

PHAST[®]-12N Device STM-4/OC-12 SDH/SONET Overhead Terminator with **Telecom Bus Interface** TXC-06312

> DATA SHEET PRODUCT PREVIEW

FEATURES

- Bit-serial LVPECL SDH/SONET line interface with integrated clock recovery and clock synthesis
 - single 622.08 Mbit/s STM-4/OC-12 signal or
 - four 155.52 Mbit/s STM-1/OC-3 signals
- Bit-serial LVDS 622.08 Mbit/s APS port
- Supports 1+1, 1:1 and 1:n APS for STM-1/OC-3 and STM-4/OC-12 signals using a serial port interface
- Complete RS/section and MS/line overhead processing
- Complete high order path overhead processing at VC-3/VC-4/VC-4-Xc/STS-1/STS-3c/STC-6c/STS-9c/STS-12c SPE level
- High order path cross-connect with VC-3/STS-1 SPE granularity
- Byte-wide 77.76 MHz Telecom Bus terminal interface
- MS/Line or RS/Section DCC access port per line
- Ring Ports for line/path ring applications
- TOH and POH access port
- 16-bit wide microprocessor interface, selectable between Motorola or Intel
- Software device driver is provided
- Boundary scan and line loopback
- +3.3V and +1.8V power supplies, 3.3V digital I/O leads
- 376-lead plastic ball grid array (PBGA) package (23 mm x 23 mm)

DESCRIPTION

The PHAST[®]-12N is a highly integrated SDH/SONET overhead terminator device designed for TDM payload mappings. A single PHAST-12N can terminate four individual STM-1/OC-3 lines or a single STM-4/OC-12 line. Each SDH/SONET terminator has a line interface block that performs clock synthesis and clock recovery for four 155.52 Mbit/s signals or a single 622.08 Mbit/s serial signal.

The PHAST-12N device provides glueless 1+1, 1:1 and 1:n APS for STM-1/OC-3 and STM-4/OC-12 applications using a 622.08 Mbit/s serial APS port interface.

The PHAST-12N device provides RS (section) and MS (line) overhead processing, high order pointer tracking and retiming, and high order path overhead processing and performance monitoring. It provides full non-blocking cross connecting at the high order path level with VC-3/STS-1 SPE granularity allowing path loopbacks, MS or line protection and UPSR and SNC/P path protection.

A fully functional Device Driver is available through TranSwitch Applications Engineering.

APPLICATIONS

SDH/SONET add/drop and terminal multiplexers

www.transwitch.com

- Linear MS/Line protection
- Multiservice applications

contain information on

PREVIEW information documents

PRODUCT products in

development. Features

ð

change. Contact

characteristic data and other specifications are subject to change. Contact TranSwitch Applications Engineering for current information on this product.

their formative or design phase c data and other specifications are

Line/Path TOH/POH DCC Clocks. LINE SIDE **TERMINAL SIDE Ring Ports** Ports Ports Control/Status +1.8V +3.3V PHAST-12N Tx/Rx Serial Line STM-4/OC-12 SDH/SONET 77.76 MHz Interfaces **Overhead Terminator** Telecom Bus (four 155.52 Mbit/s or with Telecom Bus Interface one 622.08 Mbit/s) TXC-06312 Microprocessor Boundary Tx/Rx Serial Interface **APS Port** Scan U.S. Patents No. 2,695,990; 4,967,405; 5,040,170; 5,142,529; 5,257,261; 5,265,096; 5,331,641; 5,724,362 U.S. and/or foreign patents issued or pending Copyright © 2004 TranSwitch Corporation Document Number: PRODUCT PREVIEW TXC-06312-MB, Ed. 4 EtherMap is a trademark of TranSwitch Corporation TranSwitch, TXC, TEMx28 and PHAST are registered trademarks of TranSwitch Corporation April 2004 TranSwitch Corporation • 3 Enterprise Drive Shelton, Connecticut 06484 USA •

Tel: 203-929-8810 • Fax: 203-926-9453 •

Proprietary TranSwitch Corporation Information for use Solely by its Customers

PHAST-12N TXC-06312

DATA SHEET

- IMPORTANT NOTICE -

TranSwitch Corporation reserves the right to make changes to its products, circuits or documentation described herein without notice.

EXCEPT AS SET FORTH IN A WRITTEN BINDING AGREEMENT BETWEEN TRANSWITCH CORPORATION AND A USER OF ITS PRODUCTS, TRANSWITCH CORPORATION ASSUMES NO LIABILITY FOR (A) CUSTOMER APPLICATIONS, INCLUDING CUSTOMER'S CIRCUITS, FIRMWARE AND SOFTWARE, (B) CUSTOMER PRODUCT DESIGN, (C) TRANSWITCH CORPORATION PRODUCT OR CUSTOMER PRODUCT SOFTWARE PERFORMANCE, (D) USE BY CUSTOMER OF ANY PRODUCT OR RELATED SAMPLE CIRCUIT OR APPLICATION PROVIDED HEREIN OR (E) INFRINGEMENT OF A THIRD PARTY'S PATENTS OR OTHER INTELLECTUAL PROPERTY RIGHTS ARISING OUT OF USE OF ANY AND ALL INFORMATION PROVIDED HEREIN. TRANSWITCH CORPORATION EXPRESSLY DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES RELATED TO THE INFORMATION, PRODUCTS AND SAMPLE APPLICATIONS AND CIRCUITS CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF FITNESS FOR PURPOSE INTENDED, MERCHANTABILITY AND NON-INFRINGEMENT, AND WILL NOT BE LIABLE FOR DIRECT OR INDIRECT DAMAGES RESULTING FROM THEIR USE.

TRANSWITCH DOES NOT OFFER CUSTOMER EITHER AN EXPRESS OR AN IMPLIED LICENSE UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT COVERING OR RELATED TO ANY DESIGN, COMBINATION, MACHINE OR PROCESS IN WHICH TRANSWITCH CORPORATION'S PRODUCTS OR SERVICES MIGHT BE OR ARE USED, INCLUDING BUT NOT LIMITED TO THE USES DESCRIBED HEREIN. THE CUSTOMER IS URGED TO CONSULT WITH LEGAL COUNSEL BEFORE DECIDING ON A PARTICULAR APPLICATION, CIRCUIT, FIRMWARE OR SOFTWARE WITH ANY OF TRANSWITCH'S PRODUCTS.

TRANSWITCH CORPORATION'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS (OR SIMILAR APPLICATIONS WHERE COMPONENT FAILURE COULD RESULT IN LOSS OF LIFE OR PHYSICAL HARM) WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF TRANSWITCH CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PHAST-12N TXC-06312

TABLE OF CONTENTS

Section Pa	age
List of Figures	6
List of Tables	8
Applicable Standards Documentation	. 10
Overview	. 11
Features	. 12
Modes of Operation	. 12
Line Interface	. 12
APS Port Interface	. 13
RS/Section Layer Processing	. 13
MS/Line Layer Processing	. 13
High Order Path Layer Processing	. 13
High Order Path Cross-Connect	. 14
Telecom Bus Interface	. 14
Microprocessor Interface	. 15
Testing	. 15
Device Driver	. 15
Block Diagram	. 16
Functional Model	. 17
Block Diagram Description	. 18
Line Side	
APS Port Side	. 18
High Order Path Cross Connect	. 19
Terminal Side	
Lead Diagram	
Lead Descriptions	
Selected Parameter Values	
Absolute Maximum Ratings and Environmental Limitations	
Thermal Characteristics	
Power Requirements	
Power Supply Sharing, Filtering and Other Requirements	
LVPECL I/O Recommendations:	
Input, Output and Input/Output Parameters	
Timing Characteristics	
Operation	
Modes	
Line Interface Mode	
SDH/SONET Mapping	
Clock Architecture	
Clocks and Software-Access	
Loss of Clock Detection	
Powerup, Initialization and Startup	
Reset	
External Lead Controlled Hardware Reset	
Microprocessor Controlled Hardware Reset (RESETH)	
Microprocessor Controlled Reset Per Clockdomain	
Line Interface	
APS Interface	
APS Interface Generator	
APS Interface Monitor	

DATA SHEET

Regenerator Section (section) Overhead Processing	
Regenerator Section Overhead Generator	88
Regenerator Section Overhead Monitor	89
Multiplex Section (line) Overhead Processing	89
Multiplex Section Overhead Generator	89
Multiplex Section Overhead Monitor	90
High Order Cross-Connect	92
Automatic Protection Switching	93
Single Device Operation	93
Dual Device Operation	93
APS Port Architecture	94
Example: STM-4/OC-12 Mode, 1+1 APS Protection	95
Example: STM-4/OC-12 Mode, 1:1 APS Protection	96
Example: STM-1 Mode, 1+1 APS Protection	
Example: STM-1 Mode, 1:1 APS Protection	
Example: STM-1 Mode, 1:n APS Protection	
High Order Pointer Tracking, Retiming and Pointer Generation	
Line and APS Side Pointer Tracking, Retiming and Pointer Generation	
Detection of Concatenated Structures	
Frame Reference Pulses	
Generation of Frame Reference Pulse	
Locking on External Frame Reference Pulse	
Terminal Side Retiming and Pointer Generation	
Retimer FIFO Leak Registers.	
High Order Path Overhead Processing	
High Order Path Overhead Generator	
High Order Path Overhead Monitor	
TOH Port Interface	
Transmit TOH Port Interface	
Receive TOH Port Interface	
DCC Port Interface	
Transmit DCC Port Interface	
Receive DCC Port Interface	
Line Alarm Indication (Ring) Port Interface	
Internal Line Alarm Indication (Ring) Port Interface	
External Line Alarm Indication (Ring) Port Interface	
High Order POH Port Interface	
Transmit High Order POH Port Interface	
Receive High Order POH Port Interface	
High Order Alarm Indication (Ring) Port Interface	
Internal High Order Alarm Indication (Ring) Port Interface	
External High Order Alarm Indication (Ring) Port Interface	
Telecom Bus	-
Drop Bus Interface	
Drop Bus Parity Selection	
Drop Bus Delay	
Add Bus Interface	
Add Bus Timing Modes	
Add Bus Parity Selection	
Add Bus Delay	
BER Supervision for B2/B3	
Bursty Distribution of Errors	
Poisson Distribution of Errors	121

PHAST-12N TXC-06312

Loopbacks	122
Performance Counters	123
Trail Trace Identifier Process	124
TTI Formats	124
TTI Mismatch Process	124
TTI Report Process	124
Defects and Interrupts	126
Unlatched Defects (Correlated)	126
Latched Defects	126
Defects Mask	126
Interrupts	126
Alarm Interrupt Tree	127
Boundary Scan	135
Introduction	135
Boundary Scan Operation	
Boundary Scan Reset	
Boundary Scan Chain	136
Memory Maps and Bit Descriptions.	137
Overview	137
Global Control	138
Line Ring Port/Alarm Interface	140
Reset Generator	
Interrupt	141
Transmit APS Port	143
POH Generator	144
TOH Monitor	147
TOH Generator	151
TOH and DCC Port	153
High Order Pointer Tracker and Retimer	155
Retimer	158
Clock Recovery/Clock Synthesis/Serdes	159
Receive APS Port	163
Cross Connect	165
Add Telecom Bus	166
High Order Path Ring Port/Alarm Interface	168
JTAG Master	169
Drop Telecom Bus	170
POH Monitor	171
Package Information	177
Application Examples	178
Ordering Information	180
Related Products	
Standards Documentation Sources	181
List of Data Sheet Changes	183

Please note that TranSwitch provides documentation for all of its products. Current editions of many documents are available from the Products page of the TranSwitch Web site at www.transwitch.com. Customers who are using a TranSwitch Product, or planning to do so, must register with the TranSwitch Marketing Department to receive relevant updated and supplemental documentation as it is issued. They must also contact the Applications Engineering Department to ensure that they are provided with the latest available information about the product, especially before undertaking development of new designs incorporating the product.

Figure

DATA SHEET

Page

LIST OF FIGURES

1	Supported SDH/SONET Mapping	. 12
2	PHAST-12N TXC-06312 Block Diagram	
3	PHAST-12N Functional Model	. 17
4	PHAST-12N TXC-06312 376-Lead Plastic Ball Grid Array Package Lead Diagram	. 20
5	DROP Bus Timing	. 51
6	Add Bus Timing (ADD Slave mode: timing signals are inputs)	. 52
7	ADD Bus Timing (ADD Master mode: timing signals are outputs)	. 53
8	RX TOH Byte Interface	. 54
9	TX TOH Byte Interface	. 55
10	RX High Order POH Byte Interface	. 56
11	TX High Order POH Byte Interface	. 57
12	RX Line Ring Port Interface	. 58
13	TX Line Ring Port Interface	. 59
14	RX Path Alarm Indication Port Interface	. 60
15	TX Path Alarm Indication Port Interface	. 61
16	Microprocessor Interface: Generic Intel mode write cycle	. 62
17	Microprocessor Interface: Generic Intel mode read cycle	. 64
18	Microprocessor Interface: Generic Motorola Mode Write Cycle	. 66
19	Microprocessor Interface: Generic Motorola Mode Read Cycle	. 68
20	Microprocessor Interface: Motorola MPC860 Mode Write Cycle	. 70
21	Microprocessor Interface: Motorola MPC860 Mode Read Cycle	. 72
22	Microprocessor Interface: Motorola MPC8260 Local Bus Mode Write Cycle	. 74
23	Microprocessor Interface: Motorola MPC8260 Local Bus Mode Read Cycle	. 76
24	Boundary Scan Timing	. 78
25	Clock Recovery/Clock Synthesis	. 82
26	STM-1/OC-3, 1:3 APS with one PHAST-12N	. 93
27	APS Port Architecture	. 94
28	STM-4/OC-12, 1+1 APS	. 95
29	STM-4/OC-12, 1:1 APS	. 96
30	STM-1/OC-3, 1+1 APS Idle State	. 97
31	STM-1/OC-3, 1+1 APS Switch State	. 97
32	STM-1/OC-3, 1:1 APS Idle State	. 98
33	STM-1/OC-3, 1:1 APS Switch State	. 98
34	STM-1/OC-3, 1:7 APS Idle State	. 99
35	STM-1/OC-3, 1:7 APS Switch State	. 99
36	STM-1/OC-3, 1:7 APS Switch State	100
	Retimer FIFO Filling Levels	
38	Internal Line Alarm Indication (Ring) Port Interface	112
30	External Line Alarm Indication (Ring) Port Interface	112

7	ADD Bus Timing (ADD Master mode: timing signals are outputs)	. 53
8	RX TOH Byte Interface	. 54
9	TX TOH Byte Interface	. 55
10	RX High Order POH Byte Interface	. 56
11	TX High Order POH Byte Interface	. 57
12	RX Line Ring Port Interface	. 58
13	TX Line Ring Port Interface	. 59
14	RX Path Alarm Indication Port Interface	. 60
15	TX Path Alarm Indication Port Interface	. 61
16	Microprocessor Interface: Generic Intel mode write cycle	. 62
17	Microprocessor Interface: Generic Intel mode read cycle	. 64
18	Microprocessor Interface: Generic Motorola Mode Write Cycle	. 66
19	Microprocessor Interface: Generic Motorola Mode Read Cycle	. 68
20	Microprocessor Interface: Motorola MPC860 Mode Write Cycle	. 70
21	Microprocessor Interface: Motorola MPC860 Mode Read Cycle	. 72
22	Microprocessor Interface: Motorola MPC8260 Local Bus Mode Write Cycle	. 74
23	Microprocessor Interface: Motorola MPC8260 Local Bus Mode Read Cycle	. 76
24	Boundary Scan Timing	. 78
25	Clock Recovery/Clock Synthesis	. 82
26	STM-1/OC-3, 1:3 APS with one PHAST-12N	. 93
27	APS Port Architecture	. 94
28	STM-4/OC-12, 1+1 APS	. 95
29	STM-4/OC-12, 1:1 APS	. 96
30	STM-1/OC-3, 1+1 APS Idle State	. 97
31	STM-1/OC-3, 1+1 APS Switch State	. 97
32	STM-1/OC-3, 1:1 APS Idle State	. 98
33	STM-1/OC-3, 1:1 APS Switch State	. 98
34	STM-1/OC-3, 1:7 APS Idle State	. 99
35	STM-1/OC-3, 1:7 APS Switch State	. 99
36	STM-1/OC-3, 1:7 APS Switch State	100
37	Retimer FIFO Filling Levels	103
38	Internal Line Alarm Indication (Ring) Port Interface	112
39	External Line Alarm Indication (Ring) Port Interface	
40	Internal High Order Alarm Indication (Ring) Port Interface	116
41	External High Order Alarm Indication (Ring) Port Interface	116
42	HINT	
43	High Order Point Tracker Retimer Interrupt Tree	127
44	POH Monitor Interrupt Tree	128
45	TOH Monitor Interrupt Tree	129
46	APS Interrupt Tree (part 1)	130
47	APS Interrupt Tree (part 2)	131

PHAST-12N TXC-06312

48	General Interrupt Tree (part 1)	132
49	General Interrupt Tree (part 2)	133
50	General Interrupt Tree (part 3)	134
51	Boundary Scan Schematic	136
52	PHAST-12N TXC-06312 376-Lead Plastic Ball Grid Array Package	177
53	STM-4/OC-12 or 4 x STM-1/OC-3 Terminal Mux	178
54	STM-4/OC-12 or 4 x STM-1/OC-3 1+1, 1:1 APS Terminal Mux	178
55	STM-4/OC-12 or 4 x STM-1/OC-3 Ethernet and TDM Terminal Mux	179

DATA SHEET

LIST OF TABLES

PRODUCT PREVIEW

Tab	ible Pa		
1	Memory Map Overview	137	
2	Global Control (T_GLOBAL_CONTROL)		
3	Device Identification (T_DeviceIdentification)	139	
4	Ring Port/Alarm Interface (T_TOH_RING_PORT)		
5	Ring Port/Alarm Interface Defects (T_TOH_RING_PORT_Defects)		
6	Reset Generator (T_RGEN)		
7	Interrupt (T_INTERRUPT)		
8	Interrupt Configuration (T_InterruptCtrl_Config)		
9	Transmit APS Port (T_TX_APS)		
10	Transmit APS Port Configuration (T_TX_APS_Common_Config)		
11	Transmit APS Port Line Configuration (T_TX_APS_Config)		
12	POH Generator (T_POH_GENERATOR).		
13	POH Generator Common Configuration (T_VCXPG_Common_Config)		
14	AUG-1 Mode Configuration (T_AUG1_Mode_Config)		
15	POH Generator Path Configuration (T_VCXPG_VC_Config)		
16	Transmit POH Byte RAM (T_VCXPG_RAMBytes)		
17	POH Generator Path Mode (T_VCXPG_Mode_record)		
18	POH Byte Source Control (T_VCXPG_Control_record)		
19	TOH Monitor (T_TOH_MONITOR)		
20	TOH Monitor Performance Counters (T_TOH_MONITOR_Performance_Counters)		
20	TOH Monitor Status (T_TOH_MONITOR_Line_Status)		
22	TOH Monitor Events/Defects (T_TOH_MONITOR_Defects)		
22	TOH Monitor APS Events/Defects (T_TOH_MONITOR_APS_Defects)		
23 24	TOH Monitor Configuration (T_TOH_MONITOR_Common_Config)		
24	J0 TTI Configuration (T_TOH_MONITOR_TTI_Config)		
26	BER Detection Configuration (T_BIP_Detector_Config)		
20	Poisson Distribution BER Detection (T_BIP_PoissonDetector_Config)		
28	Bursty Distribution BER Detection (T_BIP_BurstyDetector_Config)		
20 29	TOH Generator (T_TOH_GENERATOR)		
	Transmit TOH Port Configuration (T_TOHG_Common_Config)		
30 31	TOH Configuration (T_TOHG_Line_Config)		
	Receive TOH and DCC Port (T_RX_TOH_DCC_PORT)		
32	Receive TOH and DCC Folt (1_KA_TOH_DCC_FORT)		
33 24	Receive DCC Port Configuration (T_RXTDP_Line_Config)		
34 35	Pointer Tracker and Retimer (T_HO_PTR_RETIMER)		
36	Pointer Tracker and Retimer Defect/Event Summary (T_HOPTRRT_Defects_Summary)		
37	Pointer Tracker and Retimer Common Configuration (T_HOPTRRT_Common_Config)		
38	Pointer Tracker and Retimer per path (T_HOPTRRT_VCx)		
39	Pointer Tracker and Retimer Path Configuration (T_HOPTRRT_VC3_TUG3_Config)		
40	Pointer Tracker Path Status (T_HOPTR_VCx_Status)		
41	Pointer Justification Counters (T_HOPTRRT_PerfCounters)		
42	Pointer Tracker and Retimer Defects (T_HOPTRRT_Defects)		
43	Retimer (T_RETIMER)		
44	Retimer Defects (T_RT_Defects)		
45	Retimer Common Configuration (T_RT_Common_Config)		
46	Retimer per Path (T_RT_VCx)		
47	Retimer Path Configuration (T_RT_VC3_TUG3_Config)	159	

48	Retimer Performance Counters (T_RT_PerfCounters)	159
49	Clock Recovery/Clock Synthesis/SerDes (T_ANALOG)	159
50	Loopback Configuration (T_LoopbackSelect)	. 160
51	High Speed Interface Power Down (T_PadPowerDown)	. 161
52	Setup of Clock Recovery/Clock Synthesis/SerDes (T_CDR_CS_Setup)	. 161
53	PLL Control (T_PLL_Control)	162
54	Receive APS Port (T_RX_APS)	. 163
55	Receive APS Port Common Configuration (T_RX_APS_Common_Config)	. 164
56	Receive APS Port Defects (T_RX_APS_Defects)	. 164
57	Receive APS Port per line (T_RX_APS_APSInfo)	. 164
58	Receive APS Port Status (T_RX_APS_APSBytes_Status)	
59	Receive APS Port Events (T_RX_APS_APSBytes_Event)	165
60	Cross Connect (T_VC_XCONNECT)	165
61	Cross Connect Bus Configuration (T_XC_Bus_Config)	. 165
62	Cross Connect Time Slot Configuration (T_XConnect_Config)	165
63	Add Telecom Bus (T_DI_COMBUS)	166
64	Add Bus Common Defects (T_DICB_Global_CorrDefects)	. 166
65	Add Bus Defect Summary (t_dicb_VCx_CorrDefects_Summary)	166
66	Add Bus Common Configuration (T_DICB_Common_Config)	. 167
67	Telecom Bus Path Configuration (T_VC3_TUG3_Mode_Config)	. 167
68	Add Bus Path Defects (T_DICB_VCx_CorrDefects)	. 167
69	Path Ring Port/Alarm Interface (T_HO_POH_RING_PORT)	. 168
70	Path Ring Port/Alarm Interface Common Configuration (T_HOPR_Common_Config)	. 168
71	Path Ring Port/Alarm Interface Defects (T_HOPR_Defects)	. 168
72	Path Ring Port/Alarm Interface Path Configuration (T_HOPR_VC_Config)	. 168
73	JTAG Master (T_JTAG_MASTER)	. 169
74	Drop Telecom Bus (T_DO_COMBUS)	. 170
75	Drop Bus Path Configuration (T_DOCB_VC3_TUG3_Config)	. 170
76	Drop Bus Common Configuration (T_DOCB_Common_Config)	. 170
77	Drop Bus AUG-1 Configuration (T_DOCB_AUG1_Config)	. 171
78	POH Monitor (T_VC_POH_MONITOR)	. 171
79	POH Monitor Path Configuration (T_VCXPM_Config)	. 171
80	POH Monitor Expected J1/C2 (T_VCXPM_ExpectedBytes)	. 172
81	POH Monitor Defects (T_VCXPM_Defects)	. 173
82	POH Monitor Common Configuration (T_VCXPM_Common_Config)	. 173
83	POH Monitor Status (T_VCXPM_Common_Status)	. 174
84	J1 TTI Stable (T_VCXPM_Report)	175
85	POH Monitor per path (T_VCXPM_Status)	. 175
86	POH Monitor Path Status (T_VCXPM_POH_Status)	
87	POH Monitor Performance Counters (T_VCXPM_PM)	. 176

DATA SHEET

APPLICABLE STANDARDS DOCUMENTATION

Standards documents applicable to the functions of the PHAST[®]-12N device are listed below.

Short Name	Description	
ANSI T1.105	SONET - Basic description including Multiplex structure, rates and formats, 2001	
ANSI T1.105.02	I T1.105.02 Synchronous Optical Networks (SONET), Payload Mappings, 2001	
ANSI T1.107	Digital Hierarchy - Formats Specifications, 1995	
ETSI EN 300-417 1-1	Transmission and Multiplexing (TM) - Generic requirements of transport functionality of equipment - Generic processes and performance	
ETSI EN 300-417 2-1	Transmission and Multiplexing (TM) - Generic requirements of transport functionality of equipment - SDH and PDH physical section layer functions	
ETSI EN 300-417 3-1	Transmission and Multiplexing (TM) - Generic requirements of transport functionality of equipment - STM-N regenerator and multiplex section layer functions	
ETSI EN 300-417 4-1	Transmission and Multiplexing (TM) - Generic requirements of transport functionality of equipment - SDH path layer functions	
ETSI EN 300-417 9-1	Transmission and Multiplexing (TM) - Generic requirements of transport functionality of equipment - SDH concatenated path layer functions; Sub-part 1: Requirements	
IEEE 1149.1	Standard Test Access Port and Boundary Scan Architecture (May 21, 1990)	
IEEE 1596.3	Standard for Low-Voltage Differential Signals (LVDS) for Scalable Coherent Interface (SCI) (March 21, 1996)	
ITU-T G.707/Y.1322	Network Node interface for the Synchronous Digital Hierarchy (SDH) (10/2000)	
ITU-T G.783	Characteristics of Synchronous Digital Hierarchy (SDH) equipment functional blocks (10/2001)	
ITU-T G.803	Architecture of transport networks based on the SDH (03/2000).	
ITU-T G.805	Generic functional architecture of transport networks (03/2000)	
ITU-T G.806	Characteristics of transport equipment - Description methodology and generic functionality (10/2000)	
Telcordia GR-253-CORE	SONET Common Generic Criteria, Rev 3, September 2000	
Telcordia GR-499-CORE	Transport Systems Generic Requirements: Common Requirements, Issue 2, December 1998	

PHAST-12N TXC-06312

OVERVIEW

The TranSwitch PHAST-12N is a highly integrated STM-4/OC-12 rate SDH/SONET overhead termination device designed for TDM payload mappings.

A single PHAST-12N can terminate four individual STM-1/OC-3 lines or a single STM-4/OC-12 line. It can perform clock synthesis and clock recovery for four 155.52 Mbit/s signals or a single 622.08 Mbit/s serial signal.

The PHAST-12N device provides RS/section and MS/line overhead processing, high order AU-3/AU-4/AU-4-Xc/STS-1/STS-3c/STC-6c/STS-9c/STS-12c pointer tracking and retiming, and high order VC-3/VC-4/VC-4-Xc/STS-1/STS-3c/STS-6c/STS-9c/STS-12c SPE path overhead processing and performance monitoring. It provides full non-blocking cross connecting at the high order path level allowing path loopbacks, line/MSP protection and UPSR and SNC/P path protection.

The PHAST-12N device supports the following APS architectures:

- 1. STM-4/OC-12 mode: 1+1 or 1:1 APS using two devices connected via the APS port
- 2. STM-1/OC-3 mode: 1+1, 1:1 or 1:n (n<=3) APS using a single device without APS port
- 3. STM-1/OC-3 mode: 1+1, 1:1 or 1:n (n<=7) APS using two devices connected via the APS port

The device operates from 1.8V and 3.3V power supplies.

Major interfaces include:

- 1. Serial LVPECL line interfaces: single STM-4/OC-12 or four STM-1/OC-3
- 2. 77.76 MHz telecom bus interface
- 3. 622.08 Mbit/s serial LVDS APS port interface
- 4. Line/MS Alarm/Ring port selectable per line interface
- 5. SOH/TOH byte interface
- 6. DCC interface
- 7. High Order Path Alarm/Ring port selectable per SDH/SONET path
- 8. High Order POH byte interface
- 9. Motorola/Intel style microprocessor interface for configuration, alarms and performance monitoring
- 10.JTAG interface to IEEE 1149.1
- 11. Various reference clocks, and lead programmed HW configuration controls

The PHAST-12N software driver has the same architecture as other TranSwitch device drivers and is meant to be easily integrated with them. The application software calls the driver functions to configure, control and manage the PHAST-12N device. The device driver insulates the application from the internal details of the device register usage and provides a higher level of abstraction.

TRA

PHAST-12N TXC-06312

DATA SHEET

The following is a list of features supported by the PHAST-12N:

MODES OF OPERATION

- Line interfaces:
 - Four STM-1/OC-3 line interfaces, or
 - One STM-4/OC-12 line interface¹
- SDH/SONET mapping:

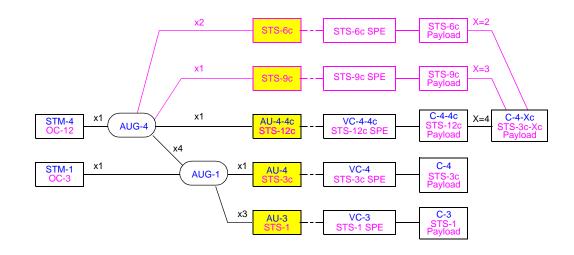


Figure 1. Supported SDH/SONET Mapping

LINE INTERFACE

- LVPECL serial line interfaces:
 - Line Interface #1 can handle 155.52 Mbit/s (STM-1/OC-3 mode) or 622.08 Mbit/s (STM-4/OC-12 mode) signals
 - Line Interfaces #2 to #4 handle 155.52 Mbit/s signals and are only used in STM-1/OC-3 mode
- Transmit clock synthesis
- Per line interface:
 - Receive clock recovery
 - Loss of Signal detection
 - Receive 19.44 MHz (STM-1/OC-3 mode) or 77.76 MHz (STM-4/OC-12 mode) clock output reference
 - General purpose input/output pins

^{1.} The term STM-4c/OC-12c is sometimes used to denote a STM-4/OC-12 interface transporting a contiguous concatenated VC-4-4c/STS-12c SPE high order path. The STM-4/OC-12 mode of operation allows transport of any type of high order path container. ITU-T/ANSI compliant terminology will be used throughout this document.

PHAST-12N TXC-06312

APS PORT INTERFACE

- Single 622.08 Mbit/s LVDS serial interface:
 - · Receive clock recovery
 - Transmit clock synthesis
 - Receive 77.76 MHz clock output reference
 - Transport of high order path data for four STM-1/OC-3 signals or one STM-4/OC-12 signal between two PHAST-12N devices
 - Transport of K1/K2 APS signal, signal fail and signal degrade indications for up to four lines between two PHAST-12N devices
- The APS port transports the payload and APS signaling between two mate devices. The APS finite state machine itself needs to be implemented by the external host software. The resulting bridge and switch requests are performed by configuring the cross-connect.

RS/SECTION LAYER PROCESSING

- A1/A2 frame alignment
 - Out of frame and loss of frame detection
- J0 Trail Trace Identifier:
 - Insertion and monitoring of single repeating byte and 16-byte trace messages
 - Trace identifier mismatch detection
- Scrambling and descrambling
- B1 BIP-8 insertion and monitoring
- D1-D3 DCC accessible via the DCC port
- All received RSOH bytes are stored in on-chip memory and transmitted on the TOH port
- All RSOH bytes can be inserted from on-chip memory or from the TOH port

MS/LINE LAYER PROCESSING

- B2 BIP-24/96 insertion and monitoring
 - Degraded signal and excessive bit error detection
 - Block and bit error performance monitoring counters
- D4-D12 DCC can be accessible via the DCC port
- Insertion and monitoring of remote information (RDI, REI)
- Insertion and monitoring of MS/line AIS
- Insertion and monitoring of the K1/K2 APS signal
- Insertion and monitoring of the S1 synchronization status message (SSM)
- · All received MSOH bytes are stored in on-chip memory and transmitted on the TOH port
- All MSOH bytes can be inserted from on-chip memory or from the TOH port

HIGH ORDER PATH LAYER PROCESSING

- J1 Trail Trace Identifier:
 - Insertion and monitoring of single repeating byte, 16-byte and 64-byte trace messages
 - Trace identifier mismatch detection

PHAST-12N
TXC-06312

- B3 BIP-8 insertion and monitoring
 - · Degraded signal and excessive bit error detection
 - Block and bit error performance monitoring counters
- C2 Trail Signal Label insertion and monitoring
 - Unequipped, VC-AIS, payload mismatch detection
- G1 insertion and monitoring
 - Single bit RDI and three bit E-RDI
 - REI insertion and block/bit performance monitoring counter
- H4 insertion and monitoring
 - Optionally insertion and monitoring of low order multiframe sequence
 - Bypass mode
- K3 insertion and monitoring
 - Automatic Protection Switching detection
- Unequipped and Supervisory Unequipped generation and detection
- Unidirectional mode
- Bypass mode
- · All received POH bytes are stored in on-chip memory and transmitted on the POH port
- All POH bytes can be inserted from on-chip memory except for B3, which is used as an errormask

HIGH ORDER PATH CROSS-CONNECT

- Non-blocking 36x36 cross-connect:
 - 3 input and 3 output ports: line side, APS port and terminal side
 - 12 time slot channels per port
- VC-3/STS-1 SPE granularity allowing cross connecting at VC-3/VC-4/VC-4-Xc/STS-1/STS-3c/STS-6c/STS-9c/STS-12c SPE level
- · Path loopbacks and multi-casts are supported
- Each individual output channel can be forced to source an AIS or unequipped maintenance signal

TELECOM BUS INTERFACE

- Independent ADD and DROP bus
- 8-bit wide data bus
- 77.76 MHz clock
- SPE indication
- J0/C1 and J1 indication
- Optional V1 indication
- ADD bus timing modes:
 - ADD Slave mode: timing signals are inputs
 - ADD Master mode: timing signals are outputs

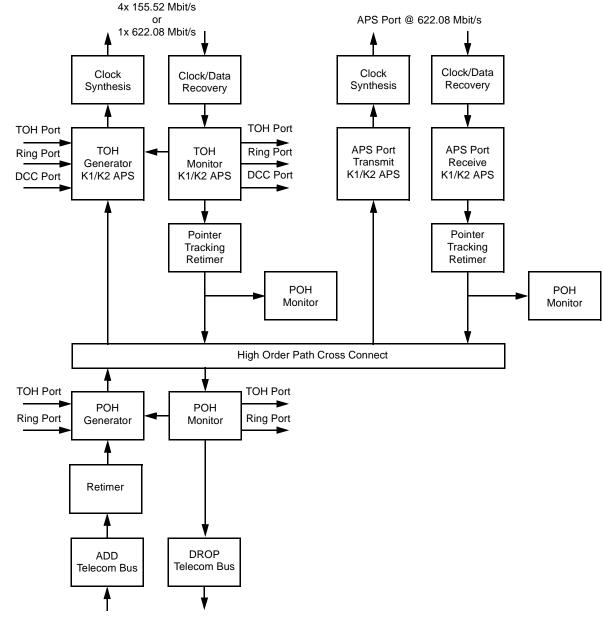
PHAST-12N TXC-06312

MICROPROCESSOR INTERFACE

- Bidirectional 16-bit wide Data bus (allowing 16-bit word accesses only)
- 14-bit wide Address bus
- The following microprocessor interface modes are supported:
 - Generic Motorola mode
 - Generic Intel mode (with separate address/data bus)
 - MPC860 mode,
 - MPC8260 Local Bus mode
- Interrupt request lead
- Interrupt mask bits for controlling generation of hardware interrupt requests

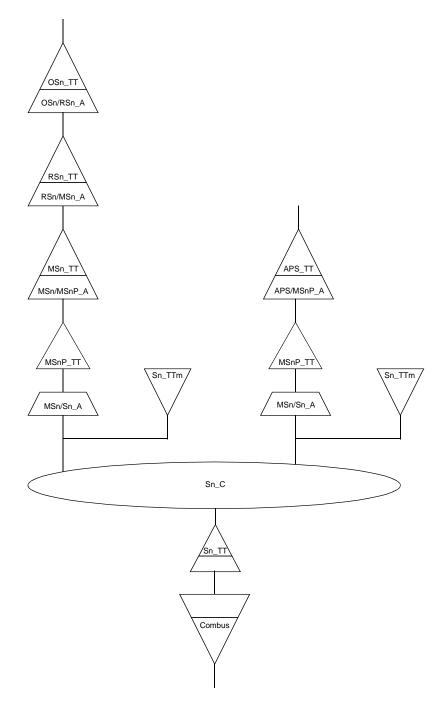
TESTING

- Line loopbacks
- High order path loopbacks via the cross-connect
- Boundary scan


DEVICE DRIVER

- Device configuration
- Fault monitoring
- Performance monitoring

BLOCK DIAGRAM



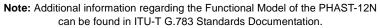

Telecom Bus @ 77.76 MHz

Figure 2. PHAST-12N TXC-06312 Block Diagram

FUNCTIONAL MODEL

Figure 3. PHAST-12N Functional Model

DATA SHEET

BLOCK DIAGRAM DESCRIPTION

LINE SIDE

The PHAST-12N can terminate four individual STM-1/OC-3 lines or a single STM-4/OC-12 line. Each incoming line signal is monitored for loss of signal and clock and data recovery is performed. Reference clocks derived from each recovered clock are available.

The subsequent TOH Monitor will terminate all RS/section and MS/line overhead bytes compliant to the latest ITU/ETSI/ANSI standards. Additionally, the received raw TOH overhead bytes are stored in on-chip memory and output on the TOH port interface for external processing (except for BIP where the error mask is calculated). The received data communication channel bytes, selectable RS/section or MS/line, are output on a DCC port interface per line interface. The K1/K2 APS signal bytes are debounced and forwarded to the APS interface. RDI and REI are output on the external and internal line ring port interfaces for ring applications.

The PHAST-12N performs high order pointer processing on the H1/H2 bytes from the receive line interfaces. The high order path containers are retimed to the local System Clock.

High order POH monitoring is performed on all received high order path containers for SNC/P and UPSR applications.

In the transmit direction, the TOH Generator will insert all RS/section and MS/line overhead bytes. The TOH overhead bytes can be inserted from on-chip memory or the TOH port interface. Additionally the data communication channel bytes, selectable RS/section or MS/line, can be inserted from a DCC port interface. Remote information, RDI and REI can be inserted from the internal or external ring port interface. This selection can be made on a per line basis. The K1/K2 APS can be inserted from the APS port interface.

Finally four individual STM-1/OC-3 lines or a single STM-4/OC-12 line are transmitted using the device's System Clock.

APS PORT SIDE

The serial 622.08 Mbit/s APS port interface is monitored for loss of clock and data recovery is performed. A reference clock derived from the recovered clock is available.

The received APS port signal is monitored for signal quality and the APS information exchanged between two mate PHAST-12N devices, including K1/K2 APS signal, signal fail and signal degrade status, is stored for software access.

The PHAST-12N performs high order pointer processing on the H1/H2 bytes from the receive APS port. The high order path containers are retimed to the local System Clock.

High order POH monitoring is performed on all received high order path containers for SNC/P and UPSR applications.

In the transmit direction, the APS information exchanged between two mate PHAST-12N devices, including K1/K2 APS signal, signal fail and signal degrade status, is inserted either from on-chip memory or directly from the TOH monitor.

Finally, the serial 622.08 Mbit/s APS port signal is transmitted using the device's System Clock.

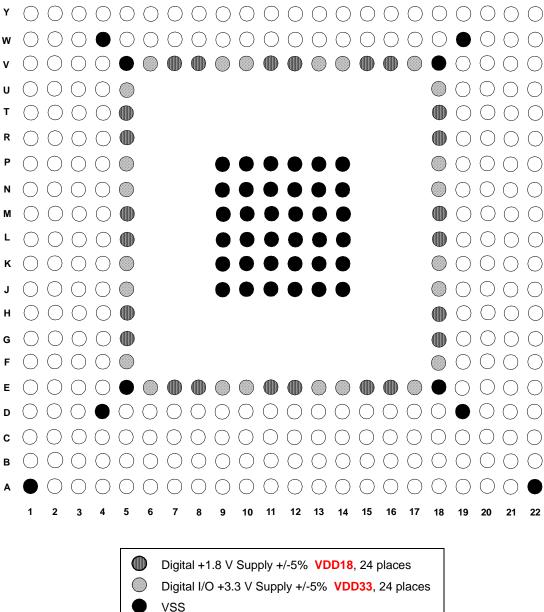
PHAST-12N TXC-06312

HIGH ORDER PATH CROSS CONNECT

The non-blocking high order path cross connect block can connect each output high order path time slot to each input high order path time slot. The presence of an active cross-connect does not 'block' a cross-connect to another output. AIS or unequipped maintenance signals can be inserted into each output time slot.

The cross connect has three input buses and three output buses: line side, APS port side and terminal side. Each bus contains the high order path containers equivalent to an STM-4/STS-12.

TERMINAL SIDE


The POH Monitor will terminate all path overhead bytes of the dropped high order path containers compliant to the latest ITU/ETSI/ANSI standards. Additionally, the received raw POH overhead bytes are stored in on-chip memory and output on the POH port interface for external processing (except for BIP where the error mask is calculated). The remote information, RDI and REI, is output on the external and internal path ring port interfaces for ring applications.

Finally, the high order path data is output on the Drop Telecom Bus interface.

In the transmit direction, the high order path data is input from the ADD telecom bus interface. The POH Generator will optionally insert all path overhead bytes. The POH overhead bytes can be inserted from on-chip memory or the POH port interface. The remote information, RDI and REI, can be inserted from the internal or external ring port interface. This selection can be made on a per high order path basis. PHAST-12N

TXC-06312

DATA SHEET

Note: This is the bottom view. The leads are solder balls. See Figure 52 for package information. This view is rotated relative to the bottom view in Figure 52. Some signal Symbols have been abbreviated to fit the space available. The Symbols are shown in full in the Lead Descriptions section.

22

Figure 4. PHAST-12N TXC-06312 376-Lead Plastic Ball Grid Array Package Lead Diagram

PHAST-12N TXC-06312

LEAD DESCRIPTIONS

In the I/O/P column of the following tables, I = Input, O = Output, P = Power, T = Tristateable during normal operation. Entries in the Type column are defined in the Input, Output and Input/Output Parameters section.

All single-ended inputs (= LVTTL inputs) that are not used, must be connected to a low level.

Differential inputs (= LVPECL and LVDS inputs) that are not used can be left floating. They must be left in power-down mode, which is the default mode of these pads, after reset.

Symbol	Lead No.	I/O/P	Name/Function
VDD18	E7, E8, E11, E12, E15, E16, G5, G18, H5, H18, L5, L18, M5, M18, R5, R18, T5, T18, V7, V8, V11, V12, V15, V16	Ρ	Digital Core 1.8V supply: +1.8V +/-5%
VDD33	E6, E9, E10, E13, E14, E17, F5, F18, J5, J18, K5, K18, N5, N18, P5, P18, U5, U18, V6, V9, V10, V13, V14, V17	Р	Digital I/O 3.3V supply: +3.3∨ +/-5%
VDDA18LVDS	AB7	Р	LVDS analog 1.8V supply
VDDA33LVPCDRV	AB11, W10	Р	LVPECL driver analog 3.3V supply
VDDA33LVPCIO	AA17, W11	Р	LVPECL pre-drive analog 3.3V supply
VSSA18LVDS	AA8	Р	LVDS analog 1.8V return
VSSA33LVPCPST	AA14, AA15	Р	LVPECL driver & pre-drive analog 3.3V returns
VSS	A1, A22, AB1, AB22, D19, D4, E18, E5, J10, J11, J12, J13, J14, J9, K10, K11, K12, K13, K14, K9, L10, L11, L12, L13, L14, L9, M10, M11, M12, M13, M14, M9, N10, N11, N12, N13, N14, N9, P10, P11, P12, P13, P14, P9, V18, V5, W19, W4	Ρ	Digital Core 1.8V & Digital I/O 3.3V returns
NC	A10, A13, A15, A16, A18, A19, A6, A7, A8, A9, AA9, B10, B13, B14, B15, B17, B6, B7, B8, B9, C10, C13, C14, C16, C7, C8, C9, D10, D11, D12, D13, D3, D8, D9, F19, Y20		No Connect: These leads are not to be con- nected, and must be left floating. Connection of an NC lead may impair performance or cause damage to the device. NC leads that are currently unused may be assigned functions in a future ver- sion of the device, affecting its usability in applica- tions which have not left them floating.
Reserved_Low	A11, A12, A14, A17, A20, A21, B11, B12, B16, B18, B19, B20, B22, C11, C12, C15, C17, C18, C19, C20, C21, C22, D14, D15, D16, D17, D18, D20, D21, D22, E19, E20, E21, F20, G19		For Future Use: These leads are reserved for future use and should be tied to VSS.

POWER SUPPLY, GROUND, AND NO CONNECT LEADS

CAUTION:

A number of Power, ground and No-connect leads have changed between Rev A and Rev B of the device. They are listed in the following two tables: first table applies to Rev A, second table to Rev B.

