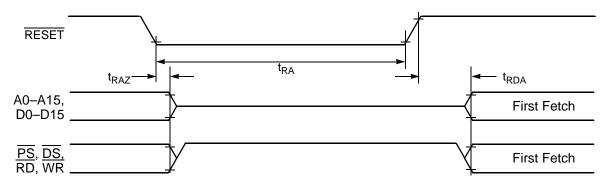
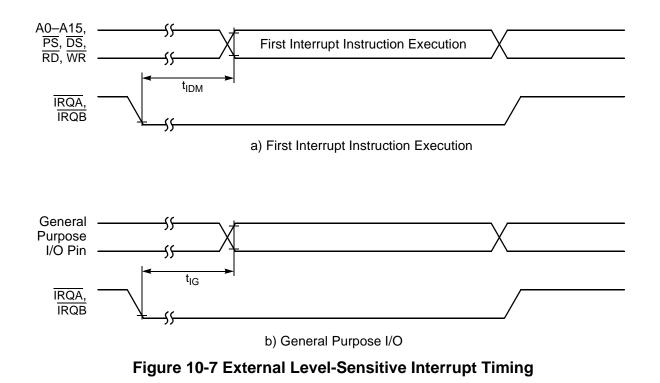



Figure 10-5 Asynchronous Reset Timing

Figure 10-6 External Interrupt Timing (Negative-Edge-Sensitive)

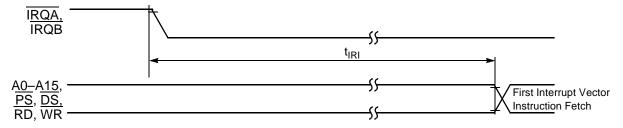


Figure 10-8 Interrupt from Wait State Timing

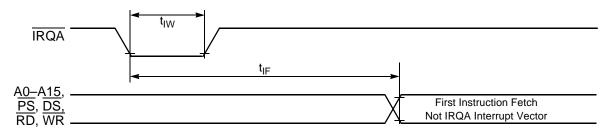


Figure 10-9 Recovery from Stop State Using Asynchronous Interrupt Timing

10.10 Serial Peripheral Interface (SPI) Timing

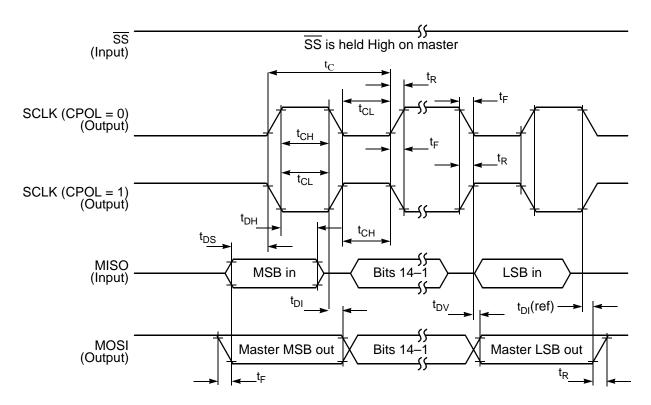

Characteristic	Symbol	Min	Max	Unit	See Figure
Cycle time Master Slave	t _C	50 50	_	ns ns	10-10, 10-11, 10-12, 10-13
Enable lead time Master Slave	t _{ELD}	 25		ns ns	10-13
Enable lag time Master Slave	t _{ELG}	 100		ns ns	10-13
Clock (SCK) high time Master Slave	t _{CH}	17.6 25		ns ns	10-10, 10-11, 10-12, 10-13
Clock (SCK) low time Master Slave	t _{CL}	24.1 25		ns ns	10-13
Data set-up time required for inputs Master Slave	t _{DS}	20 0		ns ns	10-10, 10-11, 10-12, 10-13

Table 10-19 SPI T	iming ¹
-------------------	--------------------

Characteristic	Symbol	Min	Max	Unit	See Figure
Data hold time required for inputs Master Slave	t _{DH}	0 2		ns ns	10-10, 10-11, 10-12, 10-13
Access time (time to data active from high-impedance state) Slave	t _A	4.8	15	ns	10-13
Disable time (hold time to high-impedance state) Slave	t _D	3.7	15.2	ns	10-13
Data Valid for outputs Master Slave (after enable edge)	t _{DV}		4.5 20.4	ns ns	10-10, 10-11, 10-12, 10-13
Data invalid Master Slave	t _{DI}	0 0	_	ns ns	10-10, 10-11, 10-12
Rise time Master Slave	t _R		11.5 10.0	ns ns	10-10, 10-11, 10-12, 10-13
Fall time Master Slave	t _F	_	9.7 9.0	ns ns	10-10, 10-11, 10-12, 10-13

Table 10-19 SPI Timing¹ (Continued)

