Middle Power LED Series 2835 0.5W Room Temp

LM281B+ SErank

Designed for better Im/\$ (Ambient, Linear)

Features \& Benefits

- 0.5W Class mid power LED
- Standard form factor for design flexibility $(2.8 \times 3.5 \mathrm{~mm})$

Table of Contents

1. Characteristics 3
2. Product Code Information 6
3. Typical Characteristics Graphs 21
4. Outline Drawing \& Dimension 26
5. Reliability Test Items \& Conditions 27
6. Soldering Conditions 28
7. Tape \& Reel 29
8. Label Structure 32
9. Packing Structure 33
10. Precautions in Handling \& Use 37
11. Characteristics
a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Ambient / Operating Temperature	T_{a}	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$	-
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	Ti	115	${ }^{\circ} \mathrm{C}$	-
Forward Current	$I_{\text {F }}$	160	mA	-
Peak Pulsed Forward Current	$I_{\text {Fp }}$	300	mA	Duty $1 / 10$, pulse width 10 ms
Assembly Process Temperature	-	$\begin{aligned} & 260 \\ & <10 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~s} \end{gathered}$	-
ESD (HBM)	-	2	kV	-

Note:

Proper current derating must be observed to maintain junction temperature below the maximum at all time.
It is recommended minimum current 10 mA in order to avoid un-even brightness, and may vary depending on circuit configuration.
b) Electro-optical Characteristics ($\mathrm{IF}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Item	Unit	Rank	Bin	Min.	Typ.	Max.
Forward Voltage (VF)	V	WA or WK	A1	2.8		2.9
			A2	2.9		3.0
			A3	3.0		3.1
			A4	3.1		3.2
			A1	2.8		2.9
		WM	A2	2.9		3.0
Color Rendering Index (Ra)	-	5		80	-	-
		7		90		
Special CRI (R9)	For Ra 90			50		
Thermal Resistance (junction to solder point)	${ }^{\circ} \mathrm{C} / \mathrm{W}$			-	25	-
Beam Angle	-			-	120	-

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}, \mathrm{CRI}= \pm 3, \mathrm{R9}= \pm 6.5$
c) Electro-optical Characteristics ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Item	$\begin{gathered} \mathrm{CRI}\left(\mathrm{R}_{\mathrm{a}}\right) \\ \text { Min. } \end{gathered}$	Nominal CCT (K)	Bin	150 mA	
				Min.	Max.
Luminous Flux ($¢ \mathrm{~V}$)	80	2700	SE	62.5	66.5
		3000	SE	64.5	68.5
		3500	SE	65.5	69.5
		4000	SE	68.0	72.0
		5000	SE	69.0	73.0
		5700	SE	68.5	72.5
		6500	SE	68.0	72.0
	90	2700	SE	52.5	56.5
		3000	SE	54.0	58.0
		3500	SE	55.0	59.0
		4000	SE	57.0	61.0
		5000	SE	58.0	62.0
		5700	SE	57.5	61.5
		6500	SE	57.0	61.0

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}$, luminous flux $= \pm 5 \%, \mathrm{CRI}= \pm 3$

2. Product Code Information

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

S P M W

a）Luminous Flux Bins（ $\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$ ）

CRI $\left(R_{a}\right)$ Min．	Nominal CCT （K）	Product Code	Flux Bin	Flux Range （Ф．．．Im）
80	2700	SPMWH1228FD5WAW＊SE	SE	$62.5 \sim 66.5$
	3000	SPMWH1228FD5WAV \＆์SE	SE	$64.5 \sim 68.5$
	3500	SPMWH1228FD5WAUฬ゙SE	SE	$65.5 \sim 69.5$
	4000	SPMWH1228FD5WATヶSE	SE	68.0 ～ 72.0
	5000	SPMWH1228FD5WARネSE	SE	$69.0 \sim 73.0$
	5700	SPMWH1228FD5WAQฬSE	SE	68.5 ～ 72.5
	6500	SPMWH1228FD5WAPネSE	SE	68.0 ～ 72.0
90	2700	SPMWH1228FD7WAWヶSE	SE	52.5 ～ 56.5
	3000		SE	$54.0 \sim 58.0$
	3500	SPMWH1228FD7WAUฬSE	SE	55.0 ～ 59.0
	4000	SPMWH1228FD7WATヶ゙SE	SE	57.0 ～ 61.0
	5000	SPMWH1228FD7WARネSE	SE	58.0 ～ 62.0
	5700	SPMWH1228FD7WAQヶSE	SE	57.5 ～ 61.5
	6500	SPMWH1228FD7WAPネSE	SE	$57.0 \sim 61.0$

Note：

＂ヶ＂can be＂0＂（Whole bin），＂M＂（Quarter bin），＂K＂（K Kitting bin），＂Y＂（Y Kitting bin）or＂U＂（Mac3 only）of the color binning
b) Kitting rule