PHAST-12N
TXC-06312

POWER SUPPLY, GROUND, AND NO CONNECT LEADS: REV A - DEVICE

Symbol	Lead No.	I/O/P	Name/Function
VDDA18LVPC	AB13	Р	LVPECL analog 1.8V supply
VDDA33RPA	AB15	Р	Rx PLL / Clock Recovery analog 3.3V supply
VDDA33TPA	Y9	Р	Tx PLL / Clock Synthesis analog 3.3V supply
VSSA18LVPC	AB17	Р	LVPECL analog 1.8V return
VSSA33RPA	AB16	Р	Rx PLL / Clock Recovery analog 3.3V return
VSSA33TPA	AB12	Р	Tx PLL / Clock Synthesis analog 3.3V return
NC	AA16, W16		No Connect: These leads are not to be connected, and must be left floating. Connection of an NC lead may impair performance or cause damage to the device. NC leads that are currently unused may be assigned functions in a future version of the device, affecting its usability in applications which have not left them floating.

POWER SUPPLY, GROUND, AND NO CONNECT LEADS: REV B - DEVICE

Symbol	Lead No.	I/O/P	Name/Function
VDDA18RPA	AB15, W16	Р	Rx PLL / Clock Recovery & Rx LVPECL analog 1.8V supply
VDDA18TPA	AB13, Y9	Р	Tx PLL / Clock Synthesis & Tx LVPECL analog 1.8V supply
VSSA18RPA	AA16, AB16	Р	Rx PLL / Clock Recovery & Rx LVPECL analog 1.8V return
VSSA18TPA	AB12, AB17	Р	Tx PLL / Clock Synthesis & Tx LVPECL analog 1.8V return

REFERENCE VOLTAGES

Symbol	Lead No.	I/O/P	Туре	Name/Function
VREF	W12			1.2V Reference Voltage: 1.2V reference voltage for all LVPECL and LVDS output drivers, and to bias the Rx and Tx PLLs.
VTERM	AB10			1.2V Termination Voltage: optional 1.2V termination voltage for the LVDS input buffer.

SDH/SONET RECEIVE LINE INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
LINERXDATA1P LINERXDATA1N	Y14 W13	I		Serial SDH/SONET Receive Data #1: 622.08/155.52 Mbit/s bit-serial data from electro/optical transceivers. Only LINERXDATA1P/N can be used in STM-4/OC-12 mode.
LINERXDATA2P LINERXDATA2N	Y15 W14	I		Serial SDH/SONET Receive Data #2: 155.52 Mbit/s bit- serial data from electro/optical transceivers. Can not be used in STM-4/OC-12 mode.

Symbol	Lead No.	I/O/P	Туре	Name/Function
LINERXDATA3P LINERXDATA3N	W15 Y16	Ι	LVPECL	Serial SDH/SONET Receive Data #3: 155.52 Mbit/s bit- serial data from electro/optical transceivers. Can not be used in STM-4/OC-12 mode.
LINERXDATA4P LINERXDATA4N	AB18 AB19	I	LVPECL	Serial SDH/SONET Receive Data #4: 155.52 Mbit/s bit- serial data from electro/optical transceivers. Can not be used in STM-4/OC-12 mode.
LINERXSIGDET1	AA18	Ι	LVTTL	Signal Detect #1: Signal from the optical receiver for line #1 indicating signal presence.
LINERXSIGDET2	AB20	I	LVTTL	Signal Detect #2: Signal from the optical receiver for line #2 indicating signal presence. Not used in STM-4/OC-12 mode.
LINERXSIGDET3	W17	I	LVTTL	Signal Detect #3: Signal from the optical receiver for line #3 indicating signal presence. Not used in STM-4/OC-12 mode.
LINERXSIGDET4	Y18	Ι	LVTTL	Signal Detect #4: Signal from the optical receiver for line #4 indicating signal presence. Not used in STM-4/OC-12 mode.
LINERXCLK1	AA19	0	LVCMOS 8mA	Receive Divided Clock #1: Clock output derived from the clock recovered from the serial data stream on LINERXDATA1P/N. The clock rate is programmable to be either 19.44 or 77.76 MHz.
LINERXCLK2	AB21	0	LVCMOS 8mA	Receive Divided Clock #2: Clock output derived from the clock recovered from the serial data stream on LINERXDATA2P/N. The clock rate is fixed to 19.44 MHz.
LINERXCLK3	W18	0	LVCMOS 8mA	Receive Divided Clock #3: Clock output derived from the clock recovered from the serial data stream on LINERXDATA3P/N. The clock rate is fixed to 19.44 MHz.
LINERXCLK4	Y19	0	LVCMOS 8mA	Receive Divided Clock #4: Clock output derived from the clock recovered from the serial data stream on LINERXDATA4P/N. The clock rate is fixed to 19.44 MHz.
LINERXCAP	Y17		Analog	Capacitor for the Receive Line & APS Clock Recovery: Optional external capacitor. Its value must be 25 100 nF (Rev B) or larger than 1000 pF (Rev A).

SDH/SONET TRANSMIT LINE INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
LINETXDATA1P LINETXDATA1N	AA10 Y10	0		Serial SDH/SONET Transmit Data #1: 622.08/155.52 Mbit/s bit-serial data to electro/optical transceivers. Only LINETXDATA1P/N is valid in STM-4/OC-12 mode.
LINETXDATA2P LINETXDATA2N	AA11 Y11	0	LVPECL	Serial SDH/SONET Transmit Data #2: 155.52 Mbit/s bit- serial data to electro/optical transceivers. Not valid in STM-4/OC-12 mode.

DATA SHEET

Symbol	Lead No.	I/O/P	Туре	Name/Function
LINETXDATA3P LINETXDATA3N	Y12 AA12	0	LVPECL	Serial SDH/SONET Transmit Data #3: 155.52 Mbit/s bit- serial data to electro/optical transceivers. Not valid in STM-4/OC-12 mode.
LINETXDATA4P LINETXDATA4N	Y13 AA13	0	LVPECL	Serial SDH/SONET Transmit Data #4: 155.52 Mbit/s bit- serial data to electro/optical transceivers. Not valid in STM-4/OC-12 mode.
LINETXCLK	Y7	0	LVCMOS 8mA	Transmit Divided Clock: Clock output derived from the synthesized transmit lock. The clock rate is programmable to be either 19.44 MHz or 77.76 MHz.
LINETXCAP	AB14		Analog	Capacitor for the Transmit Line & APS Clock Synthe- sizer: Optional external capacitor. Its value must be 25 nF 100 nF (Rev B) or larger than 1000 pF (Rev A).

RECEIVE APS PORT

Symbol	Lead No.	I/O/P	Туре	Name/Function
APSRXDATAP APSRXDATAN	W9 Y8	I	LVDS	Serial APS Port Receive Data: 622.08 Mbit/s bit-serial data from mate PHAST-12N.
APSRXCLK	AA6	0		Receive Divided APS Port Clock: Clock output derived from the clock recovered from the serial APS port data stream on APSRXDATAP/N. The clock rate is programmable to be either 19.44 or 77.76 MHz.

TRANSMIT APS PORT

Symbol	Lead No.	I/O/P	Туре	Name/Function
APSTXDATAP	AA7	0	LVDS	Serial APS Port Transmit Data: 622.08 Mbit/s bit-serial
APSTXDATAN	AB6			data to mate PHAST-12N.

CLOCK/TIMING INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
REFTXCLK1	AA20	Ι		Transmit Reference Clock #1: Reference clock for the transmit clock synthesizer. The clock rate is programmable to be either 19.44 or 77.76 MHz.
REFTXCLK2P REFTXCLK2N	AB9 AB8	I		Transmit Reference Clock #2: Reference clock for the transmit clock synthesizer. The clock rate is programmable to be 19.44, 77.76 or 155.52 MHz. A 622.08 MHz clock can be provided when the Tx PLL is bypassed.

Symbol	Lead No.	I/O/P	Туре	Name/Function
REFRXCLK	W8	Ι	LVTTL	Receive Reference Clock: optional Reference clock for the receive clock and data recovery units. This clock is required for line/loop-time applications, when REFTXCLK1 and REFTXCLK2P/N are not present. The clock rate is programmable to be either 19.44 or 77.76 MHz.
REFONESECCLK	R1	I	LVTTL	One Second Clock: optional one second reference for performance monitoring counters.
REFTXFS	R2	I	LVTTL	Transmit Reference Frame Sync: optional 8 kHz reference frame sync pulse.
REFSYSFS	B21	0	LVCMOS 8mA	System Reference Frame Sync: 8 kHz reference frame sync pulse.
RESET	A4	I	LVTTLp	Hardware Reset (Active Low): The use of this lead at power-up is mandatory. Holding this lead low causes all the registers in the device to be reset.

RECEIVE DCC INTERFACES

Symbol	Lead No.	I/O/P	Туре	Name/Function
DCCRXDATA1	V2	0	LVCMOS 4mA	Receive DCC Data #1: Bit-serial data from the TOH monitor of receive line interface #1 to an external LAPD interface controller or similar device. This data can be optionally selected to provide D1-D3 (RS/Section DCC) or D4-D12 (MS/Line DCC).
DCCRXDATA2	Y1	0	LVCMOS 4mA	Receive DCC Data #2: Bit-serial data from the TOH moni- tor of receive line interface #2 to an external LAPD inter- face controller or similar device. This data can be optionally selected to provide D1-D3 (RS/Section DCC) or D4-D12 (MS/Line DCC).
DCCRXDATA3	U4	0	LVCMOS 4mA	Receive DCC Data #3: Bit-serial data from the TOH monitor of receive line interface #3 to an external LAPD interface controller or similar device. This data can be optionally selected to provide D1-D3 (RS/Section DCC) or D4-D12 (MS/Line DCC).
DCCRXDATA4	V3	0	LVCMOS 4mA	Receive DCC Data #4: Bit-serial data from the TOH monitor of receive line interface #4 to an external LAPD interface controller or similar device. This data can be optionally selected to provide D1-D3 (RS/Section DCC) or D4-D12 (MS/Line DCC).
DCCRXCLK1	V1	0	LVCMOS 8mA	Receive DCC Clock #1: The DCCRXDATA1 signal is clocked out by the PHAST-12N on positive transitions of this clock. If MS/Line DCC is selected for DCCRXDATA1, the fre- quency is 576 kHz, if RS/Section DCC is selected for DCCRXDATA1, the frequency is 192 kHz.

DATA SHEET

Symbol	Lead No.	I/O/P	Туре	Name/Function
DCCRXCLK2	W1	0	LVCMOS 8mA	Receive DCC Clock #2: The DCCRXDATA2 signal is clocked out by the PHAST-12N on positive transitions of this clock. If MS/Line DCC is selected for DCCRXDATA2, the frequency is 576 kHz, if RS/Section DCC is selected for DCCRXDATA2, the frequency is 192 kHz.
DCCRXCLK3	T4	0	LVCMOS 8mA	Receive DCC Clock #3: The DCCRXDATA3 signal is clocked out by the PHAST-12N on positive transitions of this clock. If MS/Line DCC is selected for DCCRXDATA3, the frequency is 576 kHz, if RS/Section DCC is selected for DCCRXDATA3, the frequency is 192 kHz.
DCCRXCLK4	U3	0	LVCMOS 8mA	Receive DCC Clock #4: The DCCRXDATA4 signal is clocked out by the PHAST-12N on positive transitions of this clock. If MS/Line DCC is selected for DCCRXDATA4, the frequency is 576 kHz, if RS/Section DCC is selected for DCCRXDATA4, the frequency is 192 kHz.

TRANSMIT DCC INTERFACES

Symbol	Lead No.	I/O/P	Туре	Name/Function
DCCTXDATA1	U1	I	LVTTL	Transmit DCC Data #1: Bit-serial data from an external LAPD interface controller or similar device to the TOH Generator of transmit line interface #1. This data can be optionally selected to provide D1-D3 (RS/Section DCC) or D4-D12 (MS/Line DCC).
DCCTXDATA2	R4	I	LVTTL	Transmit DCC Data #2: Bit-serial data from an external LAPD interface controller or similar device to the TOH Generator of transmit line interface #2. This data can be optionally selected to provide D1-D3 (RS/Section DCC) or D4-D12 (MS/Line DCC).
DCCTXDATA3	Т3	I	LVTTL	Transmit DCC Data #3: Bit-serial data from an external LAPD interface controller or similar device to the TOH Generator of transmit line interface #3. This data can be optionally selected to provide D1-D3 (RS/Section DCC) or D4-D12 (MS/Line DCC).
DCCTXDATA4	U2	I	LVTTL	Transmit DCC Data #4: Bit-serial data from an external LAPD interface controller or similar device to the TOH Generator of transmit line interface #4. This data can be optionally selected to provide D1-D3 (RS/Section DCC) or D4-D12 (MS/Line DCC).
DCCTXCLK1	T1	0	LVCMOS 8mA	Transmit DCC Clock #1: The DCCTXDATA1 signal is clocked into the PHAST-12N on negative transitions of this clock. If MS/Line DCC is selected for DCCTXDATA1, the frequency is 576 kHz, if RS/Section DCC is selected for DCCTXDATA1, the frequency is 192 kHz.

Symbol	Lead No.	I/O/P	Туре	Name/Function
DCCTXCLK2	P4	0	LVCMOS 8mA	Transmit DCC Clock #2: The DCCTXDATA2 signal is clocked into the PHAST-12N on negative transitions of this clock. If MS/Line DCC is selected for DCCTXDATA2, the frequency is 576 kHz, if RS/Section DCC is selected for DCCTXDATA2, the frequency is 192 kHz.
DCCTXCLK3	R3	0	LVCMOS 8mA	Transmit DCC Clock #3: The DCCTXDATA3 signal is clocked into the PHAST-12N on negative transitions of this clock. If MS/Line DCC is selected for DCCTXDATA3, the frequency is 576 kHz, if RS/Section DCC is selected for DCCTXDATA3, the frequency is 192 kHz.
DCCTXCLK4	T2	0	LVCMOS 8mA	Transmit DCC Clock #4: The DCCTXDATA4 signal is clocked into the PHAST-12N on negative transitions of this clock. If MS/Line DCC is selected for DCCTXDATA4, the frequency is 576 kHz, if RS/Section DCC is selected for DCCTXDATA4, the frequency is 192 kHz.

ADD TELECOM BUS INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
CBADT	E22	I	LVTTLp	Add Telecom Bus Timing Mode: Selects Master or Slave timing mode on the Add Telecom Bus. If CBADT is high, Slave timing is selected: CBADCLK, CBAD- SPE and CBADJ0J1 are inputs. If CBADT is low, Master timing is selected: CBADCLK, CBADSPE and CBADJ0J1 are outputs.
CBADD7 CBADD6 CBADD5 CBADD4 CBADD3 CBADD2 CBADD1 CBADD0	L21 L20 K22 L19 K21 K20 J22 J21	Ι	LVTTL	Add Telecom Bus Data: Byte wide SDH/SONET data received from the Add Telecom Bus.
CBADSPE	M21	I/O(T)	LVTTL/ LVCMOS 24mA	Add Telecom Bus SPE Indicator: This signal is high during each byte of the High Order Path Overhead and payload bytes and low during the Transport Overhead byte times.
CBADJ0J1	M22	I/O(T)	LVTTL/ LVCMOS 24mA	Add Telecom Bus J0J1 Indicator: This signal represents the frame sync and optionally the position of each payload container (VC-n/STS-N SPE). This signal works in conjunc- tion with the CBADSPE signal. The J0 pulse identifies the position of the first J0 byte when the CBADSPE signal is low. The J1 pulses identify the position of the J1 byte of each pay- load container (VC-n/STS-N SPE) when the CBADSPE signal is high. A V1 pulse can optionally be available on this lead.

DATA SHEET

Symbol	Lead No.	I/O/P	Туре	Name/Function
CBADPAR	M20	I	LVTTL	Add Telecom Bus Parity Bit: Parity bit input signal that represents the parity calculated over CBADD[7:0], and optionally CBADSPE and CBADJ0J1. Even or odd parity can be selected.
CBADCLK	L22	I/O(T)		Add Telecom Bus Clock: This 77.76 MHz clock is used to clock in Add Telecom Bus data. In addition CBADSPE and CBADJ0J1 are clocked in in Slave timing mode. CBADSPE and CBADJ0J1 are clocked out in Master timing mode. The active clock edges can be selected.

DROP TELECOM BUS INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
CBDPD7 CBDPD6 CBDPD5 CBDPD4 CBDPD3 CBDPD2 CBDPD1 CBDPD0	G22 J19 H20 G21 F22 H19 G20 F21	O(T)	LVCMOS 8mA	Drop Telecom Bus Data: Byte wide SDH/SONET data sent on the Drop Telecom Bus.
CBDPSPE	J20	0	LVCMOS 8mA	Drop Telecom Bus SPE Indicator: This signal is high dur- ing each byte of the High Order Path Overhead and payload bytes and low during the Transport Overhead byte times.
CBDPJ0J1	H22	0	LVCMOS 8mA	Drop Telecom Bus J0J1 Indicator: This signal represents the frame sync and optionally the position of each payload container (VC-n/STS-N SPE). This signal works in conjunc- tion with the CBDPSPE signal. The J0 pulse identifies the position of the first J0 byte when the CBDPSPE signal is low. The J1 pulses identify the position of the J1 byte of each pay- load container (VC-n/STS-N SPE) when the CBDPSPE sig- nal is high. A V1 pulse can optionally be generated on this lead.
CBDPPAR	K19	O(T)	LVCMOS 8mA	Drop Telecom Bus Parity Bit: Parity bit output signal that represents the parity calculated over CBDPD[7:0], and optionally CBDPSPE and CBDPJ0J1. Even or odd parity can be selected.
CBDPCLK	H21	0	LVCMOS 8mA	Drop Telecom Bus Clock: All Drop Telecom Bus signals are clocked out on this 77.76 MHz clock. The active clock edge can be selected.

PHAST-12N TXC-06312

RECEIVE LINE RING PORT/ALARM INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
LRPRXCLK	T22	0	LVCMOS 4mA	Receive Line Ring Port Clock: The LRPRXFS and LRPRXDATA signals are clocked out on the rising edges of this clock. Its frequency is 19.44 MHz.
LRPRXFS	R21	0	LVCMOS 4mA	Receive Line Ring Port Frame Sync: An active high, one LRPRXCLK clock-cycle wide frame sync pulse that identifies the first bit in the data stream present on LRPRXDATA.
LRPRXDATA	P19	0	LVCMOS 4mA	Receive Line Ring Port Data: A serial frame contain- ing the remote information, REI and RDI, for the individ- ual high order path signals.

TRANSMIT LINE RING PORT/ALARM INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
LRPTXCLK	P20	Ι	LVTTL	Transmit Line Ring Port Clock: The LRPTXFS and LRPTXDATA signals are clocked in on the rising edges of this clock. Its frequency is 19.44 MHz. When this lead is not connected to LRPRXCLK of a mate PHAST-12N device, it must be tied to VSS.
LRPTXFS	N19	Ι	LVTTL	Transmit Line Ring Port Frame Sync: An active high, one LRPTXCLK clock-cycle wide frame sync pulse that identifies the first bit in the data stream present on LRPTXDATA. When this lead is not connected to LRPRXFS of a mate PHAST-12N device, it must be tied to VSS.
LRPTXDATA	R22	Ι	LVTTL	Transmit Line Ring Port Data: A serial frame contain- ing the remote information, REI and RDI, for the individ- ual high order path signals. When this lead is not connected to LRPRXDATA of a mate PHAST-12N device, it must be tied to VSS.

RECEIVE HIGH ORDER PATH RING PORT/ALARM INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
PRPRXCLK	M19	0	4mA	Receive HO Ring Port Clock: The PRPRXFS and PRPRXDATA signals are clocked out on the rising edges of this clock. Its frequency is 19.44 MHz.

DATA SHEET

Symbol	Lead No.	I/O/P	Туре	Name/Function
PRPRXFS	N21	0		Receive HO Ring Port Frame Sync: An active high, one PRPRXCLK clock-cycle wide frame sync pulse that identifies the first bit in the data stream present on PRPRXDATA.
PRPRXDATA	N22	0		Receive HO Ring Port Data: A serial frame containing the remote information, REI and RDI, for the individual high order path signals.

TRANSMIT HIGH ORDER PATH RING PORT/ALARM INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
PRPTXCLK	P22	Ι	LVTTL	Transmit HO Ring Port Clock: The PRPTXFS and PRPTXDATA signals are clocked in on the rising edges of this clock. Its frequency is 19.44 MHz. When this lead is not connected to LRPRXCLK of a mate PHAST-12N device, it must be tied to VSS.
PRPTXFS	P21	Ι	LVTTL	Transmit HO Ring Port Frame Sync: An active high, one PRPTXCLK clock-cycle wide frame sync pulse that identifies the first bit in the data stream present on PRPTXDATA. When this lead is not connected to LRPRXFS of a mate PHAST-12N device, it must be tied to VSS.
PRPTXDATA	N20	I	LVTTL	Transmit HO Ring Port Data: A serial frame contain- ing the remote information, REI and RDI, for the individ- ual high order path signals. When this lead is not connected to LRPRXDATA of a mate PHAST-12N device, it must be tied to VSS.

RECEIVE TOH BYTE INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
TOHRXCLK	U19	0	LVCMOS 8mA	Receive TOH Port Clock: The TOHRXALE, TOHRX- DLE, TOHRXADDR and TOHRXDATA signals are clocked out on the falling edges of this clock. Its frequency is 77.76 MHz.
TOHRXALE	V20	0	LVCMOS 8mA	Receive TOH Port Address Latch Enable: An active high, 10 TOHRXCLK clock-cycle wide pulse indicating that a valid address is present on TOHRXADDR.
TOHRXADDR	W21	0	LVCMOS 8mA	Receive TOH Port Address: The 10 consecutive states clocked out while TOHRXALE is high form the address of the subsequent TOH byte sent on the TOHRXDATA lead.

PHAST-12N TXC-06312

Symbol	Lead No.	I/O/P	Туре	Name/Function
TOHRXDLE	V21	0		Receive TOH Port Data Latch Enable: An active high, 8 TOHRXCLK clock-cycle wide pulse indicating that valid data is present on TOHRXDATA.
TOHRXDATA	Y22	0		Receive TOH Port Data: The 8 consecutive states clocked out while TOHRXDLE is high form the value of the TOH byte addressed by TOHRXADDR.

TRANSMIT TOH BYTE INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
TOHTXCLK	W20	0	LVCMOS 16mA	Transmit TOH Port Clock: The TOHTXALE, TOHTX- DLE and TOHTXADDR signals are clocked out on the falling edges of this clock. TOHTXDATA is clocked in on the rising edge of this clock. Its frequency is 77.76 MHz.
TOHTXALE	Y21	0	LVCMOS 8mA	Transmit TOH Port Address Latch Enable: An active high, 10 TOHTXCLK clock-cycle wide pulse indicating that a valid address is present on TOHTXADDR.
TOHTXADDR	AA21	0	LVCMOS 8mA	Transmit TOH Port Address: The 10 consecutive states clocked out while TOHTXALE is high form the address of the subsequent TOH byte requested on the TOHTXDATA lead.
TOHTXDLE	AA22	0	LVCMOS 8mA	Transmit TOH Port Data Latch Enable: An active high, 8 TOHTXCLK clock-cycle wide pulse indicating that valid data is present on TOHTXDATA.
TOHTXDATA	V19	Ι	LVTTL	Transmit TOH Port Data: The value of the TOH byte requested by TOHTXADDR is clocked in as the 8 consecutive states while TOHTXDLE is high. When the Transmit TOH Byte Interface is not used, this lead must be tied to VSS.

RECEIVE HIGH ORDER POH BYTE INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
POHRXCLK	W22	0		Receive HO POH Port Clock: The POHRXALE, POHRXDLE, POHRXADDR and POHRXDATA signals are clocked out on the falling edges of this clock. Its frequency is 77.76 MHz.
POHRXALE	V22	0	LVCMOS 8mA	Receive HO POH Port Address Latch Enable: An active high, 8 POHRXCLK clock-cycle wide pulse indicating that a valid address is present on POHRXADDR.

DATA SHEET

Symbol	Lead No.	I/O/P	Туре	Name/Function
POHRXADDR	U21	0	LVCMOS 8mA	Receive HO POH Port Address: The 8 consecutive states clocked out while POHRXALE is high form the address of the subsequent High Order POH byte sent on the POHRXDATA lead.
POHRXDLE	U20	0	LVCMOS 8mA	Receive HO POH Port Data Latch Enable: An active high, 8 POHRXCLK clock-cycle wide pulse indicating that valid data is present on POHRXDATA.
POHRXDATA	T19	0	LVCMOS 8mA	Receive HO POH Port Data: The 8 consecutive states clocked out while POHRXDLE is high form the value of the High Order POH byte addressed by POHRXADDR.

TRANSMIT HIGH ORDER POH BYTE INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
POHTXCLK	U22	0	LVCMOS 16mA	Transmit HO POH Port Clock: The POHTXALE, POHTXDLE and POHTXADDR signals are clocked out on the falling edges of this clock. POHTXDATA is clocked in on the rising edge of this clock. Its frequency is 77.76 MHz.
POHTXALE	T21	0	LVCMOS 8mA	Transmit HO POH Port Address Latch Enable: An active high, 8 POHTXCLK clock-cycle wide pulse indicating that a valid address is present on POHTXADDR.
POHTXADDR	R20	0	LVCMOS 8mA	Transmit HO POH Port Address: The 8 consecutive states clocked out while POHTXALE is high form the address of the subsequent High Order POH byte requested on the POHTXDATA lead.
POHTXDLE	T20	0	LVCMOS 8mA	Transmit HO POH Port Data Latch Enable: An active high, 8 POHTXCLK clock-cycle wide pulse indicating that valid data is present on POHTXDATA.
POHTXDATA	R19	Ι	LVTTL	Transmit HO POH Port Data: The value of the High Order POH byte requested by POHTXADDR is clocked in as the 8 consecutive states while POHTXDLE is high. When the Transmit High Order POH Byte Interface is not used, this lead must be tied to VSS.

GENERAL PURPOSE INPUT/OUTPUT

Symbol	Lead No.	I/O/P	Туре	Name/Function
GPIN1	N1	I	LVTTL	General Purpose Input #1: Active high input, e.g., to monitor the external electro/optical transceiver. This input is mapped in a read-only register for software access. When not used, this lead must be tied to VSS.

PHAST-12N TXC-06312

Symbol	Lead No.	I/O/P	Туре	Name/Function
GPIN2	M4	Ι	LVTTL	General Purpose Input #2: Active high input, e.g., to monitor the external electro/optical transceiver. This input is mapped in a read-only register for software access. When not used, this lead must be tied to VSS.
GPIN3	N2	Ι	LVTTL	General Purpose Input #3: Active high input, e.g., to monitor the external electro/optical transceiver. This input is mapped in a read-only register for software access. When not used, this lead must be tied to VSS.
GPIN4	N3	Ι	LVTTL	General Purpose Input #4: Active high input, e.g., to monitor the external electro/optical transceiver. This input is mapped in a read-only register for software access. When not used, this lead must be tied to VSS.
GPOUT1	P1	0	LVCMOS 4mA	General Purpose Output #1: Active high output, e.g., to control the external electro/optical transceiver. This lead can be driven via a software writable register.
GPOUT2	P2	0	LVCMOS 4mA	General Purpose Output #2: Active high output, e.g., to control the external electro/optical transceiver. This lead can be driven via a software writable register.
GPOUT3	N4	0	LVCMOS 4mA	General Purpose Output #3: Active high output, e.g., to control the external electro/optical transceiver. This lead can be driven via a software writable register.
GPOUT4	P3	0	LVCMOS 4mA	General Purpose Output #4: Active high output, e.g., to control the external electro/optical transceiver. This lead can be driven via a software writable register.

HOST PROCESSOR INTERFACE SELECTION

Symbol	Lead No.	I/O/P	Туре			Name	/Function
MPMODE1	M2	I	LVTTL		•		lect: These leads select the Host
MPMODE0	M3			Pro	cessor interfac	e mode:	
					MPMODE1	MPMODE0	Interface
					0	0	Generic Intel
					0	1	Generic Motorola
					1	0	Motorola MPC860
					1	1	Motorola MPC8260 Local Bus
MPINTLEVEL	A2	I	LVTTLd	the MPI the This	MPINTR lead NTR lead is a MPINTR lead	I. If MPINTL ctive low, if M is active high.	rel: This lead selects the polarity of EVEL is low, the interrupt on the PINTLEVEL is high, the interrupt on des (MPMODE[1:0] = '00', '01', '10'

DATA SHEET

Symbol	Lead No.	I/O/P	Туре	Name/Function
MPACKLEVEL	D5	-	LVTTLd	Microprocessor Acknowledge Level: This lead selects the polar-
				ity of the MPACK lead. If MPACKLEVEL is low, an acknowledge is
				indicated by a falling edge of MPACK, if MPACKLEVEL is high, an
				acknowledge is indicated by a rising edge of MPACK.
				This lead is only evaluated in Generic Intel Mode (MPMODE[1:0] =
				'00') and Generic Motorola Mode (MPMODE[1:0] = '01').
				This lead must be tied to VSS when MPMODE[1:0] = '10' or '11'.

Note: The Generic Intel, Generic Motorola, Motorola MPC860 and Motorola MPC8260 Local Bus - Host Processor interfaces are shared on the same leads.

GENERIC INTEL - HOST PROCESSOR INTERFACE

Symbol	Lead No.	I/O/P	Tuno	Name/Function
Symbol		1/0/P	Туре	
MPCLK	M1	Ι	LVTTL	Microprocessor Interface Clock: This lead is the clock sourced by the microprocessor being interfaced to this device. Its max. frequency is 50 MHz. Intel notation: CLK
MPA13 MPA12 MPA11 MPA09 MPA08 MPA07 MPA06 MPA05 MPA04 MPA03 MPA02 MPA01 MPA00	B1 E4 E3 C2 D2 C1 F4 B2 E2 F3 G4 D1 E1 F2	Ι	LVTTL	Address Bus: These leads are the address bus used by the host processor for accessing the PHAST-12N for a read or write cycle. MPA13 is the most significant bit in the location's address. Intel notation: A[]
MPD15 MPD14 MPD13 MPD12 MPD11 MPD09 MPD09 MPD08 MPD07 MPD06 MPD05 MPD04 MPD03 MPD02 MPD01 MPD01 MPD00	G3 H F1 G2 H J G H H H J G H J H J G H H J G H J H J	I/O(T)	LVTTL/ LVCMOS 8mA	Data Bus: These leads are the bidirectional data bus used for transferring data between the PHAST-12N and the host processor. MPD15 is the most significant bit. Intel notation: D[]

MPSEL	K1	Ι	LVTTL	PHAST-12N Chip Select (Active Low): This active low lead enables data transfers between the host processor and the PHAST-12N through a read or write cycle. Intel notation: CS
MPTS	L3	I	LVTTL	Read Strobe (Active low): This active low lead initiates a read transfer between the host processor and the PHAST-12N. Intel notation: RD
MPWR	L2	I	LVTTL	Write Strobe (Active Low): This active low lead initiates a write transfer between the host processor and the PHAST-12N. Intel notation: WR
MPACK	L1	O(T)	LVCMOS 24mA	Ready: For a write access, an active edge on this lead indicates that data is written to the addressed memory location. For a read access, an active edge on this lead indicates that the data to be read from the addressed memory location is available on the data bus. Active level depends on MPACKLEVEL. Intel notation: RDY
MPINTR	B3	0	LVCMOS 8mA	Interrupt: This lead signals an interrupt request to the host pro- cessor. Active level depends on MPINTLEVEL.

GENERIC MOTOROLA - HOST PROCESSOR INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
MPCLK	M1	-	LVTTL	Microprocessor Clock: This lead is the clock sourced by the microprocessor being interfaced to this device. Its max. frequency is 50 MHz. Motorola notation: CLK
MPA13 MPA12 MPA11 MPA09 MPA08 MPA08 MPA07 MPA06 MPA05 MPA05 MPA04 MPA03 MPA02 MPA01 MPA00	B1 E4 E3 C2 D2 C1 F4 B2 E2 F3 G4 D1 E1 F2	1	LVTTL	Address Bus: These leads are the address bus used by the host processor for accessing the PHAST-12N for a read or write cycle. MPA13 is the most significant bit in the location's address. Motorola notation: A[]

DATA SHEET

MPD14H4LVCMOSfor transferring dataMPD13F18mAprocessor.MPD12G2MPD15 is the mostMPD11H3Motorola notation	
MPD10 J4 MPD09 G1 MPD08 H2 MPD07 H1 MPD06 J3 MPD05 K4 MPD04 J2 MPD03 K3 MPD01 K2 MPD00 L4	
lead enables data t	Select (Active Low): This active low transfers between the host processor and prough a read or write cycle.
	ive Low): This active low lead initiates a asfer between the host processor and the n: DS
24mA edge on this lead addressed memory edge on this lead in addressed memory	knowledge: For a write access, an active d indicates that data is written to the y location. For a read access, an active ndicates that the data to be read from the y location is available on the data bus. ds on MPACKLEVEL. h: DSACK
8mA the host processor.	: This lead signals an interrupt request to ds on MPINTLEVEL.

MOTOROLA MPC860 - HOST PROCESSOR INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
MPCLK	M1	I		Microprocessor Clock: This lead is the clock sourced by the microprocessor being interfaced to this device. Its max. frequency is 50 MHz. Motorola MPC860 notation: CLK

PHAST-12N TXC-06312

MPA13 MPA12 MPA11 MPA10 MPA09 MPA08 MPA07 MPA06 MPA05 MPA04 MPA03 MPA02 MPA01 MPA01 MPA01 MPA01 MPA01 MPD15 MPD14 MPD13 MPD12 MPD11	B1 E4 E3 C2 D2 C1 F4 B2 E2 F3 G4 D1 E1 F2 G3 H4 F1 G2 H3	I I/O(T)		Address Bus: These leads are the address bus used by the host processor for accessing the PHAST-12N for a read or write cycle. MPA13 is the most significant bit in the location's address. Motorola MPC860 notation: A[] Data Bus: These leads are the bidirectional data bus used for transferring data between the PHAST-12N and the host processor. MPD15 is the most significant bit.
MPD11 MPD10 MPD09 MPD08 MPD07 MPD06 MPD05 MPD04 MPD03 MPD02 MPD01 MPD01 MPD00	H3 J4 G1 H2 J3 K4 J2 K3 J1 K2 L4			Motorola MPC860 notation: D[]
MPSEL	K1	Ι	LVTTL	PHAST-12N Chip Select (Active Low): This active low lead enables data transfers between the host processor and the PHAST-12N through <u>a read or write cycle</u> . Motorola MPC860 notation: CS
MPTS	L3	I	LVTTL	Transfer Start (Active Low): This active low lead ini- tiates a (read or write) transfer between the host proces- sor and the PHAST-12N. It is active low only during the first cycle of the access. Motorola MPC860 notation: TS
MPWR	L2	I	LVTTL	Read/Write (Active Low): This active low lead indicates that the actual transfer between the host processor and the PHAST-12N is a write transfer. Motorola MPC860 notation: RD/WR

PHAST-12N TXC-06312	DATA SHEET	TRANSWITCH
		Engines for Global Connectivity

MPACK	L1	O(T)	24mA	Transfer Acknowledge (Active Low): This active low lead is used to acknowledge a host processor access. It is synchronous to the MPCLK. To acknowledge an access, MPACK is asserted during 1 MPCLK cycle. For a write access, an acknowledge indicates that data is written to the addressed memory location. For a read access, an acknowledge indicates that the data to be read from the addressed memory location is available on the data bus. Motorola MPC860 notation: TA
MPINTR	B3	0	8mA	Interrupt: This lead signals an interrupt request to the host processor. Active level depends on MPINTLEVEL. Note: MPC860 expects active low interrupt, requiring MPINTLEVEL to be low.

PHAST-12N TXC-06312

Symbol	Lead No.	I/O/P	Туре	Name/Function
MPCLK	M1	I	LVTTL	Microprocessor Clock: This lead is the clock sourced by the microprocessor being interfaced to this device. Its max. frequency is 50 MHz. Motorola MPC8260 Notation: CLK
MPA13	B1	1	LVTTL	Local Address Bus: These leads are the address bus used by
MPA12	E4			the host processor for accessing the PHAST-12N for a read or
MPA11	E3			write cycle.
MPA10	C2			MPA13 is the most significant bit in the location's address.
MPA09	D2			Motorola MPC8260 Notation: L_A[]
MPA08	C1			
MPA07	F4			
MPA06	B2			
MPA05	E2			
MPA04	F3			
MPA03	G4			
MPA02	D1			
MPA01	E1			
MPA00	F2			
MPD15	G3	I/O(T)	LVTTL/	Local Data Bus: These leads are the bidirectional data bus
MPD14	H4			used for transferring data between the PHAST-12N and the host
MPD13	F1		8mA	processor.
MPD12	G2			MPD15 is the most significant bit.
MPD11	H3			Motorola MPC8260 Notation: LCL_D[]
MPD10	J4			
MPD09	G1			
MPD08	H2			
MPD07	H1			
MPD06	J3			
MPD05	K4			
MPD04	J2			
MPD03	K3 J1			
MPD02 MPD01	K2			
MPD01	L4			
-				DUACT 40N Ohim Colore (Active Low). This set is the last
MPSEL	K1	1	LVTTL	PHAST-12N Chip Select (Active Low): This active low lead enables data transfers between the host processor and the DHAST 12N through a road or write cucle
				PHAST-12N through a read or <u>write</u> cycle. Motorola MPC8260 notation: CS
MPTS	L3	I	LVTTL	Not Applicable Input: This lead must be tied to VSS.
MPWR	L2	Ι	LVTTL	Local Bus Read/Write (Active Low): This active low lead indi- cates that the actual transfer between the host processor and the PHAST-12N is a write transfer. Motorola MPC8260 notation: LWR

MOTOROLA MPC8260 LOCAL BUS - HOST PROCESSOR INTERFACE

PHAST-12N
TXC-06312

MPACK	L1	O(T)	24mA	Local Bus GPCM Transfer Acknowledge (Active Low): This lead is used to acknowledge a host processor access. It is syn- chronous to the MPCLK. To acknowledge an access, MPACK is asserted during 1 MPCLK cycle and then de-asserted during 3 MPCLK cycles before going in tristate. For a write access, an acknowledge indicates that data is written to the addressed memory location. For a read access, an acknowledge indicates that the data to be read from the addressed memory location is available on the data bus. Motorola MPC8260 notation: LGTA
MPINTR	Β3	0	8mA	Interrupt: This lead signals an interrupt request to the host pro- cessor. Active level depends on MPINTLEVEL. Note: MPC8260 Local Bus expects active low interrupt, requiring MPINTLEVEL to be low.

BOUNDARY SCAN

Symbol	Lead No.	I/O/P	Туре	Name/Function
ТСК	A3	I	LVTTLp	Test Boundary Scan Clock: This signal is used to shift data into TDI on its rising edge and out of TDO on its falling edge. The maximum clock frequency is 10 MHz.
TDI	D6	I	LVTTLp	Test Boundary Scan Data Input: Serial test instructions and data are clocked into this lead on the rising edge of TCK. This lead has an internal pull-up resistor.
TDO	C5	O(T)	LVCMOS 4mA	Test Boundary Scan Data Output: Serial test instructions and data are clocked onto this lead on the falling edge of TCK. When inactive, this lead goes into a high impedance state.
TMS	B4	I	LVTTLp	Test Boundary Scan Mode Select: This input lead is sampled on the rising edge of TCK. It is used to place the Test Access Port controller into various states, as defined in [IEEE 1149.1]. This lead has an internal pull-up resistor.
TRS	B5	I	LVTTLp	Test Boundary Scan Reset: An active low signal that asynchro- nously resets the Test Access Port controller. The reset must be present for a minimum of 250 ns. This lead has an internal pull-up resistor and must be tied to VSS for nor- mal operation.

SDH/SONET RECEIVE BYPASS INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
BYPRXCLK	W5	Ι	LVTTL	Receive Line Bypass Clock: For TranSwitch testing purposes. This lead must be tied to VSS.
BYPRXSEQ	AA2	I	LVTTL	Receive Line Bypass Sequence: For TranSwitch testing purposes. This lead must be tied to VSS.

Symbol	Lead No.	I/O/P	Туре	Name/Function
BYPRXDATA07	Y4	I	LVTTL	Receive Line Bypass Data:
BYPRXDATA06	AA3			For TranSwitch testing purposes.
BYPRXDATA05	Y3			These leads must be tied to VSS.
BYPRXDATA04	Y2			
BYPRXDATA03	W3			
BYPRXDATA02	V4			
BYPRXDATA01	AA1			
BYPRXDATA00	W2			

SDH/SONET TRANSMIT BYPASS INTERFACE

Symbol	Lead No.	I/O/P	Туре	Name/Function
BYPTXCLK	AB5	I	LVTTL	Transmit Line Bypass Clock: For TranSwitch testing purposes.
BYPTXC1	AB4	0	LVCMOS	This lead must be tied to VSS. Transmit Line Bypass C1 Indication:
			8mA	For TranSwitch testing purposes. This lead must be left unconnected.
BYPTXDATA07	W7	0	LVCMOS	Transmit Line Bypass Data:
BYPTXDATA06	Y6		8mA	For TranSwitch testing purposes.
BYPTXDATA05	AA5			These leads must be left unconnected.
BYPTXDATA04	AB3			
BYPTXDATA03	W6			
BYPTXDATA02	Y5			
BYPTXDATA01	AA4			
BYPTXDATA00	AB2			

TEST

Symbol	Lead No.	I/O/P	Туре	Name/Function
DEVHIGHZ	C4	Ι	LVTTLd	Device High-Z: For TranSwitch testing purposes. All LVCMOS outputs and all bi-dirs are tristated when this lead is high. This lead must be tied to VSS.
TEST1	C3	I	LVTTLd	TEST1: For TranSwitch testing purposes. This lead must be tied to VSS.
PLLBYPASS	A5	I	LVTTLd	PLL Bypasss: For TranSwitch testing purposes. This lead must be tied to VSS.
SCANEN	D7	I	LVTTLd	Scan Enable: For TranSwitch testing purposes. This lead must be tied to VSS.
SCANMODE	C6	Ι	LVTTLd	Scan Mode: For TranSwitch testing purposes. This lead must be tied to VSS.

PHAST-12N
TXC-06312

SELECTED PARAMETER VALUES

ABSOLUTE MAXIMUM RATINGS AND ENVIRONMENTAL LIMITATIONS

Parameter	Symbol	Min	Max	Unit	Conditions
Core Supply Voltage, +1.8V nominal	V _{DD1}	-0.3	2.1	V	Notes 1, 4
I/O Supply Voltage, +3.3V nominal	V _{DD2}	-0.3	3.9	V	Notes 1, 4
DC input voltage	VIN	-0.5	5.5	V	Notes 1, 4, 5
Storage temperature range	Τ _S	-55	150	°C	Note 1
Ambient operating temperature	Τ _Α	-40	85	°C	0 ft/min. linear airflow
Moisture Exposure Level	ME	5		Level	per EIA/JEDEC JESD22-A112-A
Relative humidity, during assembly	RH	30	60	%	Note 2
Relative humidity, in-circuit	RH	0	100	%	non-condensing
ESD Classification	ESD	absolute v	alue 2000	V	Note 3
Latch-up	LU				Meets JEDEC STD-78

Notes:

1. Conditions exceeding the Min or Max values may cause permanent failure. Exposure to conditions near the Min or Max values for extended periods may impair device reliability.

2. Pre-assembly storage in non-drypack conditions is not recommended. Please refer to the instructions on the "CAUTION" label on the drypack bag in which devices are supplied.

- 3. Test method for ESD per MIL-STD-883E, Method 3015.7.
- 4. Device core is 1.8V only.
- 5. All LVDS and LVPECL inputs, LINERXCAP and LINETXCAP are excluded.

THERMAL CHARACTERISTICS

Parameter	Min	Тур	Мах	Unit	Test Conditions
Thermal resistance - junction to ambient		22		°C/W	0 ft/min linear airflow

PHAST-12N TXC-06312

POWER REQUIREMENTS

Parameter	Min	Тур	Max	Unit	Test Conditions
VDD18	1.71	1.8	1.89	V	
IDD18			1.0	А	
VDD33	3.15	3.3	3.45	V	
IDD33			350	mA	
VDDA18LVPC	1.71	1.8	1.89	V	
IDDA18LVPC			80	mA	
VDDA18LVDS	1.71	1.8	1.89	V	
IDDA18LVDS			25	mA	
VDDA33RPA	3.15	3.3	3.45	V	
IDDA33RPA			20	mA	
VDDA33TPA	3.15	3.3	3.45	V	
IDDA33TPA			20	mA	
VDDA33LVPCDRV	3.15	3.3	3.45	V	
IDDA33LVPCDRV			180	mA	
VDDA33LVPCIO	3.15	3.3	3.45	V	
IDDA33LVPCIO			20	mA	
VREF	1.14	1.2	1.26	V	
IREF			10	uA	
VTERM	1.14	1.2	1.26	V	
ITERM			see text		
P _{TOTAL}	0.9	1.1	1.4	W	

Notes:

1. Typical values are based on measurements made with nominal voltages at 25° C. Maximum values are based on measurements made at maximum voltages at 85° C.