1. Parameters listed are guaranteed by design.

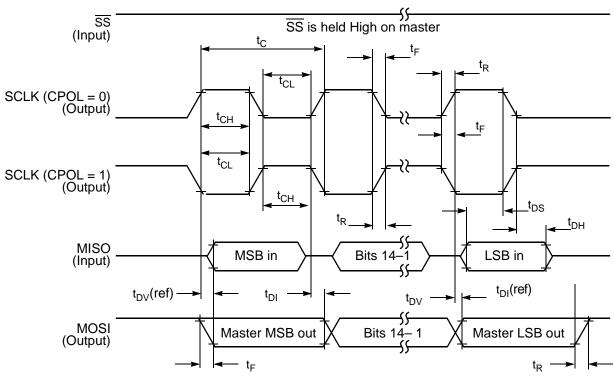


Figure 10-11 SPI Master Timing (CPHA = 1)

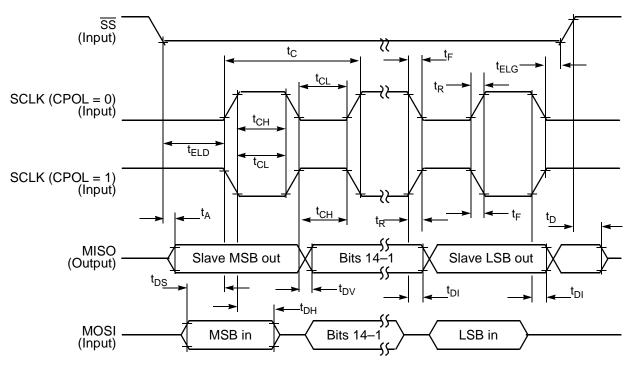
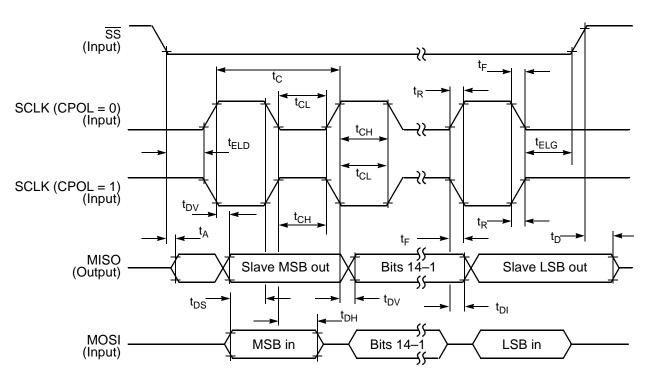



Figure 10-12 SPI Slave Timing (CPHA = 0)

10.11 Quad Timer Timing

Table 10-20 Timer Timing^{1, 2}

Characteristic	Symbol	Min	Мах	Unit	See Figure
Timer input period	P _{IN}	2T + 6	_	ns	10-14
Timer input high/low period	P _{INHL}	1T + 3	_	ns	10-14
Timer output period	P _{OUT}	1T - 3	_	ns	10-14
Timer output high/low period	P _{OUTHL}	0.5T - 3	_	ns	10-14

1. In the formulas listed, T = the clock cycle. For 60MHz operation, T = 16.67ns.

2. Parameters listed are guaranteed by design.

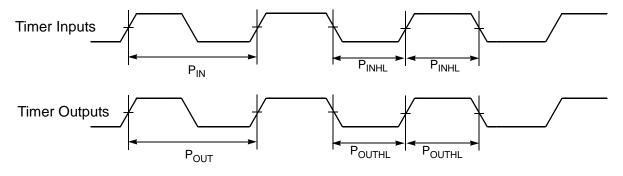


Figure 10-14 Timer Timing

10.12 Quadrature Decoder Timing

Characteristic	Symbol	Min	Мах	Unit	See Figure
Quadrature input period	P _{IN}	4T + 12	_	ns	10-15
Quadrature input high/low period	P _{HL}	2T + 6	—	ns	10-15
Quadrature phase period	P _{PH}	1T + 3	_	ns	10-15

Table 10-21 Quadrature Decoder Timing^{1, 2}

1. In the formulas listed, T = the clock cycle. For 60MHz operation, T=16.67ns.

2. Parameters listed are guaranteed by design.

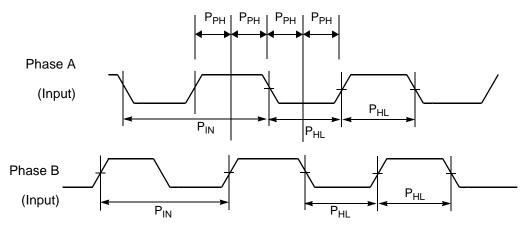


Figure 10-15 Quadrature Decoder Timing

10.13 Serial Communication Interface (SCI) Timing

Table 10-22 SCI Timing¹

Operating Conditions: $V_{SS} = V_{SSA_ADC} = 0V$, $V_{DD_IO} = V_{DDA_ADC} = V_{DDA_OSC_PLL} = 3.0-3.6V$, $T_A = -40^{\circ}$ to $+125^{\circ}C$, $C_L \le 50pF$

Characteristic	Symbol	Min	Мах	Unit	See Figure
Baud Rate ²	BR	_	(f _{MAX} /16)	Mbps	_
RXD ³ Pulse Width	RXD _{PW}	0.965/BR	1.04/BR	ns	10-16
TXD ⁴ Pulse Width	TXD _{PW}	0.965/BR	1.04/BR	ns	10-17

1. Parameters listed are guaranteed by design.

2. f_{MAX} is the frequency of operation of the system clock, ZCLK, in MHz, which is 60MHz for the 56F8357 device.

3. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.

4. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.

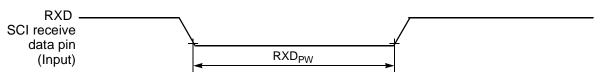


Figure 10-16 RXD Pulse Width

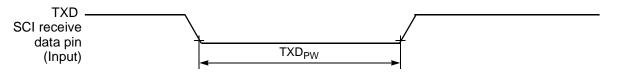


Figure 10-17 TXD Pulse Width

10.14 Controller Area Network (CAN) Timing

Table 10-23 CAN Timing¹

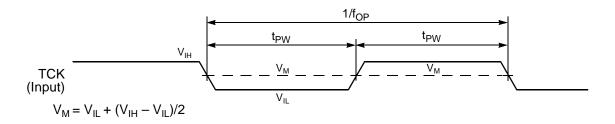
Characteristic	Symbol	Min	Мах	Unit	See Figure
Baud Rate	BR _{CAN}	_	1	Mbps	_
Bus Wake Up detection	T _{WAKEUP}	5	_	μs	10-18

1. Parameters listed are guaranteed by design



Figure 10-18 Bus Wakeup Detection

10.15 JTAG Timing


Table 10-24 JTAG Timing

 $Operating \ Conditions: \ V_{SS} = V_{SSA_ADC} = 0V, \ V_{DD_IO} = V_{DDA_ADC} = V_{DDA_OSC_PLL} = 3.0-3.6V, \ T_A = -40^{\circ} \ to \ +125^{\circ}C, \ C_L \le 50 pF$

Characteristic	Symbol	Min	Max	Unit	See Figure
TCK frequency of operation ¹	f _{OP}	DC	sys_clk/8	MHz	10-19
TCK clock pulse width	t _{PW}	50	_	ns	10-19
TMS, TDI data set-up time	t _{DS}	5	—	ns	10-20
TMS, TDI data hold time	t _{DH}	5	_	ns	10-20
TCK low to TDO data valid	t _{DV}	—	30	ns	10-20
TCK low to TDO tri-state	t _{TS}	—	30	ns	10-20
TRST assertion time	t _{TRST}	2T ²	_	ns	10-21
DE assertion time	t _{DE}	2T	_	ns	10-22