1) K Kitting bin Concept
1. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (VF, Color, Im).
2. A forward voltage (VF) of kitting bin is combined by a pair of same $V F$ rank such as ($\mathrm{A} 1+\mathrm{A} 1$), ($\mathrm{A} 2+\mathrm{A} 2$), ($\mathrm{A} 3+\mathrm{A} 3$) or (A4+A4)
3. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)
[Kitting example]

D	E	F	G
9	A	B	C
5	6	7	8
1	2	3	4

[Binning Information]

Bin \#1	Bin \#2	
VF	A1	$A 2$

2) Y Kitting bin Concept

4. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (VF, Color, Im).
5. A forward voltage (VF) of kitting bin is combined by a pair of same VF rank such as (A1+A1), (A2+A2), (A3+A3) or (A4+A4)
6. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)

[Kitting example]

[Binning Information]

	Bin \#1	Bin \#2
VF	A1	A1
	A2	A2
	A3	A3
	A4	A4
CIE	U	U
	N	R
	P	S
	Q	T

c) Color Bins ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Note: " \star " can be "5" (Ra80) or "7" (Ra90)
d) Voltage Bins ($l_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

$\mathrm{CRI}\left(\mathrm{R}_{\mathrm{s}}\right)$ Min.	Nominal CCT (K)	Product Code	Voltage Rank	Voltage Bin	Voltage Range (V)
-	-	-		A1	$2.8 \sim 2.9$
			WA	A2	2.9 ~ 3.0
			or WK	A3	$3.0 \sim 3.1$
				A4	3.1 ~ 3.2
-	-	-	WN	A1	$2.8 \sim 2.9$
			or		
			WM	A2	$2.9 \sim 3.0$

e) Chromaticity Region \& Coordinates for whole bin or quarter bin or K kitting bin ($\mathrm{IF}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

e) Chromaticity Region \& Coordinates

Region	CIEx	CIEy	Region	CIE x	CIEy
		W rank	(2700 K)		
W1	0.4373	0.3893	W9	0.4465	0.4071
	0.4418	0.3981		0.4513	0.4164
	0.4475	0.3994		0.4573	0.4178
	0.4428	0.3906		0.4523	0.4085
W2	0.4428	0.3906	WA	0.4523	0.4085
	0.4475	0.3994		0.4573	0.4178
	0.4532	0.4008		0.4634	0.4193
	0.4483	0.3919		0.4582	0.4099
W3	0.4483	0.3919	WB	0.4582	0.4099
	0.4532	0.4008		0.4634	0.4193
	0.4589	0.4021		0.4695	0.4207
	0.4538	0.3931		0.4641	0.4112
W4	0.4538	0.3931	WC	0.4641	0.4112
	0.4589	0.4021		0.4695	0.4207
	0.4646	0.4034		0.4756	0.4221
	0.4593	0.3944		0.4700	0.4126
W5	0.4418	0.3981	WD	0.4513	0.4164
	0.4465	0.4071		0.4562	0.4260
	0.4523	0.4085		0.4624	0.4274
	0.4475	0.3994		0.4573	0.4178
W6	0.4475	0.3994	WE	0.4573	0.4178
	0.4523	0.4085		0.4624	0.4274
	0.4582	0.4099		0.4687	0.4289
	0.4532	0.4008		0.4634	0.4193
W7	0.4532	0.4008	WF	0.4634	0.4193
	0.4582	0.4099		0.4687	0.4289
	0.4641	0.4112		0.4750	0.4304
	0.4589	0.4021		0.4695	0.4207
W8	0.4589	0.4021	WG	0.4695	0.4207
	0.4641	0.4112		0.4750	0.4304
	0.4700	0.4126		0.4813	0.4319
	0.4646	0.4034		0.4756	0.4221

