

Product Specification – February 21, 2019 V.9

ARRAY CHIP RESISTORS

YC/TC 5%, 1% sizes

YC:102/104/122/124/162/164/248/324/158T/358L/358T TC: 122/124/164

RoHS compliant

YAGEO

SCOPE

This specification describes YC (convex, flat) and TC (concave)

series chip resistor arrays with leadfree terminations made by thick film process.

APPLICATIONS

- Terminal for SDRAM and DDRAM
- Computer applications: laptop computer, desktop computer
- Consume electronic equipments: PDAs, PNDs
- Mobile phone, telecom...

<u>FEATURES</u>

- AEC-Q200 qualified
- More efficient in pick & place application
- · Low assembly costs
- RoHS compliant
- Products with lead free terminations meet RoHS requirements
- Pb-glass contained in electrodes
- Resistor element and glass are exempted by RoHS
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Halogen Free Epoxy

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value. YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERSRED)

YC <u>XXXX X X X X XX XXXX L/T</u>

TC (1) (2) (3) (4) (5) (6) (7)	(8)
---------------------------------------	-----

(I) SIZE

YC:102/104/122/124/162/164/248/324/158T/358L/358T TC: 122/124/164

(2) ARRAYS OR NETWORKS

Array YC102/104/122/124/162/164/248/324: -Network YC158T/YC358L/YC358T: NA

(3) TOLERANCE

 $F = \pm 1\%$

 $J = \pm 5\%$ (for Jumper ordering, use code of J)

(4) PACKAGING TYPE

R = Paper taping reel K = Embossed plastic tape reel

(5) TEMPERATURE COEFFICIENT OF RESISTANCE

– = Base on spec

(6) TAPING REEL

- 07 = 7 inch dia. Reel
- 13 = 13 inch dia. Reel

(7) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point. Detailed resistance rules show in table of "Resistance rule of global part number".

(8) DEFAULT CODE

Letter L is the system default code for ordering only. $^{(Note)}$ Letter T is the only default code for YCI02.

ORDERING EXAMPLE

The ordering code of a YC122 convex chip resistor array, value 1,000 Ω with ±5% tolerance, supplied in 7-inch tape reel is: YC122-JR-071KL.

YCI58T network, value $100,000\Omega$ with 5% tolerance, supplied in 7-inch tape reel is: YCI58T[R-07100KL

NOTE

- All our RSMD products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

Resistance rule o number Resistance code rule	
OR	0R = Jumper
XRXX (I to 9.76 Ω)	R = Ω R5 = .5 Ω 9R76 = 9.76 Ω
XXRX (10 to 97.6 Ω)	IOR = IO Ω 97R6 = 97.6 Ω
XXXR (100 to 976 Ω)	100R = 100 Ω
	IK = 1,000 Ω 9K76 = 9760 Ω
	IM = 1,000,000 Ω

Last digit

3

4

5

6

0200 or 200

3007 or 307

1008 or 108

3303 or 333

1006 or 106

100 to 976 KΩ

I to 9.76 MΩ

10 to 97.6 MΩ

Example:

0.02 Ω

0.3 Ω

ΙΩ

33 KΩ

10 MΩ

=

=

=

=

=

PHYCOMP BRAND ordering codes

Both GLOBAL PART NUMBER (preferred) and I2NC (traditional) codes are acceptable to order Phycomp brand products.

GLOBAL PART NUMBER (PREFERRED)

For detailed information of GLOBAL PART NUMBER and ordering example, please refer to page 2. TC122 series is supplied and ordered by global part number only.