1. TCK frequency of operation must be less than 1/8 the processor rate.

2. T = processor clock period (nominally 1/60MHz)

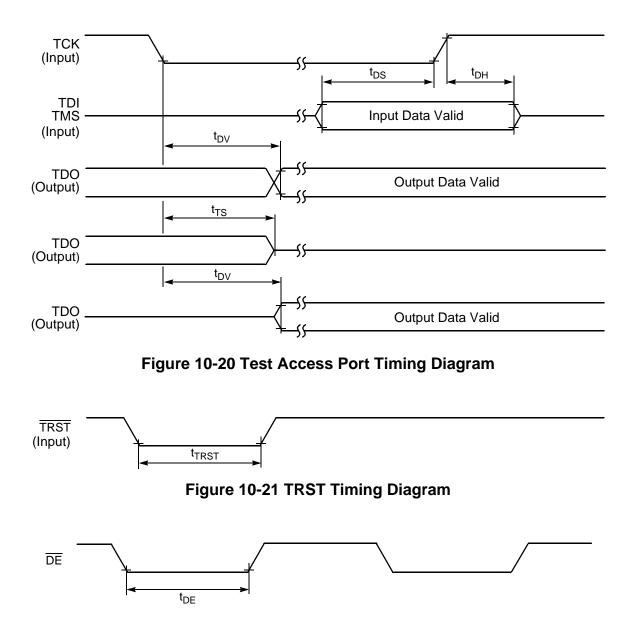


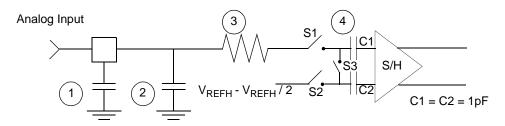
Figure 10-22 EOnCE - Debug Event

10.16 Analog-to-Digital Converter (ADC) Parameters Table 10-25 ADC Parameters

Characteristic	Symbol	Min	Тур	Max	Unit
Input voltages	V _{ADIN}	V _{REFL}	—	V _{REFH}	V
Resolution	R _{ES}	12	—	12	Bits
Integral Non-Linearity ¹	INL	+/- 1	+/- 2.4	+/- 3.2	LSB ²
Differential Non-Linearity	DNL	> -1	+/- 0.7	< +1	LSB ²
Monotonicity			GUARANTEED		
ADC internal clock	f _{ADIC}	0.5	—	5	MHz
Conversion range	R _{AD}	V _{REFL}	—	V _{REFH}	V
ADC channel power-up time	t _{ADPU}	5	6	16	t _{AIC} cycles ²
ADC reference circuit power-up time	t _{VREF}	-	—	25	ms
Conversion time	t _{ADC}	—	6	—	t _{AIC} cycles ⁴
Sample time	t _{ADS}	—	1	—	t _{AIC} cycles ⁴
Input capacitance	C _{ADI}	—	5	-	pF
Input injection current ³ , per pin	I _{ADI}	—	_	3	mA
Input injection current, total	I _{ADIT}	-	—	20	mA
V _{REFH} current	I _{VREFH}	—	1.2	3	mA
ADCA current	I _{ADCA}	-	25	-	mA
ADCB current	I _{ADCB}	—	25	-	mA
Quiescent current	I _{ADCQ}		0	10	mA
Calibrated Gain Error (transfer gain)	E _{GAINC}	—	1	—	—
Calibrated Offset Voltage	V _{OFFSETC}	—	0	—	mV
Uncalibrated Gain Error	E _{GAIN}	.99	.996 to 1.004	1.01	—
Uncalibrated Offset Voltage	V _{OFFSET}	—	+/- 12	+/- 30	mV
Crosstalk between channels		—	-60	—	dB
Common Mode Voltage	V _{common}	—	(V _{REFH} - V _{REFLO}) / 2	—	V
Signal-to-noise ratio	SNR	—	64.6	—	db
Signal-to-noise plus distortion ratio	SINAD	—	59.1	—	db
Total Harmonic Distortion	THD	—	60.6	—	db
Spurious Free Dynamic Range	SFDR	-	61.1	-	db
Effective Number Of Bits	ENOB	-	9.6	-	bit

1. INL measured from Vin = $.1V_{REFH}$ to Vin = $.9V_{REFH}$

10% to 90% Input Signal Range


2. ADC clock cycles

3. The current that can be injected or sourced from an unselected ADC signal input without inpacting the performance of the ADC. This allows the ADC to operate in noisy industrial environments where inductive flyback is possible.

10.17 Equivalent Circuit for ADC Inputs

Figure 10-23 illustrates the ADC input circuit during sample & hold. S1 and S2 are always open/closed at the same time that S3 is closed/open. When S1/S2 are closed & S3 is open, one input of the sample and hold circuit moves to V_{REFH} - V_{REFH} / 2 while the other charges to the analog input voltage. When the switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended analog input is switched to a differential voltage centered about V_{REFH} - V_{REFH} / 2. The switches switch on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). Note that there are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into the S/H output voltage, as S1 provides isolation during the charge-sharing phase.

One aspect of this circuit is that there is an on-going input current, which is a function of the analog input voltage, V_{REF} and the ADC clock frequency.

- 1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pf
- 2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pf
- 3. Equivalent resistance for the ESD isolation resistor and the channel select mux; 500 ohms
- 4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only connected to it at sampling time; 1pf

Figure 10-23 Equivalent Circuit for A/D Loading

10.18 Power Consumption

This section provides additional detail which can be used to optimize power consumption for a given application.

Power consumption is given by the following equation:

- Total power = A: internal [static component]
 - + B: internal [state-dependent component]
 - + C: internal [dynamic component]
 - + D: external [dynamic component]
 - + E: external [static]

A, the internal [static component], is comprised of the DC bias currents for the oscillator, leakage current, PLL, and voltage references. These sources operate independently of processor state or operating frequency.

B, the internal [state-dependent component], reflects the supply current required by certain on-chip resources only when those resources are in use. These include RAM, Flash memory and the ADCs.

C, the internal [dynamic component], is classic $C^*V^{2*}F$ CMOS power dissipation corresponding to the 56800E core and standard cell logic.

D, the external [dynamic component], reflects power dissipated on-chip as a result of capacitive loading on the external pins of the chip. This is also commonly described as $C*V^{2}*F$, although simulations on two of

the IO cell types used on the 56F8357 reveal that the power-versus-load curve does have a non-zero Y-intercept.