2. All four line interfaces are operational in STM-1/OC-3 mode, and the APS port is operational.

POWER SUPPLY SHARING, FILTERING AND OTHER REQUIREMENTS

VDD33 may be combined with other 3.3V card supplies.

VDDA33LVPCDRV and VDDA33LVPCIO may share a supply, but should each be filtered. VDDA33LVPCDRV must use the same supply as the Tx side of the optical transceiver(s) (also filtered), for LVPECL threshold tracking.

VREF should have an isolated 1.2V supply.

VTERM (optional) should have an isolated 1.2V supply, when used.

All VSS pins may be combined on a strong ground plane with appropriate decoupling.

The following power pins supply I/O ESD structures and must either lead other supplies or be simultaneous with other supplies: VDDA18LVDS, VDD33 and VDDA33LVPCIO.

Device inputs may not be driven until the core supplies are up.

PHAST-12N TXC-06312

DATA SHEET

The use of VREF is mandatory. It is the reference voltage for the four LVPECL Tx pads (LINETXDATA1P/N, LINETXDATA2P/N, LINETXDATA3P/N, LINETXDATA4P/N) and the LVDS Tx pad (APSTXDATAP/N). In addition, it is used to bias the Rx and Tx PLLs.

The use of VTERM is optional, and in fact not recommended: It serves as the termination voltage for the LVDS Rx pad (APSRXDATAP/N).

VTERM must only be supplied, when the potential difference between the grounds of the two PHAST-12N devices (connected using the APS port) is large and does not meet LVDS standard: [IEEE Std 1596.3-1996]. In this case, the VTERM current can get larger than 20mA. If the grounds are equal, no current will be drawn and VTERM is not needed (can be left floating).

When the APS port is not used, VTERM can be left floating as well.

CAUTION:

A number of Power supply sharing and filtering requirements have changed between Rev A and Rev B of the device. They are listed in the following two sections: first section applies to Rev A, second section to Rev B.

Power Supply Sharing and Filtering Requirements: Rev A - Device

VDD18, VDDA18LVPC and VDDA18LVDS may be combined with other 1.8V card supplies, but should be each filtered.

VDDA33TPA supplies the Tx PLL, Clock Synthesis and VDDA33RPA supplies the Rx PLL. They are the most sensitive supplies in the device. Noise on these supplies result in deteriorated jitter performance at the Line side. The recommendation is to have separate 3.3V supplies for VDDA33TPA and VDDA33RPA. However, they may share a supply when each is carefully filtered.

Power Supply Sharing and Filtering Requirements: Rev B - Device

VDD18 and VDDA18LVDS may be combined with other 1.8V card supplies, but should be each filtered.

VDDA18TPA supplies the Tx PLL / Clock Synthesis and Tx LVPECL analog supplies. VDDA18RPA supplies the Rx PLL / Clock Recovery and Rx LVPECL analog supplies. They are the most sensitive supplies in the device. Noise on these supplies result in deteriorated jitter performance at the Line side. The recommendation is to have separate 1.8V supplies for VDDA18TPA and VDDA18RPA, each one carefully filtered.

LVPECL I/O RECOMMENDATIONS:

LVPECL - Line Interfaces:

It is required to provide a pull-up and a pull-down resistor as close as possible to the LINERXDATAxP and LINERXDATAxN (x = 1...4) pins on the PHAST-12N:

- pull-up value (towards +3.3V) = 130 Ω
- pull-down value (towards VSS) = 82 Ω

It is required to provide a pull-up and a pull-down resistor as close as possible to the LINETXDATAxP and LINETXDATAxN (x = 1...4) pins on the PHAST-12N:

- pull-up value (towards +3.3V) = 130 Ω
- pull-down value (towards VSS) = 82 Ω

Provide optional 0.1 μ F series capacitors on all P and N lines between the PHAST-12N and each optical transceiver. This allows for both AC- and DC-coupling: 0 Ω resistors can be mounted in case of DC coupling.

At the optical transceiver side, one should carefully follow the recommendations in the data sheet of the optical transceiver. This should satisfy most vendors' data sheets:

- Provide pull-up and pull-down resistors as close as possible to the optical transceiver's Rx output, on both P and N (Usually, only pull-down resistors are required).
- Provide pull-up and pull-down resistors as close as possible to the optical transceiver's Tx input, on both P and N.
- Provide a resistor between P and N as close as possible to the optical transceiver's Tx input.
- Provide enough resistors in the schematic. Some of them may not be required, and can be treated as 'do not install'.

LVPECL - Tx Reference Clock:

It is required to provide a pull-up and a pull-down resistor as close as possible to the REFTXCLK2P & REFTXCLK2N pins on the PHAST-12N:

- pull-up value (towards +3.3V) = 130 Ω
- pull-down value (towards VSS) = 82 Ω

One should follow the recommendations in the data sheet of the oscillator.

- Typically, pull-down resistors of approx. 150 Ω on both P and N are required, close to the oscillator outputs.
- Provide enough resistors in the schematic. Some of them may not be required, and can be treated as 'do not install'.

To achieve optimal jitter performance, it is recommended to connect a differential oscillator to REFTXCLK2P/N (LVPECL), instead of a single-ended to REFTXCLK1 (LVTTL).

LVPECL - PCB guidelines:

The differential pairs (P and N) shall be routed together, have a controlled impedance of 50 Ω and be the same length. Make them as short as possible and in as straight a path as possible. Vias should be avoided if practicable.

LVPECL - Unused pins:

All unused LVPECL inputs can be left floating (no resistors required).

All unused LVPECL outputs can be left floating (no resistors required).

LVDS I/O RECOMMENDATIONS:

LVDS - APS Port:

The LVDS I/O on the APS Port (APSRXDATAP/N, APSTXDATAP/N) is compliant to the LVDS standard: [IEEE Std 1596.3-1996].

The LVDS receiver (APSRXDATAP/N) has an integrated 100 Ω termination resistor between P and N. It is however recommended to provide a 100 Ω resistor on the board, between APSRXDATAP and APSRXDATAN, as close as possible to the PHAST-12N. This resistor shall normally be treated as 'do not install'.

Use DC coupling (no series capacitors).

PHAST-12N TXC-06312

DATA SHEET

LVDS - PCB, Connector and Cable guidelines:

The differential pairs (P and N) shall be routed together, have a controlled impedance of 50 Ω and be the same length. Make them as short as possible and in as straight a path as possible. Vias should be avoided if practicable.

Use high quality connectors that are qualified for an LVDS signal at 622.08 Mbit/s (311.04 MHz).

The APS Port always operates at this rate. It cannot operate at a lower rate.

When a cable is used to interconnect two PHAST-12N devices using the APS Port, it is mandatory to use a 50 Ω cable. In a careful implementation, cable length can be up to 2 meter.

It is required to have a common ground between the two PHAST-12N devices that are connected using the APS Port.

LVDS - Unused pins:

Unused LVDS inputs can be left floating (no resistors required).

Unused LVDS outputs can be left floating (no resistors required).

PHAST-12N TXC-06312

INPUT, OUTPUT AND INPUT/OUTPUT PARAMETERS

Input/Output Parameters For LVPECL

Parameter	Min	Тур	Max	Unit	Test Conditions
V _{DD} -V _{oH}	-1.114		-0.99	V	
V _{DD} -V _{oL}	-1.769		-1.576	V	
V _{oD}	0.586		0.657	V	
V _{DD} -V _{oS}	-1.44		-1.283	V	
V _{iD}	0.2		TBD	V	
V _{iS}	1.525		2.4	V	

Note: V_{DD} is VDDA33LVPCDRV.

Input/Output Parameters For LVDS

Parameter	Min	Тур	Max	Unit	Test Conditions
V _{oH}			1.475	V	
V _{oL}	0.925			V	
V _{oD}	0.25		0.4	V	
V _{oS}	1.125		1.275	V	
Ro	40		140	Ohm	
V _i	0		1.8	V	
V _{tH}	.1			V	Differential Threshold, High
V _{tL}	1			V	Differential Threshold, Low
RiN	80		120	Ohm	

Input Parameters For LVTTL

Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IH}	2.0			V	3.14 <u>≤</u> V _{DD33} <u>≤</u> 3.46
V _{IL}			0.8	V	$3.14 \le V_{DD33} \le 3.46$
Input leakage current	-10		10	μΑ	$V_{IN} = V_{DD33}$ or V_{SS}
Input capacitance		5		pF	

Input Parameters For LVTTLpu (internal pull-up resistor)

Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IH}	2.0			V	3.14 <u>≤</u> V _{DD33} <u>≤</u> 3.46
V _{IL}			0.8	V	3.14 <u>≤</u> V _{DD33} <u>≤</u> 3.46
Input current	-90		-25	μΑ	$V_{IN} = V_{SS}$

PHAST-12N TXC-06312

DATA SHEET

Parameter	Min	Тур	Max	Unit	Test Conditions
Input leakage current	-10		10	μΑ	$V_{IN} = V_{DD33}$
Input capacitance		5		pF	

Input Parameters For LVTTLpd (internal pull-down resistor)

Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IH}	2.0			V	3.14 <u>≤</u> V _{DD33} <u>≤</u> 3.46
V _{IL}			0.8	V	3.14 <u>≤</u> V _{DD33} <u>≤</u> 3.46
Input current	28		85	μA	$V_{IN} = V_{DD33}$
Input leakage current	-10		10	μA	V _{IN} = V _{SS}
Input capacitance		5		pF	

OUTPUT PARAMETERS FOR LVCMOS 24mA (Open Drain)

Parameter	Min	Тур	Max	Unit	Test Conditions
Output capacitance		30		pF	
V _{OH}	2.4			V	V _{DD33} = 3.15; I _{OH} = -24
V _{OL}			0.4	V	V _{DD33} = 3.15; I _{OL} = 24
I _{OL}		24		mA	
I _{ОН}		-24		mA	
t _{RISE}	1.17		2.25	ns	C _{LOAD} = 30 pF
t _{FALL}	0.87		1.77	ns	C _{LOAD} = 30 pF
Leakage tristate			±15	μΑ	0 to 3 V input

Note: Open Drain requires use of a 4.7 k Ω external pull-up resistor to V_DD33.

OUTPUT PARAMETERS FOR LVCMOS 8mA

Parameter	Min	Тур	Max	Unit	Test Conditions
Output capacitance		TBD		pF	
V _{OH}	2.4			V	V _{DD33} = 3.15; I _{OH} = -8
V _{OL}			0.4	V	V _{DD33} = 3.15; I _{OL} = 8
I _{OL}	8			mA	
I _{OH}	-8			mA	
t _{RISE}	1.78		3.38	ns	C _{LOAD} = 30 pF
t _{FALL}	1.65		3.22	ns	C _{LOAD} = 30 pF
Leakage tristate			±15	μΑ	0 to 3 V input

PHAST-12N TXC-06312

OUTPUT PARAMETERS FOR LVCMOS 4mA

Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OH}	2.4			V	V _{DD33} = 3.15; I _{OH} = -4
V _{OL}			0.4	V	V _{DD33} = 3.15; I _{OL} = 4
I _{OL}	4			mA	
I _{ОН}	-4			mA	
t _{RISE}	2.97		5.54	ns	C _{LOAD} = 30 pF
t _{FALL}	2.95		5.66	ns	C _{LOAD} = 30 pF
Leakage tristate			±15	μΑ	0 to 3 V input
Output capacitance		5		pF	

OUTPUT PARAMETERS FOR LVCMOS 16mA

Parameter	Min	Тур	Max	Unit	Test Conditions
Output capacitance		5		pF	
V _{OH}	2.4			V	V _{DD33} = 3.15; I _{OH} = -16
V _{OL}			0.4	V	V _{DD33} = 3.15; I _{OL} = 16
I _{OL}	16			mA	
I _{ОН}	-16			mA	
t _{RISE}	1.28		2.87	ns	C _{LOAD} = 30 pF
t _{FALL}	1.04		2.65	ns	C _{LOAD} = 30 pF
Leakage tristate			±15	μΑ	0 to 3 V input

Note: Open Drain requires use of a 4.7 k Ω external pull-up resistor to V_{DD33}.

Input/Output Parameters For LVTTL/CMOS 8mA

Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IH}	2.0			V	3.14 ≤ V _{DD33} ≤ 3.46
V _{IL}			0.8	V	3.14 <u>≤</u> V _{DD33} <u>≤</u> 3.46
Input leakage current	-10		10	μA	V _{DD33} = 3.46
Input capacitance		5		pF	
V _{OH}	2.4			V	V _{DD33} = 3.14; I _{OH} = -8 mA
V _{OL}			0.4	V	V _{DD33} = 3.14; I _{OL} = 8 mA
I _{OL}	8.0			mA	
I _{ОН}	-8.0			mA	

PHAST-12N TXC-06312

DATA SHEET

INPUT/OUTPUT PARAMETERS FOR LVTTL INPUT AND LV3CMOS OUTPUT 16mA (3.3V VOLT TOLERANT Input)

Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IH}	2.0			V	3.15 <u>≤</u> V _{DD33} <u>≤</u> 3.45
V _{IL}			0.8	V	3.15 <u>≤</u> V _{DD33} <u>≤</u> 3.45
Input leakage current			±15	μΑ	0 to 3.3 V input
Input capacitance		5		pF	
V _{OH}	2.4			V	V _{DD33} = 3.15; I _{OH} = -16
V _{OL}			0.4	V	V _{DD33} = 3.15; I _{OL} = 16
I _{OL}	16			mA	
I _{OH}	-16			mA	
t _{RISE}	1.76		2.85	ns	C _{LOAD} = 25 pF
t _{FALL}	1.60		2.64	ns	$C_{LOAD} = 25 \text{ pF}$ $C_{LOAD} = 25 \text{ pF}$

INPUT/OUTPUT PARAMETERS FOR LVTTL INPUT AND LV3CMOS OUTPUT 8mA (3.3V VOLT TOLERANT Input)

Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{IH}	2.0			V	3.15 <u>≤</u> V _{DD33} ≤ 3.45
V _{IL}			0.8	V	$3.15 \le V_{DD33} \le 3.45$
Input leakage current			±15	μΑ	0 to 3.3 V input
Input capacitance		5		pF	
V _{OH}	2.4			V	V _{DD33} = 3.15; I _{OH} = -8
V _{OL}			0.4	V	V _{DD33} = 3.15; I _{OL} = 8
I _{OL}	8			mA	
I _{ОН}	-8			mA	
t _{RISE}	1.80		3.39	ns	C _{LOAD} = 25 pF
t _{FALL}	1.78		3.36	ns	C _{LOAD} = 25 pF

PHAST-12N TXC-06312

TIMING CHARACTERISTICS

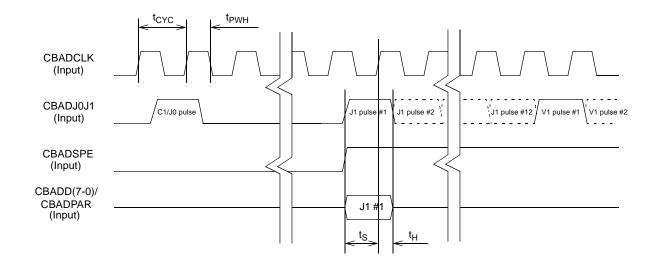
Detailed timing diagrams for the PHAST-12N device are illustrated in Figure 5 through Figure 24 with values of the timing parameters tabulated below each waveform diagram. All outputs are measured with a maximum load capacitance of 50 pF unless otherwise stated. Timing parameters are measured at the voltage levels of $(V_{OH} + V_{OL})/2$ for output signals and $(V_{IH} + V_{IL})/2$ for input signals.

t_{CYC} t_{PWH} CBDPCLK (Output) CBDPJ0J1 C1/J0 pulse J1 pulse #2 J1 pulse #12 V1 pulse # 1 pulse #1 (Output) CBDPSPE (Output) CBDPD(7-0)/ CBDPPAR J1 #1 (Output) t_D

Figure 5. DROP Bus Timing

50 pF Load

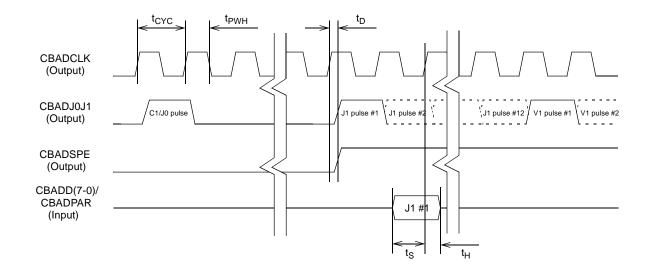
Parameter	Symbol	Min	Тур	Max	Unit
CBDPCLK clock period	t _{CYC}		12.86		ns
CBDPCLK duty cycle	t _{PWH}	40	50	60	%t _{CYC}
CBDPD(7-0)/CBDPPAR/CBDPC0J1/CBDPSPE out valid delay from DCLK↑	t _D	1		6	ns


Notes:

- 1. The optional V1 pulse only occurs during the first frame of the low order multi-frame as indicated by the H4 byte. It is **always** located twelve clock cycles after the corresponding J1 pulse.
- 2. The active CBDPCLK clock edge on which the data/parity and timing signals are clocked out can be selected, see "Drop Bus Interface" on page 118. The waveforms shown correspond to the positive clock edge selection.
- 3. An additional delay of 0 up to 15 extra CBDPCLK clock cycles can be inserted between the Drop bus data/parity and the Drop bus timing signals, CBDPJ0J1 and CBDPSPE, see "Drop Bus Delay" on page 119. The waveforms shown correspond to a delay of 0 clock cycles.

PHAST-12N
TXC-06312

50 pF Load


Parameter	Symbol	Min	Тур	Max	Unit
CBADCLK clock period	t _{CYC}		12.86		ns
CBADCLK duty cycle	t _{PWH}	40	50	60	%t _{CYC}
CBADJ0J1/CBADSPE/CBADD(7-0)/CBADPAR setup time to CBADCLK [↑]	t _S	3			ns
CBADJ0J1/CBADSPE/CBADD(7-0)/CBADPAR hold time after CBADCLK↑	t _H	0			ns

Notes:

- 1. The optional V1 pulse only occurs during the first frame of the low order multi-frame as indicated by the H4 byte. It is **always** located twelve clock cycles after the corresponding J1 pulse.
- 2. The CBADCLK clock edge on which the data/parity and timing signals are clocked in can be selected, see "Add Bus Interface" on page 119. The waveforms shown correspond to the positive clock edge selection.
- 3. An additional delay of 0 up to 15 extra CBADCLK clock cycles can be inserted between the Add bus timing signals, CBADJ0J1 and CBADSPE, and the Add bus data/parity, see "Add Bus Delay" on page 120. The waveforms shown correspond to a delay of 0 clock cycles.

50 pF Load

Parameter	Symbol	Min	Тур	Max	Unit
CBADCLK clock period	t _{CYC}		12.86		ns
CBADCLK duty cycle	t _{PWH}	40	50	60	%t _{CYC}
CBADD(7-0)/CBADPAR setup time before CBADCLK	t _S	3			ns
CBADD(7-0)/CBADPAR hold time after CBADCLK↑	t _H	0			ns
CBADJ0J1/CBADSPE out valid delay from CBADCLK↑	t _D	1		6	ns

Notes:

- 1. The optional V1 pulse only occurs during the first frame of the low order multi-frame as indicated by the H4 byte. It is **always** located twelve clock cycles after the corresponding J1 pulse.
- 2. The CBADCLK clock edge on which the data/parity signals are clocked in can be selected, see "Add Bus Interface" on page 119. The waveforms shown correspond to the positive clock edge selection.
- 3. The active CBADCLK clock edge on which the timing signals are clocked out can be selected, see "Add Bus Interface" on page 119. The waveforms shown correspond to the positive clock edge selection.
- 4. An additional delay of 0 up to 15 extra CBADCLK clock cycles can be inserted between the Add bus timing signals, CBADJ0J1 and CBADSPE, and the Add bus data/parity, see "Add Bus Delay" on page 120. The waveforms shown correspond to a delay of 1 clock cycle.

Proprietary TranSwitch Corporation Information for use Solely by its Customers

PHAST-12N TXC-06312

DATA SHEET

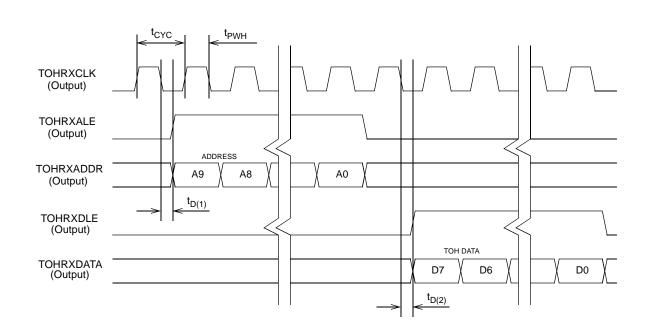


Figure 8. RX TOH Byte Interface

Parameter	Symbol	Min	Тур	Max	Unit
TOHRXCLK clock period	t _{CYC}		12.86		ns
TOHRXCLK clock pulse width	t _{PWH}	40	50	60	%t _{CYC}
TOHRXALE/TOHRXADDR out valid delay from TOHRXCLK \downarrow	t _{D(1)}	1		4	ns
TOHRXDLE/TOHRXDATA out valid delay from TOHRXCLK \downarrow	t _{D(2)}	1		4	ns

Proprietary TranSwitch Corporation Information for use Solely by its Customers

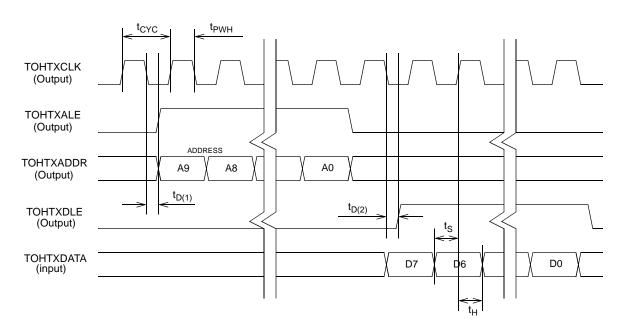


Figure 9. TX TOH Byte Interface

Parameter	Symbol	Min	Тур	Max	Unit
TOHTXCLK clock period	t _{CYC}		12.86		ns
TOHTXCLK clock pulse width	t _{PWH}	40	50	60	%t _{CYC}
TOHTXALE/TOHTXADDR out valid delay from TOHTXCLK \downarrow	t _{D(1)}	1		4	ns
TOHTXDLE out valid delay from TOHTXCLK \downarrow	t _{D(2)}	1		4	ns
TOHTXDATA setup time before TOHTXCLK [↑]	t _S	3			ns
TOHTXDATA hold time after TOHTXCLK1	t _H	0			ns

Proprietary TranSwitch Corporation Information for use Solely by its Customers

PHAST-12N TXC-06312

DATA SHEET

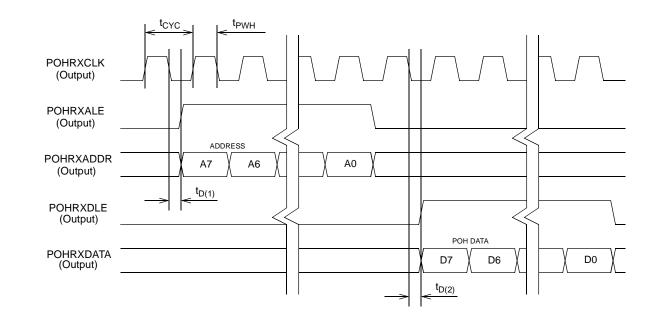


Figure 10. RX High Order POH Byte Interface

Parameter	Symbol	Min	Тур	Max	Unit
POHRXCLK clock period	t _{CYC}		12.86		ns
POHRXCLK clock pulse width	t _{PWH}	40	50	60	%t _{CYC}
POHRXALE/POHRXADDR out valid delay from POHRXCLK \downarrow	t _{D(1)}	1		4	ns
POHRXDLE/POHRXDATA out valid delay from POHRXCLK \downarrow	t _{D(2)}	1		4	ns

TRANSWITCH:PHAST-12NTRANSWITCH:DATA SHEETTXC-06312

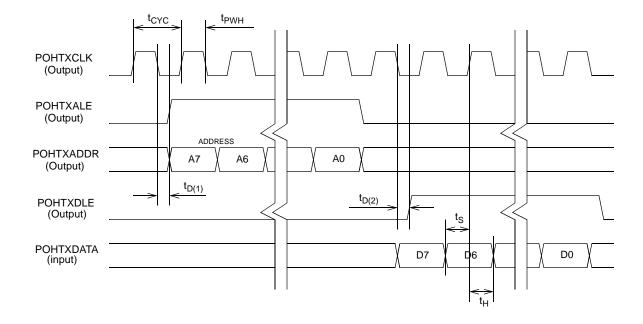
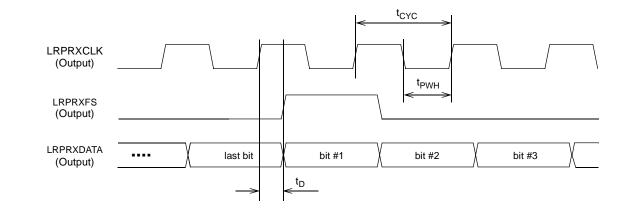
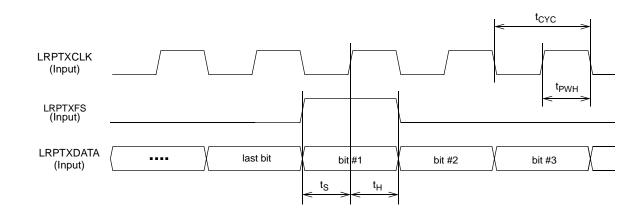


Figure 11. TX High Order POH Byte Interface


Parameter	Symbol	Min	Тур	Max	Unit
POHTXCLK clock period	t _{CYC}		12.86		ns
POHTXCLK clock pulse width	t _{PWH}	40	50	60	%t _{CYC}
POHTXALE/POHTXADDR out valid delay from POHTXCLK↓	t _{D(1)}	1		4	ns
POHTXDLE out valid delay from POHTXCLK \downarrow	t _{D(2)}	1		4	ns
POHTXDATA setup time before POHTXCLK [↑]	t _S	3			ns
POHTXDATA hold time after POHTXCLK [↑]	t _H	0			ns

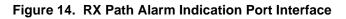
PHAST-12N TXC-06312

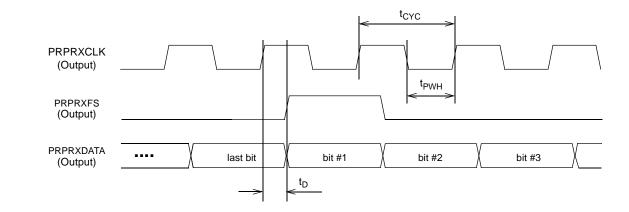
DATA SHEET



Parameter	Symbol	Min	Тур	Мах	Unit
LRPRXCLK clock period	t _{CYC}		51.44		ns
LRPRXCLK clock pulse width	t _{PWH}	40	50	60	%t _{CYC}
LRPRXFS/LRPRXDATA out valid delay from LRPRXCLK	t _D	1		6	ns

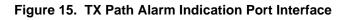
PHAST-12N TXC-06312

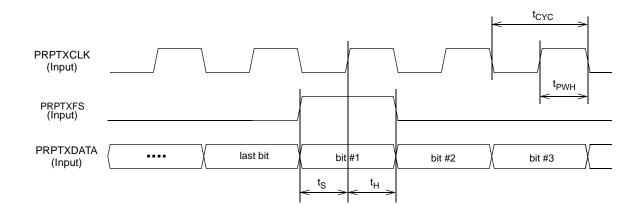




Parameter	Symbol	Min	Тур	Max	Unit
LRPTXCLK clock period	t _{CYC}		51.44		ns
LRPTXCLK clock pulse width	t _{PWH}	40	50	60	%t _{CYC}
LRPTXFS/LRPTXDATA setup time before LRPTXCLK	t _S	30			ns
LRPTXFS/LRPTXDATA hold time after LRPTXCLK [↑]	t _H	0			ns

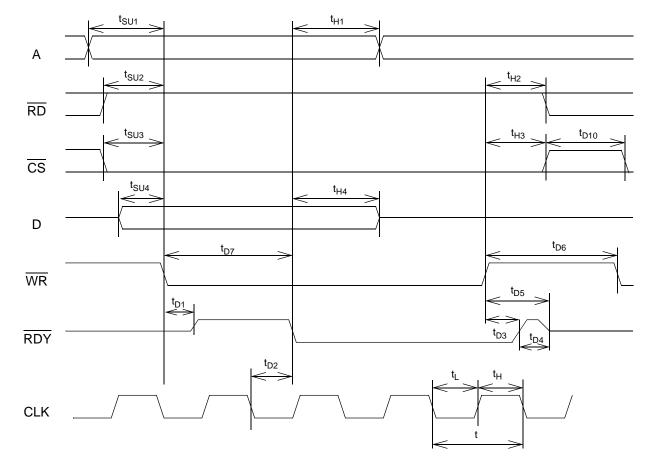
PHAST-12N
TXC-06312





Parameter	Symbol	Min	Тур	Мах	Unit
PRPRXCLK clock period	t _{CYC}		51.44		ns
PRPRXCLK clock pulse width	t _{PWH}	40	50	60	%t _{CYC}
PRPRXFS/PRPRXDATA out valid delay from PRPRXCLK	t _D	1		6	ns

PHAST-12N TXC-06312



Parameter	Symbol	Min	Тур	Max	Unit
PRPTXCLK clock period	t _{CYC}		51.44		ns
PRPTXCLK clock pulse width	t _{PWH}	40	50	60	%t _{CYC}
PRPTXFS/PRPTXDATA setup time before PRPTXCLK [↑]	t _S	30			ns
PRPTXFS/PRPTXDATA hold time after PRPTXCLK [↑]	t _H	0			ns

PHAST-12N TXC-06312	DATA SHEET	TRANSWITCH
		Engines for Global Connectivity

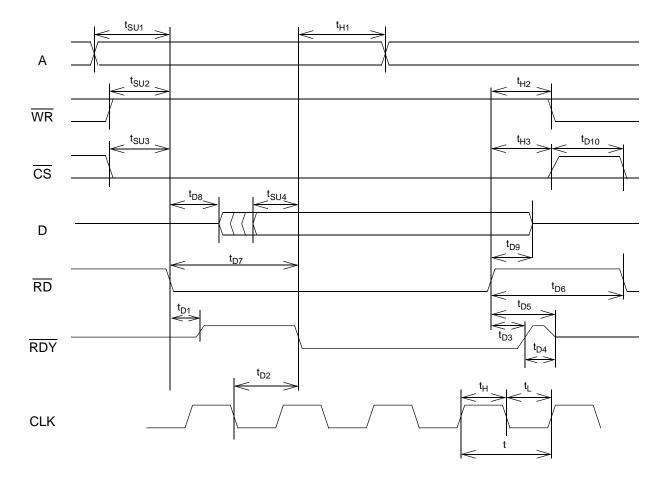
Note: MPACK (RDY) is shown active low. This corresponds to MPACKLEVEL being tied low.

^{1.} See the Lead Descriptions table on Generic Intel - Host Processor Interface for the mapping to I/O leads.

Symbol	Min	Max	Description
t	20 ns	-	CLK clock period
tL	0.4t	-	CLK clock low phase pulse width
t _H	0.4t	-	CLK clock high phase pulse width
t _{SU1}	-0.9t	-	Setup time of A to falling edge WR
t _{SU2} a	0 ns	-	Setup time of \overline{RD} to falling edge \overline{WR}
t _{SU3} b	0 ns	-	Setup time of \overline{CS} to falling edge \overline{WR}
t _{SU4}	-0.9t	-	Setup time of D to falling edge WR
t _{H1}	0 ns	-	Hold time of A to active edge RDY
t _{H2} c	t	-	Hold time of RD to rising edge WR
t _{H3} b, d	-	-	Hold time of \overline{CS} to rising edge \overline{WR}
t _{H4}	0 ns	-	Hold time of D to active edge RDY
t _{D1}	0 ns	20 ns	Delay from falling edge WR to RDY driving
t _{D2}	0 ns	8 ns	Delay from falling edge CLK to active edge RDY
t _{D3}	0 ns	7 ns	Delay from rising edge WR to inactive edge RDY
t _{D4}	5 ns	-	Delay from RDY going inactive to RDY going in tristate
t _{D5}	-	20 ns	Delay from rising edge WR to RDY going in tristate
t _{D6}	t	-	WR inactive pulse width
t _{D7}	TBD	TBD	Response latency
t _{D10} e	t	-	CS inactive pulse width

a. <u>Only</u> applies if a write access is preceded by a read access.

b. CS may stay low between 2 successive accesses to the same peripheral.


c. Only applies if a write access is followed by a read access.

d. No timing constraint between the rising edges of \overline{CS} and \overline{WR} are defined. \overline{CS} is only latched at the beginning of an access.

e. Between accesses to different peripherals.

PHAST-12N TXC-06312	DATA SHEET	TRANSWITCH
		Engines for Global Connectivity

Note: MPACK (RDY) is shown active low. This corresponds to MPACKLEVEL being tied low.

^{1.} See the Lead Description table on Generic Intel - Host Processor Interface for the mapping to I/O leads.

Symbol	Min	Max	Description
t	20 ns	-	CLK clock period
tL	0.4t	-	CLK clock low phase pulse width
t _H	0.4t	-	CLK clock high phase pulse width
t _{SU1}	-0.9t	-	Setup time of A to falling edge \overline{RD}
t _{SU2} a	0 ns	-	Setup time of \overline{WR} to falling edge \overline{RD}
t _{SU3} b	0 ns	-	Setup time of \overline{CS} to falling edge \overline{RD}
t _{SU4}	0.7t	-	Setup time of D to active edge RDY
t _{H1}	0 ns	-	Hold time of A to active edge RDY
t _{H2} c	t	-	Hold time of \overline{WR} to rising edge \overline{RD}
t _{H3} ^{b, d}	-	-	Hold time of \overline{CS} to rising edge \overline{RD}
t _{D1}	0 ns	20 ns	Delay from falling edge \overline{RD} to \overline{RDY} driving
t _{D2}	0 ns	8 ns	Delay from falling edge CLK to active edge RDY
t _{D3}	0 ns	7 ns	Delay from rising edge \overline{RD} to inactive edge \overline{RDY}
t _{D4}	5 ns	-	Delay from RDY going inactive to RDY going in tristate
t _{D5}	-	20 ns	Delay from rising edge \overline{RD} to \overline{RDY} going in tristate
t _{D6}	t	-	RD inactive pulse width
t _{D7}	TBD	TBD	Response latency
t _{D8}	0 ns	12 ns	Delay from falling edge \overline{RD} to D driving
t _{D9}	0 ns	12 ns	Delay from rising edge RD to D going in tristate
t _{D10} e	t	-	CS inactive pulse width

a. Only applies if a read access is preceded by a write access.

b. CS may stay low between 2 successive accesses to the same peripheral.

c. Only applies if a read access is followed by a write access.

d. No timing constraint between the rising edges of \overline{CS} and \overline{RD} are defined. \overline{CS} is only latched at the beginning of an access.

e. Between accesses to different peripherals.

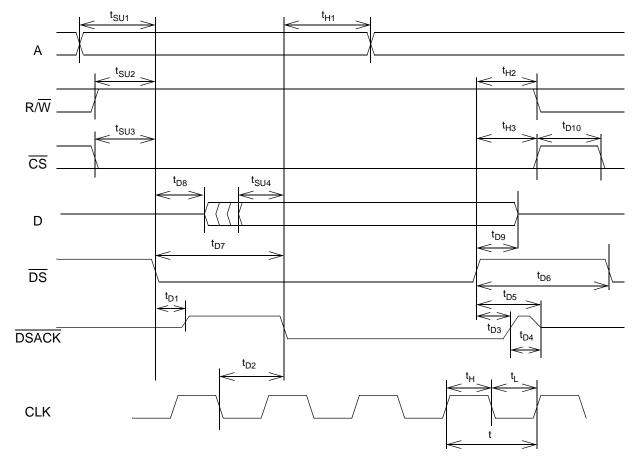
PHAST-12N TXC-06312	DATA SHEET	TRANSWITCH
		Engines for Global Connectivity

Note: MPACK (DSACK) is shown active low. This corresponds to MPACKLEVEL being tied low.

^{1.} See the Lead Description table on Generic Motorola - Host Processor Interface for the mapping to I/O leads.

Symbol	Min	Max	Description
t	20 ns	-	CLK clock period
tL	0.4t	-	CLK clock low phase pulse width
t _H	0.4t	-	CLK clock high phase pulse width
t _{SU1}	-0.9t	-	Setup time of A to falling edge DS
t _{SU2} a	0 ns	-	Setup time of R/\overline{W} to falling edge \overline{DS}
t _{SU3} b	0 ns	-	Setup time of \overline{CS} to falling edge \overline{DS}
t _{SU4}	-0.9t	-	Setup time of D to falling edge $\overline{\text{DS}}$
t _{H1}	0 ns	-	Hold time of A to active edge DSACK
t _{H2} c	0 ns	-	Hold time of R/\overline{W} to rising edge \overline{DS}
t _{H3} ^{b, d}	-	-	Hold time of \overline{CS} to rising edge \overline{DS}
t _{H4}	0 ns	-	Hold time of D to active edge DSACK
t _{D1}	0 ns	20 ns	Delay from falling edge DS to DSACK driving
t _{D2}	0 ns	8 ns	Delay from falling edge CLK to active edge DSACK
t _{D3}	0 ns	7 ns	Delay from rising edge $\overline{\text{DS}}$ to inactive edge $\overline{\text{DSACK}}$
t _{D4}	5 ns	-	Delay from DSACK going inactive to DSACK going in tristate
t _{D5}	-	20 ns	Delay from rising edge DS to DSACK going in tristate
t _{D6}	t	-	DS inactive pulse width
t _{D7}	TBD	TBD	Response latency
t _{D10} e	t	-	CS inactive pulse width

a. Only applies if a write access is preceded by a read access. R/\overline{W} may stay low between 2 successive write accesses.


b. CS may stay low between 2 successive accesses to the same peripheral.

c. Only applies if a write access is followed by a read access. R/W may stay low between 2 successive write accesses.

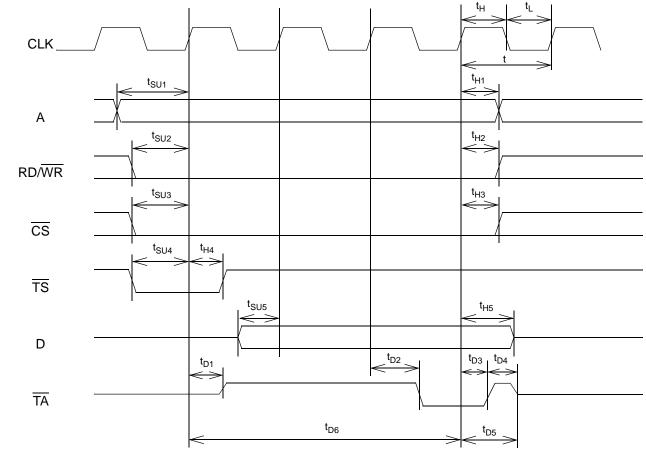
d. No timing constraint between the rising edges of \overline{CS} and \overline{DS} are defined, since no such relationship is defined in the MC68360 data sheet. \overline{CS} is only latched at the beginning of an access. e. Between accesses to different peripherals.

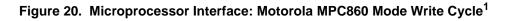
PHAST-12N TXC-06312	DATA SHEET	TRANSWITCH
		Engines for Global Connectivity

Note: MPACK (DSACK) is shown active low. This corresponds to MPACKLEVEL being tied low.

^{1.} See the Lead Description table on Generic Motorola - Host Processor Interface for the mapping to I/O leads.

Symbol	Min	Max	Description
t	20 ns	-	CLK clock period
tL	0.4t	-	CLK clock low phase pulse width
t _H	0.4t	-	CLK clock high phase pulse width
t _{SU1}	-0.9t	-	Setup time of A to falling edge $\overline{\text{DS}}$
t _{SU2} a	0 ns	-	Setup time of R/\overline{W} to falling edge \overline{DS}
t _{SU3} b	0 ns	-	Setup time of \overline{CS} to falling edge \overline{DS}
t _{SU4}	0.7t	-	Setup time of D to active edge DSACK
t _{H1}	0 ns	-	Hold time of A to active edge DSACK
t _{H2} c	0 ns	-	Hold time of R/\overline{W} to rising edge \overline{DS}
t _{H3} ^{b, d}	-	-	Hold time of \overline{CS} to rising edge \overline{DS}
t _{D1}	0 ns	20 ns	Delay from falling edge DS to DSACK driving
t _{D2}	0 ns	8 ns	Delay from falling edge CLK to active edge DSACK
t _{D3}	0 ns	7 ns	Delay from rising edge $\overline{\text{DS}}$ to inactive edge $\overline{\text{DSACK}}$
t _{D4}	5 ns	-	Delay from DSACK going inactive to DSACK going in tristate
t _{D5}	-	20 ns	Delay from rising edge $\overline{\text{DS}}$ to $\overline{\text{DSACK}}$ going in tristate
t _{D6}	t	-	DS inactive pulse width
t _{D7}	TBD	TBD	Response latency
t _{D8}	0 ns	12 ns	Delay from falling edge $\overline{\text{DS}}$ to D driving
t _{D9}	0 ns	12 ns	Delay from rising edge $\overline{\text{DS}}$ to D going in tristate
t _{D10} e	t	-	CS inactive pulse width


a. Only applies if a read access is preceded by a write access. R/\overline{W} may stay high between 2 successive read accesses.


b. CS may stay low between 2 successive accesses to the same peripheral.

c. Only applies if a read access is followed by a write access. R/W may stay high between 2 successive read accesses.

d. No timing constraint between the rising edges of \overline{CS} and \overline{DS} are defined, since no such relationship is defined in the MC68360 data sheet. \overline{CS} is only latched at the beginning of an access. e. Between accesses to different peripherals.

PHAST-12N TXC-06312	DATA SHEET	TRANSWITCH
		Engines for Global Connectivity

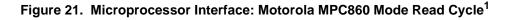
^{1.} See the Lead Description table on Motorola MPC860 - Host Processor Interface for the mapping to I/O leads.

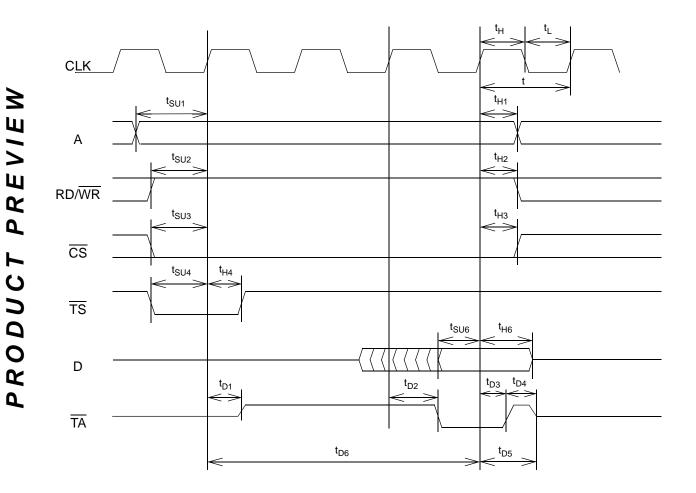
Symbol	Min	Max	Description
t	20 ns	-	CLK clock period
tL	0.4t	-	CLK clock low phase pulse width
t _H	0.4t	-	CLK clock high phase pulse width
t _{SU1} a	0 ns	-	Setup time of A to rising edge CLK
t _{SU2} a, b	0 ns	-	Setup time of RD/WR to rising edge CLK
t _{SU3} a, c	6 ns	-	Setup time of \overline{CS} to rising edge CLK
t _{SU4}	6 ns	-	Setup time of falling edge \overline{TS} to rising edge CLK
t _{SU5} d	0 ns	-	Setup time of D to rising edge CLK
t _{H1} e	0 ns	-	Hold time of A to rising edge CLK
t _{H2} ^{e, f}	0 ns	-	Hold time of RD/WR to rising edge CLK
t _{H3} e, c	0 ns	-	Hold time of CS to rising edge CLK
t _{H4}	4 ns	-	Hold time of TS to rising edge CLK
t _{H5} e	0 ns	-	Hold time of D to rising edge CLK
t _{D1} a	0 ns	20 ns	Delay from rising edge CLK to TA driving
t _{D2} g	1 ns	7 ns	Delay from rising edge CLK to active edge TA
t _{D3} e	1 ns	7 ns	Delay from rising edge CLK to inactive edge \overline{TA}
t _{D4}	5 ns	-	Delay from TA going inactive to TA going in tristate
t _{D5} e	-	20 ns	Delay from rising edge CLK to \overline{TA} going in tristate
t _{D6}	TBD	TBD	Maximum response latency

a. Timing is relative to the rising edge of CLK during which TS is asserted.

b. Only applies if a write access is preceded by a read access. RD/WR may stay low between 2 successive write accesses to the same peripheral.

c. CS may stay low between successive accesses to the same peripheral.


d. Timing is relative to next rising edge after the one during which \overline{TS} is asserted.


e. Timing is relative to the rising edge of CLK during which TA is asserted.

f. Only applies if a write access is followed by a read access. RD/WR may stay low between 2 successive write accesses to the same peripheral.

g. Timing is relative to the rising edge before the one during which \overline{TA} is asserted.