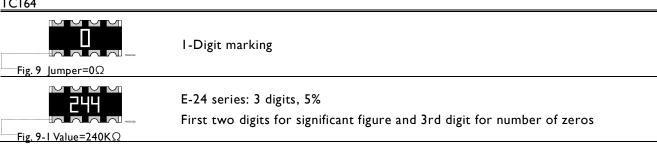
12NC CODE

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	235 (I)					Last digit of 12NC Resistance decade ⁽³⁾	
$2x0402$ 1100 $10,000$ $30,000$ ARV321 2350 $\pm 5\%$ 1 to 1 M Ω 013 $12xxx$ 1 to 9.76 10 to 97.6 ARV322 2350 $\pm 1\%$ 10 to 1 M Ω 013 $2xxxx$ 013 $3xxxx$ 10 to 97.6 00	TYPE/	START	TOL.	RESISTANCE	PAPER / PE TAPE C	DN REEL (units) ⁽²⁾	0.01 to 0.0976 Ω
ARV321 2350 $\pm 5\%$ 1 to 1 MQ 013 11xxx 013 12xxx 10 to 97.6 Ω ARV322 2350 $\pm 1\%$ 10 to 1 MQ 013 2xxxx 013 3xxxx 100 to 976 Ω	2×0402	IN ⁽¹⁾	(%)	RANGE	10,000	50,000	0.1 to 0.976 Ω
ARV322 2350 $\pm 1\%$ 10 to 1 M Ω 013 2xxxx 013 3xxxx 100 to 976 Ω	ARV321	2350	±5%	l to I MΩ	0 3 xxx	013 12xxx	l to 9.76 Ω
Jumper 2350 - 0 Ω 013 91001 - 100 to 976 Ω	ARV322	2350	±1%	10 to 1 MΩ	013 2xxxx	013 3xxxx	
	Jumper	2350	-	0 Ω	01391001	-	100 to 976 Ω
(1) The resistors have a 12-digit ordering code starting with 2350.							10 to 97.6 KΩ

- (2) The subsequent 4 or 5 digits indicate the resistor tolerance and packaging.
- (3) The remaining 4 or 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC".
- (4) "L" is optional symbol (Note).

ORDERING EXAMPLE

The ordering code of a ARV321 resistor, value 1,000 Ω with ±5% tolerance, supplied in tape of 10,000 units per reel is: 235001311102(L) or YCI22-JR-07IKL.

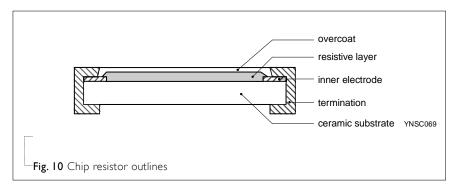

NOTE

- I. All our RSMD products are RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER / I2NC can be added (both are on customer request)

<u>MARKING</u>

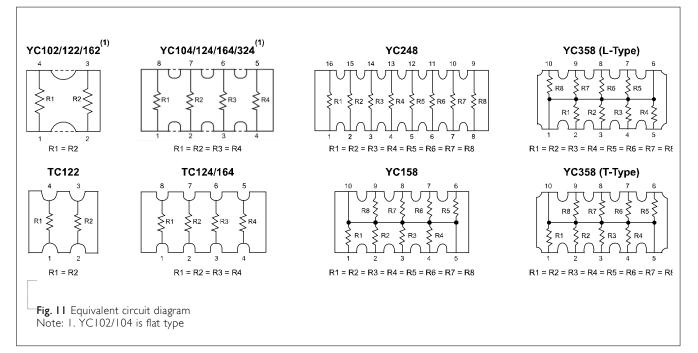
YC102		
Fig. 1	No marking	
YC122		
Fig. 2	No marking	
YC104		
Fig. 3	No marking	
YC124 / 162 / 164 / 324		
Γ ig. 4 Jumper=0Ω	I-Digit marking	
Γ ig. 4-1 Value=240KΩ	E-24 series: 3 digits, 5% First two digits for significant figu	re and 3rd digit for number of zeros
YC248		
Fig. 5 Jumper=0Ω	I-Digit marking	
244 Fig. 5-1 Value=240KΩ	E-24 series: 3 digits, 5% First two digits for significant figu	re and 3rd digit for number of zeros
YC158T/358L/358T		
Γig. 6 Value=24Ω	ΕΥΥ Fig. 6-1 Value=240KΩ	E-24 series: 3 digits First two digits for significant figure and 3rd digit for number of zeros
TC122		
Fig. 7	No marking	
TC124		
Fig. 8	No marking	

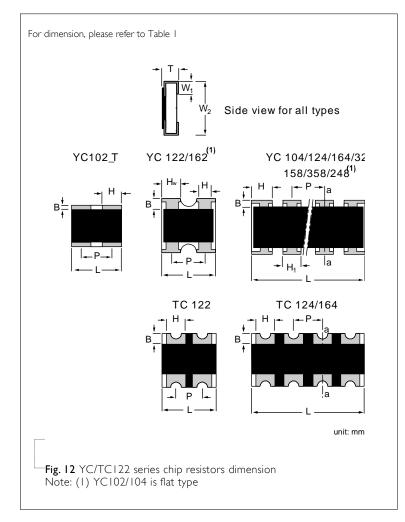
TCI64



For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION


The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Nibarrier) are added as shown in Fig.9.