Region	CIE x	CIEy	Region	CIE x	CIEy
		V rank	(3000 K)		
V1	0.4147	0.3814	V9	0.4221	0.3984
	0.4183	0.3898		0.4259	0.4073
	0.4242	0.3919		0.4322	0.4096
	0.4203	0.3833		0.4281	0.4006
V2	0.4203	0.3833	VA	0.4281	0.4006
	0.4242	0.3919		0.4322	0.4096
	0.4300	0.3939		0.4385	0.4119
	0.4259	0.3853		0.4342	0.4028
V3	0.4259	0.3853	VB	0.4342	0.4028
	0.4300	0.3939		0.4385	0.4119
	0.4359	0.3960		0.4449	0.4141
	0.4316	0.3873		0.4403	0.4049
V4	0.4316	0.3873	VC	0.4403	0.4049
	0.4359	0.3960		0.4449	0.4141
	0.4418	0.3981		0.4513	0.4164
	0.4373	0.3893		0.4465	0.4071
V5	0.4183	0.3898	VD	0.4259	0.4073
	0.4221	0.3984		0.4299	0.4165
	0.4281	0.4006		0.4364	0.4188
	0.4242	0.3919		0.4322	0.4096
V6	0.4242	0.3919	VE	0.4322	0.4096
	0.4281	0.4006		0.4364	0.4188
	0.4342	0.4028		0.4430	0.4212
	0.4300	0.3939		0.4385	0.4119
V7	0.4300	0.3939	VF	0.4385	0.4119
	0.4342	0.4028		0.4430	0.4212
	0.4403	0.4049		0.4496	0.4236
	0.4359	0.3960		0.4449	0.4141
V8	0.4359	0.3960	VG	0.4449	0.4141
	0.4403	0.4049		0.4496	0.4236
	0.4465	0.4071		0.4562	0.4260
	0.4418	0.3981		0.4513	0.4164

e) Chromaticity Region \& Coordinates

Region	CIEx	CIEy	Region	CIE x	CIE y	Region	CIEx	CIEy	Region	CIE x	CIEy
		U rank	(3500 K)			T rank (4000 K)					
U1	0.3889	0.3690	U9	0.3941	0.3848	T1	0.3670	0.3578	T9	0.3702	0.3722
	0.3915	0.3768		0.3968	0.3930		0.3726	0.3612		0.3763	0.3760
	0.3981	0.3800		0.4040	0.3966		0.3744	0.3685		0.3782	0.3837
	0.3953	0.3720		0.4010	0.3882		0.3686	0.3649		0.3719	0.3797
U2	0.3953	0.3720	UA	0.4010	0.3882	T2	0.3726	0.3612	TA	0.3763	0.3760
	0.3981	0.3800		0.4040	0.3966		0.3783	0.3646		0.3825	0.3798
	0.4048	0.3832		0.4113	0.4001		0.3804	0.3721		0.3847	0.3877
	0.4017	0.3751		0.4080	0.3916		0.3744	0.3685		0.3782	0.3837
U3	0.4017	0.3751	UB	0.4080	0.3916	T3	0.3783	0.3646	TB	0.3825	0.3798
	0.4048	0.3832		0.4113	0.4001		0.3840	0.3681		0.3887	0.3836
	0.4116	0.3865		0.4186	0.4037		0.3863	0.3758		0.3912	0.3917
	0.4082	0.3782		0.4150	0.3950		0.3804	0.3721		0.3847	0.3877
U4	0.4082	0.3782	UC	0.4150	0.3950	T4	0.3840	0.3681	TC	0.3887	0.3837
	0.4116	0.3865		0.4186	0.4037		0.3898	0.3716		0.3950	0.3875
	0.4183	0.3898		0.4259	0.4073		0.3924	0.3794		0.3978	0.3958
	0.4147	0.3814		0.4221	0.3984		0.3863	0.3758		0.3912	0.3917
U5	0.3915	0.3768	UD	0.3968	0.3930	T5	0.3686	0.3649	TD	0.3719	0.3797
	0.3941	0.3848		0.3996	0.4015		0.3744	0.3685		0.3782	0.3837
	0.4010	0.3882		0.4071	0.4052		0.3763	0.3760		0.3802	0.3916
	0.3981	0.3800		0.4040	0.3966		0.3702	0.3722		0.3736	0.3874
U6	0.3981	0.3800	UE	0.4040	0.3966	T6	0.3744	0.3685	TE	0.3782	0.3837
	0.4010	0.3882		0.4071	0.4052		0.3804	0.3721		0.3847	0.3877
	0.4080	0.3916		0.4146	0.4089		0.3825	0.3798		0.3869	0.3958
	0.4048	0.3832		0.4113	0.4001		0.3763	0.3760		0.3802	0.3916
U7	0.4048	0.3832	UF	0.4113	0.4001	T7	0.3804	0.3721	TF	0.3847	0.3877
	0.4080	0.3916		0.4146	0.4089		0.3863	0.3758		0.3912	0.3917
	0.4150	0.3950		0.4222	0.4127		0.3887	0.3836		0.3937	0.4001
	0.4116	0.3865		0.4186	0.4037		0.3825	0.3798		0.3869	0.3958
U8	0.4116	0.3865	UG	0.4186	0.4037	T8	0.3863	0.3758	TG	0.3912	0.3917
	0.4150	0.3950		0.4222	0.4127		0.3924	0.3794		0.3978	0.3958
	0.4221	0.3984		0.4299	0.4165		0.3950	0.3875		0.4006	0.4044
	0.4183	0.3898		0.4259	0.4073		0.3887	0.3836		0.3937	0.4001