	Intercept	Slope
PDU08DGZ_ME	2.2	2.0
PDU04DGZ_ME	.14	.14

Table 10-26 IO Loading Coefficients at 10MHz

Power due to capacitive loading on output pins is (first order) a function of the capacitive load and frequency at which the outputs change. Table 10-21 provides coefficients for calculating power dissipated in the IO cells as a function of capacitive load. In these cases:

 $TotalPower = \Sigma((Intercept + Slope*Cload)*frequency/10MHz)$

where:

- Summation is performed over all output pins with capacitive loads
- TotalPower is expressed in mW
- Cload is expressed in pF

Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found to be fairly low when averaged over a period of time. The one possible exception to this is if the chip is using the external address and data buses at a rate approaching the maximum system rate. In this case, power from these buses can be significant.

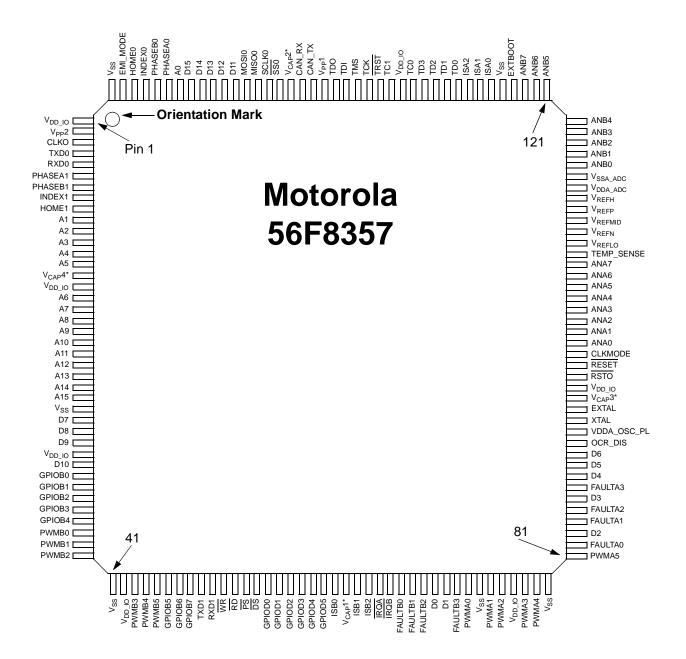
E, the external [static component], reflects the effects of placing resistive loads on the outputs of the device. Sum the total of all V²/R or IV to arrive at the resistive load contribution to power. Assume V = 0.5 for the purposes of these rough calculations. For instance, if there is a total of 8 PWM outputs driving 10mA into LEDs, then P = 8*.5*.01 = 40mW.

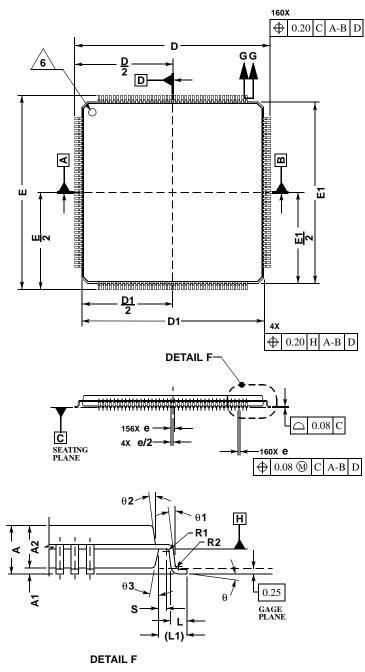
In previous discussions, power consumption due to parasitics associated with pure input pins is ignored, as it is assumed to be negligible.

Part 11 Packaging

11.1 Package and Pin-Out Information 56F8357

This section contains package and pin-out information for the 56F8357. This device comes in a 160-pin low-profile quad flat pack (LQFP). **Figure 11-1** shows the package outline for the 160-pin LQFP case, **Figure 11-2** shows the mechanical parameters for the 160-pin LQFP case, and **Table 11-1** lists the pin-out for the 160-pin LQFP.




Figure 11-1 Top View, 56F8357 160-Pin LQFP Package

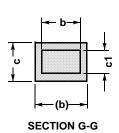

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	V _{DD_IO}	41	V _{SS}	81	PWMA5	121	ANB5
2	V _{PP} 2	42	V _{DD_IO}	82	FAULTA0	122	ANB6
3	CLKO	43	PWMB3	83	D2	123	ANB7
4	TXD0	44	PWMB4	84	FAULTA1	124	EXTBOOT
5	RXD0	45	PWMB5	85	FAULTA2	125	V _{SS}
6	PHASEA1	46	GPIOB5	86	D3	126	ISA0
7	PHASEB1	47	GPIOB6	87	FAULTA3	127	ISA1
8	INDEX1	48	GPIOB7	88	D4	128	ISA2
9	HOME1	49	TXD1	89	D5	129	TD0
10	A1	50	RXD1	90	D6	130	TD1
11	A2	51	WR	91	OCR_DIS	131	TD2
12	A3	52	RD	92	V _{DDA_OSC_PLL}	132	TD3
13	A4	53	PS	93	XTAL	133	TC0
14	A5	54	DS	94	EXTAL	134	V _{DD_IO}
15	V _{CAP} 4	55	GPIOD0	95	V _{CAP} 3	135	TC1
16	V _{DD_IO}	56	GPIOD1	96	V _{DD_IO}	136	TRST
17	A6	57	GPIOD2	97	RSTO	137	TCK
18	A7	58	GPIOD3	98	RESET	138	TMS
19	A8	59	GPIOD4	99	CLKMODE	139	TDI
20	A9	60	GPIOD5	100	ANA0	140	TDO
21	A10	61	ISB0	101	ANA1	141	V _{PP} 1
22	A11	62	V _{CAP} 1	102	ANA2	142	CAN_TX
23	A12	63	ISB1	103	ANA3	143	CAN_RX
24	A13	64	ISB2	104	ANA4	144	V _{CAP} 2
25	A14	65	IRQA	105	ANA5	145	SS0
26	A15	66	IRQB	106	ANA6	146	SCLK0
27	V _{SS}	67	FAULTB0	107	ANA7	147	MISO0
28	D7	68	FAULTB1	108	Temp_Sense	148	MOSI0
29	D8	69	FAULTB2	109	V _{REFLO}	149	D11