OUTLINES

SCHEMATIC

DIMENSIONS

Table I

TYPE	H / H _I / H _W	В	Р	L	Т	WI	W2
YC102	H:0.25 ± 0.10	0.15 ±0.10	0.55 ±0.10	0.80 ±0.10	0.35 ±0.10	0.15 ±0.10	0.60 ±0.10
YC104	H:0.20 ± 0.10	0.15 ±0.05	0.40 ±0.10	1.40 ±0.10	0.35 ±0.10	0.15 ±0.10	0.60 ±0.10
YC122	H:0.21+0.10/-0.05 H _w :0.35±0.10	0.20 ±0.10	0.67 ±0.05	1.00 ±0.10	0.30 ±0.10	0.25 ±0.10	1.00 ±0.10
YCI24	H: 0.40 ± 0.15 H ₁ : 0.30 ± 0.05	0.20 ±0.15	0.50 ± 0.05	2.00 ±0.10	0.45 ±0.10	0.30 ±0.15	1.00 ±0.10
YC162	H : 0.30 ±0.10 H _w : 0.65 ±0.15	0.30 ±0.10	0.80 ±0.05	1.60 ± 0.10	0.40 ±0.10	0.30 ±0.10	1.60 ±0.10
YC164	H : 0.65 ± 0.05 H ₁ : 0.50 ± 0.15	0.30 ±0.15	0.80 ±0.05	3.20 ±0.15	0.60 ±0.10	0.30 ±0.15	1.60 ± 0.15
YC248	H : 0.45 ±0.05 H ₁ : 0.30 ±0.05	0.30 ±0.15	0.50 ±0.05	4.00 ±0.20	0.45 ±0.10	0.40 ±0.15	1.60 ± 0.15
YC324	H : 1.10 ± 0.15 H ₁ : 0.90 ± 0.15	0.50 ± 0.20	1.27 ±0.05	5.08 ±0.20	0.60 ±0.10	0.50 ±0.15	3.20 ±0.20
TCI22	H : 0.30 ±0.05	0.25 ±0.15	0.50 ±0.05	1.00 ±0.10	0.30 ±0.10	0.25 ±0.15	1.00 ±0.10
TCI24	H:0.30 ±0.10	0.20 ±0.10	0.50 ±0.05	2.00 ±0.10	0.40 ±0.10	0.25 ±0.10	1.00 ±0.10
TCI64	H:0.50 ±0.15	0.30 ±0.15	0.80 ±0.05	3.20 ±0.15	0.60 ±0.10	0.30 ±0.15	1.60 ±0.15
YCI58T	H : 0.45 ± 0.05 H ₁ : 0.32± 0.05	0.30 ±0.15	0.64 ±0.05	3.20 ±0.20	0.60 ±0.10	0.35 ± 0.15	1.60 ± 0.15
YC358L YC358T	H : 1.10 ± 0.15 H ₁ : 0.90 ± 0.15	0.50 ±0.15	1.27 ± 0.05	6.40 ±0.20	0.60 ±0.10	0.50 ± 0.15	3.20 ±0.20