PHAST-12N TXC-06312	DATA SHEET	TRANSWITCH
		Engines for Global Connectivity

^{1.} See the Lead Description table on Motorola MPC860 - Host Processor Interface for the mapping to I/O leads.

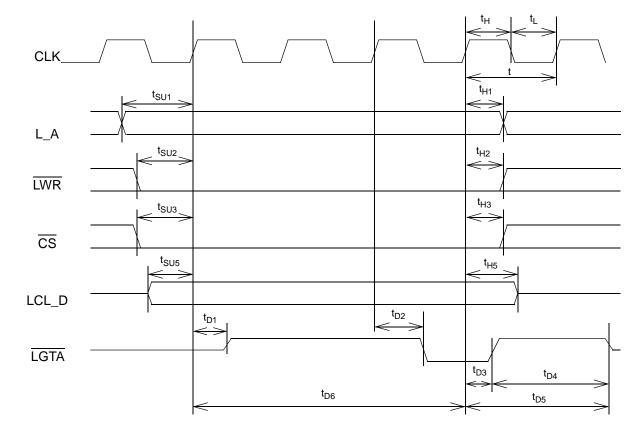
Symbol	Min	Max	Description	
t	20 ns	-	CLK clock period	
tL	0.4t	-	CLK clock low phase pulse width	
t _H	0.4t	-	CLK clock high phase pulse width	
t _{SU1} a	0 ns	-	Setup time of A to rising edge CLK	
t _{SU2} a, b	0 ns	-	Setup time of RD/WR to rising edge CLK	
t _{SU3} ^{a, c}	6 ns	-	Setup time of \overline{CS} to rising edge CLK	
t _{SU4}	6 ns	-	Setup time of falling edge \overline{TS} to rising edge CLK	
t _{H1} d	0 ns	-	Hold time of A to rising edge CLK	
t _{H2} ^{d, e}	0 ns	-	Hold time of RD/WR to rising edge CLK	
t _{H3} c, d	0 ns	-	Hold time of \overline{CS} to rising edge CLK	
t _{H4}	4 ns	-	Hold time of \overline{TS} to rising edge CLK	
t _{D1} a	0 ns	20 ns	Delay from rising edge CLK to \overline{TA} driving	
t _{D2} f	1 ns	7 ns	Delay from rising edge CLK to active edge TA	
t _{D3} d	1 ns	7 ns	Delay from rising edge CLK to inactive edge TA	
t _{D4}	5 ns	-	Delay from TA going inactive to TA going in tristate	
t _{D5} d	-	20 ns	Delay from rising edge CLK to \overline{TA} going in tristate	
t _{D6}	TBD	TBD	Maximum response latency	
t _{SU6} d	t	-	Setup time of D to rising edge CLK	
t _{H6} d	1 ns	12 ns	Hold time of D going in tristate to rising edge CLK	

a. Timing is relative to the rising edge of CLK during which \overline{TS} is asserted.

b. Only applies if a read access is preceded by a write access. RD/WR may stay high between

 $2 \ \underline{suc}$ cessive read accesses to the same peripheral.

c. CS may stay low between successive accesses to the same peripheral.


d. Timing is relative to the rising edge of CLK during which \overline{TA} is asserted.

e. Only applies if a read access is followed by a write access. RD/WR may stay high between 2 successive read accesses to the same peripheral.

f. Timing is relative to the rising edge before the one during which \overline{TA} is asserted.

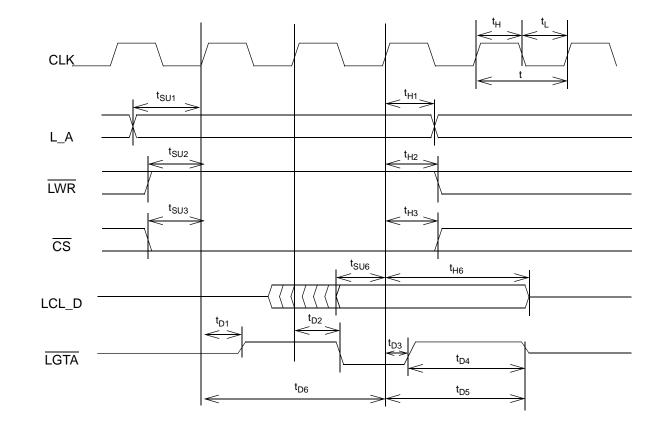
PHAST-12N TXC-06312	DATA SHEET	TRANSWITCH
		Engines for Global Connectivity

^{1.} See the Lead Description table on Motorola MPC8260 Local Bus - Host Processor Interface for the mapping to I/O leads.

Symbol	Min	Max	Description	
t	20 ns	-	CLK clock period	
tL	0.4t	-	CLK clock low phase pulse width	
t _H	0.4t	-	CLK clock high phase pulse width	
t _{SU1} a	0 ns	-	Setup time of L_A to rising edge CLK	
t _{SU2} a, b	0 ns	-	Setup time of \overline{LWR} to rising edge CLK	
t _{SU3} c	6 ns	-	Setup time of \overline{CS} to rising edge CLK	
t _{SU5} a	0 ns	-	Setup time of LCL_D to rising edge CLK	
t _{H1} d	0 ns	-	Hold time of L_A to rising edge CLK	
t _{H2} d, e	0 ns	-	Hold time of LWR to rising edge CLK	
t _{H3} c, d	0 ns	-	Hold time of \overline{CS} to rising edge CLK	
t _{H5} d	0 ns	-	Hold time of LCL_D to rising edge CLK	
t _{D1} a	0 ns	20 ns	Delay from rising edge CLK to LGTA driving	
t _{D2} f	1 ns	7 ns	Delay from rising edge CLK to active edge LGTA	
t _{D3} d	1 ns	7 ns	Delay from rising edge CLK to inactive edge LGTA	
t _{D4}	3t + 5 ns	-	Delay from \overline{LGTA} going inactive to \overline{LGTA} going in tristate	
t _{D5} d	3t	3t + 20 ns	Delay from rising edge CLK to $\overline{\text{LGTA}}$ going in tristate	
t _{D6}	TBD	TBD	Maximum response latency	

a. Timing is relative to the first rising edge of the access during which \overline{CS} is asserted.

b. Only applies if a write access is preceded by a read access. LWR may stay low if 2 successive write accesses are done to the same peripheral.


c. \overline{CS} may stay low between successive accesses to the same peripheral, as long as the other setup times are respected for the 2nd access. If \overline{CS} remains low between accesses, the second access starts after the first is terminated.

d. Timing is relative to the rising edge during which $\overline{\text{LGTA}}$ is asserted.

e. Only applies if a write access is followed by a read access. LWR may stay low if 2 successive write accesses are done to the same peripheral.

f. Timing is relative to the rising edge before the one during which $\overline{\text{LGTA}}$ is asserted.

PHAST-12N TXC-06312	DATA SHEET	TRANSWITCH
		Engines for Global Connectivity

Figure 23. Microprocessor Interface: Motorola MPC8260 Local Bus Mode Read Cycle¹

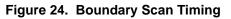
^{1.} See the Lead Description table on Motorola MPC8260 Local Bus - Host Processor Interface for the mapping to I/O leads.

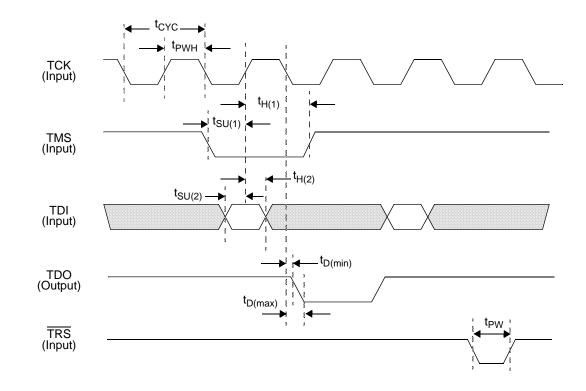
Symbol	Min	Мах	Description	
t	20 ns	-	CLK clock period	
tL	0.4t	-	CLK clock low phase pulse width	
t _H	0.4t	-	CLK clock high phase pulse width	
t _{SU1} a	0 ns	-	Setup time of L_A to rising edge CLK	
t _{SU2} a, ^b	0 ns	-	Setup time of LWR to rising edge CLK	
t _{SU3} c	6 ns	-	Setup time of \overline{CS} to rising edge CLK	
t _{H1} d	0 ns	-	Hold time of L_A to rising edge CLK	
t _{H2} d, e	0 ns	-	Hold time of LWR to rising edge CLK	
t _{H3} c, d	0 ns	-	Hold time of \overline{CS} to rising edge CLK	
t _{D1} a	0 ns	20 ns	Delay from rising edge CLK to LGTA driving	
t _{D2} f	1 ns	7 ns	Delay from rising edge CLK to active edge LGTA	
t _{D3} d	1 ns	7 ns	Delay from rising edge CLK to inactive edge LGTA	
t _{D4}	3t + 5 ns	-	Delay from \overline{LGTA} going inactive to \overline{LGTA} going in tristate	
t _{D5} d	3t	3t + 20 ns	Delay from rising edge CLK to LGTA going in tristate	
t _{D6}	TBD	TBD	Maximum response latency	
t _{SU6} d	t	-	Setup time D to rising edge CLK	
t _{H6} d	3t + 1 ns	3t + 12 ns	Hold time of D going in tristate to rising edge CLK	

a. Timing is relative to the first rising edge of the access during which \overline{CS} is asserted.

b. Only applies if a read access is preceded by a write access. LWR may stay high if 2 successive read accesses are done to the same peripheral.

c. $\overline{\text{CS}}$ may stay low between successive accesses to the same peripheral, as long as the other setup times are respected for the 2nd access. If $\overline{\text{CS}}$ remains low between accesses, the second access starts after the first is terminated.


d. Timing is relative to the rising edge during which \overline{LGTA} is asserted.


e. Only applies if a read access is followed by a write access. LWR may stay high if 2 successive read accesses are done to the same peripheral.

f. Timing is relative to the rising edge before the one during which $\overline{\text{LGTA}}$ is asserted.

PHAST-12N
TXC-06312

Parameter	Symbol	Min	Max	Unit
TCK clock period	tcyc	50		ns
TCK clock duty cycle t _{PWH} /t _{CYC}		40	60	%
TMS setup time to TCK↑	t _{SU(1)}	3.0		ns
TMS hold time after TCK↑	t _{H(1)}	15		ns
TDI setup time to TCK↑	t _{SU(2)}	3.0		ns
TDI hold time after TCK1	t _{H(2)}	15		ns
TDO delay from TCK \downarrow	t _D	4.0	20	ns
TRS pulse width	t _{PW}	250		ns

PHAST-12N TXC-06312

OPERATION

MODES

Line Interface Mode

The PHAST-12N supports either one STM-4/OC-12 line interface, or four STM-1/OC-3 line interfaces.

In STM-4/OC-12 mode line interfaces #2 to #4 will not be used.

STM4_Mode	Description
0 (Default)	STM-1/OC-3 Mode:
	 Line interfaces #1 to #4 are 155.52 Mbit/s signals.
1	STM-4/OC-12 Mode:
	 Line interface #1 is a 622.08 Mbit/s signal.
	 Line interfaces #2 to #4 are not used.

SDH/SONET Mapping

The PHAST-12N supports the SDH/SONET structures presented in Figure 1. The mapping of receive and transmit line interfaces, receive and transmit APS port interfaces, and receive and transmit terminal side interfaces is independent. All mapping configurations default to all AU-4/VC-4 resp. STS-3c.

In STM-4/OC-12 mode the line interface transports a single AUG-4. A standard AUG-4 consists either of a single VC-4-4c/STS-12c SPE or four AUG-1's. To support non-standard VC-4-2c/STS-6c SPE and VC-4-3c/STS-9c SPE contiguous concatenated containers a **TimeSlotIsConcatenated** register is provided per AUG-1 time slot.

TimeSlotIsConcatenated _[aug1]	Description
	The AUG-1 time slot is either not part of a contiguous concatenated container, or it is the master time slot (i.e., it carries the POH column) of a VC-4-Xc resp. STS-Nc contiguous concatenated container.
1	The AUG-1 time slot is a slave (i.e., it does not carry the POH column) of a VC-4-Xc resp. STS-Nc contiguous concatenated container.

The following table lists all valid contiguous concatenation settings:

contiguous concatenation structure				TimeSlotIsConcatenated _[aug1]			
contig	contiguous concatenation structure				1	2	3
AUG-1	AUG-1	AUG-1	AUG-1	0	0	0	0
AUG-1	AUG-1	VC-4-2c/S	TS-6c SPE	0	0	0	1
AUG-1	VC-4-2c/STS-6c SPE		AUG-1	0	0	1	0
AUG-1	VC-4-3c/STS-9c		SPE	0	0	1	1
VC-4-2c/STS-6c SPE AUG-1		AUG-1	0	1	0	0	
VC-4-2c/STS-6c SPE VC-4-2c/ST		TS-6c SPE	0	1	0	1	
VC-4	VC-4-3c/STS-9c SPE AUG-1			0	1	1	0
VC-4-4c/STS-12c SPE			0	1	1	1	

DATA SHEET

Each AUG-1 time slot that is not part of a contiguous concatenated container, can independently be configured to consist of a single VC-4/STS-3c SPE or three VC-3/STS-1's SPE. A **Has_AU3** register per AUG-1 time slot determines the structure of that time slot.

Has_AU3 _[aug1]	Description
0 (Default)	The AUG-1 time slot consists of a single AU-4/VC-4 resp. STS-3c container
1	The AUG-1 time slot consists of three AU-3/VC-3 resp. STS-1 containers

In STM-1/OC-3 mode each line interface transports a single AUG-1. With the **Has_AU3** register each AUG-1 can independently be configured to consist of a single VC-4/STS-3c SPE or three VC-3/STS-1's SPE. In STM-1/OC-3 mode, it is mandatory that the **TimeSlotIsConcatenated** registers are set to the default master mode.

Another set of configuration registers is available for the Add and Drop Combus interfaces when the AUG-1 contains AU-4's. Four bits, **Is_TUG_Structured**, specify whether the corresponding VC-4 contains TUG-3's or C-4. This register is only applicable for the Combus configuration and is a don't care when the corresponding AUG-1 is part of a non-standard concatenated structure or when the AUG-1 contains three AU-3's.

Is_TUG_Structured _[aug1]	Description
0	C-4 is mapped in the VC-4
1 (Default)	Three TUG-3's are mapped in the VC-4

When TUG-3 is mapped in VC-4/AU-4 or VC-3 is mapped in AU-3 an extra register is provided to specify whether these containers contain TUG-2 or not. These configuration bits are don't care for the VC-4's containing C-4.

Is_TUG_Structured _[timeslot]	Description
0	 C-3 is mapped in VC-3 (AU-3 mode)
	 TU-3 is mapped in TUG-3 (AU-4 mode)
1 (Default)	 TUG-2 is mapped in VC-3 (AU-3 mode)
	 TUG-2 is mapped in TUG-3 (AU-4 mode)

Note 1: These **Is_TUG_Structured** configuration registers need only be specified for the Add and the Drop Telecombus interfaces and are don't care for all other interfaces.

Note 2: V1 pulses will be enabled on the Telecombus interfaces when the structures contain TUG-2's (see Telecom Bus Interface section).

CLOCK ARCHITECTURE

The PHAST-12N's internal Transmit Clock synthesizer generates, using a selectable Tx timebase, a high-speed Transmit Clock, running at 622.08 MHz.

The System Clock, running at 77.76 MHz, is a divided-down version of this high-speed Transmit Clock.

Telecom Bus clocks:

- The Drop Telecom Bus clock output lead, CBDPCLK, is actually the System Clock
- The Add Telecom Bus clock lead, CBADCLK, is an output in master timing mode. It is actually the System Clock
- The Add Telecom Bus clock lead, CBADCLK, is an input in slave timing mode. It gets retimed to the System Clock in the Retimer

The System Clock is available on an output lead: LINETXCLK, optionally divided down to 19.44 MHz.

The PHAST-12N's internal Clock Recovery units, operating on the four SDH/SONET Receive Line interfaces and the Receive APS Port generate five recovered clocks: one for each channel.

Internally, these units require a high-speed Receive Clock, which is synthesized using a selectable Rx timebase.

The recovered data from the four SDH/SONET Receive Lines and from the Receive APS Port is retimed to the System Clock, before entering the Cross-Connect.

Divided-down versions of each recovered clock are available on output leads: LINERXCLK1 (19.44 or 77.76 MHz), LINERXCLK2 (19.44 MHz), LINERXCLK3 (19.44 MHz), LINERXCLK4 (19.44 MHz), and APSRXCLK (19.44 or 77.76 MHz).

The Tx timebase can be selected using control bits:

- Either one of the two external Transmit Clock sources: REFTXCLK1 or REFTXCLK2P/N (External Timing),
- The recovered 622.08 MHz Receive APS Port clock (External Timing)
- The recovered 622.08 MHz clock in STM-4/OC-12 application (Line/Loop Timing)
- Any of the four recovered 155.52 MHz clocks in STM-1/OC-3 application (Line/Loop Timing)

The frequency of REFTXCLOCK1 is selectable:

- 19.44 MHz
- 77.76 MHz

The frequency of REFTXCLOCK2P/N is selectable:

- 19.44 MHz
- 77.76 MHz
- 155.52 MHz
- 622.08 MHz (bypass mode)

The Rx timebase can be selected using control bits:

- Either one of the two external Tx clock sources: REFTXCLK1 or REFTXCLK2P/N (External Timing)
- The external Rx clock source: REFRXCLOCK (Line/Loop Timing)

In case REFTXCLOCK2P/N is used as Rx timebase, the 622.08 MHz frequency (bypass mode) is not supported.

DATA SHEET

In Line/Loop - Timing mode, it is mandatory to provide an external Rx clock source at REFRXCLK. Its frequency is selectable:

- 19.44 MHz
- 77.76 MHz

Figure 25 shows the relation between synthesized/recovered clocks and the reference clocks.

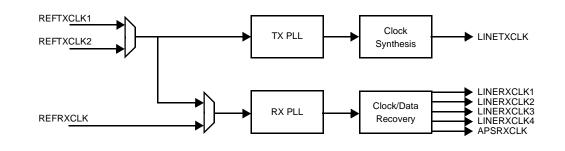
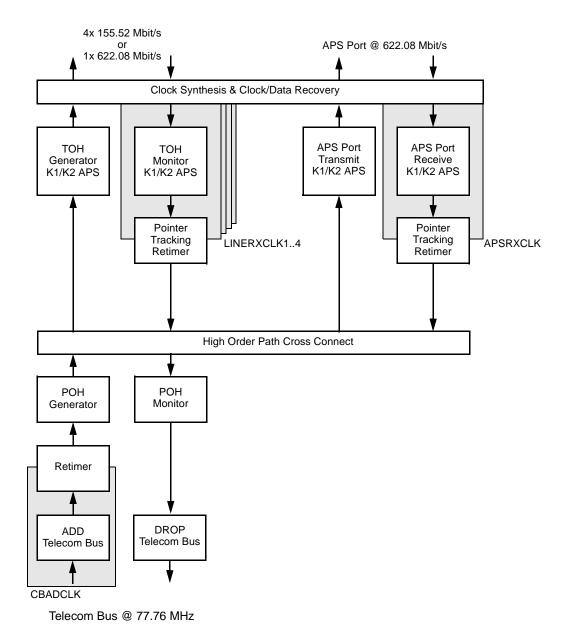



Figure 25. Clock Recovery/Clock Synthesis

Clocks and Software-Access

Following table gives an overview of the different clock domains which are necessary in order to access a particular block (see Memory Maps and Bit Descriptions).

DATA SHEET

Clock Domain	Blocks
MPCLK	Global Control Reset Generator Interrupt Clock Recovery/Clock Synthesis/SerDes JTAG Master
MPCLK System Clock (=LINETXCLK)	Line Ring Port/Alarm Interface Transmit APS Port POH Generator TOH Generator TOH and DCC Port High Order Pointer Tracker and Retimer - Rx Line Interface High Order Pointer Tracker and Retimer - Rx APS Interfacee Retimer Cross Connect High Order Path Ring Port/Alarm Interface Drop Telecom Bus POH Monitor - Rx Line Interface POH Monitor - Rx APS Interface POH Monitor - Terminal Side Add Telecom Bus (Master mode)
MPCLK System Clock (=LINETXCLK) LINERXCLK1	TOH Monitor - Rx Line 1 (STM-1 / STM-4 mode)
MPCLK System Clock (=LINETXCLK) LINERXCLK2	TOH Monitor - Rx Line 2 (STM-1 mode only)
MPCLK System Clock (=LINETXCLK) LINERXCLK3	TOH Monitor - Rx Line 3 (STM-1 mode only)
MPCLK System Clock (=LINETXCLK) LINERXCLK4	TOH Monitor - Rx Line 4 (STM-1 mode only)
MPCLK System Clock (=LINETXCLK) APSRXCLK	Receive APS Port
MPCLK System Clock (=LINETXCLK) CBADCLK	Add Telecom Bus (Slave mode)

PHAST-12N TXC-06312

Loss of Clock Detection

All clocks, except the microprocessor clock, are monitored for Loss of Clock. The clock to be monitored is divided by **LocDivider** + 1.

Note: The Loss of Clock detector can only operate correctly if the optical transceiver generates a constant output (no transitions) on the receive side when there is no valid incoming optical signal.

Loss of Clock is detected as follows:

- Entry: when **LOC_EntryThreshold** microprocessor clock cycles have passed without transitions on the divided clock to be monitored.
- Exit: when LOC_ExitThreshold transitions are detected the divided clock

Powerup, Initialization and Startup

After powerup and external reset of the device, no internal clocks are active. This section describes the way the necessary clocks need to be brought up and the initialization of the device.

The first clock present in the device is the external microprocessor clock. The registers which are needed to bring up the internal clocks are located in the clock domain from this external microprocessor clock.

The clock domains which must be brought up next are:

- System Clock
- Rx Line 1 Clock
- Rx Line 2 Clock
- Rx Line 3 Clock
- Rx Line 4 Clock
- Rx APS Clock

Note: The Rx Clock domains only have to be brought up if they are used.

In case the Add Telecombus is operating in Slave Mode, this is an external clock domain. The external clock must be running in order to access the registers in this domain. If the Add Telecombus is in Master Mode, this is a part of the System Clock domain.

At this stage of the process, the hardware interrupt can be enabled through the **HINTEN** field (see Table 7 of Memory Maps and Bit Descriptions section). The interrupt masks must be properly disabled here.

It is advised to unmask the Global Control Interrupt now. In the Global Control block, the Loss of System Clock and Loss of Clock for the active lines must be unmasked to enable the hardware interrupt for events on the Loss of Clock detection.

The global setting for STM-4 Mode has to be set here.

After this, the Clock Recovery/Clock Synthesis block must be configured and powered up. If the General Purpose Outputs are used to control the lasers, those must also be powered up.

It is recommended to leave **RESETH** (see Table 6) at the reset value until this point. Once **RESETH** is deasserted, the device will start a reset sequence for all of its internal RAMs. The **RamResetDone** record in the Global Control block (see Table 2) indicates which clock domains have finished resetting their RAMs.

Once all the necessary clock domains are powered up, and the corresponding RAMs are reset, the device will not yet be operational. Operation is halted so the device can be configured in a clean way. Once the configuration is done, **DeviceInitialized** field in Global Control can be set to 1 and the device will start its normal operation.

DATA SHEET

RESET

External Lead Controlled Hardware Reset

At power-up the use of the $\overline{\text{RESET}}$ lead is mandatory. Holding this lead low causes all the registers in the device to be reset.

Microprocessor Controlled Hardware Reset (RESETH)

When written with the value 0x91H all registers in the device will be reset but with a few exceptions.

The registers in the following blocks will not be reset:

- Microprocessor interface
- Global control
- Reset generator
- Interrupt
- Clock recovery / clock synthesis / SerDes
- JTAG Master

These are the registers that operate in the microprocessor clock domain.

Microprocessor Controlled Reset Per Clockdomain

There are 5 major interfaces. For each of these there is a separate microprocess controlled reset available. Reset is activated by writing the value 0x91 H to the corresponding register

- AddCombus_Reset: Reset in the Add Combus clock domain
- RxAPS_Reset: Reset in the Rx APS clock domain
- RxLine1_Reset ... RxLine4_Reset: Reset in the RxLine 1 ... 4 clock domain

LINE INTERFACE

Four serial line interfaces with differential input/output and integrated clock recovery and synthesis are provided.

The device supports two modes: either a single STM-4/OC-12 signal, or four STM-1/OC-3 signals.

- Line Interface #1 can handle 622.08 Mbit/s or 155.52 Mbit/s data rate for STM-4/OC-12, STM-1/OC-3 applications respectively
- Line Interfaces #2 #4 can handle 155.520 Mbit/s data rate for STM-1/OC-3 applications

The device's System Clock is the time base for the transmit SDH/SONET line output(s).

Each individual line interface can be powered down via a memory mapped register.

Frame alignment is recovered from the A1-A2 bytes of the received signals.

The OOF anomaly and the dLOF defect will be detected according to the latest ITU/ETSI/ANSI standards.

The following additional functions are provided:

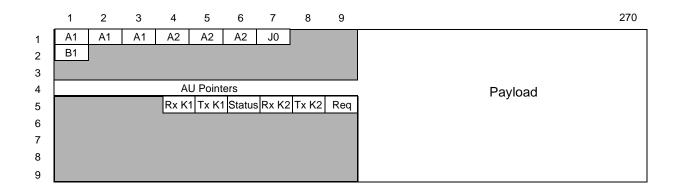
- Four (one for each line interface) active high status inputs to monitor the external optical transceivers for low power status
- Four (one for each line interface) output control signals under microprocessor command to control each individual external optical transceiver
- Four (one for each line interface) reference clocks derived from the received signal. The rate of these reference clocks will be selectable per line

AIS will be inserted per line on detection of dLOF, on detection of dLOS, optionally on the externally detected Signal Detect or under software control.

- aAIS = not SignalDetect_[line] * not SignalDetect_AIS_Insert_Disable_[line]
 - + dLOS_[line] * not LOS_AIS_Insert_Disable_[line]
 - + dLOF_[line] * not LOF_AIS_Insert_Disable_[line]
 - + Framer AIS Force_[line]

APS INTERFACE

The APS Port transports the payload and APS signaling between two mate devices. The APS finite state machine itself needs to be implemented by the external host software. The resulting bridge and switch requests are performed by configuring the cross connect.


A single 622.08 Mbit/s LVDS serial APS interface with differential input/output is provided. Clock recovery and synthesis are integrated.

The device's System Clock is the time base for the transmit APS interface output.

The APS port interface can be powered down via a memory mapped register.

The APS Interface characteristic information consists of:

- A1, A2, J0, and B1 overhead bytes similar to the STM-4/OC-12 RS (section) overhead
- The high order path data for four STM-1/OC-3 signals or one STM-4/OC-12 signal
- The received and transmitted K1/K2 APS signal for up to four lines
- Signal fail and signal degrade indications for up to four lines

APS Interface Generator

The PHAST-12N generates the APS interface overhead bytes.

- The SDH/SONET frame alignment signal will be inserted in the A1-A2 bytes
- The signal will be scrambled, except for the first SOH row
 - Software will be able to disable scrambling for test purposes

DATA SHEET

- A single byte Trail Trace Identifier (TTI) will be inserted in the J0 byte
- BIP-8 will be calculated over all bits of the preceding STM-4 like APS frame after scrambling and will be inserted in the B1 byte of the current frame before scrambling

APS Interface Monitor

The PHAST-12N terminates the APS interface overhead bytes.

- Loss of Lock (LOL) of the on-chip clock and data recovery will be reported
- Frame alignment is recovered from the A1-A2 bytes of the received signals
- Errors in the frame alignment signal will be detected and reported as OOF
- The signal will be descrambled, except for the first SOH row
 - · Software will be able to disable descrambling for test purposes
- The single byte Trail Trace Identifier (TTI) in the J0 byte will be compared to an expected value and the TTI Mismatch defect (TIM) will be detected
- The accepted Trail Trace Identifier will be reported
- BIP-8 will be calculated over all bits of the preceding STM-4 like APS frame before descrambling and will be compared to the B1 byte of the current frame after descrambling
- B1 BIP-8 errored blocks will be counted in a one second performance counter
- 3 subsequent frames with B1 BIP-8 errored blocks will be reported as a degraded signal (**B1_Error**) alarm, 5 subsequent non-errored frames will clear the **B1_Error** alarm

REGENERATOR SECTION (SECTION) OVERHEAD PROCESSING

The PHAST-12N device complies to the latest ITU/ETSI/ANSI standards and features regarding the generation and monitoring of the Regenerator Section Overhead bytes.

Regenerator Section Overhead Generator

The PHAST-12N generates the Regenerator Section overhead bytes of one STM-4/OC-12 or four STM-1/OC-3 signals.

- The frame alignment signal will be inserted in the A1-A2 bytes
- The signal will be scrambled, except for the first SOH row
 - software will be able to disable scrambling for test purposes.
- A single or 16 byte Trail Trace Identifier will be inserted in the J0 byte
- The interleave depth coordinate can be inserted in the Z0 bytes for backwards compatibility
- BIP-8 will be calculated over all bits of the preceding STM-n frame after scrambling and will be inserted in the B1 byte of the current frame before scrambling. The software configurable B1 byte has a special behaviour, in that the filled in byte is used as an error-mask to corrupt the calculated B1 byte.
- The D1-D3 bytes will optionally be inserted from
 - the transmit DCC interface, if the latter is configured for RS DCC
 - the TOH byte interface
 - the transmit TOH RAM
- The E1, F1, user bytes and MDB bytes will optionally be inserted from
 - the transmit TOH byte interface
 - the transmit TOH RAM

PHAST-12N TXC-06312

Regenerator Section Overhead Monitor

The PHAST-12N terminates the Regenerator Section overhead bytes of one STM-4/OC-12 or four STM-1/OC-3 signals.

- The signal will be descrambled, except for the first SOH row
 - Software will be able to disable descrambling for test purposes
- The single or 16 byte Trail Trace Identifier in the J0 byte will be compared to an expected value and the dTIM defect will be detected
 - · Software will be able to disable the TTI mismatch process
 - AIS insertion upon dTIM detection will be configurable
- The accepted Trail Trace Identifier will be reported
- BIP-8 will be calculated over all bits of the preceding STM-n frame before descrambling and will be compared to the B1 byte of the current frame after descrambling. The software readable B1 byte has a special behaviour, in that the transmitted byte represents the error mask (difference between calculated and received byte)
- The D1-D3 bytes will be forwarded to the receive DCC interface, if the latter is configured for RS DCC
- The D1-D3, E1, user bytes and MDB bytes will be written to the receive TOH RAM
- The D1-D3, E1, user bytes and MDB bytes will be forwarded to the receive TOH byte interface
- Near End Defect Second: Occurrence of aTSF will result in a Near End Defect Second. This register is cleared on the one-second boundary, after it has been copied to its shadow register (software readable)

The PHAST-12N RSOH Monitor will insert AIS per line interface towards the MSOH Monitor according to the following expression:

aAIS_[line] = dTIM_[line] * not TIM_AIS_Insert_Disable_[line]

+ RSOH_AIS_Force_[line]

MULTIPLEX SECTION (LINE) OVERHEAD PROCESSING

The PHAST-12N device is compliant to the latest ITU/ETSI/ANSI standards and features regarding the generation and monitoring of the Multiplex Section Overhead bytes.

Multiplex Section Overhead Generator

The PHAST-12N generates the Multiplex Section overhead bytes of one STM-4/OC-12 or four STM-1/OC-3 signals.

- BIP-nx24 will be calculated over all bits of the preceding STM-n frame except the first three SOH rows and will be inserted in the B2 bytes of the current frame. The software configurable B2 bytes have a special behaviour, in that the filled in bytes are used as an error-mask to corrupt the calculated B2 bytes
- Per line the internal or the external ring port can be selected as source for the REI and RDI indications
- The REI will be inserted into the M1 byte
- The RDI will be inserted into the K2 byte
- The MSP APS signal will be inserted into the K1-K2 bytes from
 - The receive APS Port

Proprietary TranSwitch Corporation Information for use Solely by its Customers

PHAST-12N TXC-06312

DATA SHEET

- The transmit receive TOH RAM
- The D4-D12 bytes will optionally be inserted from
 - The transmit DCC interface, if the latter is configured for MS DCC
 - The transmit TOH byte interface
 - The transmit TOH RAM
- The E2 byte will optionally be inserted from
 - The transmit TOH byte interface
 - The transmit TOH RAM
- The synchronization status message will be inserted into the S1 byte. The sources are
 - The transmit TOH byte interface
 - The transmit TOH RAM

Multiplex Section Overhead Monitor

The PHAST-12N terminates the Multiplex Section overhead bytes of one STM-4/OC-12 or four STM-1/OC-3 signals.

- BIP-nx24 will be calculated over all bits of the preceding STM-n frame except the first three SOH rows and will be compared to the B2 bytes of the current frame. The software readable B2 bytes have a special behaviour, in that the transmitted bytes represent the error mask (difference between calculated and received bytes).
 - An errored near-end block nN_B will be counted for performance monitoring if one or more errors in a STM-n frame are detected by the BIP-nx24. Optionally bit errors will be counted
 - The error count per frame will be forwarded to the internal and external line ring ports as REI indication for the mate TOH generator
 - The dDEG and dEXC defects will be detected for both bursty and Poisson error distributions based on (block) error thresholds
- The errored far-end blocks will be counted for performance monitoring based on the REI value retrieved from the M1 byte. Optionally bit errors will be counted
- The dAIS and dRDI defects will be detected
- The MSP APS signal will be retrieved from the K1-K2 bytes and
 - Written to the receive TOH RAM
 - Forwarded to the receive TOH byte interface
 - Forwarded to the transmit APS Port
- The D4-D12 bytes will be forwarded to the receive DCC interface, if the latter is configured for MS DCC
- The D4-D12, E2 and S1 bytes will be written to the receive TOH RAM
- The D4-D12, E2 and S1 bytes will be forwarded to the receive TOH byte interface
- The synchronization status message accepted from the S1 byte will be reported
- The S1 byte will be monitored for changes in the accepted synchronization status message
- Far End Defect Second: Occurrence of dRDI will result in a Far End Defect Second. This register is cleared on the one-second boundary, after it has been copied to its shadow register (software readable).

Per line AIS will be inserted on detection of dAIS or dEXC on that line or under software control.

Per line RDI will be forwarded to the internal and external line ring ports for the mate TOH generator.

The signal degrade (dDEG) and signal fail indications will be forwarded to the transmit APS port.

3

The PHAST-12N MSOH Monitor will insert AIS per line interface towards the pointer tracker according to the following expression:

- aAIS_[line] = dAIS_[line] * not AIS_AIS_Insert_Disable_[line]
 - + dEXC_[line] * not EXC_AIS_Insert_Disable_[line]
 - + dSSF_[line] * not SSF_AIS_Insert_Disable_[line]
 - + MSOH_AIS_Force_[line]

The PHAST-12N MSOH Monitor will insert RDI per line interface towards the RX Line Ring Port according to the following expression:

- aRDI_[line] = dAIS_[line] * not AIS_RDI_Insert_Disable_[line]
 - + dEXC_[line] * not EXC_RDI_Insert_Disable_[line]
 - + dSSF_[line] * not SSF_RDI_Insert_Disable_[line]
 - + MSOH_AIS_Force_[line]

DATA SHEET

HIGH ORDER CROSS-CONNECT

The PHAST-12N provides a high order SDH/SONET path cross connect function. Each VC-3/VC-4/VC-4-Xc/STS-1/STS-3c/STS-6c/STS-9c/STS-12c SPE path at the cross connect outputs will be able to serve as connection destination point. Each VC-3/VC-4/VC-4-Xc/STS-1/STS-3c/STS-6c/STS-9c/STS-12c SPE path at the cross connect inputs will be able to serve as connection source point.

The cross connect function will support uni-directional connections between source points at any of its inputs to destination points at any of its outputs.

The cross connect function will support multicasting of a single source point to any number of destination points.

The cross connect function will source the appropriate unequipped signal at not connected destination points.

At power up or reset, the cross connect will default all destination points to not connected.

The cross connect will be able to squelch or insert AIS at each destination point.

The cross connect function will be non-blocking.

For each output time slot the following parameters will be configurable by the user:

- The connection source point (input bus and time slot)
- Concatenation indication according to the SDH/SONET mapping mode
- Forced unequipped signal insertion (if no connection active)

Force_Uneq _{[bus][ts]}	Description
0	Output time slot [ts] on bus [bus] is connected to the SourceBus/SourceTs channel.
1 (Default)	Output time slot [ts] on bus [bus] is forced to unequipped.

• Forced AIS insertion (for APS squelching)

Force_AIS _{[bus][ts]}	Description
0 (Default)	Output time slot [ts] on bus [bus] is connected to the SourceBus/SourceTs channel.
1	Output time slot [ts] on bus [bus] is forced to AIS.

The PHAST-12N high order cross connect function will support three input buses and three output buses.

- Line interface
- APS Port
- POH Termination

Each bus will transport synchronous payload containers equivalent to a STM-4/OC-12 rate, i.e., up to 12 AU-3/VC-3/STS-1's, up to four VC-4/STS-3c's SPE, up to two STS-6c's, one STS-9c, one VC-4-4c/STS-12c, SPE or combinations thereof.

PHAST-12N TXC-06312

AUTOMATIC PROTECTION SWITCHING

Single Device Operation

The PHAST-12N device will support two 1+1, two 1:1 or one 1:n (n=2-3) protection groups within a single PHAST-12N device in STM-1/OC-3 mode. The incoming K1/K2 APS will be monitored by the TOH Monitor block. The outgoing K1/K2 APS will be generated by the TOH Generator block. The high order path cross connect will support bridge and switch operation. Figure 26 shows a 1:3 APS in idle state and in bridge/switch state after a failure of working line #2.

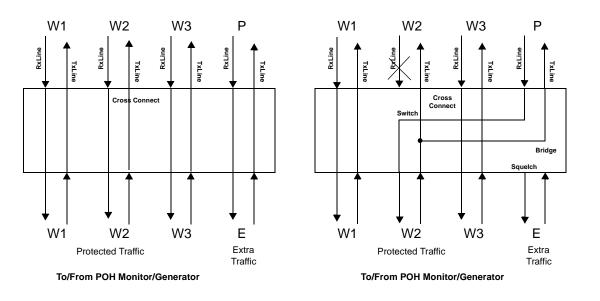


Figure 26. STM-1/OC-3, 1:3 APS with one PHAST-12N

Dual Device Operation

When two PHAST-12N devices are connected through the APS Port Interface, the following protection schemes are supported:

- 1+1, 1:1 or 1:n (n<=7) in STM-1/OC-3 mode
- 1+1 or 1:1 in STM-4/OC-12 mode

The APS Port interface will transport payload data and the APS finite state machine (FSM) indications between the two participating PHAST-12N devices. The interface consists of two point-to-point interfaces: one will transport payload data and FSM indications from the worker lines to the protection line, the other will transport payload data and FSM indications from the protection line to the worker lines.

The FSM indications include:

- RxAPS: the K1/K2 APS code received from the receive line interface
- TxAPS: the K1/K2 APS code which needs to be sent on the transmit line interface
- Status: the status of the received line, including the signal failure and signal degrade conditions
- Request: actions requested by the finite state machine, including switch and bridge requests

The high order path cross connect will support bridge and switch operation.

PHAST-12N		
TXC-06312	DATA SHEET	TRANSWIT

APS Port Architecture

Figure 27 shows the Receive and Transmit APS Port interface in relation to the Receive and Transmit Line interface and high order cross connect function.

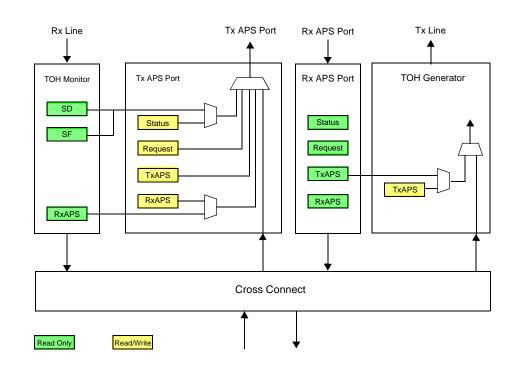


Figure 27. APS Port Architecture

The Tx APS Port interface sends the synchronous payload data from this PHAST-12N to its mate PHAST-12N.

It also allows the in-band forwarding of RxAPS, TxAPS, Status and Request:

- RxAPS: forwarded from the receive line interface, or optionally under software control
- TxAPS: under software (APS finite state machine) control
- Status: forwarded from the receive line interface, or optionally under software control
- Request: under software (APS finite state machine) control

The Rx APS Port interface receives the synchronous payload data from the mate PHAST-12N. It will also monitor the in-band forwarded of RxAPS, TxAPS, Status and Request indications. The TxAPS will be forwarded to the TOH Generator. The latter will have an option to insert the transmitted K1/K2 APS autonomously from the TxAPS on the Rx APS Port or from software controlled registers.

PHAST-12N TXC-06312

Example: STM-4/OC-12 Mode, 1+1 APS Protection

Figure 28 shows an example of a 1+1 APS protection architecture in STM-4/OC-12 mode. One PHAST-12N device handles the Worker line (W) while a second PHAST-12N handles the Protection line (P). Both devices are interconnected through the full bandwidth of APS Port interface. The cross connects of both devices setup a permanent bridge from the Worker Transmit line to the Protection Transmit line over one of the APS Port interfaces. The received protection payload is available on the other APS Port interface.

When the APS FSM detects a failure of the Worker line the cross connect of the Worker PHAST-12N performs the protection switch. It connects the receive protected traffic to the Receive APS Port interface which transports the payload of the received Protection line.

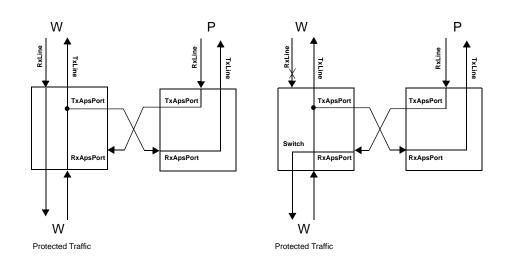


Figure 28. STM-4/OC-12, 1+1 APS

PHAST-12N
TXC-06312

Example: STM-4/OC-12 Mode, 1:1 APS Protection

Figure 29 shows an example of a 1:1 APS protection architecture in STM-4/OC-12 mode. The setup is similar to the 1+1 case without the permanent bridge. This allows unprotected extra traffic to be transported over the Protection line while there is no protection request active.

When the APS FSM detects a failure of the Worker line the cross connect of the Protection PHAST-12N performs a protection bridge connecting the transmit protected traffic to the transmit Protection line. The Worker PHAST-12N performs the protection switch. It connects the protected traffic to the Receive APS Port interface which transports the payload of the received Protection line. The unprotected extra traffic is no longer available and will be squelched.

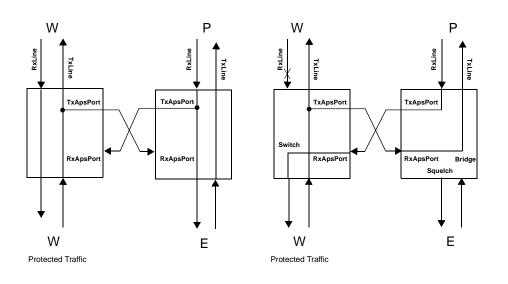


Figure 29. STM-4/OC-12, 1:1 APS

Example: STM-1 Mode, 1+1 APS Protection

Figure 30 shows an example of a 1+1 APS protection architecture in STM-1/OC-3 mode using two PHAST-12N devices. One PHAST-12N device handles up to four Worker lines (W) while a second PHAST-12N handles the associated Protection lines (P). Both devices are interconnected through the APS Port interface, using one fourth of the bandwidth per STM-1/OC-3 protection group. The cross connects of both devices setup permanent bridges from the Worker Transmit lines to their Protection Transmit lines over one of the APS Port interface.

