

ISL72991RH

Radiation Hardened Low Dropout Adjustable Negative Voltage Regulator

FN9054 Rev.6.00 Apr 14, 2017

The radiation hardened <u>ISL72991RH</u> is a low dropout adjustable negative regulator with an output voltage range of -2.25V to -26V. The device features a 1A output current capability, an adjustable current limit pin (ILIM), and a shutdown pin (SD) for easy on/off control.

The device incorporates unique circuitry that enables precision performance across the -55 $^{\circ}$ C to +125 $^{\circ}$ C temperature range and post-irradiation. Specifications across the full temperature range include an internal reference voltage of -1.25V +40mV/-50mV (maximum), line regulation of $\pm25\text{mV}$ (maximum), and load regulation of $\pm15\text{mV}$ (maximum). The reference voltage is the ADJ to GND voltage.

Constructed with the Intersil dielectrically isolated Rad Hard Silicon Gate (RSG) BiCMOS process, these devices are immune to single event latch-up and have been specifically designed to provide highly reliable performance in harsh radiation environments.

Applications

- · Post switching power supplies
- DC/DC converters
- · Motor controllers

Features

- Electrically screened to DLA SMD # 5962-02503
- · QML qualified per MIL-PRF-38535 requirements
- · Latch-up immune DI process
- Nominal output voltage range-2.25V to -26V
- Line regulation.....±25mV (maximum)
- Load regulation ±12mV (typ); ±15mV (maximum)
- Dropout voltage (100mA) 0.2V (typ); 0.3V (maximum)
- Dropout voltage (1A) 1V (maximum)
- Minimum load current......3.0mA
- TTL input-level shutdown (SD); low = on
- · Radiation environment

 - Total dose, high dose rate.............. 300krad(Si)

Related Literature

- · For a full list of related documents, visit our website
 - ISL72991RH product page

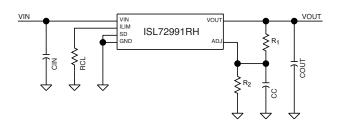


FIGURE 1. TYPICAL APPLICATION

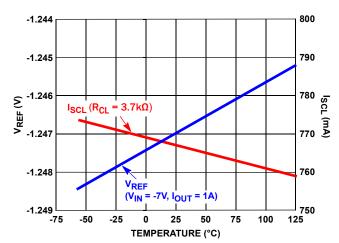
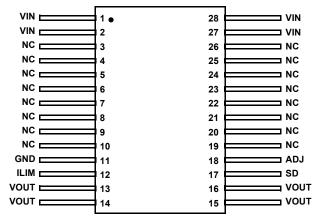


FIGURE 2. V_{REF} AND I_{SCL} vs TEMPERATURE

Ordering Information


ORDERING SMD NUMBER (Note 2)	PART NUMBER (Note 1)	TEMP RANGE (°C)	PACKAGE (RoHS COMPLIANT)	PKG. DWG. #
5962F0250301VXC	ISL72991RHVF	-55 to +125	28 Ld Flatpack	K28.A
5962F0250301QXC	ISL72991RHQF	-55 to +125	28 Ld Flatpack	K28.A
5962F0250301V9A	ISL72991RHVX	-55 to +125	DIE	
N/A	ISL72991RHF/PROTO (Note 3)	-55 to +125	28 Ld Flatpack	K28.A
N/A	ISL72991RHX/SAMPLE (Note 3)	-55 to +125	DIE	
N/A	ISL72991RHEVAL2Z (Note 4)	Evaluation Board	•	-

NOTES:

- 1. These Intersil Pb-free Hermetic packaged products employ 100% Au plate e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.
- 2. Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed must be used when ordering.
- 3. The /PROTO and /SAMPLE are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity. These parts are intended for engineering evaluation purposes only. The /PROTO parts meet the electrical limits and conditions across the temperature range specified in the DLA SMD and are in the same form and fit as the qualified device. The /SAMPLE die is capable of meeting the electrical limits and conditions specified in the DLA SMD at +25 °C only. The /SAMPLE is a die and does not receive 100% screening across the temperature range to the DLA SMD electrical limits. These part types do not come with a certificate of conformance because there is no radiation assurance testing and they are not DLA qualified devices.
- 4. Evaluation board uses the /PROTO parts. The /PROTO parts are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity.