ELECTRICAL CHARACTERISTICS

Table 2	2		_						
TYPE	POWER P ₇₀	OPERATING TEMP. RANGE	MWV	RCOV	DWV	RESISTANCE RANGE & TOLERANCE	T. C. R.	Jumper crite (unit:	
YC102	1/32W	-55°C to +125°C	15V	30V	30V	E24 ±5% 10Ω≤ R ≤ 1ΜΩ E24/E96 ±1% 10Ω≤ R ≤ 1ΜΩ Jumper < 0.05Ω	2	Rated current Max. current	0.5 1.0
YC104	1/32W	-55°C to +125°C	12.5V	25V	25V	$\begin{array}{l} \text{E24} \pm 5\% \text{I0}\Omega \leq \text{R} \leq \text{IM}\\ \text{E24/E96} \pm 1\% \text{I0}\Omega \leq \text{R} \leq \text{IM}\\ \text{Jumper} < 0.05\Omega \end{array}$		Rated current Max. current	0.5 1.0
YCI22	1/16W	-55°C to +155°C	50V	100V	100V	E24 ±5% IΩ≤R≤IMΩ E24/E96 ±1% IΩ≤R≤IMΩ Jumper < 0.05Ω		Rated current Max. current	0.5 1.0
YCI24	1/16W	-55°C to +155°C	25V	50V	100V	E24 ±5% IΩ ≤ R ≤ IMΩ E24/E96 ±1% IΩ ≤ R ≤ IMΩ Jumper < 0.05Ω	+ 150 ppm/2	Max. current	1.0 2.0
YC162	1/16W	-55°C to +155°C	50V	100V	100V	$\begin{array}{l} \text{E24 } \pm 5\% \Omega \leq \text{R} \leq \text{IM}\Omega\\ \text{E/24/E96 } \pm 1\% \Omega \leq \text{R} \leq \text{IM}\Omega\\ \text{Jumper} < 0.05\Omega \end{array}$		Rated current Max. current	1.0 2.0
YCI64	1/16W	-55°C to +155°C	50V	100V	100V	E24 ±5% ΙΩ ≤ R ≤ IMΩ E24/E96 ±1% ΙΩ ≤ R ≤ IMΩ Jumper < 0.05Ω		Rated current Max. current	1.0 2.0
YC248	1/16W	-55°C to +155°C	50V	100V	100V	$\begin{array}{l} \text{E24 } \pm 5\% \text{IO}\Omega \leq \text{R} \leq \text{IM}, \\ \text{E24/E96 } \pm 1\% \text{IO}\Omega \leq \text{R} \leq \text{IM}, \\ \text{Jumper} < 0.05\Omega \end{array}$		Rated current Max. current	2.0 10.0
YC324	1/8W	-55°C to +155°C	200V	500V	500V	$\begin{array}{l} E24 \pm 5\% I0\Omega \leq R \leq IM;\\ E24/E96 \pm 1\% I0\Omega \leq R \leq IM; \end{array}$			
TCI22	1/16W	-55°C to +125°C	50V	100V	100V	$\begin{array}{l} \text{E24} \pm 5\% \text{I0}\Omega \leq \text{R} \leq \text{IM}\\ \text{E24/E96} \pm \text{I\%} \text{I0}\Omega \leq \text{R} \leq \text{IM}\\ \text{Jumper} < 0.05\Omega \end{array}$		Rated current Max. current	1.0 1.5
TCI24	1/16W	-55°C to +125°C	50V	100V	100V	$\begin{array}{l} \text{E24} \pm 5\% \text{IO}\Omega \leq \text{R} \leq \text{IM}, \\ \text{E24/E96} \pm 1\% \text{IO}\Omega \leq \text{R} \leq \text{IM}, \\ \text{Jumper} < 0.05\Omega \end{array}$	2	Rated current Max. current	1.0 1.5
TCI64	1/16W	-55°C to +155°C	50V	100V	100V	$\begin{array}{l} \text{E24} \pm 5\% \text{I0}\Omega \leq \text{R} \leq \text{IM}\\ \text{E24/E96} \pm 1\% \text{I0}\Omega \leq \text{R} \leq \text{IM}\\ \text{Jumper} < 0.05\Omega \end{array}$		Rated current Max. current	1.0 2.0
YCI58T	1/16W	-55°C to +155°C	25V	50V	50V	E24 ±5% 10Ω ≤ R ≤ 100KΩ	_		
YC358L YC358T	1/16W	-55°C to +155°C	50V	100V	100V	E24 ±5% 10Ω≤ R ≤ 330KΩ	_		

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity										
PACKING STYLE	PACKING STYLE	YC102/ 104	YC/TC 122	YC/TC 124	YC162	YC/TC 164	YC248	YC324	YC158T	YC358L YC358T
Paper taping reel (R)	7" (178mm)	10,000	10,000	10,000	5,000	5,000	5,000		5,000	
,	13" (254mm)	50,000	50,000	40,000		20,000			20,000	
Embossed taping reel (K)	7" (178mm)						4,000	4,000		4,000

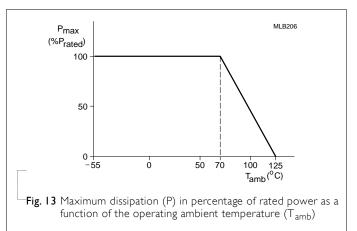
ΝΟΤΕ

1. For tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

YC102/104, TC122/124 Range:


-55°C to +125°C (Fig.13)

YC122/124/162/164/248/324/158T/358L/358T, TC164 Range:

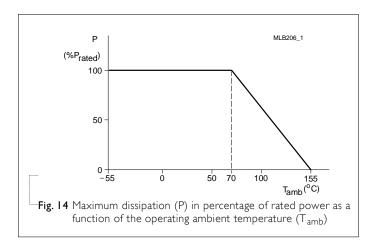
-55°C to +155°C(Fig.14)