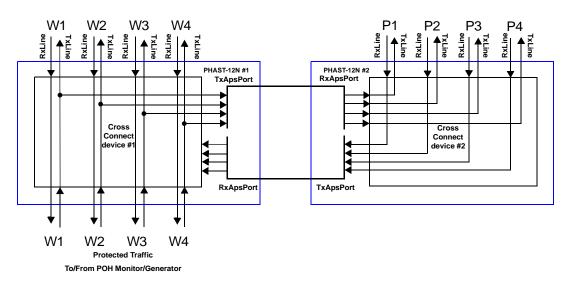
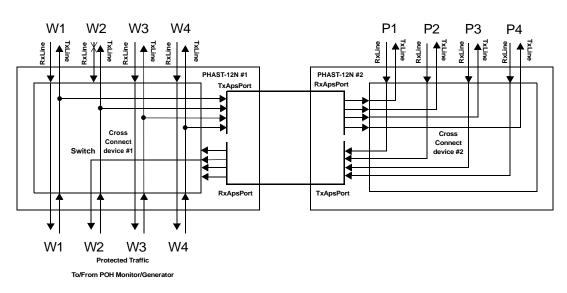
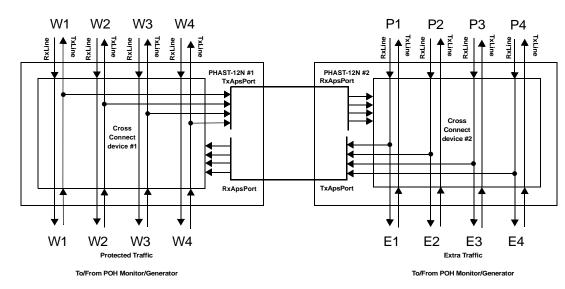
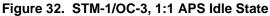


Figure 30. STM-1/OC-3, 1+1 APS Idle State

When the APS FSM detects a failure of one of the Worker lines, e.g., line #2 in Figure 31, the cross connect of the Worker PHAST-12N performs the protection switch. It connects the receive protected traffic of the failed line to the payload of its associated received Protection line available at the Receive APS Port interface.

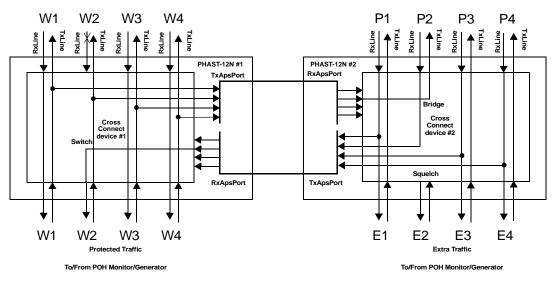

Figure 31. STM-1/OC-3, 1+1 APS Switch State

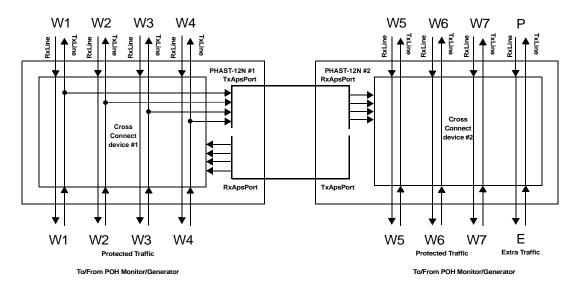
PHAST-12N TXC-06312	DATA SHEET	TRANSWITC
		Engines for Global Connect

Example: STM-1 Mode, 1:1 APS Protection

Figure 32 shows an example of a 1:1 APS protection architecture in STM-1/OC-3 mode using two PHAST-12N devices. The setup is similar to the 1+1 case without the permanent bridge. This allows unprotected extra traffic to be transported over a Protection line while there is no protection request active at that line.

When the APS FSM detects a failure of one of the Worker lines, e.g., line #2 in Figure 33, the cross connect of the Protection PHAST-12N performs a protection bridge connecting the transmit protected traffic of the failed line to the transmit Protection line. The Worker PHAST-12N performs the protection switch. It connects the protected traffic of the failed line to the payload of its associated received Protection line available at the Receive APS Port interface. The unprotected extra traffic of that Protection line is no longer available and will be squelched.




Figure 33. STM-1/OC-3, 1:1 APS Switch State

PHAST-12N TXC-06312

Example: STM-1 Mode, 1:n APS Protection

Figure 34 shows an example of a 1:n (n=7) APS protection architecture in STM-1/OC-3 mode using two PHAST-12N devices.

When the APS FSM detects a failure of one of the Worker lines, e.g., line #2 in Figure 35, the cross connect of PHAST-12N #2 performs a protection bridge connecting the transmit protected traffic of the failed line to the transmit Protection line. PHAST-12N #1 performs the protection switch. It connects the protected traffic of the failed line to the failed line to the payload of its associated received Protection line available at the Receive APS Port interface. The unprotected extra traffic of that Protection line is no longer available and will be squelched.

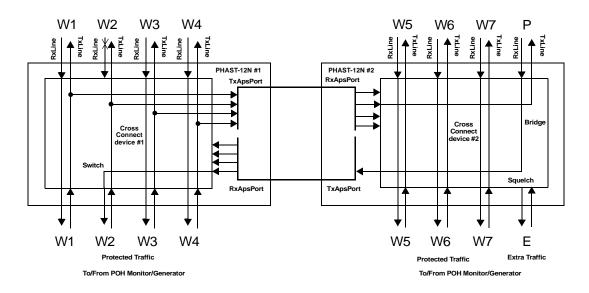


Figure 35. STM-1/OC-3, 1:7 APS Switch State

DATA SHEET

In case the failed line is terminated in PHAST-12N #2 itself, the cross-connect of that PHAST-12N #2 will perform the protection switch without use of the APS port.

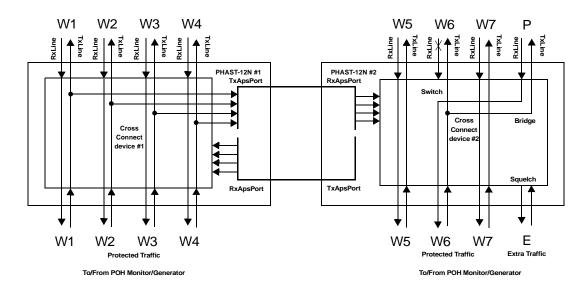


Figure 36. STM-1/OC-3, 1:7 APS Switch State

HIGH ORDER POINTER TRACKING, RETIMING AND POINTER GENERATION

LINE AND APS SIDE POINTER TRACKING, RETIMING AND POINTER GENERATION

The PHAST-12N will perform high order pointer processing and retiming on the H1/H2 pointer bytes from the received lines and from the APS Port.

The pointer tracking process will be performed according to the generic requirements for a SDH/SONET pointer tracker based on ETSI/ITU-T/ANSI standards.

The retiming process will retime the incoming OC-12/4*OC-3 lines and the received APS signal to the System Clock.

The path AIS (dAIS), loss of pointer (dLOP) and FifoError defect will be detected per high order path.

The PHAST-12N pointer tracker and retimer will insert AIS per high order path towards the high order cross connect according to the following expression:

- aAIS_[path] = dAIS_[path] * not AU_AIS_AIS_Insert_Disable
 - + dLOP_[path] * not LOP_AIS_Insert_Disable
 - + dTSF_{[path1} * not TSF_AIS_Insert_Disable
 - + FifoError_[path] * not FifoError_AIS_Insert_Disable
 - + AIS_Force_[path]

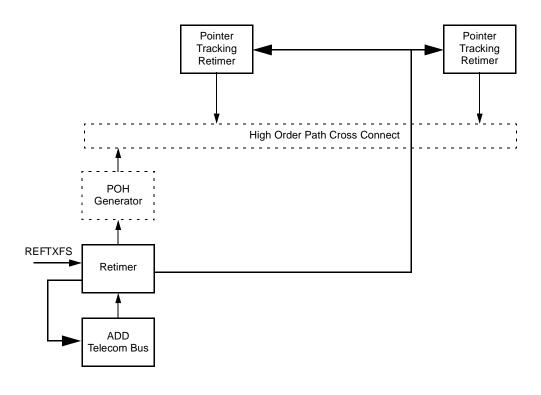
Incoming and outgoing pointer increments and decrements will be counted for performance monitoring.

Received SS bits are reported by the pointer tracking process. SS bits to be generated by the retiming process are configurable.

DETECTION OF CONCATENATED STRUCTURES

The incoming pointer bytes are analyzed for concatenation indicators (Y1*). A Concatenation configuration is set up and locked after four identical configurations. A (latched) indication is given to software when a new configuration has been detected and the entire detected configuration is reported by 12 bits. A '1' means a concatenation indication (Y1*) has been detected on the pointer bytes of the corresponding timeslot.

Important note: This concatenation detector only detects the concatenation indicators of the incoming pointer bytes. The detected configuration only serves as status, reported to software and is never used to configure the pointer tracking process.


FRAME REFERENCE PULSES

A Frame Reference Pulse is necessary wherever timing has to be (re)generated in the PHAST-12N. The PHAST-12N can lock on an externally provided Frame Reference Pulse, making it possible to align with other devices, or generate the Frame Reference Pulse internally.

- 101 of 184 -

PHAST-12N TXC-06312	DATA SHEET	TRANSWITCH
		Engines for Global Connectivity

The (generated) System Frame Reference Pulse is available via the REFSYSFS lead.

Generation of Frame Reference Pulse

A System Frame Reference Pulse is generated every 125 us (8kHz) when **ExtFramePulseExpected** is deasserted. The generated System Frame Reference Pulse can be monitored or used by other devices in order to align with the PHAST-12N via the REFSYSFS lead.

Locking on External Frame Reference Pulse

When **ExtFramePulseExpected** is asserted, the PHAST-12N will lock on an external Frame Reference Pulse and will generate a System Frame Reference Pulse. When the distance between two consecutive Frame Reference Pulses is not exactly 125 us, a Loss Of Frame defect (LOF) will be generated.

This LOF defect is cleared as soon as two consecutive pulses with a distance of 125 us have been received. The System Frame Reference Pulse will still be generated during LOF state, locked on previously accepted Frame Pulse.

Sampling of the Frame Reference Pulse is configurable on the positive or the negative System Clock edge.

Optionally an offset between the external Frame Reference Pulse and the internal System Frame Reference Pulse can be provided (**ExtFramePulseOffset**).

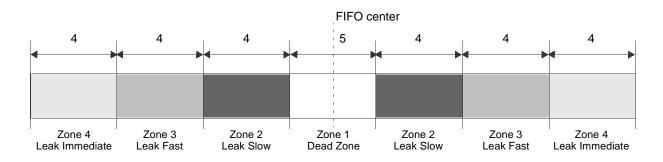
The generated System Frame Reference Pulse can be monitored via the REFSYSFS lead.

PHAST-12N TXC-06312

TERMINAL SIDE RETIMING AND POINTER GENERATION

The Add Telecom Bus interface has two operational modes: Master mode and Slave mode.

When the Add Telecom Bus interface is operating in slave mode, the SDH/SONET stream has to be retimed from the CBADCLK to the System Clock. This retiming is performed in the Retimer block. Therefore the setting **COMBUS_Bypass** has to be deasserted in the Retimer block.


No retiming is necessary when the Add Telecom Bus interface is operating in master mode. Sourced VC-3/VC-4/VC-4-Xc/STS-1/STS-3c/STS-6c/STS-9c/STS-12c SPE channels will have a AU-3/AU-4/AU-4-Xc/STS-1/STS-3c/STS-6c/STS-9c/STS-12c pointer value fixed to 0 or 522 in this case. This value has to be configured both in the Add Telecom Bus interface and in the Terminal Pointer Generator. **COMBUS_Bypass** has to be asserted in this mode.

SS bits are configurable in both cases.

RETIMER FIFO LEAK REGISTERS

All Retimers in PHAST-12N are able to reduce the number of pointer justifications to reduce jitter on AU-3/AU-4/AU-4-Xc/STS-1/STS-3c/STS-9c/STS-9c/STS-12c pointers.

To provide this ability, the FIFO size is 29 words and the filling level of the FIFO is divided into several zones, as depicted in Figure 37.

The center zone is called Dead Zone and is 5 words wide. In this zone, the FIFO is at half filling and no pointer adjustments will be made.

If the FIFO is almost empty or almost full, immediate action is required. These filling levels are called Immediate Leak Zone. This zone is 4 words wide at each end of the filling level. If the FIFO filling level is in one of these zones, as much pointer justifications as allowed will be generated to adjust the filling level towards the dead zone, resulting in one justification generated every four SDH/SONET frames.

The remaining zones are the Slow Leak Zone and the Fast Leak Zone. Each of these zones is also 4 words wide. These are the zones that allow smoothing out jitter on the AU-3/AU-4/AU-4-Xc/STS-1/STS-3c/STS-6c/STS-9c/STS-12c pointer values. The mechanism used to obtain this uses a Justification Spacing counter per timeslot. This counter maintains a fixed distance between two consecutive Pointer Justifications and is used as long as the FIFO filling level is situated inside the Slow or Fast leak zones. The initial value for these countdown counters is set to the value provided by **SlowLeakRegister** or **FastLeakRegister**, according to the current zone.

Efficient smoothing out of the jitter can be obtained by providing accurate values for **SlowLeakRegister** and **FastLeakRegister**.

DATA SHEET

HIGH ORDER PATH OVERHEAD PROCESSING

The PHAST-12N device is compliant to the latest ITU/ETSI/ANSI standards and features regarding the generation and monitoring of the high order Path Overhead bytes.

High Order Path Overhead Generator

The PHAST-12N generates the high order path overhead bytes of all sourced VC-3/VC-4/VC-4-Xc/STS-1/STS-3c/STS-6c/STS-9c/STS-12c channels.

- A single, 16 or 64 byte Trail Trace Identifier stored in the transmit POH RAM will be inserted in the J1 byte. Note that in case of a single or 16 byte Trail Trace Identifier the message must be repeated respectively 64 or 4 times.
- BIP-8 will be calculated over all bits of the preceding VC-n frame and will be inserted in the B3 byte of the current frame. The B3 byte in the transmit POH RAM is used as an errormask to corrupt the calculated B3 byte.
- The TSL signal label stored in the transmit POH RAM will be inserted in the C2 byte
- Per high order path the REI can be sourced from
 - The transmit POH RAM
 - The transmit POH byte interface
 - The internal or external ring port
- The REI will be inserted into the G1 byte
- Per high order path the RDI can be sourced from
 - The transmit POH RAM
 - The transmit POH byte interface
 - The internal or external ring port
- The internal or external ring port can be selected as source for RDI/E-RDI. If **OneBitRDI** is deasserted, E-RDI will be encoded as follows (ordered from high to low priority):

E-RDI indication	b5	b6	b7
Server	1	0	1
Connectivity	1	1	0
Payload	0	1	0
None	0	0	1

If OneBitRDI is asserted, RDI will be generated as follows:

E-RDI indication	b5	b6	b7
Server	1	0	0
Connectivity	1	0	0
Payload	0	0	0
None	0	0	0

- The RDI will be inserted into the G1 byte
- Per high order path the G1 spare bit can be sourced from
 - The transmit POH RAM
 - The transmit POH byte interface
- If the unidirectional option is active, 0x00 will be inserted in the G1 byte
- The F2 byte will be inserted from
 - The transmit POH RAM
 - The transmit POH byte interface
- The H4 byte will be
 - Inserted from the transmit POH RAM
 - Inserted from the transmit POH byte interface
 - Passed
 - · Generated based on incoming multiframe index
- The F3 byte will be inserted from
 - The transmit POH RAM
 - The transmit POH byte interface
- The K3 byte will be inserted from
 - The transmit POH RAM
 - The transmit POH byte interface
- The N1 byte will be inserted from
 - The transmit POH RAM
 - The transmit POH byte interface
- Optionally insertion of VC-AIS, resulting in the insertion of all 1's in the entire VC
- Optionally insertion of Unequipped, resulting in the insertion of all 0's in the entire VC
- Optionally insertion of Supervisory Unequipped, resulting in the insertion of all 0's in the entire VC except for the POH bytes J1, B3 and G1
- · Optionally bypass the POH generation: the entire high order path is just passed through

High Order Path Overhead Monitor

The PHAST-12N monitors the high order path overhead bytes on all incoming high order channels and terminates the path overhead bytes on all dropped channels.

- Optionally the single, 16 or 64 byte Trail Trace Identifier in the J1 byte will be monitored and the dTIM and dTTIZERO defects will be detected. For more information about the TTI process see "Trail Trace Identifier Process" on page 124
- Optionally the accepted Trail Trace Identifier and stable indications will be reported for one configurable high order path. For more information about the reporting of TTI see "Trail Trace Identifier Process" on page 124
- BIP-8 will be calculated over all bits of the preceding VC-n frame and will be compared to the B3 byte of the current frame
 - If one or more errors are detected, both a NearEndDefect_BlockCounter (1 block = 1 frame with 1 or more bit errors) and a NearEndDefect_BitCounter will be updated
 - The error counter per frame will be forwarded to the internal and external ring ports as REI indication

DATA SHEET

- The dDEG defect will be detected for bursty or Poisson error distributions. For more information about these processes see "BER Supervision for B2/B3" on page 121
- The dEXC defect will be detected for Poisson error distribution. For more information about this process see "BER Supervision for B2/B3" on page 121
- During incoming SSF, the counters are not updated and the value 0 is forwarded to the ring ports
- Received C2 is debounced on a 5 frames basis
 - Accepted C2 is reported
 - Changes in accepted C2 are reported
 - The dUNEQ defect will be detected when the accepted C2 equals the unequipped activation pattern 0x00
 - The dAIS defect will be detected when the accepted C2 equals the AIS activation pattern 0xff
 - The dPLM defect will be detected when the accepted C2 does not equal the expected TSL code or the "equipped non-specific" 0x01
- If one or more errors are indicated by the REI G1, the FarEndDefect_Counter will be updated.
 - Optionally bit errors will be counted
 - During incoming SSF, the counter is not updated
- Received RDI (3 bit) is debounced on a configurable number of frames basis (ETSI: 3, 5 Telcordia: 10)
 - The dRDI, E-RDI Server, E-RDI Connectivity and E-RDI Payload defects will be detected according to the following table:

b5	b6	b7	Defects
0	0	0	No defect
0	0	1	No defect
0	1	0	dRDI-P
0	1	1	No defect
1	0	0	dRDI and dRDI-S
1	0	1	dRDI and dRDI-S
1	1	0	dRDI and dRDI-C
1	1	1	dRDI and dRDI-S

- During incoming SSF or when the unidirectional option is active, all RDI defects are cleared
- Optionally the H4 byte is be monitored for the low order multiframe sequence
 - The dLOM defect will be detected in case a low order multiframe is expected
- Received K3 is debounced on a 3 frame basis
 - Accepted K3 is reported
 - Changes in accepted K3 are reported
- AIS will be inserted per high order path according to the following expression:

aTSF_[path]

- = dAIS [path] * not AIS_AIS_Insert_Disable
- + dSSF_[path] * not SSF_AIS_Insert_Disable
- + dEXC_[path] * not EXC_AIS_Insert_Disable
- + dUNEQ_[path] * not UNEQ_AIS_Insert_Disable

Engines for Global Connectivity	DATA SHEET	PHAST-12N TXC-06312
	+ dTIM _[path] * not TIM_AIS_Insert_Disable _[path]	
aAIS _[path]	 AI_TSF_[path] dPLM_[path] * not PLM_AIS_Insert_Disable dLOM_[path] * not LOM_AIS_Insert_Disable AIS_Force_[path] 	
 RDI will be inserted per high or 	der path according to the following expressions:	
aE-RDI-S _[path]	<pre>= dSSF_[path] * not SSF_RDI_Insert_Disable</pre>	
aE-RDI-C _[path]	 dUNEQ_[path] * not UNEQ_RDI_Insert_Disable dTIM_[path] * not TIM_RDI_Insert_Disable 	
aE-RDI-P _[path]	= dPLM _[path] * not PLM_RDI_Insert_Disable	
aRDI _[path] = +	aE-RDI-S _[path] aE-RDI-C _[path]	
 The defect correlations are appreciations 	blied as follows:	
cSSF _[path] = +		
cAIS _[path] =	dAIS _[path]	
*	dUNEQ _[path] (not dSSF _[path] + SSF_UNEQ_Inhibit_Disable) (dTTIZERO _[path] + TTIZERO_UNEQ_Contribution_Dis (dTIM _[path] + TIM_UNEQ_Contribution_Disable)	sable)

PHAST-12N ГXC-06312		DATA SHEET	TRANSWITCH [®] Engines for Global Connectivity
cTIM _[path]	=	dTIM _[path]	
o milpathj	*	(not dSFF _[path] + SSF_TIM_Inhibit_Disable)	
	*	(not dUNEQ _[path] * not UNEQ_TIM_In	
		+ not dTTIZERO _[path] * not TTIZERO_TIM_Inhibit_Disable	
		+ UNEQ_TIM_Inhibit_Disable * TTIZE	
cTTIZERO _[path]	=	dTTIZERO _[path]	
	*	(not dSSF _[path] + SSF_TTIZERO_Inhi	bit_Disable)
cDEG _[path]	=	dDEG _[path]	
	*	(not dSSF _[path] + SSF_DEG_Inhibit_D	Disable)
	*	(not dTIM _[path] + TIM_DEG_Inhibit_Di	isable)
cEXC _[path]	=	dEXC _[path]	
	*	(not dSSF _[path] + SSF_EXC_Inhibit_D	visable)
	*	(not dTIM _[path] + TIM_EXC_Inhibit_Di	sable)
cPLM _[path]		dPLM _[path]	
	*	(not AI_TSF _[path] + TSF_PLM_Inhibit_	_Disable)
cLOM _[path]	=	dLOM _[path]	
	*	(not AI_TSF _[path] + TSF_LOM_Inhibit	_Disable)
	*	(not dPLM _[path] + PLM_LOM_Inhibit_	Disable)
cE-RDI(-S)(-C)(-P) _[path]	=	dE-RDI(-S)(-C)(-P) _[path]	
	*		
	*	(not dUNEQ _[path] * not UNEQ_RDI_	
		+ not dTTIZERO _[path] * not TTIZERO	
		+ UNEQ_RDI_Inhibit_Disable * TTI	
	*	(not dTIM _[path] + TIM_RDI_Inhibit_I	JISADIE)

PHAST-12N TXC-06312

TOH PORT INTERFACE

The transmit TOH port interface allows insertion of the RSOH and MSOH bytes into the TOH.

All received TOH bytes are output on the receive TOH port interface.

Each interface consists of clock, data, data enable, address and address enable lines.

The address is a 10-bit word according to the (a,b,c) format specified by ITU-T G.707/Y.1322 clause 9.2.1 and Figure 9-1:

A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	Line Interface Mode
Row number			(Multi-)Column number			STM-1/O	C-3 Line	STM-1/OC-3 Mode		
a-1			b-1			(range 0 to 3)				
	(range 0 to 8)			(range 0 to 8)		Multi-Column		STM-4/OC-12 Mode		
								Interleav	e Depth	
							c-	1		
								(range	0 to 3)	

Transmit TOH Port Interface

This port interface allows insertion of the RSOH and MSOH bytes into the TOH. The TOH port interface is used to request any of the TOH bytes for either one STM-4 or four STM-1 frames from the outside world. Note the BIP bytes (B1, B2) have a special meaning, these can be used as an error mask on the calculated BIP.

The Transmit TOH Port consists of following leads:

- Output Transmit TOH Port Clock TOHTXCLK
- Output Transmit TOH Port Address Latch Enable TOHTXALE
- Output Transmit TOH Port Address TOHTXADDR
- Output Transmit TOH Port Data Latch Enable TOHTXDLE
- Input Transmit TOH Port Data TOHTXDATA

The transmit TOH Port protocol is as follows (see Figure 9):

- 1. The 10-bit address for the requested byte is output on TOHTXADDR, most significant bit first. During this time the Address Latch Enable TOHTXALE is asserted.
- 2. A one cycle gap is left open.
- 3. The Data Latch Enable TOHTXDLE is asserted and the 8-bit data word is sampled on the input TOHTXDATA, most significant bit first.

Note: Configuration of the Transmit TOH Port interface is done in the memory map of the TOH Generator (see **Table 29**). Selection of the TOH Port as source for a TOH byte is done in the TOH bytes internal memory by setting the most significant bit of the corresponding memory entry to '1'.

Receive TOH Port Interface

All received RSOH and MSOH bytes are sent over a serial Receive TOH Port interface. The values sent out on this interface are the raw, unprocessed values, except for B1 and B2, where an error mask is calculated (ones indicate the errored bits).

DATA SHEET

The Receive TOH Port consists of following leads:

- Output Receive TOH Port Clock TOHRXCLK
- Output Receive TOH Port Address Latch Enable TOHRXALE
- Output Receive TOH Port Address TOHRXADDR
- Output Receive TOH Port Data Latch Enable TOHRXDLE
- Output Receive TOH Port Data TOHRXDATA

The Receive TOH Port protocol is as follows (see Figure 8):

- 1. The 10-bit address for the transmitted byte is output on TOHRXADDR, most significant bit first. During this time the Address Latch Enable TOHRXALE is asserted.
- 2. A one cycle gap is left open.
- 3. The 8-bit data of the transmitted TOH byte is output on TOHRXDATA. During this time the Data Latch Enable TOHRXDLE is asserted.

Note: Configuration of the Receive TOH Port interface is done in the memory map of the TOH and DCC Port (see Table 32). The Receive TOH Port interface has to be enabled by the **TOH_Port_Enable** setting. No bytes will be sent out when this port is disabled.

DCC PORT INTERFACE

The Transmit and the Receive DCC Port interfaces provide an interface to the RS or MS DCC bytes. The interface is a constant bit-rate serial interface, each consisting of a clock and a data line.

Transmit DCC Port Interface

The Transmit DCC ports are constant bit-rate ports that provide a possible source for either the RS or the MS DCC bytes in the outgoing STM-4 or the four STM-1 frames. In STM-4 mode, only the first DCC Port is active.

Each Transmit DCC port can be configured for RS DCC bytes or MS DCC bytes:

RSOH_DCC_Select	Mode
0 (Default)	MS DCC bytes mode: the Transmit DCC port will request the MS DCC bytes.
1	RS DCC bytes mode: the Transmit DCC port will request the RS DCC bytes.

The Transmit DCC Port consists of following leads:

- Inputs Transmit DCC Data DCCTXDATA1..4
- Outputs Transmit DCC Clock DCCTXCLK1..4

The index indicates the port, one per transmit line. The Transmit DCC Clocks DCCTXCLK1..4 have a constant frequency and depend on the configured mode, as indicated in following table:

RSOH_DCC_Select	DCCTXCLK frequency (kHz)
0	576
1	192

Note: Configuration of the Transmit DCC Port interface is done in the memory map of the TOH Generator (see Table 29). The Transmit DCC port has to be enabled by the **DCC_Port_Enable** setting. If the Transmit DCC Port is disabled, the Transmit Port Clock DCCTXCLK output will be held low.

3

PHAST-12N TXC-06312

Receive DCC Port Interface

The Receive DCC ports are constant bit-rate ports that provide either the received RS DCC bytes or the received MS from the incoming STM-4 or the four STM-1 frames. In STM-4 mode, only the first DCC Port is active.

Each Receive DCC port can be configured for RS DCC bytes or MS DCC bytes:

RSOH_DCC_Select	Mode
0 (Default)	MS DCC bytes mode: the Receive DCC port will send the MS DCC bytes.
1	RS DCC bytes mode: the Receive DCC port will send the RS DCC bytes.

The Receive DCC Port consists of following leads:

- Outputs Receive DCC Data DCCRXDATA1..4
- Outputs Receive DCC Clock DCCRXCLK1..4

The index indicates the port, one per receive line. The Receive DCC Clocks DCCRXCLK1..4 have a constant frequency and depend on the configured mode, as indicated in following table:

RSOH_DCC_Select	DCCTXCLK frequency (kHz)
0	576
1	192

Note: Configuration of the Receive DCC Port interface is done in the memory map of the TOH and DCC Port (see Table 32). The Receive DCC port has to be enabled by the **DCC_Port_Enable** setting. If the Receive DCC Port is disabled, the Receive Port Clock DCCRXCLK output will be held low.

LINE ALARM INDICATION (RING) PORT INTERFACE

The Line Alarm Indication (Ring) Port Interface transports the Remote Information (RI) from the TOH sink/monitor to the TOH source/generator. The Remote Information consists of the REI and RDI values to be inserted by the TOH generator.

The TOH monitors send the Remote Information of all SDH/SONET lines to the Receive Line Alarm Indication (Ring) Port Interface. This port multicasts the information internally to the POH generator and externally to the Receive Alarm Indication (Ring) Port Interface.

The source for the Remote Information can be selected in the TOH generator, per SDH/SONET line. When the Remote Information is taken from the Transmit Line Alarm Indication (Ring) Port Interface, it is possible to configure the Line Alarm Indication (Ring) Port Interface to use the internally or externally available information.

Internal Line Alarm Indication (Ring) Port Interface

When sink and source are handled on one device, the internal ring port can be used (**ExternalSourceSelect** deasserted). The Transmit Line Alarm Indication (Ring) Port Interface leads must then be connected to VSS.

PHAST-12N TXC-06312	DATA SHEET	TRANSWITCH
		Engines for Global Connectivity

Figure 38 shows the use of the internal Line Alarm Indication (Ring) Port Interface.

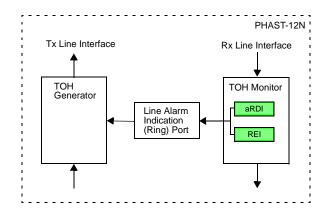
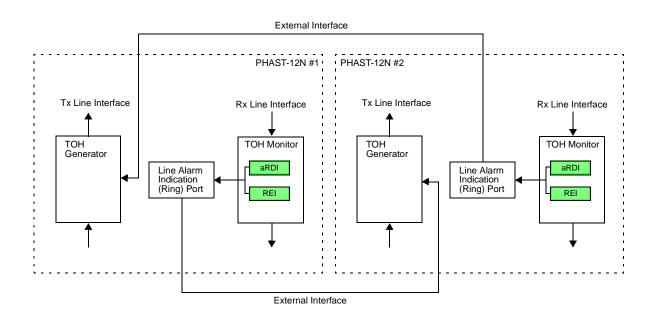



Figure 38. Internal Line Alarm Indication (Ring) Port Interface

External Line Alarm Indication (Ring) Port Interface

The external Line Alarm Indication (Ring) Port Interface is necessary when sink and source are processed on two different devices. The Receive Line Ring Port / Alarm Interface of the sink has to be connected to the Transmit Line Ring Port / Alarm Interface of the source and the external source mode has to be selected (**ExternalSourceSelect** asserted).

Figure 39 shows the use of the external Line Alarm Indication (Ring) Port Interface.

PHAST-12N TXC-06312

The external interface consists of a clock, data and start of frame line. A start of frame pulse coincides with the first bit of the Line Alarm Indication (Ring) Port data frame.

The Receive Line Alarm Indication (Ring) Port Interface consists of following leads:

- Output Receive Line Alarm Indication (Ring) Port clock LRPRXCLK
- Output Receive Line Alarm Indication (Ring) Port frame sync LRPRXFS
- Output Receive Line Alarm Indication (Ring) Port data LRPRXDATA

The Transmit Line Alarm Indication (Ring) Port Interface consists of following leads:

- Input Transmit Line Alarm Indication (Ring) Port clock LRPTXCLK
- Input Transmit Line Alarm Indication (Ring) Port frame sync LRPTXFS
- Input Transmit Line Alarm Indication (Ring) Port data LRPTXDATA

Refer to Figure 12 and Figure 13 for timing diagrams.

HIGH ORDER POH PORT INTERFACE

The transmit POH port interface allows insertion of the POH bytes.

All received High Order POH bytes are output on the receive High Order POH port interface.

Each interface consists of clock, data, data enable, address and address enable lines.

The address is an 8-bit word with following format:

A7	A6	A5	A4	A3	A2	A1	A0
Hig	h Order p	ath num	ber	P	OH byte	identificat	tion

The least significant nibble identifies the POH byte on the High Order POH Port Interface:

A3	A2	A1	A0	POH Byte
0	0	0	0	J1
0	0	0	1	B3
0	0	1	0	C2
0	0	1	1	G1
0	1	0	0	F2
0	1	0	1	H4
0	1	1	0	F3
0	1	1	1	K3
1	0	0	0	N1

The most significant nibble identifies the High Order path number:

A7	A6	A5	A4	Assigned to
0	0	0	0	VC-3/STS-1 SPE #1 or VC-4/STS-3c SPE #1
0	0	0	1	VC-3/STS-1 SPE #2
0	0	1	0	VC-3/STS-1 SPE #3
0	0	1	1	VC-3/STS-1 SPE #4 or VC-4/STS-3c SPE #2

PHAST-12N	
TXC-06312	

A7	A6	A5	A4	Assigned to
0	1	0	0	VC-3/STS-1 SPE #5
0	1	0	1	VC-3/STS-1 SPE#6
0	1	1	0	VC-3/STS-1 SPE #7 or VC-4/STS-3c SPE #3
0	1	1	1	VC-3/STS-1 SPE #8
1	0	0	0	VC-3/STS-1 SPE #9
1	0	0	1	VC-3/STS-1 SPE #10 or VC-4/STS-3c SPE #4
1	0	1	0	VC-3/STS-1 SPE #11
1	0	1	1	VC-3/STS-1 SPE #12
1	1	0	0	NA
1	1	0	1	NA
1	1	1	0	NA
1	1	1	1	NA

Note the address corresponding to the master VC is used for concatenated structures. E.g., when mapping four VC-4/STS-3c's SPE in a STM-4/OC-12, only 0x0, 0x3, 0x6 and 0x9 will be valid values for A[7:4].

Transmit High Order POH Port Interface

The transmit High Order POH port interface allows inserting most High Order Path Overhead bytes into the High Order POH. J1 and C2 cannot be selected from the transmit High Order POH port interface, while the B3 BIP-8 can be used as error mask on the calculated BIP-8 for test purposes.

The Transmit POH Port consists of following leads:

- Output Transmit POH Port Clock POHTXCLK
- Output Transmit POH Port Address Latch Enable POHTXALE
- Output Transmit POH Port Address POHTXADDR
- Output Transmit POH Port Data Latch Enable POHTXDLE
- Input Transmit TOH Port Data POHTXDATA

The Transmit POH Port protocol is as follows (see Figure 11):

- 1. The 8-bit address for the requested byte is output on POHTXADDR, most significant bit first. During this time the Address Latch Enable POHTXALE is asserted.
- 2. A one cycle gap is left open.
- 3. The Data Latch Enable POHTXDLE is asserted and the 8-bit data word is sampled on the input POHTXDATA, most significant bit first.

Note: No configuration is necessary for the Transmit POH Port. The source of the POH bytes can be configured in the memory map of the POH Generator (see Table 78).

Receive High Order POH Port Interface

All received High Order Path Overhead bytes are sent over a serial Receive POH Port interface. The values sent out on this interface are the raw, unprocessed values, except for B3, where an error mask is calculated (ones indicates the errored bits).

The Receive POH Port consists of following leads:

Output Receive POH Port Clock POHRXCLK

PHAST-12N TXC-06312

- Output Receive POH Port Address Latch Enable POHRXALE
- Output Receive POH Port Address POHRXADDR
- Output Receive POH Port Data Latch Enable POHRXDLE
- Output Receive POH Port Data POHRXDATA

The Receive POH Port protocol is as follows (see Figure 10):

- 1. The 8-bit address for the transmitted byte is ouput on POHRXADDR, most significant bit first. During this time the Address Latch Enable POHRXALE is asserted.
- 2. A one cycle gap is left open.
- 3. The 8-bit data of the transmitted TPOH byte is output on POHRXDATA. During this time the Data Latch Enable POHRXDLE is asserted.

Note: No configuration is necessary for this POH Port.

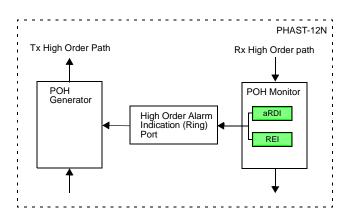
HIGH ORDER ALARM INDICATION (RING) PORT INTERFACE

The High Order Alarm Indication (Ring) Port Interface transports the Remote Information (RI) from the High Order POH sink/monitor to the POH source/generator. The Remote Information consists of the REI and (enhanced) RDI values to be inserted by the POH generator.

The High Order POH monitor sends the Remote Information of all High Order path channels to the Receive High Order Alarm Indication (Ring) Port Interface. This port multicasts the information internally to the POH generator and externally to the Receive Alarm Indication (Ring) Port Interface.

The source for the Remote Information can be selected in the POH generator, per high order path. When the Remote Information is taken from the Transmit High Order Alarm Indication (Ring) Port Interface, it is possible to configure the High Order Alarm Indication (Ring) Port Interface to use the internally or externally available information.

When the **ExtendRDI** option is asserted, the RDI insertion will be extended to minimum 20 frames.


PHAST-12N	
TXC-06312	

Internal High Order Alarm Indication (Ring) Port Interface

When sink and source are handled on one device, the internal ring port can be used (**SelectExternalSource** deasserted). The Transmit High Order Alarm Indication (Ring) Port Interface leads must then be connected to VSS.

Figure 40 shows the use of the internal High Order Alarm Indication (Ring) Port Interface.

Figure 40. Internal High Order Alarm Indication (Ring) Port Interface

External High Order Alarm Indication (Ring) Port Interface

The external High Order Alarm Indication (Ring) Port Interface is necessary when sink and source are processed on two different devices. The Receive High Order Path Ring Port / Alarm Interface of the sink has to be connected to the Transmit High Order Path Ring Port / Alarm Interface of the source and the external source mode has to be selected (**SelectExternalSource** asserted).

Figure 41 shows the use of the external High Order Alarm Indication (Ring) Port Interface.

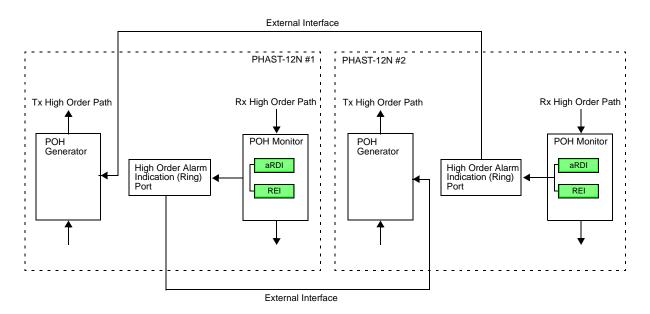


Figure 41. External High Order Alarm Indication (Ring) Port Interface

The external interface consists of a clock, data and start of frame line. A start of frame pulse coincides with the first bit of the High Order Alarm Indication (Ring) Port data frame.

The Receive High Order Alarm Indication (Ring) Port Interface consists of following leads:

- Output Receive High Order Alarm Indication (Ring) Port clock PRPRXCLK
- Output Receive High Order Alarm Indication (Ring) Port frame sync PRPRXFS
- Output Receive High Order Alarm Indication (Ring) Port data PRPRXDATA

The Transmit High Order Alarm Indication (Ring) Port Interface consists of following leads:

- Input Transmit High Order Alarm Indication (Ring) Port clock PRPTXCLK
- Input Transmit High Order Alarm Indication (Ring) Port frame sync PRPTXFS
- Input Transmit High Order Alarm Indication (Ring) Port data PRPTXDATA

Refer to Figure 13 and Figure 14 for timing diagrams.

Proprietary TranSwitch Corporation Information for use Solely by its Customers

TRA

PHAST-12N TXC-06312

DATA SHEET

DROP BUS INTERFACE

The Drop bus consists of the following leads:

- Output data CBDPD(7-0)
- Output parity CBDPPAR
- Output clock CBDPCLK
- Output J0, J1, and optional V1 marker pulses CBDPJ0J1
- Output payload indication CBDPSPE

J0 and J1 marker pulses are always present on the CBDPJ0J1 lead. A V1 marker pulse will be present when TUG-2 is mapped in the SDH/SONET stream (see "SDH/SONET Mapping" on page 79). i.e., when lower-order is mapped in the SDH/SONET traffic.

The Drop bus always outputs all bytes on the bus. The H1/H2 pointer bytes are always inserted. Other TOH bytes are don't cares and must be ignored.

The most significant bit (MSB) of the output data is assigned to CBDPD7. The MSB is defined as the first bit received in a SDH/SONET byte. The bus rate is 77.76 MHz.

The active CBDPCLK clock edge on which the data and timing signals are clocked out can be selected.

Output_SelectNegativeClockEdge (see Table 76)	Active CBDPCLK clock edge	
0	Output signals are clocked out on positive CBDPCLK clock edge.	
1	Output signals are clocked out on negative CBDPCLK clock edge.	

Drop Bus Parity Selection

The parity selection for the Drop bus is according to the following table. The calculated parity is output on the CBDPPAR lead.

ParityEven (see Table 76)	ParityIncludesTiming (see Table 76)	Drop Bus Parity Selection	
0	0	Odd parity is calculated for the data output leads CBDPD(7-0).	
0	1	Odd parity is calculated for the data and timing output leads, CBDPD(7-0), CBDPJ0J1 and CBDPSPE.	
1	0	Even parity is calculated for the data output leads CBDPD(7-0).	
1	1	Even parity is calculated for the data and timing output leads, CBDPD(7-0), CBDPJ0J1 and CBDPSPE.	

Drop Bus Delay

With control field **TimingDelay**, see Table 76 of the Memory Maps and Bit Descriptions section, an additional delay of 0 up to 15 extra CBDPCLK clock cycles can be inserted between the Drop bus data/parity and the Drop bus timing signals, CBDPJ0J1 and CBDPSPE. All Drop bus outputs are delayed one clock cycle when control field **TimingDelay** is set to 1.

ADD BUS INTERFACE

The Add bus consists of the following leads:

- Input data CBADD(7-0)
- Input parity CBADPAR

The timing information can be input or output:

- Input/Output clock CBADCLK
- Input/Output J0, J1, and optional V1 marker pulses CBADJ0J1
- Input/Output payload indication CBADSPE

J0 and J1 marker pulses are always expected on the CBADJ0J1 lead. A V1 pulse is expected when the SDH/SONET traffic contains lower-order (see "SDH/SONET Mapping" on page 79).

The most significant bit (MSB) of the output data is assigned to CBADD7. The MSB is defined as the first bit received in a SDH/SONET byte. The bus rate is 77.76 MHz.

The CBADCLK clock edge on which the data (and optionally timing) signals are clocked in can be selected.

Sample_SelectNegativeClockEdge (see Table 66)	Active CBADCLK clock edge	
0	Input signals are sampled on positive CBADCLK clock edge.	
1	Input signals are sampled on negative CBADCLK clock edge.	

The active CBADCLK clock edge on which the timing signals are clocked out can be selected.

Output_SelectNegativeClockEdge (see Table 66)	Active CBADCLK clock edge	
0	Output signals are clocked out on positive CBADCLK clock edge.	
1	Output signals are clocked out on negative CBADCLK clock edge.	

DATA SHEET

Add Bus Timing Modes

The CBADT lead selects the Master (timing signals are output) or Slave (timing signals are input) timing mode on the Add bus interface.

Lead CBADT	Add Bus Timing Mode		
Low	Master Timing Mode: The Add bus timing leads, CBADCLK, CBADJ0J1, and CBADSPE, are Outputs. Refer to Figure 7.		
High	Slave Timing Mode: The Add bus timing leads, CBADCLK, CBADJ0J1, and CBADSPE, are Inputs. Refer to Figure 6.		

Add Bus Parity Selection

The parity selection for the Add bus is according to the following table. The calculated parity is compared to the value of the CBADPAR input lead. A parity error is indicated by the ParityError alarm, see Table 64. Other than an alarm indication, no action is taken by the PHAST-12N.

ParityEven (see Table 66)	ParityIncludesTiming (see Table 66)	Drop Bus Parity Selection	
0	0	Odd parity is calculated for the data input leads CBADD(7-0).	
0	1	Odd parity is calculated for the data and timing input leads, CBADD(7-0), CBADJ0J1 and CBADSPE (CBADT is high).	
1	0	Even parity is calculated for the data input leads CBADD(7-0).	
1	1	Even parity is calculated for the data and timing input leads, CBADD(7-0), CBADJ0J1 and CBADSPE (CBADT is high).	

Add Bus Delay

With control field **TimingDelay**, see Table 66 of the Memory Maps and Bit Descriptions section, an additional delay of 0 up to 15 extra CBADCLK clock cycles can be inserted between the Add bus timing signals, CBADJ0J1 and CBADSPE, and the Add bus data/parity. All Add bus inputs are delayed one clock cycle when control field **TimingDelay** is set to 1, for all timing modes.

PHAST-12N TXC-06312

BER SUPERVISION FOR B2/B3

The PHAST-12N supports detection of the degraded signal (dDEG) and the excessive error (dEXC) defects for both line (B2 BIP-96 in STM-4/OC-12 mode, B2 BIP-24 in STM-1/OC-3 mode) and path (B3 BIP-8).