Pin Configuration

ISL72991RH (28 LD FLATPACK) TOP VIEW

Pin Descriptions

PIN NUMBER	PIN NAME	EQUIVALENT CIRCUIT	DESCRIPTION
1, 2, 27, 28	VIN	Circuit 2	Regulator bias and input connection. All 4 pins must be tied together.
12	ILIM	Circuit 2	Current limiting set input.
13, 14, 15, 16	VOUT	Circuit 2	Regulator output connection. All 4 pins must be tied together.
17	SD	Circuit 1	Shut down input, active high.
18	ADJ	Circuit 2	Output voltage adjust input
11	GND		Ground connection
3, 4, 5, 6, 7, 8, 9, 10, 19, 20, 21, 22, 23, 24, 25, 26	NC		No Internal connections. Can be connected to ground or thermal plane.
GND CIRCUI	CAPACITIVELY COUPLED ESD CLAMP		GND CAPACITIVELY COUPLED ESD CLAMP

Functional Block Diagram

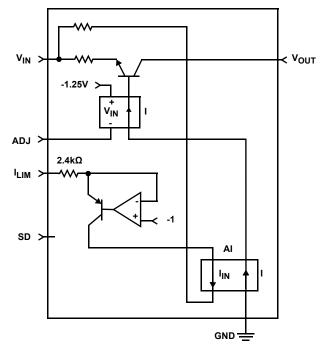
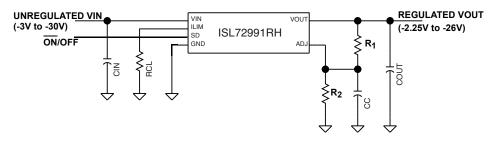



FIGURE 3. FUNCTIONAL BLOCK DIAGRAM

Typical Application

- VDC TO -VDC VOLTAGE REGULATION CIRCUIT

FIGURE 4. TYPICAL APPLICATION

Absolute Maximum Ratings

Minimum Supply Voltage35V
$\label{eq:minimum Supply Voltage (Note 7) 30V} \\$
Minimum Output Current
Output Short-Circuit Duration. Thermal Protection Indefinite
ESD Rating
Human Body Model (HBM) (Tested per MIL-PRF-883 3015.7) 3kV
Machine Model (MM) (Tested per EIA/JESD22-A115-A) 300V
Charged Device Model (CDM) (Tested per JESD22-C101D) 1kV

Thermal Information

Thermal Resistance (Typical)	$\theta_{JA}(^{\circ}C/W)$	θ_{JC} (°C/W)
28 Ld Flatpack (Notes 5, 6)	60	5
Maximum Storage Temperature Range	6!	5°C to +150°C
Maximum Junction Temperature (T_{JMAX})		+150°C

Recommended Operating Conditions

Ambient Operating Temperature Range	55°C to +125°C
Maximum Operating Junction Temperature	+150°C
Supply Voltage	3V to -30V

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

- 5. θ_{JA} is measured with the component mounted on a low-effective thermal conductivity test board in free air. See tech brief TB379 for details.
- 6. For $\theta_{\mbox{\scriptsize JC}},$ the "case temp" location is the center of the package underside.
- 7. The minimum supply limit specified is for operation in a heavy ion environment at an LET = 86.4MeV cm²/mg.

Electrical Specifications $V_0 \le V_{\text{IN}}$ -1.5V, $I_0 = 100 \text{mA}$, $C_0 = 47 \mu \text{F}$, SD = 0V, $T_A = +25 \,^{\circ}\text{C}$, unless otherwise noted. **Boldface limits apply across the operating temperature range, -55 ^{\circ}\text{C} to +125 ^{\circ}\text{C}.**