POWER RATING

Each type rated power at 70°C YC102/104 = 1/32 W YC122/124/162/164/248/158T/358L/358T = 1/16 W YC324 = 1/8 W TC122/124/164 = 1/16 W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


$V = \sqrt{(P \times R)}$

or max. working voltage whichever is less Where

V=Continuous rated DC or AC (rms) working voltage (V)

P=Rated power (W)

R=Resistance value (Ω)

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

ENIS	REQUIREMENTS	PROCEDURE	TEST METHOD	TEST
)	±(2%+0.05 Ω)	I,000 hours at 70±5 °C applied RCWV	MIL-STD-202-method 108	Life/
Jumper	$<\!100~m\Omega$ for Jumper	I.5 hours on, 0.5 hour off, still air required 🦂	IEC 60115-1 4.25.1 JIS C 5202-7.10	Operational Life/ Endurance
,	±(1%+0.05 Ω)	1,000 hours at maximum operating	MIL-STD-202-method 108	High Temperature
r Jumper	$<$ 50 m Ω for Jumper	temperature depending on specification, unpowered	IEC 60115-1 4.25.3 JIS C 5202-7.11	Exposure/ Endurance at
		No direct impingement of forced air to the parts	,	Upper Category Temperature
		Tolerances: 125±3 °C		
,	,	Each temperature / humidity cycle is defined at	MIL-STD-202-method 106	Moisture
or Jumper	$^{ m pr}$ <100 m Ω for Jumper	8 hours (method 106F), 3 cycles / 24 hours for 10d with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	IEC 60115-1 4.24.2	Resistance
		Parts mounted on test-boards, without condensation on parts		
		Measurement at 24±2 hours after test conclusion		
Ω)	±(1%+0.05 Ω)	-55/+125 °C	MIL-STD-202-method 107	Thermal Shock
r Jumper	<50 m Ω for Jumper	Note: Number of cycles required is 300. Devices mounted		
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air		
Ω)	±(2%+0.05 Ω)	2.5 times RCWV or maximum overload	MIL-R-55342-para 4.7.5	
-	$<$ 50 m Ω for Jumper No visible damage	voltage whichever is less for 5 sec at room temperature	IEC60115-14.13	Overload
Ω)	±(1%+0.05 Ω)	Device mounted on PCB test board as	IEC60115-1 4.33	
-	<50 m Ω for Jumper	, , , , , , , , , , , , , , , , , , , ,		Bending
Jamage	No visible damage	-		
		-		
	<50 mΩ fc No visible c ±(1%+0.05 <50 mΩ fc	voltage whichever is less for 5 sec at room temperature	IEC60115-14.13	Short Time Overload Board Flex/ Bending

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	J-STD-002 test	Electrical Test not required Magnification 50X SMD conditions: I st step: method B, aging 4 hours at 155 °C dry heat 2 nd step: leadfree solder bath at 245±3 °C Dipping time: 3±0.5 seconds	Well tinned (≥95% covered) No visible damage
- Leaching	J-STD-002 test	Leadfree solder, 260 °C, 30 seconds immersion time	No visible damage
- Resistance to Soldering Heat	MIL-STD-202-method 210	Condition B, no pre-heat of samples Leadfree solder, 260 °C, 10 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	\pm (1%+0.05 Ω) <50 mΩ for Jumper No visible damage
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202-Method 103	1,000 hours; 85 °C / 85% RH 10% of operating power Measurement at 24± 4 hours after test conclusion.	± (5.0%+0.05 Ω)

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 9	Feb.19, 2019	-	- Update H dimension for YCI24
Version 8	Dec. 24. 2018	-	- Update AEC-Q200 qualified
Version 7	Aug. 22, 2017	-	- Correct the typo for YC158T/358L/358T, Marking, "240" is 240hm
Version 6	Jun. I, 2017	-	- Update ordering information for networks YC158T/YC358L/YC358T
Version 5	Feb. 14, 2017	-	- Update YC158 and 358 part number to YC158T , YC358L and YC358T
Version 4	Dec. 22, 2016	-	- Delete YC102 default code L type
Version 3	Apr. 29, 2016	-	- Update YC series and TC164 dimension
Version 2	Dec. 11, 2015	-	- Update Operating Temperature
Version I	Feb. 04, 2015	-	- Update YC102 to flat type
Version 0	Nov. 14, 2014	-	- First issue of this specification

"YAGEO reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly **YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.**

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

Downloaded from Arrow.com