The assumed distribution of errors needs to be configured:

PoissonErrorCheck	Description
0 (Default)	Bursty distribution of errors is assumed (SDH).
1	Poisson distribution of errors is assumed (SONET).

Bursty Distribution of Errors

If a bursty distribution of errors is assumed, the excessive error defect is assumed to be false. The degraded signal defect detection is based on one second performance monitoring block error count.

Two sets of configuration registers are provided: one for setting the defect, one for clearing (to allow some hysteresis).

The degraded signal defect (dDEG) is declared if **DEG_DetectionWindowSize** consecutive bad intervals are detected - an interval is the one second period used for performance monitoring. An interval is declared bad if the number of errored blocks in that interval is greater than or equal to **DEG_DetectionErrorThreshold**.

The degraded signal defect (dDEG) is cleared if **DEG_RecoveryWindowSize** consecutive good intervals are detected. An interval is declared good if the number of errored blocks in that interval is smaller than **DEG_RecoveryErrorThreshold**.

The parameters **DEG_DetectionWindowSize** and **DEG_RecoveryWindowSize** are provisionable in the range 2 to 10.

The threshold parameters **DEG_DetectionErrorThreshold** and **DEG_RecoveryErrorThreshold** are to be provisioned as a number of errored blocks in the range of 0 < threshold <= Number of blocks in the interval.

Poisson Distribution of Errors

If a Poisson distribution of errors is assumed, both the degraded signal and the excessive error defects need to be detected based on the accumulated BIP errors during intervals of configurable duration.

For each defect, two sets of configuration registers are provided: one for setting the defect, one for clearing (to allow some hysteresis).

The monitoring intervals for the degraded signal defect (dDEG) can be configured in steps of time base T. The value of time base T can be set to 500 μ s or 125 μ s via the **DEG_Use125usCounter** configuration.

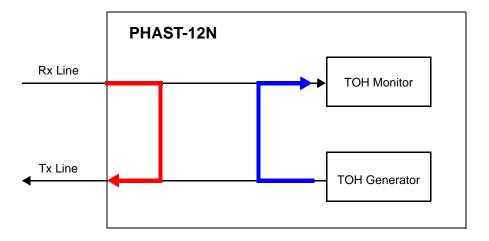
The degraded signal defect (dDEG) is declared if the accumulated BIP error count since the start of the detection interval is greater than or equal to **DEG_DetectionErrorThreshold** errors. The interval duration is **DEG_DetectionWindowSize** * T.

The degraded signal defect (dDEG) is cleared if the accumulated BIP error count during the clearing interval is less than **DEG_RecoveryErrorThreshold** errors. The interval duration is **DEG_RecoveryWindowSize** * T.

The monitoring intervals for the excessive error defect (dEXC) can be configured in steps of time base T. The value of time base T can be set to 500 μ s or 125 μ s via the **EXC_Use125usCounter** configuration.

The excessive signal defect (dEXC) is declared if the accumulated BIP error count since the start of the detection interval is greater than or equal to **EXC_DetectionErrorThreshold** errors. The interval duration is **EXC_DetectionWindowSize** * T.

DATA SHEET


The excessive signal defect (dEXC) is cleared if the accumulated BIP error count during the clearing interval is less than **EXC_RecoveryErrorThreshold** errors. The interval duration is **EXC_RecoveryWindowSize** * T.

The Poisson detector can be configured to work in **BurstProtection** mode, in that case the configured error threshold needs to be exceeded during 2 consecutive intervals before the defect is declared. This way one can protect the state machine against a burst of BER errors.

LOOPBACKS

The PHAST-12N provides the following diagnostic loopbacks:

- Receive line interface looped back to the transmit line interface
- Transmit line interface looped back to the receive line interface

PHAST-12N TXC-06312

PERFORMANCE COUNTERS

The PHAST-12N supports the following performance counters:

- RS/section counters per line interface:
 - B1 error count, configurable to count either BIP errors or errored frames
- RS/section counters APS interface:
 - B1 error count, configurable to count either BIP errors or errored frames
- MS/line counters per line interface:
 - B2 near-end errored BIP count
 - B2 near-end Errored frame count
 - M1 far-end error count, configurable to count either REI errors or errored blocks
 - Near-end defect second
 - Far-end defect second
- Pointer adjustment counters per high order path:
 - Incoming positive pointer adjustment count
 - Incoming negative pointer adjustment count
 - Outgoing positive pointer adjustment count
 - Outgoing negative pointer adjustment count
- POH counters per high order path:
 - B3 near-end errored bip count
 - B3 near-end errored block count
 - G1 far-end error count, configurable to count either rei errors or errored blocks
 - Near-end defect second
 - Far-end defect second

All performance counters are one second shadow counters: at the one second boundary the contents of each performance counter is latched into its one second shadow register, after which the performance counter is cleared. These one second shadow registers will hold their value during the entire period between two subsequent one second boundaries.

The one second shadow registers are available for software read-only access.

All errored BIP and block counters are dimensioned to cover the maximum count value during a one second interval meaning they can never reach saturation.

The one second boundary is generated by the internal one second clock which is either derived from the PHAST-12N System Clock or from the external REFONESECCLK input lead.

The performance counters can be reset by writing 0x91 into the **ResetCounters** register.

DATA SHEET

TRAIL TRACE IDENTIFIER PROCESS

TTI Formats

2

PREVIE

Ь

RODUC

۵

The following TTI formats or modes are supported:

- 16-byte trace message: 16-byte repeating pattern consisting of a 15-byte APId preceded by a one byte header. The most significant bits of the TTI bytes form a 16-bit TFAS with a 1 in the most significant bit of the first TTI byte (header byte) and a 0 in the most significant bit of the APId bytes.
- 64-byte trace message: a 64-byte repeating pattern consisting of a 63-byte APId preceded by a one byte header. The most significant bits of the TTI bytes form a 64-bit TFAS with a 1 in the most significant bit of the first TTI byte (header byte) and a 0 in the most significant bit of the APId bytes.
- 64-byte trace message with CR/LF: a 64-byte repeating pattern consisting of a 62-byte APId followed by a two byte trailer. The trailer consists of the <CR> and <LF> ASCII characters.
- repeating non-specific byte: a repeating single byte with fixed (constant), but unspecified value.
- repeating specific byte: a repeating single byte with fixed (constant) value. The remote end user knows in advance which value is expected.

Note: *The user has to specify TFAS, CRC or CR/LF both for monitoring (mismatch detection) and generation.

*The repeating specific byte is handled as a 16-byte trace message without TFAS.

The following TTI message types are supported:

	Repeating non-specific byte			
JO	Repeating specific byte			
	16-byte trace message			
	Repeating non-specific byte			
J1	16-byte trace message			
	64-byte trace message with TFAS			
	64-byte trace message with CR/LF			

TTI Mismatch Process

The TTI framer frames on TFAS or CR/LF. The framer freewheels when not locked to allow mismatch detection when expecting a repeating specific byte.

The TIM defect is set when the received TTI does not match the format or value of the expected TTI during a configurable number of consecutive multiframes¹. The TIM defect is cleared when the received TTI has the same format and value as the expected TTI during a configurable number of consecutive multiframes.

In case of repeating non-specific byte mode, the defined expected value will be ignored. Comparisons are made with the previous samples.

TTI Report Process

The received TTI value is accepted when 3 subsequent identical 16 respectively 64 byte multiframes are received. Note that when both 16-byte and 64-byte trace message modes are supported as is the case for path overhead monitoring (J1), the received 16-byte trace message is only accepted when 4 subsequent identical 16 byte multiframes are received. This condition when the received TTI equals the accepted TTI is indicated as stable.

^{1.} A multiframe is 16 or 64 frames, depending on the TTI format.

If the new multiframe TTI message is the same as the previously accepted message, only 1 multiframe is required to assert the Stable_1 indication. For the Stable_64 indication, 3 multiframes are needed and for the Stable_16 indication, 3 multiframes are needed in case no 64-byte trace message mode is supported, otherwise 4 multiframes are needed.

Latched registers are provided for the Stable indications. This guarantees consistency when the reported TTI message is being read out by software:

- 1. Clear the Stable indication latch (clear-on-write-1)
- 2. Read out the reported TTI message
- 3. The Stable indication latch must still be deasserted. If not, the stable indication (and the reported message) may have changed during software read accesses.
- **Note 1:** Stable_1 is the inverse of TIM1.
- **Note 2:** Stable_16 will inhibit Stable_64.
- **Note 3:** Stable_16 will also indicate stable one byte messages. In this case software has to compare the reported message bytes.

```
PHAST-12N
TXC-06312
```


DEFECTS AND INTERRUPTS

Unlatched Defects (Correlated)

Defects representing the current status of the device are correlated to fault causes (correlated defects). This inhibition process avoids the unnecessary generation of interrupts, when a defect that is at an high hierarchy leads to the generation of multiple lower order defects. Unlatched defects are read-only.

Latched Defects

Changes in the state of defects are latched by the PHAST-12N. The edge on which latching occurs is configurable through the **LatchForIntCtrl** control register:

- · Both rising and falling edges are latched (default)
- Only rising edges are latched, or
- Only falling edges are latched

Latched defects are cleared by a clear-on-write-1 mechanism (COW-1). This way software/firmware can clear a defect when it will be handled. Software must never write a '1' to a latched defect that was previously read to be '0', because between the read and the write the defect may become active and will be cleared without software knowing it was active.

Defects Mask

Each latched defect can optionally contribute to the device hardware interrupt. The contribution of each individual latched defect can be enabled/disabled by clearing/setting the corresponding mask¹:

Summary $\leftarrow \Sigma$ (Defect_Latch_i AND not Defect_Mask_i)

Interrupts

The contribution of groups of latches can in turn be combined into a summary latch with associated mask, forming an interrupt tree:

```
device interrupt \leftarrow \Sigma (Summary<sub>i</sub> AND not Summary_Mask<sub>i</sub>)
```

At the device top level, the general interrupt summary latches and the APS interrupt summary latches contribute to the interrupt:

HINT $\leftarrow \Sigma$ (General_Interrupt_i AND not General_Mask_i)

OR

 $\boldsymbol{\Sigma} \left(\text{ APS_Interrupt}_k \text{ AND not } \text{APS_Mask}_k \right)$

The hardware interrupt <u>cap</u>ability is enabled by setting the **HINTEN** control bit. While disabled, the hardware interrupt indication INT/IRQ output lead is inactive. When enabled, the device top level hardware interrupt is

INT/IRQ output lead \leftarrow (**HINT** AND **HINTEN**).

^{1.} Σ (x) is used to indicate a logical 'OR' of a number of logical expressions (x).

PHAST-12N TXC-06312

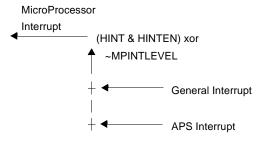
ALARM INTERRUPT TREE

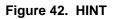
Following legend is used:

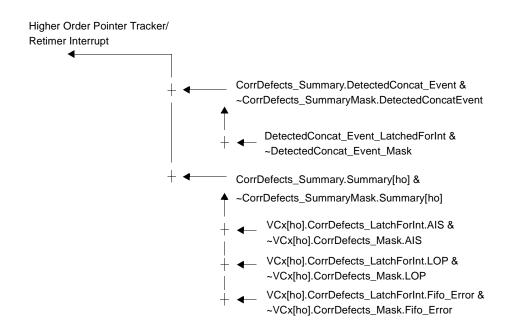
[dim] = array of dimension "dim", directly accessible

{dim} = array of dimension "dim", which has to be accessed indirectly

(i) = the i'th element of the array (direct access)


+ = OR


& = AND


~ = NOT

index ranges:

ho = range 0 to 11 (= #VCs) li = range 0 to 3 (= #lines)

PHAST-12N	
TXC-06312	DATA SHEET

POH Monitor Interrupt	t
•	Common_Status.Summary_latchedForInt[ho] & Common_Config.Summary_Mask[ho]
	 VC_Status[ho].CorrDefects_LatchedForInt.SSF & VC_Config{ho}.CorrDefects_Mask.SSF
	 VC_Status[ho].CorrDefects_LatchedForInt.TIM & VC_Config{ho}.CorrDefects_Mask.TIM
	 VC_Status[ho].CorrDefects_LatchedForInt.TTIZERO & ~VC_Config{ho}.CorrDefects_Mask.TTIZERO
	 VC_Status[ho].CorrDefects_LatchedForInt.DEG & VC_Config{ho}.CorrDefects_Mask.DEG
	 VC_Status[ho].CorrDefects_LatchedForInt.EXC & ~VC_Config{ho}.CorrDefects_Mask.EXC
	 VC_Status[ho].CorrDefects_LatchedForInt.UNEQ & ~VC_Config{ho}.CorrDefects_Mask.UNEQ
	 VC_Status[ho].CorrDefects_LatchedForInt.AIS & VC_Config{ho}.CorrDefects_Mask.AIS
	 VC_Status[ho].CorrDefects_LatchedForInt.RDI & VC_Config{ho}.CorrDefects_Mask.RDI
	 VC_Status[ho].CorrDefects_LatchedForInt.RDI_S & VC_Config{ho}.CorrDefects_Mask.RDI_S
	 VC_Status[ho].CorrDefects_LatchedForInt.RDI_C & ~VC_Config{ho}.CorrDefects_Mask.RDI_C
	 VC_Status[ho].CorrDefects_LatchedForInt.RDI_P & ~VC_Config{ho}.CorrDefects_Mask.RDI_P
	 VC_Status[ho].CorrDefects_LatchedForInt.PLM & VC_Config{ho}.CorrDefects_Mask.PLM
	VC_Status[ho].CorrDefects_LatchedForInt.LOM & ~VC_Config{ho}.CorrDefects_Mask.LOM
	 VC_Status[ho].CorrDefects_LatchedForInt.K3_APS & VC_Config{ho}.CorrDefects_Mask.K3_APS
	VC_Status[ho].CorrDefects_LatchedForInt.C2_Changed & ~VC_Config(ho).CorrDefects_Mask.C2_Changed

Figure 44. POH Monitor Interrupt Tree

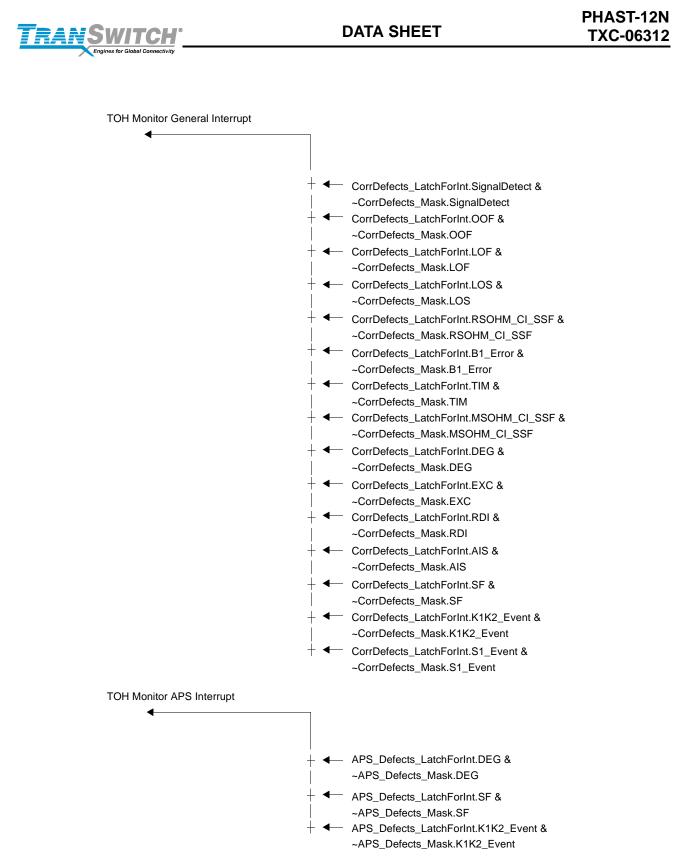


Figure 45. TOH Monitor Interrupt Tree

Proprietary TranSwitch Corporation Information for use Solely by its Customers

PHAST-12N TXC-06312

DATA SHEET

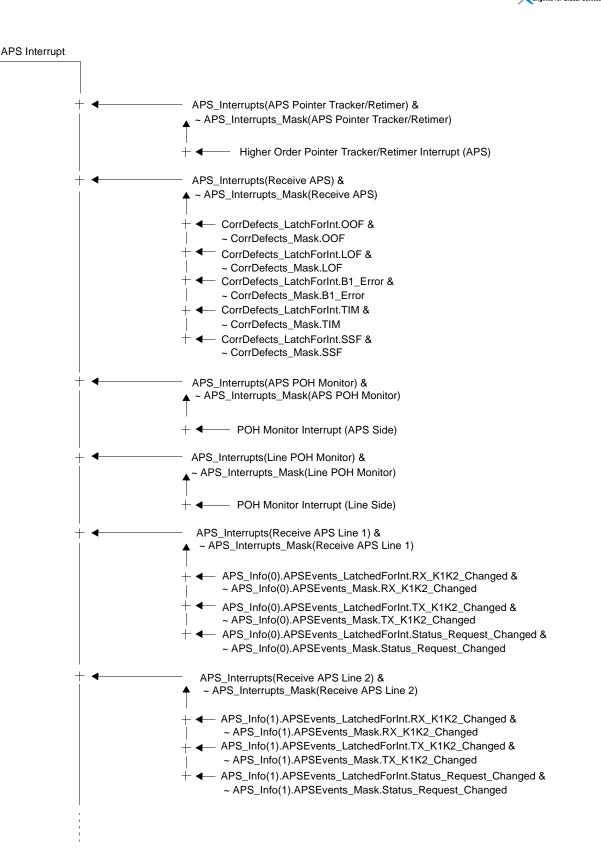


Figure 46. APS Interrupt Tree (part 1)

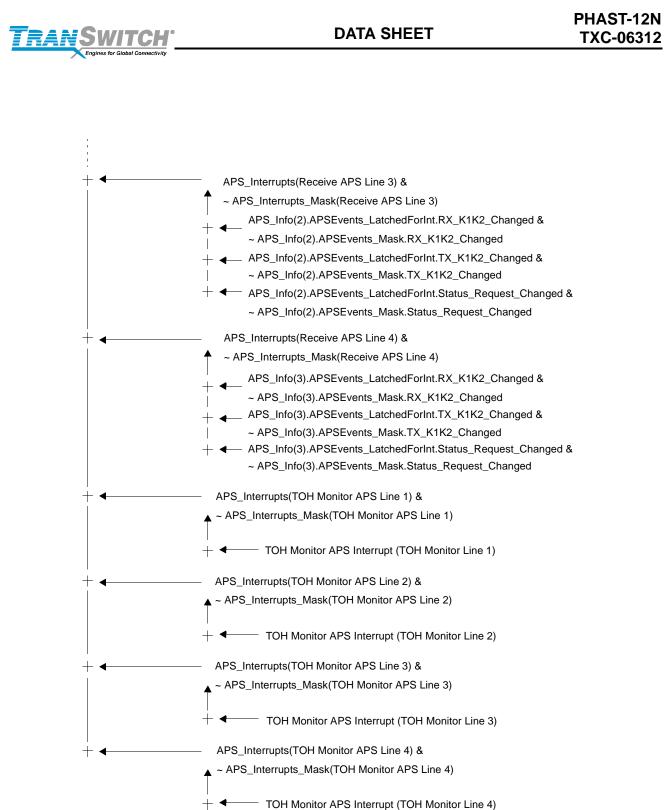


Figure 47. APS Interrupt Tree (part 2)

- 131 of 184 -

Proprietary TranSwitch Corporation Information for use Solely by its Customers

PHAST-12N TXC-06312

DATA SHEET

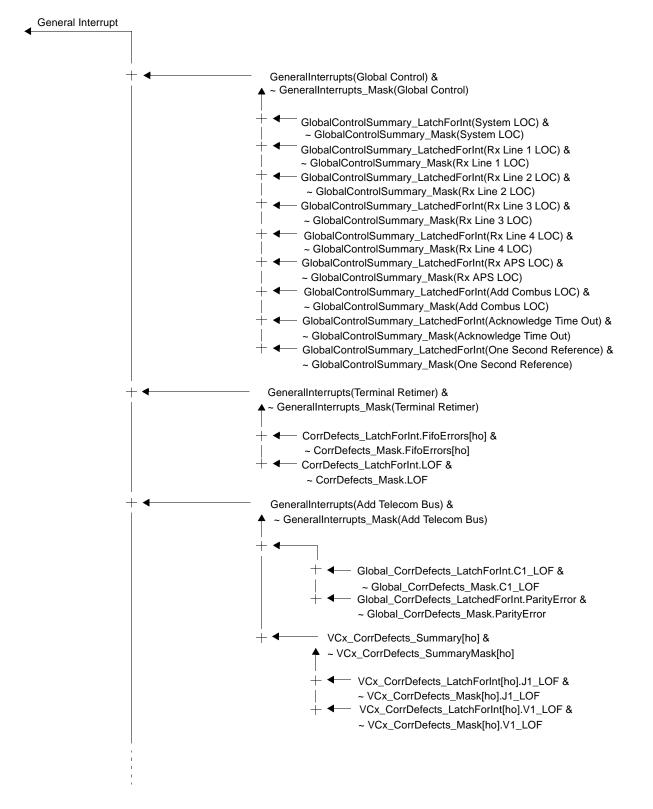


Figure 48. General Interrupt Tree (part 1)

Proprietary TranSwitch Corporation Information for use Solely by its Customers

Figure 49. General Interrupt Tree (part 2)

April 2004

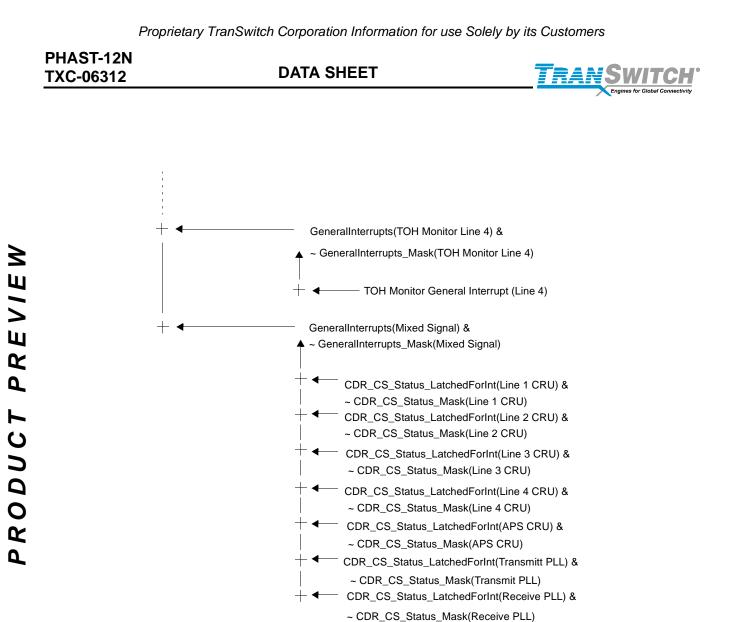


Figure 50. General Interrupt Tree (part 3)

PHAST-12N TXC-06312

BOUNDARY SCAN

Introduction

The Boundary Scan Interface Block provides a five-lead Test Access Port (TAP) that conforms to the IEEE 1149.1 standard. This standard provides external boundary scan functions to read and write the external Input/Output leads from the TAP for board and component test.

The IEEE 1149.1 standard defines the requirements of a boundary scan architecture that has been specified by the IEEE Joint Test Action Group (JTAG). Boundary scan is a specialized scan architecture that provides observability and controllability for the interface leads of the device. As shown in Figure 51, one cell of a boundary scan register is assigned to each input or output lead to be observed or tested (bidirectional leads may have two cells). The boundary scan capability is based on a Test Access Port (TAP) controller, instruction and bypass registers, and a boundary scan register bordering the input and output leads. The boundary scan test bus interface consists of four input signals (Test Clock (TCK), Test Mode Select (TMS), Test Data Input (TDI) and Test Reset (TRS) and a Test Data Output (TDO) output signal. Boundary scan signal timing is shown in Figure 24.

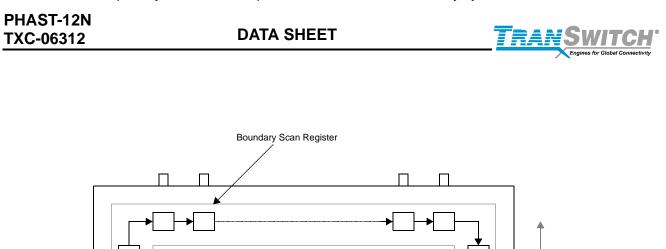
The TAP controller receives external control information via a Test Clock (TCK) signal and a Test Mode Select (TMS) signal, and sends control signals to the internal scan paths. Detailed information on the operation of this state machine can be found in the IEEE 1149.1 standard. The serial scan path architecture consists of an instruction register, a boundary scan register and a bypass register. These three serial registers are connected in parallel between the Test Data Input (TDI) and Test Data Output (TDO) signals, as shown in Figure 51.

The boundary scan function can be reset and disabled by holding lead $\overline{\text{TRS}}$ low. When boundary scan testing is not being performed the boundary scan register is transparent, allowing the input and output signals to pass to and from the PHAST-12N device's internal logic. During boundary scan testing, the boundary scan register may disable the normal flow of input and output signals to allow the device to be controlled and observed via scan operations.

Boundary Scan Operation

The maximum frequency the PHAST-12N device will support for boundary scan is 10 MHz. The timing diagrams for the boundary scan interface leads are shown in Figure 51.

The instruction register contains three bits. The PHAST-12N device performs the following three boundary scan test instructions:


The EXTEST test instruction (000) provides the ability to test the connectivity of the PHAST-12N device to external circuitry.

The SAMPLE test instruction (010) provides the ability to examine the boundary scan register contents without interfering with device operation.

The BYPASS test instruction (111) provides the ability to bypass the PHAST-12N boundary scan and instruction registers.

Boundary Scan Reset

Specific control of the TRS lead is required in order to ensure that the boundary scan logic does not interfere with normal device operation. This lead must either be held low, asserted low, or asserted low then high (pulsed low), to asynchronously reset the Test Access Port (TAP) controller during power-up of the PHAST-12N. If boundary scan testing is to be performed and the lead is held low, then a pull-down resistor value must be chosen which will allow the tester to drive this lead high, but still meet the V_{IL} requirements listed in the 'Input, Output and Input/Output Parameters' section of this Data Sheet for worst case leakage currents of all devices sharing this pull-down resistor.

Proprietary TranSwitch Corporation Information for use Solely by its Customers

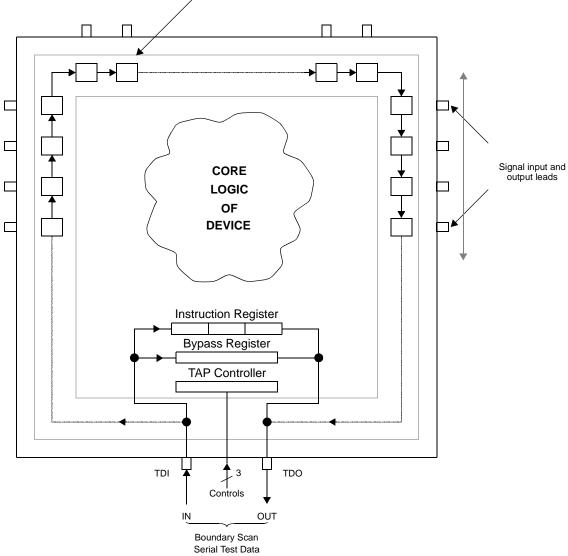


Figure 51. Boundary Scan Schematic

Boundary Scan Chain

A boundary scan description language (BSDL) source file is available via the Products page of the TranSwitch Internet World Wide Web site at www.transwitch.com.

PHAST-12N TXC-06312

MEMORY MAPS AND BIT DESCRIPTIONS

This section contains the address map of the internal memory locations of the PHAST-12N. The Access columns of the tables specify the access types as Read-only (ro), Read-Write (rw) or Clear-On-Write-1 (cow_1). All addresses and offsets are byte addresses.

OVERVIEW

Offset	Description		
0x0000	Global Control (See page 138.)		
0x0080	Line Ring Port/Alarm Interface (See page 140.)		
0x00A0	Reset Generator (See page 140.)		
0x00B0	Interrupt (See page 141.)		
0x00C0	Transmit APS Port (See page 143.)		
0x0200	POH Generator (See page 144.)		
0x0400	TOH Monitor - Rx Line 1 (See page 147.)		
0x0500	TOH Monitor - Rx Line 2 (See page 147.)		
0x0600	TOH Monitor - Rx Line 3 (See page 147.)		
0x0700	TOH Monitor - Rx Line 4 (See page 147.)		
0x0800	TOH Generator (See page 151.)		
0x1000	TOH and DCC Port (See page 153.)		
0x1800	High Order Pointer Tracker and Retimer - Rx Line Interface (See page 155.)		
0x1C00	High Order Pointer Tracker and Retimer - Rx APS Interface (See page 155.)		
0x3800	Retimer (See page 158.)		
0x3A00	Clock Recovery/Clock Synthesis/SerDes (See page 159.)		
0x3B00	Receive APS Port (See page 163.)		
0x3C00	Cross Connect (See page 165.)		
0x3D00	Add Telecom Bus (See page 166.)		
0x3E80	High Order Path Ring Port/Alarm Interface (See page 168.)		
0x3F00	JTAG Master (See page 169.)		
0x3F80	Drop Telecom Bus (See page 170.)		
0x4000	POH Monitor - Rx Line Interface (See page 171.)		
0x4800	POH Monitor - Rx APS Interface (See page 171.)		
0x5000	POH Monitor - Terminal Side (See page 171.)		

Table 1. Memory Map Overview

DATA SHEET

GLOBAL CONTROL

Offset	Bits	Name	Init	Access	Description
0x0000		DeviceIdentification		ro	T_DeviceIdentification (See page 139.) Device identification.
0x0010	0	STM4_Mode	0x0	rw	STM-4/OC-12 Mode when 0x1: line 1 is a 622.08 Mbit/s signal, lines 2 to 4 are not used. STM-1/OC-3 Mode when 0x0: lines 1 to 4 are 155.52 Mbit/s signals.
0x0012	0	Reserved	0x1	rw	Reserved.
0x0014	0	Reserved	0x1	rw	Reserved.
0x0016	8 - 0	TimeOutCount	0x1FF	rw	Range 0 to 511 Acknowledge Time Out Count. Specifies the Time Out after which an Acknowledge is generated if a request hasn't been acknowledged. Timebase is the microprocessor clock period (MPCLK).
0x0018	0	AckOnTimeOut	0x1	rw	Acknowledge on Time Out. An Acknowledge will be generated upon failed accesses after a period specified by TimeOutCount when 0x1. No Acknowledge will be generated upon failed accesses when 0x0.
0x001A	15 - 0	LastAddress	0x0	ro	Last Address. Indicates the address of the last timed- out request. Note: the address returned is a word address.
0x001C	0	CBADT	0x0	ro	Add Combus Timing Slave. Indicates the value on the CBADT input pad (this pad configures the Add Telecombus in master or slave mode).
0x001E	15 - 0	LocDivider	0x4	rw	Range 0 to 65535 Loss Of Clock Divider. The clock to be monitored is divided by this number + 1 for LOC detection.
0x0020	15 - 0	LocEntryThreshold	0x20	rw	Range 1 to 65535 Loss Of Clock Entry Threshold. Specifies the time without divided clock transition before declaring LOC. Timebase is the microprocessor clock period (MPCLK).
0x0024	15 - 0	LocExitThreshold	0x2	rw	Range 1 to 65535 Loss Of Clock Exit Threshold. LOC is deasserted when this many divided clock transitions were detected. Detection occurs in the microprocessor clock domain (MPCLK).
0x0028	0	External1secRef_Select	0x0	rw	External One Second Reference Select. The one second reference on the REFONESECCLK is used when 0x1. The one second reference is generated internally when 0x0.
0x002C	0	DeviceInitialized	0x0	rw	The device processes incoming data when this value is set to 0x1. The software must set this value to 0x1 as soon as it has finished the configuration of the device.
0x0030	3 - 0	GP_Input	0x0	ro	General purpose input (GPIN4GPIN1).
0x0034	3 - 0	GP_Output	0x0	rw	General purpose output (GPOUT4GPOUT1).

Table 2. Global Control (T_GLOBAL_CONTROL)

PHAST-12N TXC-06312

Offset	Bits	Name	Init	Access	Description
0x0038	6-0	RamResetDone	0x0	ro	For every bit in the list, 0x1 means the RAMs of the corresponding clock domain are initialized, 0x0 the RAMs are not initialized. • bit 0: System Clock domain • bit 1: Rx Line 1 Clock domain • bit 2: Rx Line 2 Clock domain • bit 3: Rx Line 2 Clock domain • bit 4: Rx Line 3 Clock domain • bit 5: Rx APS Clock domain • bit 5: Add Combus Clock domain
0x003A	10 - 0	GlobalControlSummary_Unlat ched	0x0	ro	Global Control Interrupt Summary. • bit 0: Loss of System Clock • bit 1: Loss of Rx Line 1 Clock • bit 2: Loss of Rx Line 2 Clock • bit 3: Loss of Rx Line 3 Clock • bit 4: Loss of Rx Line 4 Clock • bit 5: Loss of Rx APS Clock • bit 6: Reserved • bit 7: Reserved • bit 8: Loss of Add Combus Clock • bit 9: Acknowledge Time Out • bit 10: One Second Reference
0x003C	10 - 0	GlobalControlSummary_Latch ForInt	0x0	cow_1	Global Control Interrupt Summary. See GlobalControlSummary_Unlatched for details.
0x003E	10 - 0	GlobalControlSummary_Mask	0x7FF	rw	Global Control Interrupt Summary Mask. See GlobalControlSummary_Unlatched register for details.
0x0040		ScratchPad	All 0x0	rw	Array (32) of two_bytes Offset between two elements = 0x2. Array index indicates the scratch pad address. Scratch pad: general purpose read/write memory which can be used as scratch pad by the device driver.

Table 2. Global Control (T_GLOBAL_CONTROL)

Table 3. Device Identification (T_DeviceIdentification)

Offset	Bits	Name	Init	Description
0x0000	10 - 0	ManufacturerIdentity	0x6B	Manufacturer Identity, assigned by the Solid State Products Engineering Council (JEDEC) to the TranSwitch Corporation (0x06B = "0001101011").
0x0002	15 - 0	PartNumber	0x18A8	Part Number (06312).
0x0004	3 - 0	Version	0x0	Version or revision level. The initial version will be 0x0. The version register will be incremented with each new revision of the part.
0x0006	Growth_	Mask		
	3 - 0	MaskLevel	0x0	Indicates the Mask Level.
	7 - 4	GrowthField	0x0	Indicates the Growth Field.
0x0008	12 - 0	Reserved	0x0	Reserved.

DATA SHEET

LINE RING PORT/ALARM INTERFACE

Offset	Bits	Name	Init	Access	Description
0x0000		ExternalSourceSelect	All 0x0	rw	Array (4) of boolean Offset between two elements = 0x2. Array index indicates the line (= line number - 1). Selection of external ring port interface. The internal ring port interface is used when 0x0, the external port is used when 0x1.
0x0008	0	CRC_Error_Insert	0x0	rw	Insert CRC errors. All CRC bits are inverted when 0x1 (for test purposes only).
0x000A		CorrDefects_Unlatched		ro	T_TOH_RING_PORT_Defects (See page 140.) Correlated defects.
0x000C		CorrDefects_LatchForInt		cow_1	T_TOH_RING_PORT_Defects (See page 140.) Correlated defects latched for interrupt.
0x000E		CorrDefects_Mask		rw	T_TOH_RING_PORT_Defects (See page 140.) Correlated defects masks.

Table 4. Ring Port/Alarm Interface (T_TOH_RING_PORT)

Table 5. Ring Port/Alarm Interface Defects (T_TOH_RING_PORT_Defects)

Offset	Bits	Name	Init	Description
0x000	0 0	CRC_Error	0x1	CRC error on external Ring Port interface.
	1	LOC	0x1	Loss of clock on external Ring Port interface.

RESET GENERATOR

Table 6. Reset Generator (T_RGEN)

Offset	Bits	Name	Init	Access	Description
0x0000	7 - 0	RESETH	0x0	rw	Microprocessor Controlled Reset. Writing the value 0x91 to this register generates a reset in all clock domains, except the microprocessor clock domain (MPCLK). Reset is active as long as this register contains the value 0x91.
0x0002	7 - 0	Reserved	0x0	rw	Reserved.
0x0004	7 - 0	AddCombus_Reset	0x0	rw	Microprocessor Controller Reset for Add Combus. Writing the value 0x91 to this register generates a reset in the Add Combus clock domain. Reset is active as long as this register contains the value 0x91.
0x0006	7 - 0	RxAPS_Reset	0x0	rw	Microprocessor Controller Reset for Rx APS. Writing the value 0x91 to this register generates a reset in the Receive APS clock domain. Reset is active as long as this register contains the value 0x91.
0x0008	7 - 0	RxLine1_Reset	0x0	rw	Microprocessor Controller Reset for Rx Line 1. Writing the value 0x91 to this register generates a reset in the Receive Line 1 clock domain. Reset is active as long as this register contains the value 0x91.

PHAST-12N TXC-06312

Offset	Bits	Name	Init	Access	Description
0x000A	7 - 0	RxLine2_Reset	0x0	rw	Microprocessor Controller Reset for Rx Line 2. Writing the value 0x91 to this register generates a reset in the Receive Line 2 clock domain. Reset is active as long as this register contains the value 0x91.
0x000C	7 - 0	RxLine3_Reset	0x0	rw	Microprocessor Controller Reset for Rx Line 3. Writing the value 0x91 to this register generates a reset in the Receive Line 3 clock domain. Reset is active as long as this register contains the value 0x91.
0x000E	7 - 0	RxLine4_Reset	0x0	rw	Microprocessor Controller Reset for Rx Line 4. Writing the value 0x91 to this register generates a reset in the Receive Line 4 clock domain. Reset is active as long as this register contains the value 0x91.

INTERRUPT

Offset	Bits	Name	Init	Access	Description
0x0000	11 - 0	APS_Interrupts_Mask	0xFFF	rw	APS Interrupts Mask. See APS_Interrupts register for details.
0x0004		IntCtrl_Config		rw	T_InterruptCtrl_Config (See page 142.) Interrupt and performance configuration.
0x0006	0	HINT	0x0	ro	Global device interrupt (HINT = Hardware INTerrupt).
0x0008	0	HINTEN	0x0	rw	The global device interrupt is enabled when 0x1, no interrupt will be generated when 0x0 (HINTEN = Hardware INTerrupt ENable).
0x000A	15 - 0	GeneralInterrupts	0x0	го	General Interrupts Register: • bit 0: Global Control Interrupt • bit 1: Terminal Retimer • bit 2: Add Telecombus • bit 3: Reserved • bit 4: Reserved • bit 5: Reserved • bit 6: POH Ring Port • bit 7: Terminal POH Monitor • bit 8: Line Pointer Tracker/Retimer • bit 9: TOH Ring Port • bit 10: Receive TOH/DCC Port • bit 11: TOH Monitor Line 1 • bit 12: TOH Monitor Line 2 • bit 13: TOH Monitor Line 3 • bit 14: TOH Monitor Line 4 • bit 15: Mixed Signal

Table 7. Interrupt (T_INTERRUPT)

DATA SHEET

Table 7. Interrupt (T_INTERRUPT)

Offset	Bits	Name	Init	Access	Description
0x000C	11 - 0	APS_Interrupts	0x0	ro	APS Interrupts Register: • bit 0: APS Pointer Tracker/Retimer • bit 1: Receive APS • bit 2: APS POH Monitor • bit 3: Line POH Monitor • bit 4: Receive APS Line 1 • bit 5: Receive APS Line 2 • bit 6: Receive APS Line 3 • bit 7: Receive APS Line 4 • bit 8: TOH Monitor APS Line 1 • bit 9: TOH Monitor APS Line 2 • bit 10: TOH Monitor APS Line 3 • bit 11: TOH Monitor APS Line 4
0x000E	15 - 0	GeneralInterrupts_Mask	0xFFFF	rw	General Interrupts Mask. See GeneralInterrupts register for details.

Table 8. Interrupt Configuration (T_InterruptCtrl_Config)

Offset	Bits	Name	Init	Description
0x0000	7 - 0	ResetCounters	0x0	All performance counters are reset when the value 0x91 is written to this register. Reset is active as long this register contains the value 0x91.
	9 - 8	LatchForIntCtrl	0x3	0x0 = INT_LEVEL 0x1 = INT_RISING_EDGE 0x2 = INT_FALLING_EDGE 0x3 = INT_BOTH_EDGES Field to control on which edges the unlatched defects are latched for interrupts.
	10	Reserved	0x0	Reserved.

TRANSMIT APS PORT

Table 9. Transmit APS Port (T_TX_APS)

Offset	Bits	Name	Init	Access	Description
0x0000		Common_Config		rw	T_TX_APS_Common_Config (See page 143.) General configuration.
0x0020		MSP		rw	Array (4) of T_TX_APS_Config (See page 143.) Offset between two elements = 0x8. Array index indicates the line (= line number - 1). Multiplex Section Protection configuration.

Table 10. Transmit APS Port Configuration (T_TX_APS_Common_Config)

Offset	Bits	Name	Init	Description		
0x0000	0 Functionality					
	0	AIS_Force	0x0	Insertion of line AIS is forced when 0x1.		
	1	Scrambler_Disable	0x0	Scrambling is disabled when 0x1.		
0x0002	Setting					
	7 - 0	B1_Mask	0x0	Mask used on the B1 byte, set to default value for normal operation.		
	15 - 8	J0_Insert	0x0	J0 byte. Used as a form of simple connection identification.		

Table 11. Transmit APS Port Line Configuration (T_TX_APS_Config)

Offset	Bits	Name	Init	Description		
0x0000	000 Enable					
	0	K1K2_ForwardEnable	0x0	Rx K1 K2 APS signal are forwarded from MSOH monitor when 0x1, Rx K1 K2 APS signal are inserted from register when 0x0. (RX_K1K2_Data).		
	1	SignalFail_ForwardEnable	0x0	Signal fail indication is forwarded from MSOH monitor when 0x1, signal fail indication is inserted from register (StatusRequest) when 0x0. Positioned at the LSB of the status-byte.		
	2	SignalDegrade_ForwardEnable	0x0	Signal degrade indication is forwarded from MSOH monitor when 0x1, signal degrade indication is inserted from register (StatusRequest) when 0x0. Positioned at the 2nd LSB of the status-byte.		
0x0002	15 - 0	RX_K1K2_Data	0x0	Register that contains the values for Rx K1 and Rx K2. Rx K1 is located in MSB, Rx K2 is located in LSB.		
0x0004	15 - 0	TX_K1K2_Data	0x0	Register that contains the values for Tx K1 and Tx K2. Tx K1 is located in MSB, Tx K2 is located in LSB.		
0x0006	15 - 0	StatusRequest	0x0	Register that contains the values for Status and Request. Status is located in MSB, Request is located in LSB.		

DATA SHEET

POH GENERATOR

Table 12.	POH Generator (T_POH_GENERATOR)
-----------	--

Offset	Bits	Name	Init	Access	Description
0x0000		Common_Config		rw	T_VCXPG_Common_Config (See page 144.) General configuration.
0x0100		VC_Config		rw	T_VCXPG_VC_Config (See page 145.) High order path configuration. The high order path to be configured is selected by indirect access. See the Config_Channel register in the Common_Config record to select the desired high order path.

Table 13. POH Generator Common Configuration (T_VCXPG_Common_Config)

Offset	Bits	Name	Init	Description
0x0000	3 - 0	Config_Channel	0x0	Range 0 to 11 High order path for which configuration can be done in VC_Config.
0x0002		AUG1_Mode_Config		T_AUG1_Mode_Config (See page 144.) AUG-1 mode configuration.

Table 14. AUG-1 Mode Configuration (T_AUG1_Mode_Config)

Offset	Bits	Name	Init	Description
0x0000	3 - 0	TimeslotIsConcatenated	0x0	Concatenation setting, one bit per AUG-1. Each bit has following meaning (Least significant bit represents the first AUG-1. Don't care for line side in STM-1 mode): The corresponding AUG-1 is either an independent AUG-1 or the first AUG-1 of a larger concatenated structure when '0' (e.g., AU4-4c). The corresponding AUG-1 is part of a larger concatenated structure (but not the first one) when '1'. Note: The least significant bit must be '0' (the first AUG-1 is always master). This bit will be forced to '0', no matter what has been written to it.
	7 - 4	Has_AU3	0x0	Selection between AU-3 and AU-4 mapping for independent AUG-1's, one bit per AUG-1. Each bit has following meaning (Least significant bit represents the first AUG-1. For the line side: least significant bit represents the first AUG-1 in STM-4 mode or the first line in STM-1 mode): The corresponding AUG-1 contains an AU-4 when '0', the corresponding AUG-1 contains three AU-3's when '1'. Note the configuration is a don't care for AUG-1's which are part of a larger concatenated structure. It is advisable to fill in the default value.
	11 - 8	Is_TUG_Structured	0xF	For AUG-1 containing AU-4 format, one bit per AUG-1. Each bit has following meaning (least significant bit represents the first AUG-1): The corresponding VC-4 contains C-4 when '0', the corresponding VC-4 contains three TUG-3's when '1'.