DESCRIPTION	PARAMETER	TEST CONDITIONS	MIN (<u>Note 8</u>)	TYP	MAX (<u>Note 8</u>)	UNIT
Reference Voltage (ADJ to GND)	V _{REF}	I _O = 3mA to 1A	-1.279	-1.250	-1.231	V
			-1.300		-1.210	V
Minimum Output Voltage	V _{Omin}	V _{IN} = -3V, I _O = 3mA to 100mA			-2.25	V
Maximum Output Voltage	V _{Omax}	V _{IN} = -30V, I ₀ = 3mA to 100mA	-26			V
Output Voltage Load Regulation	V _{LDR}	$V_{IN} = -7V$, $V_{O} = -5V I_{O} = 3mA$ to 1A	-12		12	mV
			-15		15	mV
Output Voltage Line Regulation	V _{LNR}	$V_0 \le V_{IN} - 1V \text{ to } V_{IN} = -30V, I_0 = 100\text{mA}$	-25		25	mV
0.1A Dropout Voltage	V _{DOL}	dV ₀ ≤ 50mV, I ₀ = 0.1A			0.2	V
					0.3	٧
1A Dropout Voltage (Pulse Tested)	V _{DOH}	dV ₀ ≤ 50mV, I ₀ = 1A			1	٧
Adjust Current	I _{ADJ}	$V_0 \le V_{IN} - 1V \text{ to } V_{IN} = -30V, I_0 = 500\text{mA}$		1.7	5.0	μΑ
Dropout Quiescent Current	I _{QDO}	V ₀ - V _{IN} = 0.2V, I ₀ = 500mA			25	mA
		V _O - V _{IN} = 0.3V, I _O = 500mA			25	mA
SD Input Voltage	V _{SD}	V _O = ON			0.8	V
		V _O = OFF	2.4			V
SD Input Current	I _{SD}	V _{SD} = 0.8V			50	μΑ
		V _{SD} = 2.4V			100	μΑ
					150	μΑ
Output Short-Circuit Current Limit	I _{SCL}	$V_{IN} = -7V$, $V_{O} = 0V$, $R_{CL} = 3.7k\Omega$	0.60	0.75	0.90	Α
GND Quiescent Current	I _{GND}	-3V≤ V _{IN} ≤ -30V, I _O < 1A		6		mA
Power Supply Rejection Ratio	PSRR	Frequency = 1MHz		-49		dB
Thermal Protection	OTPROT			150		°c
Thermal Hysteresis	OT _{HYS}			20		°C

Post Radiation Electrical Specifications $V_0 \le V_{IN}$ -1.5V, $I_0 = 100$ mA, $C_0 = 47 \mu F$, SD = 0V, $T_A = +25 \,^{\circ}$ C, across a total ionizing dose of 300krad(Si) with exposure at a high dose rate of 50 to 300rad(Si)/s.

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN (Note 8)	TYP	MAX (Note 8)	UNITS
V _{REF}	Reference Voltage	I _O = 3mA to 1A	-1.279		-1.231	٧
V _{Omin}	Minimum Output Voltage	V _{IN} = -3V, I _O = 3mA to 100mA			-2.25	٧
V _{Omax}	Maximum Output Voltage	V _{IN} = -30V, I _O = 3mA to 100mA	-26			٧
VLDR	Output Voltage Load Regulation	$V_{IN} = -7V$, $V_{O} = -5V I_{O} = 3mA$ to 1A	-12		12	mV
VLNR	Output Voltage Line Regulation	$V_0 \le V_{IN}$ -1V to V_{IN} = -30V, I_0 = 100mA	-25		25	m۷
VDOL	0.1A Dropout Voltage	$dV_0 \le 50 mV, I_0 = 0.1 A$			0.2	٧
VDO _H	1A Dropout Voltage (Pulse Tested)	$dV_0 \le 50 mV$, $I_0 = 1A$			1	٧
I _{ADJ}	Adjust Current	$V_0 \le V_{IN} - 1V \text{ to } V_{IN} = -30V, I_0 = 500\text{mA}$			5	μΑ
I _{QDO}	Dropout Quiescent Current	V _O - V _{IN} = 0.3V, I _O = 500mA			25	mA
V _{SD}	SD Input Voltage	V _O = ON			0.8	٧
		V _O = OFF	2.4			٧
I _{SD}	SD Input Current	V _{SD} = 0.8V			50	μΑ
		V _{SD} = 2.4V			100	μΑ
I _{CL}	Output Short-Circuit Current Limit	$V_{IN} = -7V$, $V_{O} = 0V$, $R_{CL} = 3.7k\Omega$	0.6		0.9	Α

NOTE:

^{8.} Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.