e) Chromaticity Region \& Coordinates

Region	CIEx	CIE y	Region	CIE x	CIE y
		R rank	(5000 K)		
R1	0.3366	0.3369	R9	0.3374	0.3554
	0.3369	0.3431		0.3371	0.3493
	0.3407	0.3460		0.3411	0.3522
	0.3403	0.3398		0.3415	0.3587
R2	0.3403	0.3398	RA	0.3415	0.3587
	0.3407	0.3460		0.3411	0.3522
	0.3446	0.3491		0.3451	0.3554
	0.3440	0.3427		0.3457	0.3621
R3	0.3446	0.3491	RB	0.3451	0.3554
	0.3440	0.3427		0.3457	0.3621
	0.3477	0.3458		0.3500	0.3655
	0.3485	0.3522		0.3492	0.3587
R4	0.3485	0.3522	RC	0.3492	0.3587
	0.3477	0.3458		0.3500	0.3655
	0.3514	0.3487		0.3542	0.3690
	0.3524	0.3554		0.3533	0.3620
R5	0.3371	0.3493	RD	0.3376	0.3616
	0.3369	0.3431		0.3374	0.3554
	0.3407	0.3460		0.3415	0.3587
	0.3411	0.3522		0.3420	0.3652
R6	0.3407	0.3460	RE	0.3415	0.3587
	0.3411	0.3522		0.3420	0.3652
	0.3451	0.3554		0.3463	0.3687
	0.3446	0.3491		0.3457	0.3621
R7	0.3446	0.3491	RF	0.3457	0.3621
	0.3451	0.3554		0.3463	0.3687
	0.3492	0.3587		0.3507	0.3724
	0.3485	0.3522		0.3500	0.3655
R8	0.3485	0.3522	RG	0.3500	0.3655
	0.3492	0.3587		0.3507	0.3724
	0.3533	0.3620		0.3551	0.3760
	0.3524	0.3554		0.3542	0.3690

Region	CIE x	CIEy	Region	CIE x	CIE y
		Q rank	(5700 K)		
Q1	0.3218	0.3298	Q9	0.3211	0.3407
	0.3222	0.3243		0.3215	0.3353
	0.3258	0.3275		0.3254	0.3388
	0.3256	0.3331		0.3252	0.3444
Q2	0.3256	0.3331	QA	0.3252	0.3444
	0.3258	0.3275		0.3254	0.3388
	0.3294	0.3306		0.3293	0.3423
	0.3294	0.3364		0.3293	0.3481
Q3	0.3294	0.3364	QB	0.3293	0.3481
	0.3294	0.3306		0.3293	0.3423
	0.3330	0.3338		0.3332	0.3458
	0.3331	0.3398		0.3333	0.3518
Q4	0.3331	0.3398	QC	0.3333	0.3518
	0.3330	0.3338		0.3332	0.3458
	0.3366	0.3369		0.3371	0.3493
	0.3369	0.3431		0.3374	0.3554
Q5	0.3215	0.3353	QD	0.3207	0.3462
	0.3218	0.3298		0.3211	0.3407
	0.3256	0.3331		0.3252	0.3444
	0.3254	0.3388		0.3250	0.3501
Q6	0.3254	0.3388	QE	0.3250	0.3501
	0.3256	0.3331		0.3252	0.3444
	0.3294	0.3364		0.3293	0.3481
	0.3293	0.3423		0.3292	0.3539
Q7	0.3293	0.3423	QF	0.3292	0.3539
	0.3294	0.3364		0.3293	0.3481
	0.3331	0.3398		0.3333	0.3518
	0.3332	0.3458		0.3334	0.3578
Q8	0.3332	0.3458	QG	0.3334	0.3578
	0.3331	0.3398		0.3333	0.3518
	0.3369	0.3431		0.3374	0.3554
	0.3371	0.3493		0.3376	0.3616

e) Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIEy
		P rank	(6500 K)		
P1	0.3068	0.3113	P9	0.3048	0.3207
	0.3106	0.3150		0.3089	0.3249
	0.3098	0.3199		0.3080	0.3298
	0.3058	0.3160		0.3038	0.3256
P2	0.3106	0.3150	PA	0.3089	0.3249
	0.3144	0.3186		0.313	0.3290
	0.3137	0.3238		0.3123	0.3341
	0.3098	0.3199		0.3080	0.3298
P3	0.3144	0.3186	PB	0.3130	0.3290
	0.3183	0.3224		0.3172	0.3332
	0.3177	0.3278		0.3166	0.3384
	0.3137	0.3238		0.3123	0.3341
P4	0.3183	0.3224	PC	0.3172	0.3332
	0.3221	0.3261		0.3214	0.3373
	0.3218	0.3317		0.3210	0.3427
	0.3177	0.3278		0.3166	0.3384
P5	0.3058	0.3160	PD	0.3038	0.3256
	0.3098	0.3199		0.3080	0.3298
	0.3089	0.3249		0.3072	0.3348
	0.3048	0.3207		0.3028	0.3304
P6	0.3098	0.3199	PE	0.3080	0.3298
	0.3137	0.3238		0.3123	0.3341
	0.3130	0.3290		0.3115	0.3391
	0.3089	0.3249		0.3072	0.3348
P7	0.3137	0.3238	PF	0.3123	0.3341
	0.3177	0.3278		0.3166	0.3384
	0.3172	0.3332		0.3160	0.3436
	0.313	0.3290		0.3115	0.3391
P8	0.3177	0.3278	PG	0.3166	0.3384
	0.3218	0.3317		0.3210	0.3427
	0.3214	0.3373		0.3206	0.3481
	0.3172	0.3332		0.3160	0.3436