PHAST-12N TXC-06312

Table 15.	POH Generator	Path	Configuration (T_VCXPG_VC_Config)
-----------	---------------	------	-----------------------------------

Offset	Bits	Name	Init	Description
0x0000		RAM		T_VCXPG_RAMBytes (See page 145.) Configuration of the POH RAM bytes.
0x0090		Mode		T_VCXPG_Mode_record (See page 145.) Mode Configuration.
0x0092		Control		T_VCXPG_Control_record (See page 146.) Source selection for the POH bytes.

Table 16. Transmit POH Byte RAM (T_VCXPG_RAMBytes)

Offset	Bits	Name	Init	Description
0x0000		J1	All 0x0	Array (64) of byte Offset between two elements = 0x2. Array index indicates the TTI byte number. TTI-message for insertion in the J1 location. • bytes 0-15 for 16 byte TTI message • bytes 0-63 for 64 byte TTI message
0x0080	7 - 0	B3_ErrorMask	0x0	Mask used on the B3 byte, set to default value for normal operation.
0x0082	7 - 0	C2	0x0	Signal label to be inserted.
0x0084	7 - 0	G1	0x0	Value used when G1 is inserted out of RAM.
0x0086	7 - 0	F2	0x0	Value used when F2 is inserted out of RAM.
0x0088	7 - 0	H4	0x0	Value used when H4 is inserted out of RAM.
0x008A	7 - 0	F3	0x0	Value used when F3 is inserted out of RAM.
0x008C	7 - 0	КЗ	0x0	Value used when K3 is inserted out of RAM.
0x008E	7 - 0	N1	0x0	Value used when N1 is inserted out of RAM.

Offset	Bits	Name	Init	Description
0x0000	0	Force_AIS	0x0	AIS insertion is forced in the corresponding high order path when 0x1.
	1	Force_Uneq	0x0	Unequipped is forced in the corresponding high order path when 0x1.
	2	Force_SupUneq	0x0	Supervisory Unequipped is forced in the corresponding high order path when 0x1.
	3	UniDirectional	0x0	Uni-directional option is activated (G1 byte will be filled with 0x00, regardless the byte provided from the selected source) when 0x1.
	4	OneBitRDI	0x0	RDI is encoded in one bit when 0x1, in three bits (Enhanced RDI) when 0x0.
	5	Bypass	0x0	The incoming high order path is passed untouched when 0x1.

DATA SHEET

Offset	Bits	Name	Init	Description
0x0000	1 - 0	REI_Control	0x0	0x0 = VCXPG_RAM_RI 0x1 = VCXPG_POH_INTF_RI 0x2 = VCXPG_PR_RI Selects the source of the G1 REI field. • VCXPG_RAM_RI = Use RAM as source • VCXPG_POH_INTF_RI = Use POH Port Interface as source • VCXPG_PR_RI = Use Ring port Interface as source
	3 - 2	RDI_Control	0x0	0x0 = VCXPG_RAM_RI 0x1 = VCXPG_POH_INTF_RI 0x2 = VCXPG_PR_RI Selects the source of the G1 RDI value. • VCXPG_RAM_RI = Use RAM as source • VCXPG_POH_INTF_RI = Use POH Port Interface as source • VCXPG_PR_RI = Use Ring port Interface as source
	4	SPARE_Control	0x0	0x0 = VCXPG_RAM 0x1 = VCXPG_POH_INTF Selects the source of the G1 SPARE bit. • VCXPG_RAM = Use RAM as source • VCXPG_POH_INTF = Use POH Port Interface as source
	5	F2_Control	0x0	0x0 = VCXPG_RAM 0x1 = VCXPG_POH_INTF Selects the source of the F2 Byte. • VCXPG_RAM = Use RAM as source • VCXPG_POH_INTF = Use POH Port Interface as source
	7 - 6	H4_Control	0x0	0x0 = VCXPG_RAM_H4 0x1 = VCXPG_POH_INTF_H4 0x2 = VCXPG_PASS_H4 0x3 = VCXPG_GENERATE_H4 Selects the source of the H4 Byte. • VCXPG_RAM_H4 = Use RAM as source • VCXPG_POH_INTF_H4 = Use POH Port Interface as source • VCXPG_PASS_H4 = Pass H4 • VCXPG_GENERATE_H4 = Generate H4
	8	F3_Control	0x0	0x0 = VCXPG_RAM 0x1 = VCXPG_POH_INTF Selects the source of the F3 Byte. • VCXPG_RAM = Use RAM as source • VCXPG_POH_INTF = Use POH Port Interface as source
	9	K3_Control	0x0	0x0 = VCXPG_RAM 0x1 = VCXPG_POH_INTF Selects the source of the K3 Byte. • VCXPG_RAM = Use RAM as source • VCXPG_POH_INTF = Use POH Port Interface as source
	10	N1_Control	0x0	0x0 = VCXPG_RAM 0x1 = VCXPG_POH_INTF Selects the source of the N1 Byte. • VCXPG_RAM = Use RAM as source • VCXPG_POH_INTF = Use POH Port Interface as source

Table 18. POH Byte Source Control (T_VCXPG_Control_record)

TOH MONITOR

Offset	Bits	Name	Init	Access	Description
0x0000		TTI_ExpectedMessage	All 0x0	rw	 Array (16) of byte Offset between two elements = 0x2. Array index indicates the TTI byte number. Expected TTI message: 16 byte TTI message: specify all sixteen bytes. 1 byte specific TTI message: write all bytes with the same value. This register is only used when NonSpecificMessage is 0x0 (see J0 TTI Configuration).
0x0040		TTI_ReportedMessage	All 0x0	ro	Array (16) of byte Offset between two elements = 0x2. Array index indicates the TTI byte number. Reported TTI message.
0x0080		PerfCounters_Shadow		ro	T_TOH_MONITOR_Performance_Counters (See page 147.) RSOH/MSOH Performance counters.
0x00A0		Line_Status		ro/cow_1	T_TOH_MONITOR_Line_Status (See page 148.) Line Status. Note: Latched bits are clear-on-write-1, all others are read-only.
0x00B0		CorrDefects_LatchForInt		cow_1	T_TOH_MONITOR_Defects (See page 148.) Correlated defects latched for interrupt.
0x00B4		APS_Defects_Mask		rw	T_TOH_MONITOR_APS_Defects (See page 148.) Defects for APS handling mask.
0x00B8		APS_Defects_LatchForInt		cow_1	T_TOH_MONITOR_APS_Defects (See page 148.) Defects for APS handling latched for (APS) interrupt.
0x00BC		CorrDefects_Unlatched		ro	T_TOH_MONITOR_Defects (See page 148.) Correlated defects.
0x00BE		CorrDefects_Mask		rw	T_TOH_MONITOR_Defects (See page 148.) Correlated defects mask.
0x00C0		Common_Config		rw	T_TOH_MONITOR_Common_Config (See page 149.) General configuration.

Table 19. TOH Monitor (T_TOH_MONITOR)

Table 20. TOH Monitor Performance Counters (T_TOH_MONITOR_Pe	verformance_Counters)
--	-----------------------

Offset	Bits	Name	Init	Description		
0x0000	15 - 0	B1_BIP_Errors	0x0	B1 BIP error counter. Configurable as bit or block count.		
0x0002	15 - 0	B2_BIP_BitErrors_LSB	0x0	B2 BIP bit error counter, least significant bits.		
0x0004	3 - 0	B2_BIP_BitErrors_MSB	0x0	B2 BIP bit error counter, most significant bits.		
0x0006	12 - 0	B2_BIP_BlockErrors	0x0	B2 BIP block error counter.		
0x0008	15 - 0	REI_BIP_Errors	0x0	REI BIP Counter. Configurable as bit or block count.		
0x000A	A DefectSeconds					
	0	NearEndDefectSec	0x0	TSF one second latch.		
	1	FarEndDefectSec	0x0	RDI defect one second latch.		

DATA SHEET

Table 21. TOH Monitor Status (T_TOH_MONITOR_Line_Status)

Offset	Bits	Name	Init	Description
0x0000	TTI_Stal	bleIndications		
	0	TTI_Stable1	0x0	TTI 1 byte message stable indication.
	1	TTI_Stable16	0x0	TTI 16 byte message stable indication.
	2	TTI_Stable16_Latched	0x0	Latched TTI 16 byte message stable indication. This field is clear-on-write-1.
0x0002	15 - 0	Debounced_K1K2	0x0	Debounced value of K1/K2 bytes (most significant byte is K1, least significant byte is K2).
0x0004	7 - 0	Debounced_S1	0x0	Debounced value of S1 nibbles.

Table 22. TOH Monitor Events/Defects (T_TOH_MONITOR_Defects)

Offset	Bits	Name	Init	Description
0x0000	0	SignalDetect	0x1	SignalDetect from optical transceiver. SignalDetect is active high. (this is LINERXSIGDET when SignalDetect_ActiveLow is 0x0 and not LINERXSIGDET when SignalDetect_ActiveLow is 0x1).
	1	OOF	0x1	Out Of Frame.
	2	LOF	0x1	Loss Of Frame.
	3	LOS	0x1	Loss Of Signal.
	4	RSOHM_CI_SSF	0x1	Incoming SSF on RSOH Monitor.
	5	B1_Error	0x1	B1 BIP Error.
	6	ТІМ	0x1	Trail Identifier Mismatch.
	7	MSOHM_CI_SSF	0x1	Incoming SSF on MSOH Monitor.
	8	DEG	0x1	Degraded signal.
	9	EXC	0x1	Excessive error.
	10	RDI	0x1	Remote Defect Indication.
	11	AIS	0x1	Line AIS detected on K2.
	12	SF	0x1	Signal Fail.
	13	K1K2_Event	0x1	New (debounced) K1K2 value accepted.
	14	S1_Event	0x1	New (debounced) S1 value accepted.

Table 23. TOH Monitor APS Events/Defects (T_TOH_MONITOR_APS_Defects)

Offset	Bits	Name	Init	Description
0x0000	0	DEG	0x1	Signal Degrade.
	1	SF	0x1	Signal Fail.
	2	K1K2_Event	0x1	New K1K2 value accepted.

PHAST-12N TXC-06312

Offset	Bits	Name	Init	Description
0x0000	General	_Config		-
	0	B1_BIP_PerformanceCounter_Bit Count	0x0	B1 BER performance counter reports bit errors when 0x1, block errors when 0x0.
	1	REI_BIP_PerformanceCounter_Bit Count	0x0	REI BIP performance counter reports bit errors when 0x1, block counter when 0x0.
	2	SignalDetect_ActiveLow	0x0	SignalDetect input from transceiver (LINERXSIGDET) is active low when 0x1, active high when 0x0.
	3	LOS_Detection_Disable	0x0	LOS detection is disabled when 0x1.
	4	Descrambler_Disable	0x0	Descrambling is disabled when 0x1. Descrambling must be enabled in normal operation.
	5	Debounce_K2_LSB_Separately	0x1	Debouncing of K1/K2 bytes: the three least significant bits of K2 are debounced separately when 0x1. All sixteen bits are debounced when 0x0.
	6	SignalDetect_LOF_Inhibit_Disable	0x1	Inhibition of LOF by SignalDetect is disabled when 0x1.
	7	LOS_LOF_Inhibit_Disable	0x0	Inhibition of LOF by LOS is disabled when 0x1.
	8	SSF_AIS_Inhibit_Disable	0x0	Inhibition of K2 Line AIS by incoming SSF is disabled when 0x1.
0x0002		TTI_Config		T_TOH_MONITOR_TTI_Config (See page 150.) TTI Configuration.
0x0006		B2_Config		T_BIP_Detector_Config (See page 150.) Configuration for B2 DEG/EXC detection.
0x0022	AIS_RD	I_Config		
	0	AIS_RDI_Insert_Disable	0x0	Insertion of RDI on K2 Line AIS is disabled when 0x1.
	1	SSF_RDI_Insert_Disable	0x0	Insertion of RDI on SSF (incoming SSF in MSOH Monitor) is disabled when 0x1.
	2	EXC_RDI_Insert_Disable	0x0	Insertion of RDI on EXC is disabled when 0x1.
	3	SignalDetect_AIS_Insert_Disable	0x1	Insertion of Line AIS on SignalDetect is disabled when 0x1.
	4	LOS_AIS_Insert_Disable	0x0	Insertion of Line AIS on LOS defect detected in the A1/A2 Framer is disabled when 0x1.
	5	LOF_AIS_Insert_Disable	0x0	Insertion of Line AIS on LOF defect is disabled when 0x1.
	6	TIM_AIS_Insert_Disable	0x0	Insertion of Line AIS on TIM defect is disabled when 0x1.
	7	AIS_AIS_Insert_Disable	0x0	Insertion of Line AIS on K2 line AIS detection is disabled when 0x1.
	8	SSF_AIS_Insert_Disable	0x0	Insertion of Line AIS on SSF (incoming SSF in MSOH Monitor) is disabled when 0x1.
	9	EXC_AIS_Insert_Disable	0x0	Insertion of Line AIS on B2 EXC defect is disabled when 0x1.
	10	Framer_AIS_Force	0x0	Forces Line AIS insertion after Framing when 0x1.
	11	RSOH_AIS_Force	0x0	Forces Line AIS insertion after Regenerator Section Overhead Monitoring when 0x1.
	12	MSOH_AIS_Force	0x0	Forces Line AIS insertion after Multiplex Section Overhead Monitoring when 0x1.

Table 24. TOH Monitor Configuration (T_TOH_MONITOR_Common_Config)

-

DATA SHEET

Offset	Bits	Name	Init	Description
0x0000	Config			
	0	TIM_Enable	0x0	TIM detection is enabled when 0x1.
	1	NonSpecificMessage	0x0	Ignore expected TTI message and assume non-specific repeating byte message when 0x1. When 0x0 the TTI message has to match the specified expected message (16 byte TTI message or repeating specific byte message).
0x0002	Counter	S		
	3 - 0	MultiFramesToSet_TIM	0x5	Range 2 to 15 Number of multiframes to set TIM alarm.
	7 - 4	MultiFramesToReset_TIM	0x3	Range 2 to 15 Number of multiframes to reset TIM alarm.

Table 25. J0 TTI Configuration (T_TOH_MONITOR_TTI_Config)

Table 26. BER Detection Configuration (T_BIP_Detector_Config)

Offset	Bits	Name	Init	Description
0x0000	0	PoissonErrorCheck	0x0	Assume Poisson error distribution when 0x1, bursty distribution when 0x0.
0x0002		PoissonDetector_Config		T_BIP_PoissonDetector_Config (See page 150.) Configuration for DEG/EXC detection, assuming Poisson distribution of errors.
0x0014		BurstyDetector_Config		T_BIP_BurstyDetector_Config (See page 151.) Configuration for DEG detection, assuming bursty distribution of errors.

Table 27. Poisson Distribution BER Detection (T_BIP_PoissonDetector_Config)

Offset	Bits	Name	Init	Description
0x0000	Poisson	Common_Config		
	0	DEG_Use125usCounter	0x0	Use 125 us interval length for DEG detection when 0x1, otherwise 500 us interval length.
	1	EXC_Use125usCounter	0x0	Use 125 us interval length for EXC detection when 0x1, otherwise 500 us interval length.
	2	BurstProtection	0x0	Enables Burst Protection when 0x1.
0x0002	15 - 0	DEG_DetectionErrorThreshold	0xFFFF	Range 1 to 65535 Minimum number of bit errors within a window for DEG detection.
0x0004	15 - 0	DEG_DetectionWindowSize	0xFFFF	Range 1 to 65535 Window size for DEG detection in 125/500 us intervals.
0x0006	15 - 0	DEG_RecoveryErrorThreshold	0xFFFF	Range 1 to 65535 Allowed number of bit errors within a window for DEG recovery (error threshold for which the DEG state will not be exited).
0x0008	15 - 0	DEG_RecoveryWindowSize	0x1	Range 1 to 65535 Window size for DEG recovery in 125/500 us intervals.
0x000A	15 - 0	EXC_DetectionErrorThreshold	0xFFFF	Range 1 to 65535 Minimum number of bit errors within a window for EXC detection.
0x000C	15 - 0	EXC_DetectionWindowSize	0xFFFF	Range 1 to 65535 Window size for EXC detection in 125/500 us intervals.

TRANSWITCH	DATA SHEET	PHAST-12N TXC-06312
Engines for Global Connectivity		

Table 27.	Poisson	Distribution B	BER Detection	1 (T_BIP_PoissonDetector_Config)
-----------	---------	-----------------------	----------------------	----------------------------------

Offset	Bits	Name	Init	Description
0x000E	15 - 0	EXC_RecoveryErrorThreshold	0xFFFF	Range 1 to 65535 Maximum allowed number of bit errors within a window for EXC recovery (error threshold for which the EXC state will not be exited).
0x0010	15 - 0	EXC_RecoveryWindowSize	0x1	Range 1 to 65535 Window size for EXC recovery in 125/500 us intervals.

Table 28. Bursty Distribution BER Detection (T_BIP_BurstyDetector_Config)

Offset	Bits	Name	Init	Description
0x0000	12 - 0	DEG_DetectionErrorThreshold	0x1F40	Range 0 to 8000 An (one second) interval is bad if the number of detected errored blocks in that interval is greater than or equal to this threshold.
0x0002	3 - 0	DEG_DetectionWindowSize	0xA	Range 2 to 10 Number of consecutive bad intervals before DEG is declared.
0x0004	12 - 0	DEG_RecoveryErrorThreshold	0x1F40	Range 0 to 8000 An (one second) interval is a good interval when the number of errored blocks in this interval does not exceed this threshold.
0x0006	3 - 0	DEG_RecoveryWindowSize	0x2	Range 2 to 10 Number of consecutive good intervals before DEG is cleared.

TOH GENERATOR

Offset	Bits	Name	Init	Access	Description
0x0000		Common_Config		rw	T_TOHG_Common_Config (See page 152.) General configuration.
0x0100		Line_Config		rw	Array (4) of T_TOHG_Line_Config (See page 153.) Offset between two elements = 0x8. Array index indicates the line (= line number - 1). Configuration.
0x0200		TTI_Contents	All 0x0	rw	Array (64) of byte Offset between two elements = 0x2. Array index indicates the TTI byte number. This array contains the TTI sequence for the four lines: • bytes 0-15: TTI message for line 1 • bytes 16-31: TTI message for line 2 • bytes 32-47: TTI message for line 3 • bytes 48-63: TTI message for line 4 Note: Bytes 16 to 63 are not used in STM-4 mode.

Table 29. TOH Generator (T_TOH_GENERATOR)

DATA SHEET

Offset	Bits	Name	Init	Access	Description
0x0400		TOH_Contents	See desc.	rw	 Array (324) of nine_bits Offset between two elements = 0x2. Array index indicates the TOH byte number. This array contains the TOH for a single STM-4 or 4 times STM-1. Each TOH byte is represented by a nine bit word. The most significant bit determines the source of the corresponding byte (0x0 = internal memory, 0x1 = TOH Port Interface). This way of determining the source of a byte is the default behavior. For certain bytes (DCC bytes, M1, K1, K2), other sources than internal memor or TOH-Port can be selected by extra settings which override this default behavior. The least significant byte obtains the byte value where this bytes has to be inserted from memory. The order in which bytes are mapped in memory is the same order as these bytes appear in the TOH. For STM-1 mode the columns are byte interleaved: column #1 corresponds to line 1, column 2 to line 2, etc. The byte number can easily be calculated as follows: byte number = (a-1)x36 + (b-1)x4 + c-1 where a = row number (1 to 3, 5 to 9) b = multi-column number (1 to 9) c, for STM-1 mode = line number (1-4) See also [ITU-T G.707/Y.1322] for the TOH bytes
					locations. Note 1: Space is also reserved for the administrative Unit Pointer bytes (a = 4) but these bytes are not used Note 2: K1/K2 can not be sourced from this internal memory. Separate sixteen bit registers are provided fo these bytes to guarantee that K1 and K2 are kept together. Note 3: B1 and B2 byte locations serve as an error mask which will be EXORed with the calculated BIP. These locations must be 0x00 for normal operation. Note 4: A1 bytes (bytes 0-11) are initialized to 0xF6, A: bytes (bytes 12-23) are initialized to 0x28. All other entries are initialized to 0x00.

Table 29. TOH Generator (T_TOH_GENERATOR)

Table 30. Transmit TOH Port Configuration (T_TOHG_Common_Config)

Offset	Bits	Name	Init	Description
0x0000	0	TOH_Port_Enable	0x0	Enables TX side TOH port when 0x1.

Offset	Bits	Name	Init	Description
0x0000	Sources	3		·
	0	RSOH_DCC_Select	0x0	Select mode for DCC port. The DCC port requests RS DCC bytes (D1-D3) when 0x1 and MS DCC bytes (D4-D12) when 0x0. Only valid when DCC port is enabled.
	1	DCC_Port_Enable	0x0	The DCC port is enabled when 0x1 and RSOH_DCC_Port_Select setting determines which set of DCC bytes will be filled in from the DCC port (RS DCC or MS DCC). For the other set, default behavior applies (see TOH_Contents). Default behavior applies both for RSOH and MSOH DCC bytes when 0x0.
	2	REI_Ring_Port_Enable	0x1	REI, in M1. M1 contents is taken from Ring Port when 0x1, default behavior applies when 0x0.
	4 - 3	K1K2_Source	0x0	Source for K1 and K2 bytes: • 0x0 = Register • 0x1 = TOH Port • 0x2 = Rx APS • 0x3 = Reserved
	6 - 5	RDI_Source	0x2	Source for RDI, in K2 (b6-b8). • 0x0 = Register • 0x1 = TOH Port • 0x2 = Ring Port • 0x3 = None
0x0002	15 - 0	K1K2_Value	0x0	Values for K1 and K2 bytes, used when Source is Register. K1 is least significant byte, K2 is most significant byte.
0x0004	2 - 0	RDI_Value	0x0	RDI value used to overwrite b1-b3 of K2 when RDI Source = Register.
0x0006	0	Scrambling_Disable	0x0	Scrambling is disabled when 0x1. Scrambling must be enabled in normal operation.

Table 31. TOH Configuration (T_TOHG_Line_Config)

TOH AND DCC PORT

Table 32.	Receive TOH and DCC Port (T_RX_TOH_DCC_POR	т)
		.,

Offset	Bits	Name	Init	Access	Description
0x0000		TOH_Events_Mask	All 0x1	rw	Array (36) of nine_bits Offset between two elements = 0x2. Array index indicates the summary of nine TOH byte events. Masks for the corresponding events. Refer to TOH_Events_LatchForInt descriptions for the layout of the bits.
0x0200		Common_Config		rw	T_RXTDP_Common_Config (See page 155.) General configuration.
0x0240		Line_Config		rw	Array (4) of T_RXTDP_Line_Config (See page 155.) Offset between two elements = 0x2. Array index indicates the line (= line number - 1). DCC port configuration.

PHAST-12N
TXC-06312

Offset	Bits	Name	Init	Access	Description
0x0280		TOH_Events_Summ ary	All 0x0	ro	 Array (4) of nine_bits Offset between two elements = 0x2. Array index indicates the summary of nine TOH_Events_LatchedForInt bits. Each bit corresponds to the summary of one entry in TOH_Events_LatchForInt. Each entry of this array corresponds to the summaries of all TOH byte events for the bytes with the same interleave depth (STM-4 mode), or with the same line number (STM-1 mode). The array index and the bit position can be calculated as follows: Array index = c-1 The correlation between bit position and TOH_Events_LatchForInt entry is as follows: A bit p corresponds to the summary of TOH Events entry (px4) + c. where a = row number (1 to 9) b = multi-column number (1 to 9) c, for STM-4 mode = depth of the interleave within the multicolumn (1-4) p = bit position (0 to 8, least significant bit is 0)
0x02C0		TOH_Events_Summ ary_Mask	All 0x1	rw	Array (4) of nine_bits Offset between two elements = 0x2. Array index indicates the summary of nine TOH_Events_LatchedForInt bits. Summary mask of TOH Events. Refer to TOH_Events_Summary descriptions for the layout of the bits.
0x0300		TOH_Events_LatchF orInt	All 0x0	cow_1	 Array (36) of nine_bits Offset between two elements = 0x2. Array index indicates the summary of nine TOH byte events. Latched events on TOH bytes. Events occur if the TOH byte content has a different value as the one in the previous frame. The array index and the bit position within the corresponding entry can be calculated as follows: Array index = (a-1)x4 + c-1 Bit position = b-1 where a = row number (1 to 9) b = multi-column number (1 to 9) c, for STM-4 mode = depth of the interleave within the multi-column (1-4) c, for STM-1 mode = line number (1-4) See also [ITU-T G.707/Y.1322] for the TOH bytes locations.

Table 32. Receive TOH and DCC Port (T_RX_TOH_DCC_PORT)

Table 32.	Receive TOH a	nd DCC Port (T_R	X_TOH_DCC_PORT)
-----------	---------------	------------------	-----------------

Offset	Bits	Name	Init	Access	Description
0x0400		TOH_Contents	All 0x0	ro	 Array (324) of byte Offset between two elements = 0x2. Array index indicates the TOH byte number. Received TOH bytes (raw, unprocessed values, except B1/B2). The order in which bytes are mapped in memory is the same order as these bytes appear in the TOH. For STM-1 mode the columns are byte interleaved: column #1 corresponds to line 1, column 2 to line 2, etc. The byte number can easily be calculated as follows: byte number = (a-1)x36 + (b-1)x4 + c-1 where a = row number (1 to 9) b = multi-column number (1 to 9) c, for STM-4 mode = depth of the interleave within the multicolumn (1-4) c, for STM-1 mode = line number (1-4) See also [ITU-T G.707/Y.1322] for the TOH bytes locations. Note: B1 and B2 locations contain the EXOR of the calculated BIP with the received BIP.

Table 33. Receive TOH Port Configuration (T_RXTDP_Common_Config)

Offset	Bits	Name	Init	Description
0x0000	0	TOH_Port_Enable	0x0	TOH Port is enabled when 0x1.

Table 34. Receive DCC Port Configuration (T_RXTDP_Line_Config)

Offset	Bits	Name	Init	Description
0x0000	0	RSOH_DCC_Select	0x0	Select mode for DCC port. The DCC port sends RS DCC bytes (D1- D3) when 0x1 and MS DCC bytes (D4-D12) when 0x0. Only valid when the DCC port is enabled.
	1	DCC_Port_Enable	0x0	The DCC port is enabled when 0x1 and the RSOH_DCC_Port_Select setting determines which set of DCC bytes will be sent out on the DCC port (RS DCC or MS DCC).

HIGH ORDER POINTER TRACKER AND RETIMER

Offset	Bits	Name	Init	Access	Description
0x0000	0	DetectedConcat_Event_Mask	0x1	rw	Detected Concatenation event mask.
0x0040	0	DetectedConcat_Event_Latch ForInt	0x0	cow_1	Detected Concatenation event latched for interrupt.
0x0080		CorrDefects_SummaryMask		rw	T_HOPTRRT_Defects_Summary (See page 156.) Summary mask.

Table 35. Pointer Tracker and Retimer (T_HO_PTR_RETIMER)

PHAST-12N	
TXC-06312	

Offset	Bits	Name	Init	Access	Description
0x00C0		CorrDefects_Summary		ro	T_HOPTRRT_Defects_Summary (See page 156.) Summary.
0x0100		Reserved	0x0	ro	Reserved.
0x0140		Reserved	0x0	ro	Reserved.
0x0180		Common_Config		rw	T_HOPTRRT_Common_Config (See page 156.) General configuration.
0x01C0		AUG1_Mode_Config		rw	T_AUG1_Mode_Config (See page 144.) AUG-1 mode configuration.
0x01E0	11 - 0	DetectedConcat	0x0	ro	Detected concatenation in the Pointer Tracker. A '1' means a concatenation indication (Y1*) has been detected on the pointer bytes of the corresponding timeslot (least significant bit corresponds to the first timeslot).
0x0200		VCx			Array (12) of T_HOPTRRT_VCx (See page 156.) Offset between two elements = 0x20. Array index indicates the high order path. Configuration and status.

Table 35. Pointer Tracker and Retimer (T_HO_PTR_RETIMER)

Table 36. Pointer Tracker and Retimer Defect/Event Summary (T_HOPTRRT_Defects_Summary)

Offset	Bits	Name	Init	Description
0x0000	11 - 0	Summary	0xFFF	Defects summary, one bit per high order path. Least significant bit corresponds to the first high order path.
	12	DetectedConcat_Event	0x1	Event telling detected concatenation has changed.

Table 37. Pointer Tracker and Retimer Common Configuration (T_HOPTRRT_Common_Config)

Offset	Bits	Name	Init	Description
0x0000	AIS_Cor	nfig		
	0	AU_AIS_AIS_Insert_Disable	0x0	Insertion of AU AIS on AU AIS detection by the Pointer Tracker is disabled when 0x1.
	1	LOP_AIS_Insert_Disable	0x0	Insertion of AU AIS on Loss Of Pointer is disabled when 0x1 by the Pointer Tracker.
	2	TSF_AIS_Insert_Disable	0x0	Insertion of AU AIS on TSF is disabled when 0x1.
	3	FifoError_AIS_Insert_Disable	0x0	Insertion of AU AIS on a FIFO Error is disabled when 0x1.
0x0002	0	Reserved	0x0	Reserved.

Table 38. Pointer Tracker and Retimer per path (T_HOPTRRT_VCx)

Offset	Bits	Name	Init	Access	Description
0x0000		VC3_TUG3_Config		rw	T_HOPTRRT_VC3_TUG3_Config (See page 157.) Per VC-3/TUG-3 configuration.
0x0006		VCx_Status		ro	T_HOPTR_VCx_Status (See page 157.) Pointer Tracker Status.

PHAST-12N TXC-06312

Table 38. Pointer Tracker and Retimer per	path (T_HOPTRRT_VCx)
---	----------------------

Offset	Bits	Name	Init	Access	Description
0x0008		PerfCounters_Shadow		ro	T_HOPTRRT_PerfCounters (See page 157.) Performance counters.
0x000C		CorrDefects_Mask		rw	T_HOPTRRT_Defects (See page 158.) Correlated defects mask.
0x000E		CorrDefects_Unlatched		ro	T_HOPTRRT_Defects (See page 158.) Correlated defects.
0x0010		CorrDefects_LatchForInt		cow_1	T_HOPTRRT_Defects (See page 158.) Correlated defects latched for interrupt.
0x0012		Reserved	0x0	cow_1	Reserved.
0x0014		Reserved	0x0	ro	Reserved.
0x0016		Reserved	0x0	ro	Reserved.

Table 39. Pointer Tracker and Retimer Path Configuration (T_HOPTRRT_VC3_TUG3_Config)

Offset	Bits	Name	Init	Description	
0x0000	General_Config				
	0	AIS_Force	0x0	Insertion of AU AIS (after the Retimer) is forced when 0x1.	
	2 - 1	SS_bits	0x2	SS bits to be used in the Pointer Generator.	
0x0002	15 - 0	SlowLeakRegister	0x10	Slow Leak Register (consult documentation).	
0x0004	15 - 0	FastLeakRegister	0x10	Fast Leak Register (consult documentation).	

Table 40. Pointer Tracker Path Status (T_HOPTR_VCx_Status)

	Offset	Bits	Name	Init	Description
ĺ	0x0000	1 - 0	Reported_SS_Bits	0x0	Received SS bits reported by the Pointer Tracker.

Table 41. Pointer Justification Counters (T_HOPTRRT_PerfCounters)

Offset	Bits	Name	Init	Description
0x0000	00 IncomingJustifications			
	7 - 0	Incoming_PJ	0x0	Positive Justifications as counted by the Pointer Tracker.
	15 - 8	Incoming_NJ	0x0	Negative Justifications as counted by the Pointer Tracker.
0x0002	Outgoing	gJustifications		
	7 - 0	Outgoing_PJ	0x0	Positive Justifications as generated by the Pointer Generator.
	15 - 8	Outgoing_NJ	0x0	Negative Justifications as generated by the Pointer Generator.

DATA SHEET

Table 42. Pointer Tracker and Retimer Defects (T_HOPTRRT_Defects)

Offset	Bits	Name	Init	Description
0x0000	0	AIS	0x1	AIS, detected by the Pointer Tracker.
	1	LOP	0x1	Loss of Pointer.
	2	Fifo_Error	0x1	Retimer FIFO Error.

RETIMER

Table 43. Retimer (T_RETIMER)

Offset	Bits	Name	Init	Access	Description
0x0000		AUG1_Mode_Config		rw	T_AUG1_Mode_Config (See page 144.) AUG-1 mode configuration.
0x0010		CorrDefects_Mask		rw	T_RT_Defects (See page 158.) Correlated defects mask.
0x0020		CorrDefects_Unlatched		ro	T_RT_Defects (See page 158.) Correlated defects.
0x0030		CorrDefects_LatchForInt		cow_1	T_RT_Defects (See page 158.) Correlated defects latched for interrupt.
0x0040		Common_Config		rw	T_RT_Common_Config (See page 158.) General configuration.
0x0080		VCx			Array (12) of T_RT_VCx (See page 159.) Offset between two elements = 0x8. Array index indicates the high order path. Configuration and status.

Table 44. Retimer Defects (T_RT_Defects)

Offset	Bits	Name	Init	Description
0x0000	11 - 0	FIFO_Errors	0xFFF	FIFO Errors, one bit per high order path. Least significant bit corresponds to the first high order path.
	12	LOF	0x1	Loss Of Frame defect on external reference frame sync (REFTXFS).

Table 45. Retimer Common Configuration (T_RT_Common_Config)

Offset	Bits	Name	Init	Description
0x0000	0	Reserved	0x0	Reserved.
0x0002	0	COMBUS_Bypass	0x0	No retiming is done when 0x1. It is mandatory to set this field to 0x0 when the Add Telecombus operates in slave mode.
0x0004	0	ExtFramePulseExpected	0x0	Lock on external reference frame sync (REFTXFS) when 0x1.
0x0006	0	ExtFramePulseNegEdge	0x0	Sample external reference frame sync (REFTXFS) on negative clockedge when 0x1.

Table 45. Retimer Common Configuration (T_RT_Common_Config)

Offset	Bits	Name	Init	Description
0x0008	13 - 0	ExtFramePulseOffset	0x0	Range 0 to 9719 Offset between external reference frame sync (REFTXFS) and system reference frame sync.
0x000A	13 - 0	Reserved	0x25E4	Reserved.
0x000C	13 - 0	Reserved	0x25E2	Reserved.

Table 46. Retimer per Path (T_RT_VCx)

Offset	Bits	Name	Init	Access	Description
0x0000		VC3_TUG3_Config		rw	T_RT_VC3_TUG3_Config (See page 159.) High order path configuration.
0x0006		PerfCounters_Shadow		ro	T_RT_PerfCounters (See page 159.) Performance Counters.

Table 47. Retimer Path Configuration (T_RT_VC3_TUG3_Config)

Offset	Bits	Name	Init	Description
0x0000	1 - 0	SS_bits	0x2	SS bits to be used in the Pointer Generator.
0x0002	15 - 0	SlowLeakRegister	0x10	Slow Leak Register (consult documentation).
0x0004	15 - 0	FastLeakRegister	0x10	Fast Leak Register (consult documentation).

Table 48. Retimer Performance Counters (T_RT_PerfCounters)

Offset	Bits	its Name Init		Description		
0x0000	Outgoing	OutgoingJustifications				
	7 - 0	Outgoing_PJ	0x0	Positive Justifications, as generated by the pointer generator.		
	15 - 8	Outgoing_NJ	0x0	Negative Justifications, as generated by the pointer generator.		

CLOCK RECOVERY/CLOCK SYNTHESIS/SERDES

Table 45. Clock Recovery/Clock Synthesis/Serbes (I_ANALOG)	Table 49.	Clock Recovery/Clock Synthesis/SerDes (T_ANALOG)
--	-----------	--

Offset	Bits	Name	Init	Access	Description
0x0000		Reserved	0x0	rw	Reserved.
0x0020		Loopback_Select		rw	T_LoopbackSelect (See page 160.) Loopback selection routes input or output data to different output/inputs for test purposes.
0x0030		PadPowerDown		rw	T_PadPowerDown (See page 161.) Power down for each LVPECL and LVDS pad.

PRODUCT PREVIEW TXC-06312-MB, Ed. 4 April 2004

PHAST-12N
TXC-06312

Offset	Bits	Name	Init	Access	Description
0x0040	6 - 0	CDR_CS_Status_Unlatched	0x0	ro	CDR/CS Status: locking signals for the clock recovery units (CRU) and the PLLs. For every bit in the list, 0x1 indicates lock of the corresponding CRU/PLL, 0x0 indicates unlocked for the corresponding CRU/PLL. • bit 0: Line 1 CRU • bit 1: Line 2 CRU • bit 2: Line 3 CRU • bit 3: Line 4 CRU • bit 4: APS CRU • bit 5: Transmit PLL • bit 6: Receive PLL
0x0044	6 - 0	CDR_CS_Status_LatchForInt	0x0	cow_1	CDR/CS Status latched for interrupt, see CDR/CS Status.
0x0048	6 - 0	CDR_CS_Status_Mask	0x7F	rw	CDR/CS Status mask, see CDR/CS Status.
0x004C	2-0	DivideClocks	0x0	rw	 Divide clocks by 4. For every bit in the list, 0x1 divides the corresponding clock by 4. bit 0: Line 1 receive clock bit 1: APS receive clock bit 2: Transmit clock Note: The undivided APS receive clock and Transmit Clock are always 77.76 MHz. Line 1 receive clock frequency depends on the operational mode (77.76 MHz in STM-4 mode, 19.44 MHz in STM-1 mode).
0x0050		CDR_CS_Setup		rw	T_CDR_CS_Setup (See page 161.) Setup and initialization of the clock recovery, serializer and deserializer (CDR/CS).
0x0060		PLL_Control		rw	T_PLL_Control (See page 162.) Control of the PLL's in clock recovery, serializer and deserializer (CDR/CS).

Table 50.	Loopback Configuration (T_LoopbackSelect)
14010 001	

Offset	Bits	Name	Init	Description
0x0000	4 - 0	Short	0x0	 Short Loopback Select, it routes the parallel transmit input to the parallel receive output. There is a bit per LIU. For every bit in the list, 0x0 sets the corresponding LIU in normal operation, 0x1 sets the corresponding LIU in loop back. bit 0: Line 1 bit 1: Line 2 bit 2: Line 3 bit 3: Line 4 bit 4: APS
0x0002	4 - 0	Long	0x0	Long Loopback Select, it routes the serialized transmit output to the deserializer receive input. There is a bit per LIU. For every bit in the list, 0x0 sets the corresponding LIU in normal operation, 0x1 sets the LIU in loop back. • bit 0: Line 1 • bit 1: Line 2 • bit 2: Line 3 • bit 3: Line 4 • bit 4: APS

Table 50. Loopback Configuration (T_LoopbackSelec

Offset	Bits	Name	Init	Description
0x0004	4 - 0	External	0x0	External Loopback Select, it routes the output from the receive CRU back to the transmit serial output. For every bit in the list, 0x0 sets the LIU in normal operation, 0x1 sets the LIU in loop back. • bit 0: Line 1 • bit 1: Line 2 • bit 2: Line 3 • bit 3: Line 4 • bit 4: APS

Table 51. High Speed Interface Power Down (T_PadPowerDown)

Offset	Bits	Name	Init	Description
0x0000	4 - 0	RxPAD	0x1F	Power down for the receive line and APS pads. Each bit controls a receive pad. For every bit in the list, 0x1 powers down the corresponding Rx pad, 0x0 powers the corresponding Rx pad. • bit 0: Line 1 • bit 1: Line 2 • bit 2: Line 3 • bit 3: Line 4 • bit 4: APS
0x0002	4 - 0	TxPAD	0x1F	 Power down for the transmit line and APS pads. Each bit controls a transmit pad. For every bit in the list, 0x1 powers down the corresponding Tx pad, 0x0 powers the corresponding Tx pad. bit 0: Line 1 bit 1: Line 2 bit 2: Line 3 bit 3: Line 4 bit 4: APS
0x0004	0	TxRefClock2	0x1	Power down for the transmit reference clock pad, REFTXCLK2. The pad is powered when 0x0 and is powered down when 0x1.

Table 52. Setup of Clock Recovery/Clock Synthesis/SerDes (T_CDR_CS_Setup)

Offset	Bits	Name	Init	Description
0x0000	4 - 0	CRU_PowerDown	0x1F	Receive Clock Recovery Units Power Down. Each bit controls the power down of a CRU in the receive section. For every bit in the list, 0x1 indicates the corresponding CRU is powered down, 0x0 indicates the CRU is operational. • bit 0: Line 1 CRU • bit 0: Line 2 CRU • bit 1: Line 2 CRU • bit 2: Line 3 CRU • bit 3: Line 4 CRU • bit 4: APS CRU
0x0002	0	LineRate	0x0	Indicates line rate for line number 1. Line rate of line 1 is 622.08 Mbit/s when 0x1, 155.52 Mbit/s when 0x0.
0x0004	0	Tx_Enable	0x0	Enables the serializer in the transmit section when 0x1.
0x0006	0	Rx_Enable	0x0	Enables the deserializer in the receive section when 0x1.
0x0008	0	Tx_Reset_N	0x0	Resets the serializer logic when 0x0 (active low reset).
0x000A	0	Rx_Reset_N	0x0	Resets the deserializer logic when 0x0 (active low reset).

DATA SHEET

Offset	Bits	Name	Init	Description		
0x0000	0	TimingMode	0x0	 External or Line timing mode selection for the transmit PLL. External timing mode is selected when 0x0 and TxRefSelect select the external source. Line-Timing mode is selected when 0x1 and LineTimingChannel selects the line timing channel. 		
0x0002	2 - 0	LineTimingChannel	0x0	Line timing mode channel selection. This field is only used when TimingMode is 0x1. The value indicate the line: • 0x0 = Line 1 • 0x1 = Line 2 • 0x2 = Line 3 • 0x3 = Line 4 • 0x4 = APS • 0x5 = Reserved • 0x6 = Reserved • 0x7 = Reserved		
0x0004	0	TxRefSelect	0x0	Transmit reference clock external source selection for the PLL in t transmit section. This field is only valid when TimingMode is 0x0. • 0x0 = REFTXCLK1 is used as reference clock • 0x1 = REFTXCLK2 is used as reference clock		
0x0006	0	RxRefSelect	0x0	 Receive reference clock external source selection for the PLL in the receive section. 0x0 = REFRXCLK is used as reference clock 0x1 = REFTXCLK1/REFTXCLK2 is used as reference clock, the selection between the transmit reference clocks is made using the TxRefSelect field 		
0x0008	0	TxPLL_Cap_Enable	0x0	Transmit PLL Capacitor Enable. The external capacitor for the transmit PLL is used when 0x1 and r used when 0x0.		
0x000A	0	RxPLL_Cap_Enable	0x0	Receive PLL Capacitor Enable. The external capacitor for the receive PLL is used when 0x1 and r used when 0x0.		
0x000C	1 - 0	TxRefFreq	0x0 Transmit PLL reference clock frequency. Indicates the frequency of the reference clock for the PL inputs that can be used are indicated: • 0x0 = 19.44 MHz, REFTXCLK1 or REFTXCLK2 • 0x1 = 77.76 MHz, REFTXCLK1 or REFTXCLK2 • 0x2 = 155.52 MHz, REFTXCLK2 • 0x3 = Reserved			
0x000E	1 - 0	RxRefFreq	0x0	Receive PLL reference clock frequency. Indicates the frequency of the reference clock for the PLL. The clo inputs that can be used are indicated: • 0x0 = 19.44 MHz, REFRXCLK or REFTXCLK1 or REFTXCLF • 0x1 = 77.76 MHz, REFRXCLK or REFTXCLK1 or REFTXCLF • 0x2 = 155.52 MHz, REFTXCLK2 • 0x3 = Reserved		
0x0010	0	TxPLL_PowerDown	0x1	Transmit PLL Power Down. The PLL is powered down when 0x1 and operational when 0x0.		
0x0012	0	RxPLL_PowerDown	0x1	Receive PLL Power Down. The PLL is powered down when 0x1 and operational when 0x0.		
0x0014	0	TxPLL_ByPass	0x0	Transmit PLL Bypass, allows the reference clock to bypass the PL The PLL is bypassed when 0x1.		