Total Dose Radiation Characteristics This data is typical mean test data post total dose radiation exposure at a high dose rate (HDR) of 50 to 300rad(Si)/s to 300krads. This data is intended to show typical parameter shifts due to total dose rate radiation. These are not limits nor are they guaranteed.

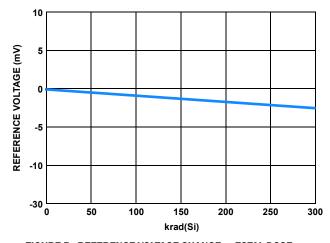


FIGURE 5. REFERENCE VOLTAGE CHANGE vs TOTAL DOSE RADIATION

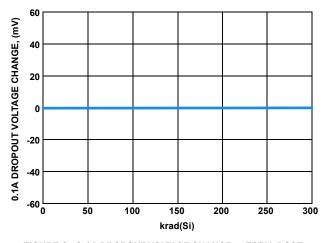


FIGURE 6. 0.1A DROPOUT VOLTAGE CHANGE vs TOTAL DOSE RADIATION

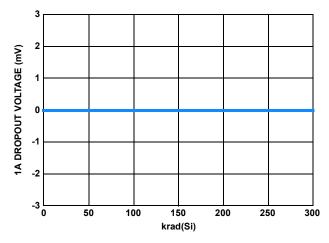


FIGURE 7. 1A DROPOUT VOLTAGE CHANGE vs TOTAL DOSE RADIATION

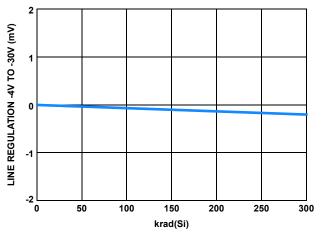


FIGURE 8. OUTPUT VOLTAGE LINE REGULATION CHANGE vs
TOTAL DOSE RADIATION

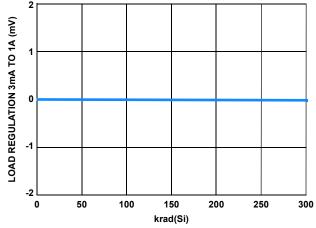


FIGURE 9. OUTPUT VOLTAGE LOAD REGULATION CHANGE vs TOTAL DOSE RADIATION

Typical Performance Curves

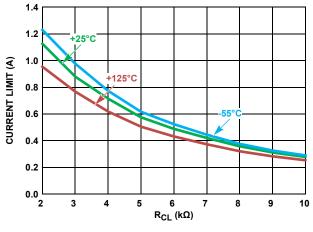


FIGURE 10. -7V_{IN}, -5V_{OUT}

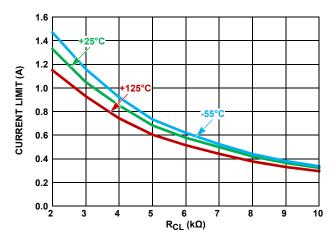


FIGURE 11. -12V_{IN}, -5V_{OUT}

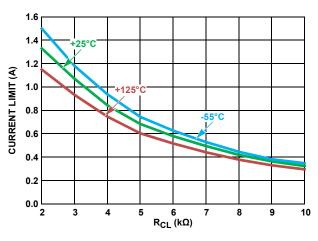


FIGURE 12. $-12V_{IN}$, $-10V_{OUT}$

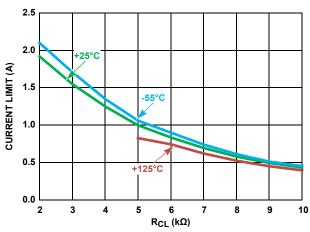


FIGURE 13. -20V_{IN}, -10V_{OUT}

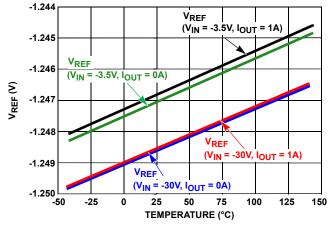


FIGURE 14. V_{REF} vs TEMPERATURE

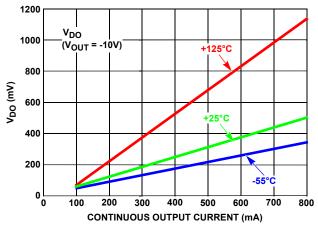


FIGURE 15. DROPOUT VOLTAGE vs TEMPERATURE

Typical Performance Curves (Continued)