Note: Samsung maintains measurement tolerance of: $\quad \mathrm{Cx}, \mathrm{Cy}= \pm 0.005$
f) Chromaticity Region \& Coordinates for Y kitting bin or mac3 only bin ($\mathrm{IF}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

f) Chromaticity Region \& Coordinates

MacAdam	$\begin{aligned} & \text { CCT } \\ & \text { (K) } \end{aligned}$	Center point		Major-axis	Minor-axis	Rotation
		CIE x	CIE y	a	b	Ф
3 step	2700	0.4578	0.4101	0.0081	0.0042	53.70
	3000	0.4338	0.4030	0.0083	0.0041	53.22
	3500	0.4073	0.3917	0.0093	0.0041	54.00
	4000	0.3818	0.3797	0.0094	0.0040	53.72
	5000	0.3447	0.3553	0.0082	0.0035	59.62
	5700	0.3287	0.3417	0.0075	0.0032	59.10
	6500	0.3123	0.3282	0.0067	0.0029	58.57
5 step	2700	0.4578	0.4101	0.0135	0.0070	53.70
	3000	0.4338	0.4030	0.0138	0.0068	53.22
	3500	0.4073	0.3917	0.0155	0.0068	54.00
	4000	0.3818	0.3797	0.0157	0.0067	53.72
	5000	0.3447	0.3553	0.0137	0.0058	59.62
	5700	0.3287	0.3417	0.0125	0.0053	59.10
	6500	0.3123	0.3282	0.0112	0.0048	58.57

Note: Samsung maintains measurement tolerance of: $C x, C y= \pm 0.005$
f) Chromaticity Region \& Coordinates

CCT	Region	CIE x	CIEy	CCT	Region	CIE x	CIEy	CCT	Region	CIEx	CIEy
2700K	1	0.4521	0.4142	3000K	1	0.4283	0.4071	3500K	1	0.4018	0.3957
	2	0.4619	0.4216		2	0.4382	0.4146		2	0.4125	0.4046
	3	0.4675	0.4175		3	0.4437	0.4105		3	0.418	0.4005
	4	0.4634	0.4059		4	0.4393	0.3989		4	0.4128	0.3877
	5	0.4537	0.3986		5	0.4293	0.3913		5	0.4022	0.3788
	6	0.4481	0.4028		6	0.4239	0.3954		6	0.3966	0.3828
	7	0.4544	0.4126		7	0.4305	0.4054		7	0.404	0.3941
	8	0.4603	0.417		8	0.4364	0.41		8	0.4104	0.3994
	9	0.4636	0.4145		9	0.4397	0.4075		9	0.4137	0.397
	10	0.4612	0.4076		10	0.4371	0.4005		10	0.4106	0.3893
	11	0.4553	0.4032		11	0.4311	0.396		11	0.4042	0.384
	12	0.452	0.4057		12	0.4279	0.3984		12	0.4009	0.3864
4000K	1	0.3764	0.3837	5000K	1	0.3397	0.3583	5700K	1	0.3242	0.3445
	2	0.3871	0.3926		2	0.3482	0.367		2	0.332	0.3524
	3	0.3925	0.3887		3	0.3532	0.364		3	0.3365	0.3496
	4	0.3872	0.3758		4	0.3497	0.3524		4	0.3333	0.339
	5	0.3765	0.3668		5	0.3412	0.3436		5	0.3254	0.331
	6	0.3711	0.3707		6	0.3362	0.3465		6	0.3209	0.3338
	7	0.3786	0.3821		7	0.3417	0.3571		7	0.326	0.3434
	8	0.385	0.3874		8	0.3468	0.3623		8	0.3307	0.3481
	9	0.3882	0.3851		9	0.3498	0.3605		9	0.3334	0.3464
	10	0.385	0.3773		10	0.3477	0.3535		10	0.3314	0.3401
	11	0.3786	0.372		11	0.3426	0.3483		11	0.3267	0.3353
	12	0.3754	0.3743		12	0.3396	0.35		12	0.324	0.3369

f) Chromaticity Region \& Coordinates

CCT	Region	CIE x	CIE y
6500K	1	0.3082	0.3307
	2	0.3153	0.3377
	3	0.3194	0.3352
	4	0.3164	0.3257
	5	0.3093	0.3187
	6	0.3052	0.3212
	7	0.3098	0.3297
	8	0.3141	0.3339
	9	0.3166	0.3324
	10	0.3148	0.3267
	11	0.3105	0.3225
	12	0.308	0.324