Table 53. PLL Control (T_PLL_Control)

PHAST-12N TXC-06312

Offset	Bits	Name	Init Description	
0x0016	0	RxPLL_ByPass	0x0	Receive PLL Bypass, allows the reference clock to bypass the PLL. The PLL is bypassed when 0x1.
0x0018	4 - 0	TxLPF_ZeroSelect	0x0	Transmit LPF PLL Zero Select. Selects the location of the 'zero' in the low pass filter of the transmit PLL.
0x001A	4 - 0	RxLPF_ZeroSelect	0x0	Receive LPF PLL Zero Select. Selects the location of the 'zero' in the low pass filter of the receive PLL.
0x001C	5 - 0	TxChargePump_GainSelect	0x0	Transmit PLL Charge Pump Gain Select. Controls the charge pump current. The current can be controlled in 2 micro-Ampere increments from 0 to 126 micro-Ampere.
0x001E	5 - 0	RxChargePump_GainSelect	0x0	Receive PLL Charge Pump Gain Select. Controls the charge pump current. The current can be controlled in 2 micro-Ampere increments from 0 to 126 micro-Ampere.

Table 53. PLL Control (T_PLL_Control)

RECEIVE APS PORT

Offset	Bits	Name	Init	Access	Description
0x0000	7 - 0	Reported_TTI_Message	0x0	ro	Received J0 byte.
0x0010		Common_Config		rw	T_RX_APS_Common_Config (See page 164.) General configuration.
0x0018	7 - 0	Expected_TTI_Message	0x0	rw	Expected J0 byte.
0x0020		CorrDefects_Unlatched		ro	T_RX_APS_Defects (See page 164.) Correlated defects.
0x0028		CorrDefects_LatchForInt		cow_1	T_RX_APS_Defects (See page 164.) Correlated defects latched for interrupt.
0x0030		CorrDefects_Mask		rw	T_RX_APS_Defects (See page 164.) Correlated defects mask.
0x0038	15 - 0	B1_PM_Counter	0x0	ro	B1 performance counter.
0x0040		APS_Info			Array (4) of T_RX_APS_APSInfo (See page 164.) Offset between two elements = 0x10. Array index indicates the line (= line number - 1). Received APS information.

Table 54. Receive APS Port (T_RX_APS)

DATA SHEET

Table 55. Receive APS Port Common Configuration (T_RX_APS_Common_Config)

Offset	Bits	Name	Init	Description
0x0000	0	LOF_AIS_Insert_Disable	0x0	Insertion of AIS on Loss of Frame defect is disabled when 0x1.
	1	Framer_AIS_Force	0x0	AIS insertion is forced after framing when 0x1.
	2	Descrambler_Disable	0x0	Descrambling is disabled when 0x1.
	3	TIM_AIS_Insert_Disable	0x0	Insertion of AIS on Trail Trace Identifier Mismatch defect is disabled when 0x1.
	4	SSF_AIS_Insert_Disable	0x0	Insertion of AIS on incoming Server Signal Fail is disabled when 0x1.
	5	APS_AIS_Force	0x0	AIS insertion is forced after APS monitoring when 0x1.

Table 56. Receive APS Port Defects (T_RX_APS_Defects)

Offset	Bits	Name	Init	Description
0x0000	0	OOF	0x1	Out of Frame.
	1	LOF	0x1	Loss of Frame.
	2	B1_Error	0x1	B1 BIP error.
	3	ТІМ	0x1	J0 Trail Trace Identifier mismatch.
	4	SSF	0x1	Incoming SSF (Server Signal Fail).

Table 57. Receive APS Port per line (T_RX_APS_APSInfo)

Offset	Bits	Name	Init	Access	Description
0x0000		APS_Bytes		ro	T_RX_APS_APSBytes_Status (See page 164.) Received APS information.
0x0006		APSEvents_Unlatched		ro	T_RX_APS_APSBytes_Event (See page 165.) Events on APS bytes.
0x0008		APSEvents_LatchForInt		cow_1	T_RX_APS_APSBytes_Event (See page 165.) Events on APS bytes latched for interrupt.
0x000A		APSEvents_Mask		rw	T_RX_APS_APSBytes_Event (See page 165.) Events on APS bytes mask.

Table 58. Receive APS Port Status (T_RX_APS_APSBytes_Status)

Offset	Bits	Name	Init	Description
0x0000	15 - 0	RX_K1K2	0x0	Received K1/K2 bytes (most significant byte is K1, least significant byte is K2).
0x0002	15 - 0	TX_K1K2	0x0	K1/K2 bytes to transmit (most significant byte is K1, least significant byte is K2).
0x0004	15 - 0	Status_Request	0x0	Received SF and SD indications and indications for switch/bridge requests (most significant byte is status (bit 0 is SF and bit 1 is SD), least significant byte is switch/bridge request).

PHAST-12N TXC-06312

Table 59. Receive APS Port Events (T_RX_APS_APSBytes_Event)

Offset	Bits	Name	Init	Description
0x0000	0	RX_K1K2_Changed	0x1	Receive K1/K2 changed.
	1	TX_K1K2_Changed	0x1	Transmit K1/K2 changed.
	2	Status_Request_Changed	0x1	Status/Request information changed.

CROSS CONNECT

Table 60. Cross Connect (T_VC_XCONNECT)

Offset	Bits	Name	Init	Access	Description
0x0000		Termination_Config		rw	T_XC_Bus_Config (See page 165.) Configuration for the Terminal interface bus.
0x0040		Line_Config		rw	T_XC_Bus_Config (See page 165.) Configuration for the Line interface bus.
0x0060		APS_Config		rw	T_XC_Bus_Config (See page 165.) Configuration for the APS Port bus.

Table 61. Cross Connect Bus Configuration (T_XC_Bus_Config)

Offset	Bits	Name	Init	Description
0x0000		AUG1		T_AUG1_Mode_Config (See page 144.) AUG-1 mode configuration.
0x0002		Timeslot		Array (12) of T_XConnect_Config (See page 165.) Offset between two elements = 0x2. Array index indicates the high order path. Crossconnect configuration.

Table 62. Cross Connect Time Slot Configuration (T_XConnect_Config)

Offset	Bits	Name	Init	Description
0x0000	8 - 0	SourceTimeslot	0x0	Range 0 to 11 Source time slot for this output slot.
	10 - 9	SourceBus	0x0	Range 0 to 2 Source bus for this output slot. • 0x0 = Line Interface • 0x1 = APS Interface • 0x2 = Terminal Interface
	13 - 11	Reserved	0x0	Reserved.
	14	Force_AIS	0x0	The AIS pattern is inserted in this timeslot when 0x1.
	15	Force_Uneq	0x1	The Uneq pattern is inserted in this timeslot when 0x1.

DATA SHEET

ADD TELECOM BUS

Offset	Bits	Name	Init	Access	Description
0x0000		Global_CorrDefects_Mask		rw	T_DICB_Global_CorrDefects (See page 166.) Correlated global defects mask.
0x0004		VCx_CorrDefects_Summary		ro	T_DICB_VCx_CorrDefects_Summary (See page 166.) Defects summary.
0x0008		VCx_CorrDefects_SummaryMas k		rw	T_DICB_VCx_CorrDefects_Summary (See page 166.) Defects summary mask.
0x000C		Global_CorrDefects_Unlatched		ro	T_DICB_Global_CorrDefects (See page 166.) Correlated global defects.
0x000E		Global_CorrDefects_LatchForInt		cow_1	T_DICB_Global_CorrDefects (See page 166.) Correlated global defects latched for interrupt.
0x0010		Common_Config		rw	T_DICB_Common_Config (See page 167.) General configuration.
0x0020		VCx_CorrDefects_Unlatched		ro	Array (12) of T_DICB_VCx_CorrDefects (See page 167.) Offset between two elements = 0x2. Array index indicates the high order path. Correlated defects.
0x0040		VCx_CorrDefects_LatchForInt		cow_1	Array (12) of T_DICB_VCx_CorrDefects (See page 167.) Offset between two elements = 0x2. Array index indicates the high order path. Correlated defects latched for interrupt.
0x0060		VCx_CorrDefects_Mask		rw	Array (12) of T_DICB_VCx_CorrDefects (See page 167.) Offset between two elements = 0x2. Array index indicates the high order path. Correlated defects mask.

Table 63. Add Telecom Bus (T_DI_COMBUS)

Table 64. Add Bus Common Defects (T_DICB_Global_CorrDefects)

Offset	Bits	Name	Init	Description
0x0000	0	C1_LOF	0x1	C1 Loss Of Frame.
	1	ParityError	0x1	Parity Error on the Telecom Bus.

Table 65. Add Bus Defect Summary (t_dicb_VCx_CorrDefects_Summary)

Offset	Bits	Name	Init	Description
0x0000	11 - 0	Summary	0xFFF	Defect Summary, one bit per high order path. Least significant bit corresponds to the first high order path.

PHAST-12N TXC-06312

Offset	Bits	Name	Init	Description
0x0000	ClockEd	lge_Config		
	0	Sample_SelectNegativeClock Edge	0x0	Configure the edge on which the timing and data signals are sampled. Negative clock edge when 0x1, positive clock edge when 0x0.
	1	Output_SelectNegativeClock Edge	0x0	Configure the edge on which the timing signals are clocked out. Negative clock edge when 0x1, positive clock edge when 0x0.
0x0002	3 - 0	TimingDelay	0x0	Range 0 to 15 Configure expected Delay between Timing and Data on Combus.
0x0004	4 Parity_Config			
	0	ParityIncludesTiming	0x0	Calculate Parity over Data only, or over Data and Timing. Timing is included when 0x1.
	1	ParityEven	0x0	Even parity when 0x1, odd parity when 0x0.
0x0006	0	Reserved	0x1	Reserved.
0x0008	9 - 0	AU_PointerValue	0x0	Integer 0, 522 Sets the fixed AU pointer value used for generating Master mode timing.
0x000A		AUG1_Mode_Config		T_AUG1_Mode_Config (See page 144.) AUG-1 mode configuration.
0x000C		VC3_TUG3_Mode_Config		T_VC3_TUG3_Mode_Config (See page 167.) Configuration of the VC-3/TUG-3 modes.

Table 66.	Add Bus Commo	n Configuration	T_DICB_Common_Config)
		a oomigaladon (

Table 67. Telecom Bus Path Configuration (T_VC3_TUG3_Mode_Config)

Offset	Bits	Name	Init	Description
0x0000	11 - 0	Is_TUG_Structured	0xFFF	Contents of VC-3 / TUG-3, one bit per timeslot. Each bit has following meaning (least significant bit represents the first VC-3 / TUG-3, most significant bit the last VC-3 / TUG-3): The corresponding VC-3 (when AU-3 is mapped in AUG-1) or TUG-3 (when AU-4 is mapped in AUG-1) contains TUG-2 when '1'. VC-3 / TUG-3 contains C-3 / TU-3 respectively when '0'.
0x0002	11 - 0	Reserved	0x0	Reserved.

Table 68.	Add Bus Path Defects	(T DICB VCx CorrDefects)

Offset	Bits	Name	Init	Description
0x0000	0	J1_LOF	0x1	J1 Loss Of Frame.
	1	V1_LOF	0x1	V1 Loss Of Frame.

- 167 of 184 -

DATA SHEET

HIGH ORDER PATH RING PORT/ALARM INTERFACE

Offset	Bits	Name	Init	Access	Description
0x0000		Common_Config		rw	T_HOPR_Common_Config (See page 168.) General configuraton.
0x0008		CorrDefects_Unlatched		ro	T_HOPR_Defects (See page 168.) Correlated defects.
0x0010		CorrDefects_LatchForInt		cow_1	T_HOPR_Defects (See page 168.) Correlated defects latched for interrupt.
0x0018		Defects_Mask		rw	T_HOPR_Defects (See page 168.) Correlated defects mask.
0x0020		VC_Config		rw	Array (16) of T_HOPR_VC_Config (See page 168.) Offset between two elements = 0x2. Array index indicates the high order path. High order path configuration.

Table 69. Path Ring Port/Alarm Interface (T_HO_POH_RING_PORT)

Table 70. Path Ring Port/Alarm Interface Common Configuration (T_HOPR_Common_Config)

Offset	Bits	Name	Init	Description
0x0000	0	InsertCRCError	0x0	Insert CRC errors. All CRC bits are inverted when 0x1 (for test purposes only).

Table 71. Path Ring Port/Alarm Interface Defects (T_HOPR_Defects)

Offset	Bits	Name	Init	Description
0x0000	0	CRC_Error	0x1	CRC error on external Ring Port interface.
	1	LOC	0x1	Loss of clock on external Ring Port interface.

Table 72. Path Ring Port/Alarm Interface Path Configuration (T_HOPR_VC_Config)

Offset	Bits	Name	Init	Description
0x0000	0	SelectExternalSource	0x0	Select external ring port when 0x1. Internal ring port is used when 0x0.
	1	ResetVC	0x0	Resets an entire VC information when 0x1.
	2	ExtendRDI	0x0	Extends RDI for 20 frames when 0x1.

PHAST-12N TXC-06312

JTAG MASTER

Offset	Bits	Name	Init	Access	Description
0x0000	0	Bit_wise_control	0x0	rw	This bit selects if direct microprocessor control bits will be used, instead of the FIFO's.
0x0004	1 - 0	TDI_TMS_bit	0x0	rw	The microprocessor driven TDI and TMS bit values (bit 0 = TMS, bit 1 = TDI).
0x0008	0	TCK_bit	0x0	rw	The microprocessor driven TCK clock bit value.
0x000C	0	TDO_bit	0x0	ro	The microprocessor read TDO bit value.
0x0010	7 - 0	TCK_DIVIDER	0x0	rw	A clock divider number to create an appropriate 10MHz TCK clock using the current System Clock.
0x0012	5 - 0	Counter	0x0	rw	6-bit shift count register.
0x0014	7 - 0	TDI_Fifo_B0	0x0	rw	FIFO containing TDI data to send to TAP (byte 0).
0x0016	7 - 0	TDI_Fifo_B1	0x0	rw	FIFO containing TDI data to send to TAP (byte 1).
0x0018	7 - 0	TDI_Fifo_B2	0x0	rw	FIFO containing TDI data to send to TAP (byte 2).
0x001A	7 - 0	TDI_Fifo_B3	0x0	rw	FIFO containing TDI data to send to TAP (byte 3).
0x001C	7 - 0	TDI_Fifo_B4	0x0	rw	FIFO containing TDI data to send to TAP (byte 4).
0x001E	7 - 0	TMS_Fifo_B0	0x0	rw	FIFO containing TMS data to send to TAP (byte 0).
0x0020	7 - 0	TMS_Fifo_B1	0x0	rw	FIFO containing TMS data to send to TAP (byte 1).
0x0022	7 - 0	TMS_Fifo_B2	0x0	rw	FIFO containing TMS data to send to TAP (byte 2).
0x0024	7 - 0	TMS_Fifo_B3	0x0	rw	FIFO containing TMS data to send to TAP (byte 3).
0x0026	7 - 0	TMS_Fifo_B4	0x0	rw	FIFO containing TMS data to send to TAP (byte 4).
0x0028	7 - 0	TDO_Fifo_B0	0x0	ro	FIFO containing TDO data received from the TAP (byte 0).
0x002A	7 - 0	TDO_Fifo_B1	0x0	ro	FIFO containing TDO data received from the TAP (byte 1).
0x002C	7 - 0	TDO_Fifo_B2	0x0	ro	FIFO containing TDO data received from the TAP (byte 2).
0x002E	7 - 0	TDO_Fifo_B3	0x0	ro	FIFO containing TDO data received from the TAP (byte 3).
0x0030	7 - 0	TDO_Fifo_B4	0x0	ro	FIFO containing TDO data received from the TAP (byte 4).
0x0032	0	Start	0x0	rw	Start bit. Is set to trigger a transfer between microprocessor & TAP. This bit clears the Done and Error bits.
0x0034	1 - 0	Done	0x0	ro	 When the transfer is completed, these bits are set: bit 0 = 'Done' bit 1 = 'Error'
0x0036	0	JM_TRSTN	0x0	rw	The value of TRSTN driven by the microprocessor interface.
0x0038	0	TDI_LoopBack	0x0	rw	This bit loops back the TDI FIFO output, back into the TDO FIFO Input (Used for test).
0x003A	0	TMS_LoopBack	0x0	rw	This bit loops back the TMS FIFO output, back into the TDO FIFO Input (Used for test).
0x003C	0	TRSTN_Sample	0x0	ro	This bit samples what the microprocessor interface is driving into the TAP.
0x003E	0	uProcessor_CNTRL	0x1	rw	This bit switches the TAP control over to the microprocessor.

Table 73. JTAG Master (T_JTAG_MASTER)

DATA SHEET

DROP TELECOM BUS

Table 74. Drop Telecom Bus (T_DO_COMBUS)

Offset	Bits	Name	Init	Access	Description
0x0000		Reserved	0x7	rw	Reserved.
0x0008		Reserved	0x0	ro	Reserved.
0x000C		Reserved	0x0	cow_1	Reserved.
0x0010		VC3_TUG3_Config		rw	T_DOCB_VC3_TUG3_Config (See page 170.) Per VC-3/TUG-3 configuration.
0x0020		Common_Config		rw	T_DOCB_Common_Config (See page 170.) General configuration.

Table 75. Drop Bus Path Configuration (T_DOCB_VC3_TUG3_Config)

Offset	Bits	Name	Init	Description
0x0000	0	HighZ	0x1	The data of the selected VC-3/TUG-3 is tristated when 0x1.
0x0002		Reserved	0x7F	Reserved.
0x0004		Reserved	0xFFFF	Reserved.

Table 76. Drop Bus Common Configuration (T_DOCB_Common_Config)

Offset	Bits	Name	Init	Description
0x0000	ClockEd	ge_Config		
	0	Reserved	0x0	Reserved.
	1	Output_SelectNegativeClockE dge	0x0	Configure the edge on which the timing and data are clocked out. Negative clock edge when 0x1, positive clock edge when 0x0.
0x0002	3 - 0	TimingDelay	0x0	Configure the delay between data and timing on the Add Combus.
0x0004	0	Reserved	0x1	Reserved.
0x0006	11 - 0	Reserved	0x0	Reserved.
0x0008	Parity_C	onfig		
	0	ParityIncludesTiming	0x0	Calculate parity over data only, or over Data and Timing. Timing is included when 0x1.
	1	ParityEven	0x0	Even parity when 0x1, odd parity when 0x0.
0x000A	2 - 0	Reserved	0x7	Reserved.
0x000C		AUG1_Mode_Config		T_AUG1_Mode_Config (See page 144.) AUG-1 mode configuration.
0x000E		AUG1_HighZ_Config		T_DOCB_AUG1_Config (See page 171.) Configuration of HighZ per AUG1.
0x0010		VC3_TUG3_Mode_Config		T_VC3_TUG3_Mode_Config (See page 167.) Configuration of the VC-3/TUG-3 modes.
0x0014	3 - 0	Config_Channel	0x0	VC-3/TUG-3 for which configuration can be done in VC3_TUG3_Config.

PHAST-12N TXC-06312

Table 77. Drop Bus AUG-1 Configuration (T_DOCB_AUG1_Config)

Offset	Bits	Name	Init	Description
0x0000	3 - 0	HighZ	0xF	AUG-1 HighZ configuration, one bit per AUG-1. The data of the selected AUG-1 is tristated when '1'. Least significant bit corresponds to the first AUG-1.

POH MONITOR

			-		
Offset	Bits	Name	Init	Access	Description
0x0000		VC_Config		rw	T_VCXPM_Config (See page 171.) High order path configuration. The high order path to be configured is selected by indirect access. See the Config_Channel register in the Common_Config record to select the desired high order path.
0x0200		Common_Config		rw	T_VCXPM_Common_Config (See page 173.) General configuration.
0x0300		Common_Status		ro/cow_1	T_VCXPM_Common_Status (See page 174.) General status. Note: Latched bits are clear-on-write-1, all others are read-only.
0x0400		VC_Status		ro/cow_1	Array (12) of T_VCXPM_Status (See page 175.) Offset between two elements = 0x40. Array index indicates the high order path. High order path status. Note: Latched bits are clear-on-write-1, all others are read-only.

Table 78. POH Monitor (T_VC_POH_MONITOR)

Offset	Bits	Name	Init	Description
0x0000	ModeTT	TConfig		·
	0	Bypass	0x0	No processing is done on this high order path when 0x1.
	1	AIS_Force	0x0	AIS insertion is forced when 0x1.
	2	Unidirectional	0x0	Enables the uni-directional option when 0x1. When the uni-directional option is active, the FarEndBlockErrorCounter will report 0 and the RDI defect is cleared.
	3	TTI_ExTiMessage	0x0	Ignore expected TTI message and assume non-specific repeating byte message when 0x0. When 0x1 the TTI message has to match the specified expected message (16 or 64 byte TTI message).
	4	TTI_ExTi64	0x0	64 byte trace message when 0x1, 16 byte trace message when 0x0. This setting is only valid when TTI_ExTiMessage is 0x1.
	5	TTI_TimEnable	0x0	TIM detection is enabled when 0x1.
	6	TIM_AIS_Insert_Disable	0x0	AIS insertion on Trail Trace Identifier Mismatch defect is disabled when 0x1.
0x0002		ExpectedBytes	All 0x0	T_VCXPM_ExpectedBytes (See page 172.) Expected bytes.

PHAST-12N
TXC-06312

Offset	Bits	Name	Init	Description
0x0084		B3_Config		T_BIP_Detector_Config (See page 150.) Configuration for B3 BIP detector (DEG/EXC).
0x00A0	BytesCo	onfig		
	3 - 0	G1_AcceptNoOfIntervals	0x5	Integer 3, 5 (ETSI) or 10 (Telcordia) Number of consecutive frames to debounce G1.
	4	G1_CountBitErrors	0x0	REI bit errors are reported when 0x1, block errors when 0x0.
	6 - 5	H4_Multiframe_Type	0x0	0x0 = H4_MF_NONE 0x1 = H4_MF_LO 0x2 = Reserved 0x3 = Reserved Enables monitoring of H4 byte. • H4_MF_NONE = H4 monitoring disabled • H4_MF_LO = Low Order Multiframe tracking
	10 - 7	H4_MsToSetLOM	0x5	Number of ms that the OOM state must persist to declare the LOM defect.
0x00A2		CorrDefects_Mask		T_VCXPM_Defects (See page 173.) Correlated defects mask.

Table 80. POH Monitor Expected J1/C2 (T_VCXPM_ExpectedBytes)

Offset	Bits	Name	Init	Description
0x0000		Expected_TTI_Message	All 0x0	Array (64) of byte Offset between two elements = 0x2. Array index indicates the TTI byte number. Expected TTI message. • bytes 0-15 for 16 byte TTI message • bytes 0-63 for 64 byte TTI message This register is only used when TTI_ExTiMessage is 0x1 (see VC_Config).
0x0080	7 - 0	Expected_C2	0x0	Expected C2 Byte.

PHAST-12N TXC-06312

Offset	Bits	Name	Init	Description
0x0000	0	SSF	0x1	Incoming SSF (Server Signal Fail).
	1	TIM	0x1	J1 Trail Trace Identifier Mismatch.
	2	TTIZERO	0x1	J1 Trail Trace Identifier Zero.
	3	DEG	0x1	Degraded signal.
	4	EXC	0x1	Excessive error.
	5	UNEQ	0x1	Unequipped.
	6	AIS	0x1	VC-AIS detected on C2.
	7	RDI	0x1	Remote Defect Indication.
	8	RDI_S	0x1	Enhanced Remote Defect Indication (E-RDI) Server.
	9	RDI_C	0x1	Enhanced Remote Defect Indication (E-RDI) Connectivity.
	10	RDI_P	0x1	Enhanced Remote Defect Indication (E-RDI) Payload.
	11	PLM	0x1	Payload Mismatch.
	12	LOM	0x1	Loss of Multiframe.
	13	K3_APS	0x1	Event on K3 APS byte.
	14	C2_Changed	0x1	Event on C2 byte.

Table 81. POH Monitor Defects (T_VCXPM_Defects)

Table 82. POH Monitor Common Configuration (T_VCXPM_Common_Config)

Offset	Bits	Name	Init	Description
0x0000	3 - 0	Config_Channel	0x0	Range 0 to 11 High order path for which configuration can be done in VC_Config.
0x0002		AUG1_Mode_Config		T_AUG1_Mode_Config (See page 144.) AUG-1 mode configuration.
0x0004	TTIConf	ig		
	0	TTI_Report_Enable	0x0	Enables J1 TTI message reporting when 0x1. TTI_Report_Channel indicates the high order path for which reporting is enabled.
	4 - 1	TTI_Report_Channel	0x0	Range 0 to 11 High order path for which J1 reporting is done.
	5	SSF_TIM_Inhibit_Disable	0x0	Inhibition of TIM defect by incoming SSF is disabled when 0x1.
	6	UNEQ_TIM_Inhibit_Disable	0x0	Inhibition of TIM defect by UNEQ defect is disabled when 0x1.
	7	TTIZERO_TIM_Inhibit_Disable	0x0	Inhibition of TIM defect by TTIZERO defect is disabled when 0x1.
	8	SSF_TTIZERO_Inhibit_Disable	0x0	Inhibition of TTIZERO defect by SSF defect is disabled when 0x1.
0x0006	TTISetti	ngs		
	3 - 0	TTI_FramesToSetTim	0x5	Range 2 to 15 Number of consecutive mismatched multiframes to set TIM.
	7 - 4	TTI_FramesToResetTim	0x3	Range 2 to 15 Number of consecutive match multiframes to clear TIM.

PHAST-12N
TXC-06312

Table 82. POH Monitor Common Configuration (T_VCXPM_Common_Config)

Offset	Bits	Name	Init	Description	
0x0008	AISRDII	nsertion			
	0	SSF_AIS_Insert_Disable	0x0	Insertion of AIS on incoming Server Signal Fail is disabled when 0x1.	
	1	AIS_AIS_Insert_Disable	0x0	Insertion of AIS on AIS defect is disabled when 0x1.	
	2	EXC_AIS_Insert_Disable	0x0	Insertion of AIS on EXC defect is disabled when 0x1.	
	3	UNEQ_AIS_Insert_Disable	0x0	Insertion of AIS on unequipped defect is disabled when 0x1.	
	4	PLM_AIS_Insert_Disable	0x0	Insertion of AIS on Payload mismatch defect is disabled when 0x1.	
	5	LOM_AIS_Insert_Disable	0x0	Insertion of AIS on Loss of Multiframe defect is disabled when 0x1.	
	6	SSF_RDI_Insert_Disable	0x0	Insertion of RDI on incoming Server Signal Fail is disabled when 0x1.	
	7	UNEQ_RDI_Insert_Disable	0x0	Insertion of RDI on unequipped defect is disabled when 0x1.	
	8	TIM_RDI_Insert_Disable	0x0	Insertion of RDI on Trail Trace Identifier Mismatch defect is disabled when 0x1.	
	9	PLM_RDI_Insert_Disable	0x0	Insertion of RDI on Payload mismatch defect is disabled when 0x1.	
	10	Reserved	0x0	Reserved. This field must be set to 0x1.	
0x000A	AlarmInhibition				
	0	SSF_UNEQ_Inhibit_Disable	0x0	Inhibition of UNEQ defect by incoming SSF is disabled when 0x1.	
	1	TTIZERO_UNEQ_Contribution _Disable	0x0	Contribution of TTIZERO to UNEQ defect is disabled when 0x1.	
	2	TIM_UNEQ_Contribution_Disa	0x0	Contribution of TIM to UNEQ defect is disabled when 0x1.	
	3	SSF_EXC_Inhibit_Disable	0x0	Inhibition of EXC defect by incoming SSF is disabled when 0x1.	
	4	TIM_EXC_Inhibit_Disable	0x0	Inhibition of EXC defect by TIM defect is disabled when 0x1.	
	5	SSF_DEG_Inhibit_Disable	0x0	Inhibition of DEG defect by incoming SSF is disabled when 0x1.	
	6	TIM_DEG_Inhibit_Disable	0x0	Inhibition of DEG defect by TIM defect is disabled when 0x1.	
	7	SSF_RDI_Inhibit_Disable	0x0	Inhibition of RDI defect by incoming SSF is disabled when 0x1.	
	8	UNEQ_RDI_Inhibit_Disable	0x0	Inhibition of RDI defect by UNEQ defect is disabled when 0x1.	
	9	TTIZERO_RDI_Inhibit_Disable	0x0	Inhibition of RDI defect by TTIZERO defect is disabled when 0x1.	
	10	TIM_RDI_Inhibit_Disable	0x0	Inhibition of RDI defect by TIM defect is disabled when 0x1.	
	11	AIS_SSF_Contribution_Disable	0x0	Contribution of AIS defect to SSF defect is disabled when 0x1.	
	12	TSF_PLM_Inhibit_Disable	0x0	Inhibition of PLM defect by TSF indication is disabled when 0x1.	
	13	TSF_LOM_Inhibit_Disable	0x0	Inhibition of LOM defect by TSF indication is disabled when 0x1.	
	14	PLM_LOM_Inhibit_Disable	0x0	Inhibition of LOM defect by PLM defect is disabled when 0x1.	
0x000C	11 - 0	Summary_Mask	0xFFF	Summary mask, one bit per high order path. Least significant bit corresponds to the first high order path.	

Table 83. POH Monitor Status (T_VCXPM_Common_Status)

Offset	Bits	Name	Init	Description
0x0000		Reported_TTI64_Message	All 0x0	Array (64) of byte Offset between two elements = 0x2. Array index indicates the TTI byte number. Accepted Stable 64 byte TTI message.

PHAST-12N TXC-06312

Offset	Bits	Name	Init	Description
0x0080		Reported_TTI16_Message	All 0x0	Array (16) of byte Offset between two elements = 0x2. Array index indicates the TTI byte number. Accepted Stable 16 byte TTI message.
0x00A0		ReportStatus		T_VCXPM_Report (See page 175.) Reporting status.
0x00A2	11 - 0	Summary_LatchForInt	0x0	Defects summary, one bit per high order path. Least significant bit corresponds to the first high order path.
0x00A4	11 - 0	Reserved	0x0	Reserved.
0x00A6	11 - 0	Reserved	0x0	Reserved.

Table 84. J1 TTI Stable (T_VCXPM_Report)

Offset	Bits	Name	Init	Description
0x0000	0	Stable_1	0x0	TTI 1 byte message stable indication.
	1	Stable_16	0x0	TTI 16 byte message stable indication.
	2	Stable_64	0x0	TTI 64 byte message stable indication.
	3	Stable_16_Latched	0x0	Latched TTI 16 byte message stable indication. This field is clear-on-write-1.
	4	Stable_64_Latched	0x0	Latched TTI 64 byte message stable indication. This field is clear-on-write-1.

Table 85. POH Monitor per path (T_VCXPM_Status)

Offset	Bits	Name	Init	Description
0x0000		POH_Status		T_VCXPM_POH_Status (See page 175.) POH Status: status of received and accepted POH bytes.
0x0016		PerfMon		T_VCXPM_PM (See page 176.) Performance counters.
0x001E		CorrDefects_Unlatched		T_VCXPM_Defects (See page 173.) Correlated defects.
0x0020		CorrDefects_LatchForInt		T_VCXPM_Defects (See page 173.) Correlated defects latched for interrupt.
0x0022		Reserved	0x0	Reserved.
0x0024		Reserved	0x0	Reserved.
0x0026		Reserved	0x0	Reserved.

Table 86. POH Monitor Path Status (T_VCXPM_POH_Status)

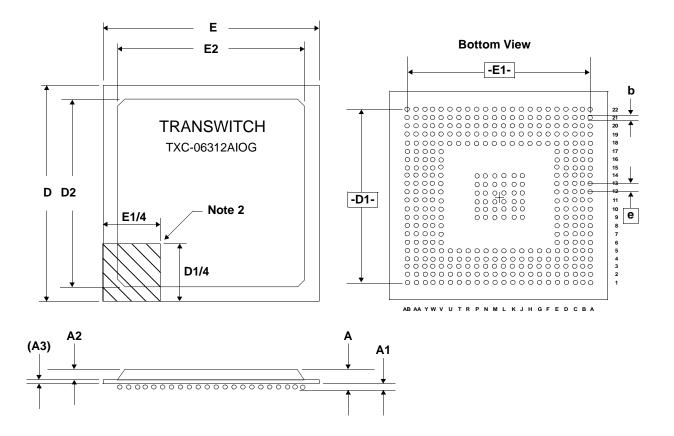
Offset	Bits	Name	Init	Description
0x0000	7 - 0	Received_J1	0x0	J1 byte of the previously received frame.
0x0002	7 - 0	Received_B3_error	0x0	Errored bit positions in B3 byte of the previously received frame.
0x0004	7 - 0	Received_C2	0x0	C2 byte of the previously received frame.
0x0006	7 - 0	Received_G1	0x0	G1 byte of the previously received frame.

PHAST-12N
TXC-06312

Table 86. POH Monitor Path Status (T_VCXPM_POH_Status)

Offset	Bits	Name	Init	Description
0x0008	7 - 0	Received_F2	0x0	F2 byte of the previously received frame.
0x000A	7 - 0	Received_H4	0x0	H4 byte of the previously received frame.
0x000C	7 - 0	Received_F3	0x0	F3 byte of the previously received frame.
0x000E	7 - 0	Received_K3	0x0	K3 byte of the previously received frame.
0x0010	7 - 0	Received_N1	0x0	N1 byte of the previously received frame.
0x0012	7 - 0	Accepted_TSL	0x0	Accepted C2 byte.
0x0014	7 - 0	Accepted_K3	0x0	Accepted K3 byte.

Table 87. POH Monitor Performance Counters (T_VCXPM_PM)


Offset	Bits	Name	Init	nit Description	
0x0000	12 - 0	NearEndDefect_BlockCounter	0x0	0x0 Near end block error counter (B3).	
0x0002	15 - 0	NearEndDefect_BitCounter	0x0	Near end bit error counter (B3).	
0x0004	15 - 0	FarEndDefect_Counter	0x0	0x0 Far end error counter (G1). Configurable as bit or block count.	
0x0006	006 DefectSec				
	0 NearEndDefectSec 0x0 TSF one second latch.		TSF one second latch.		
	1	FarEndDefectSec	0x0	RDI defect one second latch.	

PHAST-12N TXC-06312

PACKAGE INFORMATION

The PHAST-12N device is packaged in a 376-lead, 23 mm x 23 mm, plastic ball grid array package suitable for surface mounting, as illustrated in Figure 52.

Notes:

- 1. All dimensions are in millimeters. Values shown are for reference only.
- Identification of the solder ball A1 corner is contained within this shaded zone. Package corner may not be a 90° angle.
- 3. Size of array: 22 x 22, JEDEC code MO-151.

Dimension (Note 1)	Min	Max	
A	2.02	2.44	
A1	0.40	0.60	
A2	1.12	1.22	
A3 (Ref.)	0.	56	
b	0.50	0.70	
D	23.00		
D1 (Nom)	21.	.00	
D2	19.45	20.20	
E	23.00		
E1 (Nom)	21.	.00	
E2	19.45	20.20	
e (Ref.)	1.	00	

Figure 52. PHAST-12N TXC-06312 376-Lead Plastic Ball Grid Array Package

Proprietary TranSwitch Corporation Information for use Solely by its Customers

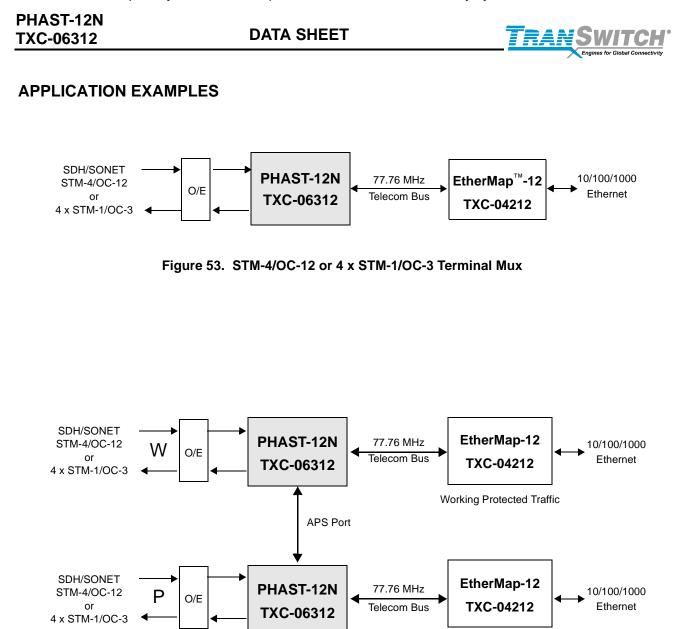


Figure 54. STM-4/OC-12 or 4 x STM-1/OC-3 1+1, 1:1 APS Terminal Mux

Preemptable Unprotected Traffic

Proprietary TranSwitch Corporation Information for use Solely by its Customers



Figure 55. STM-4/OC-12 or 4 x STM-1/OC-3 Ethernet and TDM Terminal Mux

- 179 of 184 -

DATA SHEET

ORDERING INFORMATION

Part Number: TXC-06312AIOG

376-Lead Plastic Ball Grid Array Package

RELATED PRODUCTS

TXC-03453B, TL3M Device (Triple Level 3 Mapper). Maps three 44.736 Mbit/s DS3 to an STM-1, TUG-3 or STS-3 STS-1 SPE SDH/SONET signal. A 34.368 Mbit/s E3 signal is mapped in to an STM-1 TUG-3. The TL3M's SDH/SONET interface format is 19.44 MHz Telecom Bus, a byte wide parallel. The TL3M supports drop bus and add bus SDH/SONET timing modes. Drop bus timing provides timing signals for the add side while timing for both busses is independent for the add bus timing mode.

TXC-04212, EtherMap-12 Device (OC-12 SDH/SONET Ethernet Mapper). The EtherMap-12 Device is a highly integrated, OC-12 rate SDH/SONET device, for mapping of high and low order Ethernet payloads to SDH/SONET (10/100/1000 Mbps Ethernet).

TXC-04222, TEMx28 Device (28 Channel Dual Bus High Density Mapper). An add/drop multiplexer, terminal multiplexer, and dual and single unidirectional ring applications. Up to 28 E1, DS1, or VT/TU playloads are mapped to and from VT1.5/TU-11s and VT2/TU-12s carried in an STM-1 VC-4 or STS-3 format.

TXC-04226, EtherMap-3 Device (OC-12 SDH/SONET Ethernet mapper). The EtherMap-3 Device is a highly integrated, OC-3 rate SDH/SONET device, for mapping of high and low order Ethernet payloads to SDH/SONET (10/100/1000 Mbps Ethernet) using GFP, LAPS, PPP encapsulations. Also supports low and high order virtual concatenation and LCAS protocol.

TXC-06103, PHAST-3N Device (SDH/SONET STM-1, STS-3 or STS-3c Overhead Terminator). This PHAST-3N device provides a Telecom Bus interface for downstream devices and operates from a power supply of 3.3 volts.

TXC-06212, PHAST-12E VLSI Device (Programmable, High Performance ATM/PPP/TDM SDH/SONET Terminator for Level 12 with Enhanced Features). The PHAST-12E is a highly integrated SDH/SONET terminator device designed for ATM cell, frame, higher order multiplexing, and transmission applications. A single PHAST-12E device can terminate four individual STM-1 or STS-3c lines or a single STM-4/4c or STS-12/12c line.

TXC-06412, PHAST-12P Device (STM-4/OC-12 SDH/SONET Overhead Terminator with CDB/PPP UTOPIA/POS-PHY Interface). A highly integrated SDH/SONET overhead terminator device designed for ATM cell or PPP packet payload mappings. A single PHAST-12P can terminate four individual STM-1/OC-3 lines or a single STM-4/OC-12 line. Each SDH/SONET terminator has a line interface block that performs clock synthesis and clock recovery for four 155 Mbit/s signals or a single 622 Mbit/s serial signal.

PHAST-12N TXC-06312

STANDARDS DOCUMENTATION SOURCES

Telecommunication technical standards and reference documentation may be obtained from the following organizations:

ANSI (U.S.A.):		
American National Standards Institute	Tel:	(212) 642-4900
25 West 43 rd Street	Fax:	(212) 398-0023
New York, New York 10036	Web:	www.ansi.org
The ATM Forum (U.S.A., Europe, Asia):		
404 Balboa Street	Tel:	(415) 561-6275
San Francisco, CA 94118	Fax:	(415) 561-6120
	Web:	www.atmforum.com
ATM Forum Europe Office		
Kingsland House - 5 th Floor	Tel:	20 7837 7882
361-373 City Road	Fax:	20 7417 7500
London EC1 1PQ, England		
ATM Forum Asia-Pacific Office		
Hamamatsucho Suzuki Building 3F	Tel:	3 3438 3694
1-2-11, Hamamatsucho, Minato-ku	Fax:	3 3438 3698
Tokyo 105-0013, Japan		
Bellcore (See Telcordia)		
CCITT (See ITU-T)		
EIA (U.S.A.):		
Electronic Industries Association	Tel:	(800) 854-7179 (within U.S.A.)
Global Engineering Documents	Tel·	(303) 397-7956 (outside LLS A

 Global Engineering Documents
 Tel:
 (303) 397-7956 (outside U.S.A.)

 15 Inverness Way East
 Fax:
 (303) 397-2740

 Englewood, CO 80112
 Web:
 www.global.ihs.com

ETSI (Europe):

European Telecommunications Standards Institute		4 92 94 42 00 4 93 65 47 16
650 route des Lucioles	Web:	www.etsi.org
06921 Sophia-Antipolis Cedex, France		

GO-MVIP (U.S.A.):

The Global Organization for Multi-Vendor Integration Protocol (GO-MVIP)	Tel: (800) 669-6857 (within U.S.A.) Tel: (903) 769-3717 (outside U.S.A.)
3220 N Street NW, Suite 360	Fax: (903) 769-3818
Washington, DC 20007	Web: www.mvip.org

DATA SHEET

IEEE (Corporate Office):

American Institute of Electrical Engineers
3 Park Avenue, 17th Floor
New York, New York 10016-5997 U.S.A.

ITU-T (International):

Publication Services of International Telecommunication Union Telecommunication Standardization Sector Place des Nations, CH 1211 Geneve 20, Switzerland

Tel:	(212) 419-7900 (within U.S.A.)
Tel:	(800) 678-4333 (Members only)
Fax:	(212) 752-4929
Web:	www.ieee.org

Tel: 22 730 5852 Fax: 22 730 5853 Web: www.itu.int

JEDEC (International):

Joint Electron Device Engineering Council	Tel:	(703) 907-7559
2500 Wilson Boulevard	Fax:	(703) 907-7583
Arlington, VA 22201-3834	Web:	www.jedec.org

MIL-STD (U.S.A.):

DODSSP Standardization Documents		Tel:	(215
	Ordering Desk	Fax:	(215
	Building 4 / Section D	Web:	wwv
	700 Robbins Avenue		
	Philadelphia, PA 19111-5094		

PCI SIG (U.S.A.):

PCI Special Interest Group 5440 SW Westgate Dr., #217 Portland, OR 97221

Telcordia (U.S.A.):

Telcordia Technologies, Inc. Attention - Customer Service 8 Corporate Place Rm 3A184

Piscataway, NJ 08854-4157

TTC (Japan):

TTC Standard Publishing Group of the Telecommunication Technology Committee

Hamamatsu-cho Suzuki Building 1-2-11, Hamamatsu-cho, Minato-ku Tokyo 105-0013, Japan Tel: (215) 697-2179 Fax: (215) 697-1462 Web: www.dodssp.daps.mil

Tel:	(800) 433-5177 (within U.S.A.)
Tel:	(503) 291-2569 (outside U.S.A.)
Fax:	(503) 297-1090
Web:	www.pcisig.com

Tel:	(800) 521-2673 (within U.S.A.)
Tel:	(732) 699-2000 (outside U.S.A.)
Fax:	(732) 336-2559
Web:	www.telcordia.com

Tel: 3 3432 1551 Fax: 3 3432 1553 Web: www.ttc.or.jp

PHAST-12N TXC-06312

LIST OF DATA SHEET CHANGES

This change list identifies those areas within this updated PHAST-12N device Data Sheet that have significant differences relative to the previous and now superseded PHAST-12N Data Sheet:

Updated PHAST-12N device Data Sheet: PRODUCT PREVIEW Edition 4, April 2004

Previous PHAST-12N device Data Sheet: PRODUCT PREVIEW Edition 3, April 2004

The page numbers indicated below of this updated Data Sheet include changes relative to the previous Data Sheet.

Page Number of <u>Updated Data Sheet</u>	Summary of the Change
All	Changed edition number.
1	Added EtherMap as TranSwitch Trademark at bottom left corner.
10	Added IEEE Standard 1596.3.
<mark>3</mark> -9	Updated TOC, LOF and LOT.
44	Added LVPECL I/O Recommendations: section.
183	Updated List of Data Sheet Changes section.

TranSwitch reserves the right to make changes to the product(s) or circuit(s) described herein without notice. No liability is assumed as a result of their use or application. TranSwitch assumes no liability for TranSwitch applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TranSwitch warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TranSwitch covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PRODUCT PREVIEW information documents contain information on products in their formative or design phase of development. Features, characteristic data and other specifications are subject to change. Contact TranSwitch Applications Engineering for current information on this product.