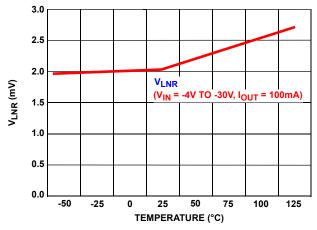


FIGURE 16. LINE REGULATION vs TEMPERATURE

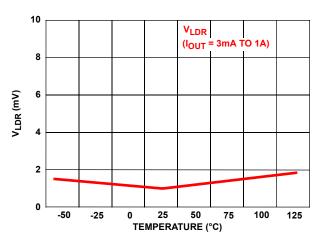


FIGURE 17. LOAD REGULATION vs TEMPERATURE

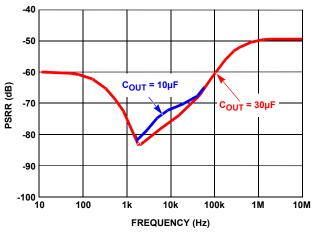


FIGURE 18. PSRR vs FREQUENCY ($V_{IN} = -20V$, $V_{OUT} = -18V$)

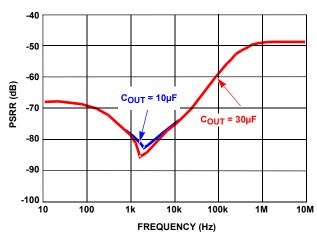


FIGURE 19. PSRR vs FREQUENCY ($V_{IN} = -7V$, $V_{OUT} = -5V$)

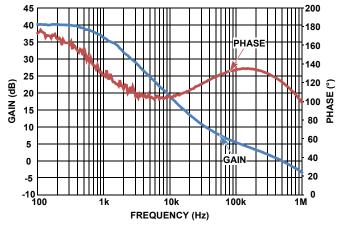


FIGURE 20. GAIN/PHASE -12 $V_{
m IN}$, -5 $V_{
m OUT}$, 0.5A $I_{
m OUT}$

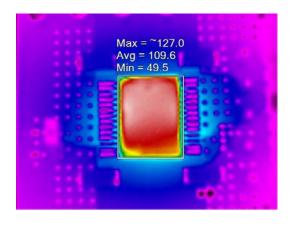


FIGURE 21. THERMAL (V_{IN} = -12V, V_{OUT} = -5V, I_{OUT} = 0.74A, T_A = +25°C)

Functional Description

Functional Overview

The radiation hardened ISL72991RH is a low dropout adjustable negative regulator with an output voltage range of -2.25V to -26V. The device features a 1A output current capability, an adjustable current limit pin (ILIM), and a shutdown pin (SD) for easy on/off control. The part is constructed using the Intersil dielectrically isolated, complimentary bipolar RSG process. It is immune to single-event latch-up and has been specifically designed to provide reliable performance in harsh radiation environments.

Application Information

Output Voltage Programming

The output voltage of the regulator can be programmed with two external resistors and is described by <u>Equation 1</u>:

$$V_{OUT} = -1.25(1 + R_1/R_2) - (I_{AD,I} \times R_1)$$
 (EQ. 1)

Output Current Limit Programming

The output current limit threshold of the regulator is set with a single external resistor (R_{CL}) connected from I_{LIM} to ground.

The effective current limit at any single R_{CL} value is influenced by the V_{IN} to V_{OUT} difference, temperature, and V_{IN} amplitude. Figures 22 through 24 illustrate these effects.

<u>Figure 22</u> shows that for a given V_{OUT} (-5V) and temperature (+25°C) the effect of V_{IN} to V_{OUT} differential on the current limit level is significant.

Figure 23 shows the effect of temperature at a single V_{IN} to V_{OUT} voltage condition across the R_{CL} range of 2.1kΩ to 10kΩ.

<u>Figure 24</u> shows that for a given differential voltage (V_{IN} to V_{OUT}) and temperature, the effect of V_{IN} amplitude is less significant than seen in <u>Figure 22</u>.