Table 11-1 56F8357 160-Pin LQFP Package Identification by Pin Number

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
30	D9	70	D0	110	V _{REFN}	150	D12
31	V _{DD_IO}	71	D1	111	V _{REFMID}	151	D13
32	D10	72	FAULTB3	112	V _{REFP}	152	D14
33	GPIOB0	73	PWMA0	113	V _{REFH}	153	D15
34	GPIOB1	74	V _{SS}	114	V _{DDA_ADC}	154	A0
35	GPIOB2	75	PWMA1	115	V _{SSA_ADC}	155	PHASEA0
36	GPIOB3	76	PWMA2	116	ANB0	156	PHASEB0
37	GPIOB4	77	V _{DD_IO}	117	ANB1	157	INDEX0
38	PWMB0	78	PWMA3	118	ANB2	158	HOME0
39	PWMB1	79	PWMA4	119	ANB3	159	EMI_MODE
40	PWMB2	80	V _{SS}	120	ANB4	160	V _{SS}

Table 11-1 56F8357 160-Pin LQFP Package Identification by Pin Number

NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES

- INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 DATUMS A, B, AND D TO BE DETERMINED
- 3. DATUMS A, B, AND D TO BE DETERMINED WHERE THE LEADS EXIT THE PLASTIC BODY AT DATUM PLANE H.
- A. DIMENSIONS DI AND EI DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PER SIDE. DIMENSIONS DI AND EI ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM & DIMENSION BY MORE THAN 0.08mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN A PROTRUSION AND AN ADJACENT LEAD IS 0.07mm.

⁶ EXACT SHAPE OF CORNERS MAY VARY.

	MILLIN	AETER
DIM	MIN	MAX
Α		1.60
A1	0.05	0.15
A2	1.35	1.45
b	0.17	0.27
b1	0.17	0.23
с	0.09	0.20
c1	0.09	0.16
D	26.00	BSC
D1	24.00	BSC
e	0.50	BSC
E	26.00	BSC
E1	24.00	BSC
L	0.45	0.75
L1	1.00	REF
R1	0.08	
R2	0.08	0.20
S	0.20	
θ	00	7 °
θ1	0°	
θ2	110	13°
θ3	11°	13°

CASE 1259-01 ISSUE O

Part 12 Design Considerations

12.1 Thermal Design Considerations

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

 $T_{\rm J} = T_{\rm A} + (R_{\rm \theta JA} \times P_{\rm D})$

where:

 T_A = Ambient temperature for the package (^oC) $R_{\theta JA}$ = Junction-to-ambient thermal resistance (^oC/W) P_D = Power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single-layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single-layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low-power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

 $R_{\theta JA} = R_{\theta JX} + R_{\theta CA}$

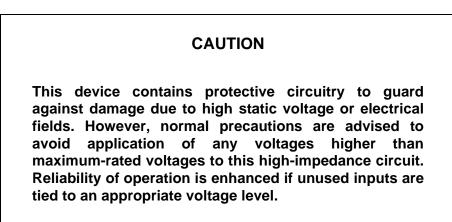
where:

R θ_{JC} is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, R θ_{CA} . For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:


 T_T = Thermocouple temperature on top of package (^oC)

- Ψ_{JT} = Thermal characterization parameter (°C)/W
- P_D = Power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

12.2 Electrical Design Considerations

Use the following list of considerations to assure correct operation:

- Provide a low-impedance path from the board power supply to each V_{DD} pin on the hybrid controller, and from the board ground to each V_{SS} (GND) pin
- The minimum bypass requirement is to place six $0.01-0.1\mu$ F capacitors positioned as close as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the V_{DD}/V_{SS} pairs, including V_{DDA}/V_{SSA} . Ceramic and tantalum capacitors tend to provide better performance tolerances.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{DD} and $V_{SS (GND)}$ pins are less than 0.5 inch per capacitor lead
- Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for V_{DD} and V_{SS}
- Bypass the V_{DD} and V_{SS} layers of the PCB with approximately 100 μ F, preferably with a high-grade capacitor such as a tantalum capacitor
- Because the 56F8357's output signals have fast rise and fall times, PCB trace lengths should be minimal
- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{DD} and V_{SS} circuits.
- Take special care to minimize noise levels on the V_{REF} , V_{DDA} and V_{SSA} pins

- Designs that utilize the TRST pin for JTAG port or EOnCE module functionality (such as development or debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means to assert TRST independently of RESET. Designs that do not require debugging functionality, such as consumer products, should tie these pins together.
- Because the Flash memory is programmed through the JTAG/EOnCE port, the designer should provide an interface to this port to allow in-circuit Flash programming

12.3 Power Distribution and I/O Ring Implementation

Figure 12-1 illustrates the general power control incorporated in the 56F8357. This chip contains an internal regulator which cannot be disabled The regulator takes regulated 3.3V power from the $V_{DD_{IO}}$ pins and provides 2.5V to the internal logic of the chip. This means the entire part is powered from the 3.3V supply.

Notes:

- Flash, RAM and internal logic are powered from the core regulator output
- $V_{PP}1$ and $V_{PP}2$ are not connected in the customer system
- All circuitry, analog *and* digital, share a common V_{SS} bus

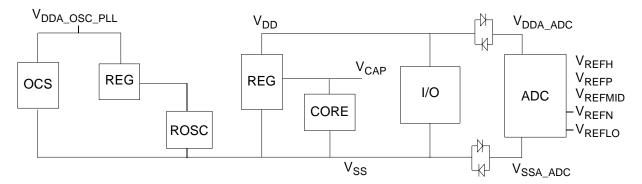


Figure 12-1 56F8357 Power Management

Part 13 Ordering Information

 Table 13-1 lists the pertinent information needed to place an order. Consult a Motorola Semiconductor sales office or authorized distributor to determine availability and to order parts.

Part	Supply Voltage	Package Type	Pin Count	Frequency (MHz)	Temperature Range	Order Number
MC56F8357	3.0–3.6 V	Low-Profile Quad Flat Pack (LQFP)	160	60	-40° to + 105° C	MC56F8357VPY60
MC56F8357	3.0–3.6 V	Low-Profile Quad Flat Pack (LQFP)	160	60	-40° to + 125° C	MC56F8357MPY60

Table 13-1 56F8357 Ordering Information

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. This product incorporates SuperFlash® technology licensed from SST. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

MC56F8357/D

Semiconductors

Products | Design Support | Register | Login

Motorola > Semiconductors >

SUBSCRIBE FOI 56F8357 : Hybrid Controller **UPDATES Page Contents:** The 56F8357, a member of the 56800E core-based family of Hybrid Controllers, combines the processing power of a DSP and the functionality of a microcontoller. The 56F8357 offers identical memory and Features peripheral capabilities of the 56F8346 with 14 additional GPIO pins. The 160-pin LQFP package allows Documentation you to take advantage of the included external memory interface and additional on-chip memory to satisfy Tools the growing functional needs of your design. 🖸 Orderable Parts 📴 Related Links 56F8357 Features **Other Info:** FAQs On-chip memory includes high-speed volatile and nonvolatile components: 3rd Party Design Help 280 KB Total Flash Memory 🕥 Training 256 KB of Program Flash 3rd Party Tool • 4 KB of Program RAM Vendors • 8 KB of Data Flash o 16 KB of Data RAM 3rd Party Trainers o 16 KB of Boot Flash Rate this Page Up to 60 MIPS at 60 MHz execution frequency DSP and MCU functionality in a unified, C-efficient architecture JTAG/EOnCE for unobtrusive, real-time debugging 0 • Four 36-bit accumulators 16- and 32-bit bidirectional barrel shifter Parallel instruction set with unique addressing modes • Care to Comment? Hardware DO and REP loops available •

- Three internal address buses
- Four internal data buses
- Architectural support for 8-, 16- and 32-bit single-cycle data fetches
- MCU-style software stack support
- Controller-style addressing modes and instructions
- Single-cycle 16 x 16-bit parallel multiplier-accumulator (MAC)
- Proven to deliver more control functionality with a smaller memory footprint than competing architectures

A Return to Top

Documentation

Application Note							
ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
AN1952/D	Using Program memory as Data Memory	MOTOROLA	pdf	173	0	4/02/2003	ORDER 🔄
<u>AN1973</u>	Production Flash Programming for 56F8300	MOTOROLA	pdf	353	0	11/07/2003	ORDER 🔄
<u>AN1974</u>	56F8300 ADC	MOTOROLA	pdf	290	0	11/06/2003	-
<u>AN1980</u>	Using the 56F83xx Temperature Sensor	MOTOROLA	pdf	610	0	9/16/2003	ORDER 🔄
<u>AN2095</u>	Porting and Optimizing DSP56800 Applications to DSP56800E	MOTOROLA	pdf	347	0	4/19/2001	ORDER 🔄
<u>AN2123</u>	An 8x8 DCT Implementation on the Motorola DSP56800E	MOTOROLA	pdf	89	0	8/08/2001	ORDER 🔄