Note: Samsung maintains measurement tolerance of: $C x, C y= \pm 0.005$

3. Typical Characteristics Graphs

a) Spectrum Distribution ($\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

CCT: 2700 K (80 CRI)

CCT: 3500 K (80 CRI)

CCT: 5000 K (80 CRI)

CCT: 3000 K (80 CRI)

CCT: 4000 K (80 CRI)

CCT: 5700 K (80 CRI)

CCT: 2700 K (90 CRI)

CCT: 3000 K (90 CRI)

CCT: 3500 K (90 CRI)

CCT: 4000 K (90 CRI)

CCT: 5000 K (90 CRI)

CCT: 6500 K (90 CRI)

b) Forward Current Characteristics ($\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

CCT: 5700 K (90 CRI)

Relative Luminous Flux vs. Forward Current

c) Temperature Characteristics ($\mathrm{I}_{\mathrm{F}}=\mathbf{1 5 0} \mathrm{mA}$)

d) Color Shift Characteristics ($\mathrm{IF}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

e) Derating Curve

f) Beam Angle Characteristics ($\mathrm{IF}_{\mathrm{F}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

4. Outline Drawing \& Dimension

Notes:

1) T_{s} point and measurement method:
(1) Measure one point at the cathode pad, if necessary remove PSR of PCB to reach T_{s} point.
(2) All pads must be soldered to the PCB to dissipate heat properly, otherwise the LED can be damaged.

Precautions:

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED`s characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.
5. Reliability Test Items \& Conditions
a) Test Items

Test Item	Test Condition	Test Hour / Cycle	Sample No.
Room Temperature Life Test	$25^{\circ} \mathrm{C}, \mathrm{DC}$ Max Current	1000 h	22
High Temperature Life Test	$85^{\circ} \mathrm{C}, \mathrm{DC}$ Max Current	1000 h	22
High Temperature Humidity Life Test	$85^{\circ} \mathrm{C}, 85 \%$ RH DC Max Current	1000 h	22
Low Temperature Life Test	$-40^{\circ} \mathrm{C}, \mathrm{DC}$ Max Current	1000 h	22
Powered Temperature Cycle Test	$-45^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$, each 20 min , on/off 5 min Temp. Change time 100min, DC Max Current	100 cycles	22
Temperature Cycle	$-45^{\circ} \mathrm{C} / 15 \mathrm{~min} \leftrightarrow 125^{\circ} \mathrm{C} / 15 \mathrm{~min}$	200 cycles	100
High Temperature Storage	$85^{\circ} \mathrm{C}$	1000 h	11
Low Temperature Storage	$-40^{\circ} \mathrm{C}$	1000 h	11
ESD (HBM)	$\mathrm{R}_{1}: 10 \mathrm{M} \Omega$ $\mathrm{R}_{2}: 1.5 \mathrm{k} \Omega$ C: 100 pF V: $\pm 2 \mathrm{kV}$	5 times	30

b) Criteria for Judging the Damage

Item	Symbol	Test Condition$\left(\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}\right)$	Limit	
			Min	Max
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$	Init. Value * 0.9	Init. Value * 1.1
Luminous Flux	[10	$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$	Init. Value * 0.7	Init. Value * 1.1

6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. $300^{\circ} \mathrm{C}$, under soldering iron.
7. Tape \& Reel
a) Taping Dimension

A0	3.10 ± 0.1	P0	4.00 ± 0.1	T	0.20 ± 0.05	D0	$1.60(\mathrm{MAX})$
B0	3.70 ± 0.1	P1	4.00 ± 0.1	E	1.75 ± 0.1	D1	$1.05(\mathrm{MIN})$
K0	1.00 ± 0.1	P2	2.00 ± 0.1	F	3.50 ± 0.05	V	8.00 ± 0.1

b) Reel Dimension (max $4,000 \mathrm{pcs}$)

Notes:

1) Quantity: The quantity/reel is $4,000 \mathrm{pcs}$
2) All dimensions are millimeters (tolerance : $\pm 0.2 \mathrm{~mm}$)
3) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
c) Reel Dimension (max 16,000 pcs)