Because of these numerous variables, there is no one formula relating R_{CL} to I_{CL} that will suffice for the range of likely possible conditions. Figures 10 through 13 on page 8 provide guidance in setting the R_{CL} value for a limited number of possible conditions. Users are advised to evaluate their specific condition for satisfactory performance.

Capacitor Selection

An input capacitor is required if the regulator is located more than 6 inches from the power supply filter capacitors. A $10\mu F$ solid tantalum capacitor is recommended.

An output capacitor of at least $10\mu F$ must be used to ensure stability of the regulator. Additional capacitance may be added as required to improve the dynamic response of the regulator. Solid tantalum or ceramic capacitors are recommended.

Loop Compensation

The output capacitor and ESR comprise a zero in the loop transfer function that must be compensated with a pole to ensure loop stability in accordance with Equation 2:

$$C_C \times R_1 = C_{OUT} \times ESR$$
 (EQ. 2)

The compensating capacitor should be a low ESR ceramic type.

Layout Guidelines

The stability of the regulator is sensitive to layout. It is strongly recommended that a continuous copper ground plane (1oz. or greater) be used. In addition, component lead lengths and interconnects should be minimized, but should not exceed 1/2 inch. Finally, the return lead of the compensation capacitor ($C_{\rm C}$) should be connected as close as possible to the GND pin of the IC.

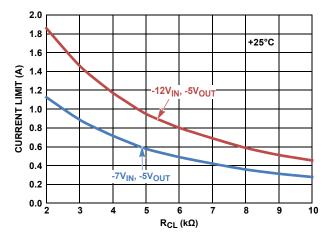


FIGURE 22. ICL vs RCL AND VIN AMPLITUDE

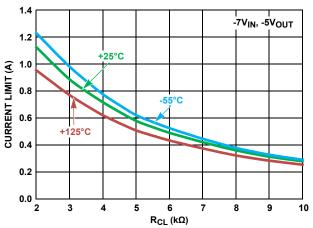


FIGURE 23. I_{CL} vs R_{CL} and temperature

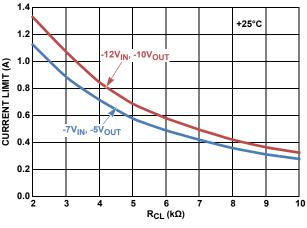


FIGURE 24. I_{CL} vs R_{CL} and V_{IN} to V_{OUT} differential

Package Characteristics

Weight of Packaged Device

2.2 Grams (Typical)

Lid Characteristics

Finish: Gold

Potential: Unbiased

Case Isolation to Any Lead: $20 \times 10^9 \Omega$ (min)

Die Characteristics

Die Dimensions

 $5870\mu m\ x\ 5210\mu m\ (231.1\ mils\ x\ 205.1\ mils)$ Thickness: $483\mu m\ \pm 25.4\mu m\ (19\ mils\ \pm 1\ mil)$

Interface Materials

GLASSIVATION

Type: PSG (Phosphorous Silicon Glass)