Brochure

ID		Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
<u>BR568</u>	800V2PAK	56800/56800E Hybrid Solutions Product Portfolio	MOTOROLA	htm	14	0	10/15/2002	-

Data Sheets

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
MC56F8357	56F8357 16-bit Hybrid Controller	MOTOROLA	pdf	4011	1	10/16/2003	ORDER 펒

Errata - Click here for important errata information

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
MC56F8357E	56F8357 Chip Errata	MOTOROLA	pdf	48	0	11/19/2003	-

Product Brief

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
MC56F8357PB	56F8357 16-bit Hybrid Controller	MOTOROLA	pdf	78	0	9/10/2003	ORDER 👾

Reference Manual

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
DSP56800ERM/D	DSP56800E 16-Bit DSP Core Reference Manual	MOTOROLA	pdf	7251	2.0	4/02/2002	ORDER 🔄

Selector Guide

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified A	Order Vailability
<u>SG1004</u>	Digital Signal Processors Selector Guide - Quarter 4, 2003	MOTOROLA	pdf	826	0	10/24/2003	ORDER 🦙
<u>SG1006</u>	Microcontrollers Selector Guide - Quarter 4, 2003	MOTOROLA	pdf	826	0	10/24/2003	ORDER 🔄
<u>SG1011</u>	Software and Development Tools Selector Guide - Quarter 4, 2003	MOTOROLA	pdf	287	0	10/24/2003	ORDER 🔄

Training Reference Material

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
56800_56800E_RESOURCE_PACK_CD	hngdspd1@motorola.com			4	1	5/22/2002	-
MOTORTUT	Motor Control Tutorial	MOTOROLA	html	1	1	6/20/2000	-

Users Guide

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
MC56F83XXBLUM	56F83xx SCI/CAN Bootloader User Manual	MOTOROLA	pdf	863	2.0	11/15/2003	ORDER 👾

White Paper

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
EEPROMFLASH	56F83xx Lends Hybrid Applications EEPROM Capability FlashEE	MOTOROLA	pdf	125	0	9/09/2003	-
<u>WP5683XX_1</u>	Motorola 56F8300 Benefits and Product Comparisons	MOTOROLA	pdf	1884	0	8/01/2003	-
WP5683XX_1APPS	Applications Enabled by High-Performance Hybrid Controllers	MOTOROLA	pdf	748	0	9/09/2003	-

A Return to Top

						56	F8357 Tools
Hardware Tools Evaluation/Development Boards and Systems							
			Vendor ID	Format	Size	Rev	Order
			Vendor ID	Format	K	#	Availability
	MC56F8300DSK	Developers Starter Kit	MOTOROLA	-	-	-	BUY 🚖

MC56F8357EVM Evaluation Kit for MC56F8356 and MC56F8357 Hybrid Controllers MOTOROLA

Models PSDL

BSDL						
ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability
56F8357_BSDL	56F8357 BSDL text file for the 160 pin package	MOTOROLA	txt	28	0	-

BUY 🛬

-

-

Software Tools

IDE (Integrated Development Environment)

ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability
<u>CW568X</u>	CodeWarrior(TM) Development Studio for 56800/E Hybrid Controllers With Processor Expert	METROWERKS	-	-	-	BUY 🚖

					Orderable	Parts Information
PartNumber	Package Info	Tape and Reel	Life Cycle Description (code)	Budgetary Price QTY 1000+ (\$US)	QTY 1000+ Additional Info	
PC56F8357MPY60	LQFP 160 24*24*1.4P0.5	No	PRODUCT NEWLY INTRO'D/RAMP-UP(1)	\$18.82	more	BUY 📜
PC56F8357VPY60	LQFP 160 24*24*1.4P0.5	No	PRODUCT NEWLY INTRO'D/RAMP-UP(1)	\$17.92	more_	виу 👾
SPAK56F8357PY60	LQFP 160 24*24*1.4P0.5	No	PRODUCT NEWLY INTRO'D/RAMP-UP(1)	\$26.88	more	BUY 🚖

NOTE: Are you looking for an obsolete orderable part? Click <u>HERE</u> to check our distributors' inventory.

<u>Return to Top</u>

	Related Links
Digital Signal Processors	

Microcontrollers

Processor Expert Applications

<u>Return to Top</u>

http://www.motorola.com/ | Site Map | Contact Motorola | Terms of Use | Privacy Practices 💿 Copyright 1994-2003 Motorola, Inc. All Rights Reserved.