$\mathrm{A} \pm 2$	$\mathrm{~B} \pm 0.5$	$\mathrm{C} \pm 0.2$	$\mathrm{D} \pm 0.2$	$\mathrm{E} \pm 0.3$	$\mathrm{~F}_{-0.3}^{+2}$	$\mathrm{~T} \pm 0.2$
$\emptyset 330.2$	$\emptyset 79.5$	$\emptyset 14.3$	2.7	12.7	8.7	2.0

Notes:

1) Quantity: The quantity/reel is $16,000 \mathrm{pcs}$
2) All dimensions are millimeters (tolerance : $\pm 0.2 \mathrm{~mm}$)
3) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

Note: \quad Denoted bin code and product code above is only an example (see description on page 6)

Bin Code:

(a)(b): Forward Voltage bin (refer to page 10)
(c)(d): Chromaticity bin (refer to page 11-18)
(e) \dagger : Luminous Flux bin (refer to page 7)
b) Lot Number

The lot number is composed of the following characters:

LM281B+ RA80 5000K

${ }^{c} \mathrm{~N}_{\mathrm{us}}$ EH[A2R1SE
SPMWH1228FD5WAROSE A2R1SE II (1)(2)(3)(5)(6)(78(8)/(a)(b)C/4000 pcs IIII||II|||||||||||||||||||||||||||||||||||| SNMSUNG
(1)(2)(3)(4)(5)(6)(7)(8)(9/I(B)(c) $/ 4,000 \mathrm{pcs}$
(1) 2) : Production site (G3 or GP : Shenzhen, China)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) : Year (A: 2016, B: 2017, C: 2018, D: 2019, E: 2020...)
(5) : Month (1~9, A, B, C)
(6) : Day (1~9, A, B~V)
(7)8(9) (a)(b)(C) : Product serial number

9. Packing Structure

a) Packing Process (The quantity of PKG on the Reel to be Max $4,000 \mathrm{pcs}$)

Reel

LM281B+ RA80 5000K ${ }^{c} \mathbf{T N}_{u s}$ EHI A2R1SE

SPMWH1228FD5WAR0SE A2R1SE ||II|| G3ACAC4001 / IOAA / 4000 pcs II

```
SNMSUNG
```

Aluminum Vinyl Packing Bag

[10

SPMWH1228FD5WAROSE A2R1SE
 G3ACAC4001 / IOAA / 4000 pcs II

SAMSUNG

Outer Box

Material: Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels
7 inch S	245 ± 5	220 ± 5	86 ± 5	Up to 5 reels

b) Packing Process (The quantity of PKG on the Reel to be Max 16,000 pcs)

Reel

L	

SPMWH1228FD5WKROSE A2R1SE IIIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIIII G3ACA4001 / IOAA / 16000 pcs IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

SNMSUNG

Aluminum Vinyl Packing Bag

SPMWH1228FD5WKROSE A2R1SE III G3ACA4001 / IOAA / 16000 pcs IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

SNMSUNG

Outer Box

SPMWH1228FD5WKROSE A2R1SE
 G3ACA4001 / IOAA / 480000 pcs ||

SAMSUNG
c) Packing Process for kitting (The quantity of PKG on the Reel to be Max $4,000 \mathrm{pcs}$)

Reel

Kitting ' A '
c ${ }^{\text {Pl }}$
SPMWH1228FD5WA \star KSE A2 \star 1SE || G3ACA4001 / IOAA / 4000 pcs

SAMSUNG

Kitting 'B'

SPMWH1228FD5WA \star KSE A2 ${ }^{\text {A CSE }}$ ||| G3ACA4001 / IOAA / 4000 pcs ||IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

SAMSUNG

Kitting ' B '

${ }^{c}$ 메
SPMWH1228FD5WA \star KSE A2^CSE
 G3ACA4001 / IOAA / 4000 pcs |||l|l|

SAMSUNG

Kitting ' B ' ${ }^{\text {ctind }}$ SPMWH1228FD5WA \star KSE A2 \star CSE

II G3ACA4001 / IOAA / 20000 pcs
||||||||||||||||||||||||||||||||||||| SNMSUNG [BOX Label]

Aluminum Vinyl Packing Bag

SPMWH1228FD5WA \star KSE A2ぇ1SE
|III
G3ACA4001 / IOAA / 4000 pcs
||
SתMSUNG

Material: Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels

d) Packing Process for kitting (The quantity of PKG on the Reel to be Max 16,000 pcs)

Reel

Material: Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
13 inch	378 ± 5	345 ± 5	405 ± 5	Up to 10 reels

TH ${ }_{\text {us }}$ IIt A2 A 1 1SE SPMWH1228FD5WK ${ }^{\text {KKSE }}$ A2 \star 1SE || G3ACA4001 / IOAA / 16000 pcs ||

SAMSUNG

Kitting ' B ’

SPMWH1228FD5WK \star KSE A2 ${ }^{\text {A CSE }}$ |II G3ACA4001 / IOAA / 16000 pcs III

