CFPT-9000 Series ### ISSUE 10: 3 FEBRUARY 2006 ### Recommended for New Designs #### **Delivery Options** · Please contact our sales office for current leadtimes #### Description A series of surface mountable 7.0 × 5.0mm temperature compensated voltage controlled crystal oscillators (TCVCXOs) for medium to high volume applications where small size and high performance are prerequisites. This oscillator uses RAKON's latest custom ASIC "Pluto", a single chip oscillator and analogue compensation circuit, capable of sub 1 ppm performance over an extended temperature range. Its ability to function down to a supply voltage of 2.4V and low power consumption make it particularly suitable for mobile applications ### RoHS compliance Parts with the suffix 'LF' on the ordering code and part number are fully compliant with the European Union directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Note: The RoHS compliant parts are suitable for assembly using both Lead-free solders (see Lead-free Reflow soldering profile) and Tin / Lead solders (see Tin / Lead Reflow soldering profile). ## Standard Frequencies 3.2, 5.0, 6.4, 8.192, 9.6, 12.688375, 10.0, 12.8, 13.0, 14.4, 14.85, 16.384, 16.367, 16.8, 19.2, 19.44, 19.8, 20.0, 24.5535, 32.768, 38.88, 40.0MHz # Output Waveform - Square HCMOS 15pF load - Square ACMOS 50pF max. load (available on request, contact sales office) - Sinewave 10kΩ // 10pF, AC-coupled - Clipped sinewave 10kΩ // 10pF, AC-coupled ### Supply Voltage Operating range 2.4 to 6.0V, see table ### **Current Consumption** - HCMOS Typically ≈ 1+Frequency(MHz)*Supply(V)*{Load(pF)+15}*10⁻³ mA e. g. 20MHz, 5V, 15pF ≈ 4mA - Sinewave, ≤ 8mA - Clipped Sinewave Typically ≈ 1+Frequency(MHz)*1.2*{Load(pF)+30}*10⁻³mA ### Package Outline 7.0 x 5.0 x 2.0mm SMD Ceramic Carrier ### Ageing - ±1ppm maximum in first year, frequency ≤ 20MHz - ±2ppm maximum in first year, frequency > 20MHz - ±3ppm maximum for 10 years (including the first year), frequency < 20MHz - ±5ppm maximum for 10 years (including the first year), frequency > 20MHz - ±1ppm maximum after reflow ### Frequency Stability - Temperature: see table - Typical Supply Voltage Variation ±10% ≤ ±0.2 ppm* - Typical Load Coefficient 15pF ±5pF ≤ ±0.2 ppm* - *Dependent on frequency and output type ### Frequency Adjustment - Three options with external Voltage Control applied to pad 10: - A Ageing adjustment: $\geq \pm 5$ ppm, frequency ≤ 20 MHz (Standard Option) - ≥ ±7ppm, frequency > 20MHz - B No frequency adjustment initial calibration @ 25°C ≤ ±1.0 ppm - C High Pulling ±10ppm to ±50ppm can be available depending on frequency and stability options. Please consult our sales office Linearity ≤ 1% Slope Positive Input resistance > 100kΩ Modulation bandwidth > 2kHz Standard voltage control ranges: Without reference voltage - Vs=5.0V 2.5V±1V Without reference voltage - Vs=3.3V 1.65V±1V With reference voltage - Vc=0V to Vref ### Reference Voltage, Vref - Optional reference voltage output on pad 1, suitable for potentiometer supply or DAC reference. - 1. No output (standard option) - 2. 2.2V, for Min. Vs>2.4V - 3. 2.7V, for Min. Vs>3.0V - 4. 4.2V, for Min. Vs>4.5V Maximum load current (mA) = Vref/10 For manual frequency adjustment connect an external $50k\Omega$ potentiometer between pad 1 (Reference Voltage) and pad 4 (GND) with wiper connected to pad 10 (Voltage Control). Please specify reference voltage as part of the ordering code #### Tri-state - Pad 8 open circuit or >0.6Vs output enabled - < 0.2Vs Tri-state</p> - When Tri-stated, the output stage is disabled for all output options, but the oscillator and compensation circuit are still active (current consumption <1mA) ## Storage Temperature Range ■ -55 to 125°C ## **Environmental Specification** - Vibration: IEC 60068-2-6 Test Fc Procedure B4, 10-60Hz 1.5mm displacement, 60 -2000Hz at 10gn, 30 minutes in each of three mutually perpendicular axes at 