Thickness: 8.0kÅ ±1.0kÅ

TOP METALLIZATION

Type: AlSiCu (Si 0.75-1%/Cu 0.5%) Thickness: 16.0kÅ ±2kÅ

BACKSIDE FINISH

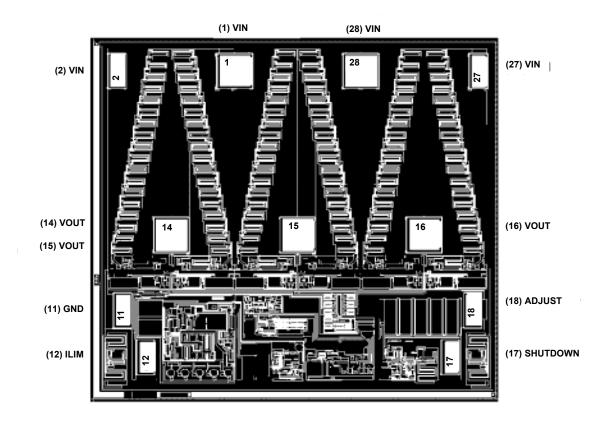
Silicon

Assembly Related Information

SUBSTRATE AND LID POTENTIAL

Floating

Additional Information


WORST CASE CURRENT DENSITY

 $<2 \text{ x } 10^5 \text{ A/cm}^2$

PROCESS

Dielectrically Isolated Radiation Hardened Silicon Gate

Metallization Mask Layout

TABLE 1. DIE PAD COORDINATES

PAD NAME	X-COR CENTER	Y-COR CENTER	DX PAD SIZE	DY PAD SIZE
ILIM	-1300.5	-4348	258	516
(15)VOUT	920	-2712	516	516
SHUTDOWN	3140.5	-4348	258	516
ADJUST	3473.5	-3658	258	516
(16)VOUT	2917	-2554	516	516
(27)VOUT	3580	-156	258	516
(28)VIN	1840	0	516	516
(1)VIN	0	0	516	516
(2)VIN	-1740	-166	258	516
(14)VOUT	-1077	-2554	516	516
GND	-1662	-3657	258	516

Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Revision.

DATE	REVISION	CHANGE
Apr 14, 2017	FN9054.6	Added Notes 3 and 4 on page 2. Added Table 1 on page 12.
Aug 17, 2016	FN9054.5	Updated Equation 2 Loop Compensation equation to change R2 to R ₁ .
May 7, 2015	FN9054.4	Replaced Figures 10, 11, 12 and 13 on page 8. Replaced Figures 22, 23 and 24 on page 10. Updated Equation 1 on page 10: from VOUT = -1.25(1+R2/R1) - (IADJ x R2) to VOUT = -1.25(1+R1/R2) - (IADJ x R1).
Jan 29, 2015	FN9054.3	"Typical Performance Curves" on page 8: Added Figures 18 and 19.
Mar 26, 2014	FN9054.2	Added Related Literature on page 1. Added significant relevant content throughout the document, expanding from 3 to 12 pages.
Jun, 28, 2004	FN9054.1	Updated file.
Jul 9, 2001	FN9054.0	Initial Release.

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.

For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com.

For a listing of definitions and abbreviations of common terms used in our documents, visit www.intersil.com/glossary.

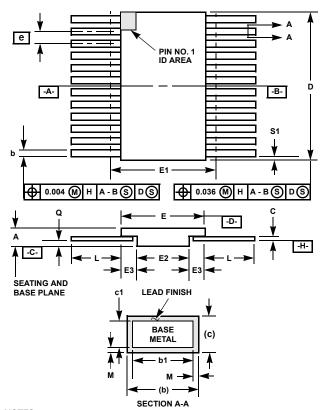
You can report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.

Reliability reports are also available from our website at www.intersil.com/support.

© Copyright Intersil Americas LLC 2001-2017. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html


Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Ceramic Metal Seal Flatpack Packages (Flatpack)

NOTES:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark. Alternately, a tab (dimension k) may be used to identify pin one.
- 2. If a pin one identification mark is used in addition to a tab, the limits of dimension k do not apply.
- 3. This dimension allows for off-center lid, meniscus, and glass
- 4. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 5. N is the maximum number of terminal positions.
- 6. Measure dimension S1 at all four corners.
- For bottom-brazed lead packages, no organic or polymeric materials shall be molded to the bottom of the package to cover the leads.
- Dimension Q shall be measured at the point of exit (beyond the meniscus) of the lead from the body. Dimension Q minimum shall be reduced by 0.0015 inch (0.038mm) maximum when solder dip lead finish is applied.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.

K28.A MIL-STD-1835 CDFP3-F28 (F-11A, CONFIGURATION B) 28 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE

	INC	HES	MILLIN	METERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.045	0.115	1.14	2.92	-
b	0.015	0.022	0.38	0.56	-
b1	0.015	0.019	0.38	0.48	-
С	0.004	0.009	0.10	0.23	-
c1	0.004	0.006	0.10	0.15	-
D	-	0.740	-	18.80	3
E	0.460	0.520	11.68	13.21	-
E1	-	0.550	-	13.97	3
E2	0.180	-	4.57	-	-
E3	0.030	-	0.76	-	7
е	0.050) BSC	1.27 BSC		-
k	0.008	0.015	0.20	0.38	2
L	0.250	0.370	6.35	9.40	-
Q	0.026	0.045	0.66	1.14	8
S1	0.00	-	0.00	-	6
М	-	0.0015	-	0.04	-
N	28		2	28	-

Rev. 0 5/18/94

For the most recent package outline drawing, see **K28.A**.