SAMSUNG

Kitting ' B '

SPMWH1228FD5WK \star KSE A2 ${ }^{\text {®CSE }}$
|III G3ACA4001 / IOAA / 16000 pcs |||l|l|

SAMSUNG

Kitting 'B'
 SPMWH1228FD5WK \star KSE A2』CSE

II G3ACA4001 / IOAA / 80000 pcs
||||||||||||||||||||||||||||||||||||| SNMSUNG [BOX Label]

Aluminum Vinyl Packing Bag

 G3ACA4001 / IOAA / 16000 pcs ||l|l|

SAMSUNG

Outer Box

Kitting ' A '

LM281B+ RA80 $\star K$
cTN ${ }_{\text {vs }}$ HII A2太1SE
SPMWH1228FD5WK ${ }^{\text {KKSE }}$ A2 \star 1SE
 G3ACA4001 / IOAA / 80000 pcs
||| SAMSUNG [BOX Label]
e) Aluminum Vinyl Packing Bag
"9 ${ }_{\text {vs }}$ FII A2R1SE
SPMWH1228FD5WAR0SE A2R1SE

G3ACA4001 / IOAA / 4000 pcs
||
SAMSUNG
relative humidity (RH)
2. Peak package body temperature: 240 T
3. Ater this bag is opened, deviees that will be subjected to reflow soldor or other high temperature processes must be:
a. Mounted within 672 hours at factory conditions of equal to or less than $30 \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Stored at $<10 \%$ RH
4. Devioes require bake, before mounting, if:
a.Humidity Indicator Card is $>/ 60 \%$ when read at 23 ± 5 c, or b. 2 a is not met.
5. I baking is required, devioes must be baked for $10 \sim 24$ hours at $60 \pm 5^{\circ} \mathrm{C}$
Note: I device containers cannot be subjected to high temperature or shorter bake times are desired, reference IPC/JEDEC J-STD-033 for bake procedure,
Bag seal due date: \qquad
(I blank, see code label)
Note: Level and body temperature by IPC/JEDEC J-STD-020

- Important
This Al Zipper bag is designed to protect the enclosed products from moisture and ESD. Once opened, the products should be soldered onto the printed circuit board immediately. When not in use, please do not leave the products unprotected by the Al Zipper Bag. To repack unused products., please ensure the zip-lock is completely sealed with the dry pack left inside.
f) Humidity Indicator Card inside Aluminum Vinyl Bag

10. Precautions in Handling \& Use

1) For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
4) LEDs must be stored in a clean environment.
(Shelf life of sealed bags is 12 months at temperature $0 \sim 40^{\circ} \mathrm{C}, 0 \sim 90 \% \mathrm{RH}$).
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}^{* N o t e ~} 1$, or
b. Mounted within 24 hours (1 day) at an assembly line with a condition of more than $30^{\circ} \mathrm{C} / 70 \% \mathrm{RH}^{* N o t e ~ 2}$, or
c. Stored at <10 \% RH.
*Note 1, 2: IPC/JEDEC J-STD-033A, Recommended Equivalent Total Floor Life Table

Package Type and Body Thickness	Moisture Sensitivity Level	Maximum Percent Relative Humidity						
		40\%	50\%	60\%	70\%	80\%	90\%	
$\begin{aligned} & \text { Body Thickness } \\ & \quad<2.1 \mathrm{~mm} \end{aligned}$	Level 2a	∞	∞	28	1	1	1	$30^{\circ} \mathrm{C}$
		∞	∞	∞	2	1	1	$25^{\circ} \mathrm{C}$
		∞	∞	∞	2	2	1	$20^{\circ} \mathrm{C}$

6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5^{\circ} \mathrm{C}$.
8) Devices must be baked for $10 \sim 24$ hours at $60 \pm 5^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.
11) Risk of sulfurization (or tarnishing)

The LED from Samsung uses a silver-plated lead frame and its surface color may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (CI) or other halogen compound. Sulfurization of lead frame may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit. It requires caution. Due to possible sulfurization of lead frame, LED should not be used and stored together with oxidizing substances made of materials such as rubber, plain paper, lead solder cream, etc.

Legal and additional information.

About Samsung Electronics Co., Ltd.
Samsung inspires the world and shapes the future with transformative ideas and technologies.
The company is redefining the worlds of TVs, smartphones, wearable devices, tablets,
digital appliances, network systems, and memory, system LSI, foundry and LED
solutions.
For the latest news, please visit the Samsung Newsroom at news.samsung.com.

Copyright © 2020 Samsung Electronics Co., Ltd. All rights reserved.

Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Specifications and designs are subject to change without notice. Non-metric
weights and measurements are approximate. All data were deemed correct
at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
95, Samsung 2-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 446-711
KOREA
www.samsungled.com