1 octave - Shock: IEC 60068-2-27 Test Ea, 1500gn acceleration for 0.5ms duration, half sine pulse, 3 shocks in each direction along three mutually perpendicular axes - Soldering: SMD product suitable for Convection Reflow soldering. See recommended reflow profiles - Solderabiltiy: MIL-STD-202, Method 208, Category 3 - Marking: Laser Marked ### Marking Includes - RAKON - Manufacturing identifier (xx) - Pad 1 / Static sensitivity identifier (Triangle) - Part Number (Four digits) - Device date code (YW) RAKON xx ∆ 0000YW # Minimum Order Information Required ■ Frequency + Model Number + Frequency Stability Vs Operating Temperature Range Code + Reference Voltage Code + Frequency Adjustment Code + RoHS compliance # OR Discrete part number for repeat orders (Discrete part numbers suitable for Lead-free soldering include the RoHS compinace code 'LF' as a suffix, e.g. E2747LF) Please supply full information for non-standard options, if required. ## Solder pad layout #### Outline in mm Pad Connections - V ref N/C DC Coupled Output (do not connect) - GND Output N/C N/C - Tri-state Control (Enable)* +Vs - 10.Voltage Control* *leave unconnected if not required. # Output Waveform - HCMOS # Test Circuit # Phase Noise (typical figures) | Frequency | Frequency offset from carrier: 10Hz | Frequency offset from carrier: 100Hz | Frequency offset from
carrier: 1kHz | Frequency offset from
carrier: 10kHz | Frequency offset from carrier: 100kHz | |-----------|-------------------------------------|--------------------------------------|--|---|---------------------------------------| | 13.0MHz | –95 dBc/Hz | –120 dBc/Hz | –135 dBc/Hz | –140 dBc/Hz | –145 dBc/Hz | # Electrical Specification - limiting values when measurred in test circuit | Frequency Range | Supply Voltage | Output Voltage | Output Levels | Rise Time (tr) | Fall Time (tf) | Duty Cycle | Model Number | |-----------------|----------------|--------------------------------|--|----------------|----------------|------------|--------------| | 1.25 to 40.0MHz | 3.3V ±10% | Square HCMOS
15pF | VoH ≥ 90% Vs
VoL ≤ 10% Vs | 8ns | 8ns | 45/55% | CFPT-9006 | | 1.25 to 40.0MHz | 5.0V ±10% | Square HCMOS
15pF | VoH ≥ 90% Vs
VoL ≤ 10% Vs | 7ns | 7ns | 45/55% | CFPT-9001 | | 10.0 to 40.0MHz | 3.3V ±10% | Sine 10kΩ//10pF | ≤ 20MHz ≥ 1 Vpk-pk
> 20MHz ≥ 0.5Vpk-pk | | • | - | CFPT-9007 | | 10.0 to 40.0MHz | 5.0V ±10% | Sine 10kΩ//10pF | \leq 20MHz \geq 1 Vpk-pk
> 20MHz \geq 0.5Vpk-pk | | | - | CFPT-9003 | | 10.0 to 40.0MHz | 3.3V ±10% | Clipped Sinewave
10kΩ//10pF | Vpk-pk ≥ 0.8V | | | - | CFPT-9008 | | 10.0 to 40.0MHz | 5.0V ±10% | Clipped Sinewave
10kΩ//10pF | Vpk-pk ≥ 0.8V | | | - | CFPT-9005 | # Frequency Stability Available Over Operating Temperature Ranges | Operating | Frequency Stabilities Vs Operating Temperature Range | | | | | | | |---|--|----------------------|------------|---------|----------|---------|--| | Temperature
Ranges | ±0.3ppm | ±0.5ppm | ±1.0ppm | ±1.5ppm | ±2.0ppm | ±2.5ppm | | | 0 to 50°C | Code AP | Code Ep | Code FP | Code CP | Code GP | Code HP | | | 0 to 70°C | Code AC* | Code EC | Code FC | Code CC | Code GC | Code HC | | | -20 to 70°C | Code AS* | Code ES | Code FS | Code CS | Code GS | Code HS | | | -30 to 75°C | Code AU* | Code EU* | Code FU | Code CU | Code GU | Code HU | | | -40 to 85°C | Code AX* | Code EX* | Code FX | Code CX | Code GX | Code HX | | | Model Number———
requency Stability V
leference Voltage Co | s Operating Tempera | ature Code ———— | | | <u>부</u> | | | | ead-Free Version— | | | | | | | | | For reference volta | no and fromuoney ad | justment codes see n | main toyt) | | | | | # Lead Free Reflow Soldering Profile * # Tin / Lead Reflow Soldering Profile * *Note: These profiles were used during the qualification testing of the product and therefore represent worst case conditions. They are not recommended for use by the customer in the actual assembly of these parts.