

56F6408 512 Megabit Flash NOR

Functional Block Diagram

FEATURES:

- Single Power Supply Operation Single 3.3 volt read, erase, and program operations
- RAD-PAK® radiation hardened against natural space radiation
- Total Dose Hardness 100 krads(Si), depending on space mission
- Single Event Effects SEL > 60 MeV*cm²/mg at 85 °C
- Flexible Sector Architecture Five Hundred and Twelve 64K word sectors
- Hardware and Software Data Protection
- Package
 - 56 Pin Rad-Pak® flat pack
- 100,000 Erase/Program Cycles per sector (Typical)
- 20-year Data Retention (Typical)
- Low Power Consumption (Typical) 25mA read, 50mA erase/program, 1uA standby mode
- 8 and 16 Bit Data Bus Select

DESCRIPTION:

Maxwell Technologies' 56F6408 high density, 3.3V, 512 Megabit Flash Memory device, features a greater than 100 krads(Si) total dose tolerance, depending on space mission. The 56F6408 is capable of in-system electrical programming. It features Data Polling and a Ready/ Busy# signal to indicate the completion of erase and programming operations.

Maxwell Technologies' patented RAD-PAK® packaging technology incorporates radiation shielding in the microcircuit package. It eliminates the need for box shielding while providing the required radiation shielding for a lifetime in orbit or space mission. In a GEO orbit, RAD-PAK® provides greater than 100 krad(Si) radiation dose tolerance. This product is available with screening up to Maxwell Technologies' self-defined Class S.

1

56F6408

Table of Contents

1. Distinctive Characteristics
2. Pin Description
3. Absolute Maximum Ratings
2. Recommended Operating Conditions
3. DC Electricals
4. AC Electricals
5. General Description
6. Device Bus Operations
7. Common Flash Memory Interface (CFI)
8. Command Definitions
9. Write Operation Status
10. Physical Dimensions
11. Product Ordering Information

56F6408

Table 2. Pin Description							
Pin	DESCRIPTION	Pin	DESCRIPTION				
1	A23	56	A24				
2	A22	55	NC				
3	A15	54	A16				
4	A14	53	BYTE#				
5	A13	52	Vss				
6	A12	51	DQ15\A-1				
7	A11	50	DQ7				
8	A10	49	DQ14				
9	A9	48	DQ6				
10	A8	47	DQ13				
11	A19	46	DQ5				
12	A20	45	DQ12				
13	WE#	44	DQ4				
14	RESET#	43	Vcc				
15	A21	42	DQ11				
16	WP#	41	DQ3				
17	RY\BY#	40	DQ10				
18	A18	39	DQ2				
19	A17	38	DQ9				
20	A7	37	DQ1				
21	A6	36	DQ8				
22	A5	35	DQ0				
23	A4	34	OE#				
24	A3	33	Vss				
25	A2	32	CE#				
26	A1	31	A0				
27	NC	30	NC				
28	NC	29	Vcc				

Table 1. Table 2. Pin Description

Parameter	Symbol	Min	Max	Unit
Supply Voltage (Relative to Vss)	Vcc	-0.5	4.0	V
All other Pins		-0.5	Vcc + 0.5	V
Output Short Circuit Current ²			200	mA
Storage Temperature	Tstg	-65	150	°C
Operating Temperature	Topr	-55	125	°C
Thermal Resistance	Tjc		1.3	°C/W
Mass			9.9	Grams

TABLE 3. 56F6408 Absolute Maximum Ratings ¹

 Minimum DC voltage on input or I/O's is -0.5V. During voltage transistions, inputs or I/O's may overshoot Vss to -2.0V for periods of up to 20 ns. Maximum DC voltage on inputs or I/O's is Vcc + 0.5 V. During voltage transistions, inputs or I/O's may overshoot to Vcc = +2.0 V for periods up to 20 ns.

2. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.

Table 4. Delta Limits¹

Parameter	Variation
lcc1	±10% of specified value in Table 5
lcc2	$\pm 10\%$ of specified value in Table 5
lcc3	$\pm 10\%$ of specified value in Table 5
lcc4	$\pm 10\%$ of specified value in Table 5
lcc5	±10% of specified value in Table 5
lcc6	$\pm 10\%$ of specified value in Table 5

1. Parameters are measured and recorded per MIL-STD-883 for Class S devices.

TABLE 5. 56F6408 Recommended Operating Conditions ¹

Parameter	Symbol	Μιν	Мах	Unit
Supply Voltage	V _{CC}	3.0	3.6	V
Input Low Voltage	V _{IL}	0	0.3 x V _{CC}	V
Input High Voltage	V _{IH}	0.7 x V _{CC}	V _{CC}	V
Operating Temperature Range	T _{OPR}	-55	125	°C

1. All unused control inputs of the device must be held high or low to ensure proper device operation.

56F6408

Table 6.	56F6408	DC Electrical	Characteristics

Parameter	Symbol	TEST CONDITIONS	SUBGROUPS	Min	Түр	Max	Unit
Input Load Current ¹ All Inputs unless other- wise noted	I _{LI1}	Vin = Vss to Vcc Vcc = 3.6 V	1, 2, 3			1	uA
Input Load Current WP	I _{LI2}	Vin = Vss to Vcc Vcc = 3.6 V	1, 2, 3			2	uA
Output Leakage Current	I _{LO}	Vout = Vss to Vcc; Vcc = 3.6 V	1, 2, 3	-1		1	uA
Vcc Active Read ¹ Current	Icc1	$CE\# = V_{IL;}OE\# = V_{IH}; V_{CC} = 3.6 V, f = 1 MHz; Byte Mode$	1, 2, 3		6	20	
		$CE\# = V_{IL;}OE\# = V_{IH}; V_{CC} = 3.6 V; f = 5 MHz; Byte Mode$			30	50	mA
		$CE\# = V_{IL;}OE\# = V_{IH}; V_{CC} = 3.6 V; f = 10 MHz; Byte Mode$			60	100	
Vcc Intra-Page Read Current ¹	Icc2	CE# = V _{IL} ; OE# = V _{IH} ; Vcc = 3.6 V; f = 10 MHz	1, 2, 3		1	10	_
		CE# = V _{IL} ; OE# = V _{IH} ; Vcc = 3.6 V; f = 33 MHz			5	20	mA
Vcc Active Erase/Program Current ^{2,3}	Icc3	CE# = V _{IL} ; OE# = V _{IH} ; Vcc = 3.6 V	1, 2, 3		50	110	mA
Vcc Standby Current	Icc4	Vcc = 3.6 V; Vil = Vss + 0.3 V / -0.1 V CE#; = Vcc +/- 0.3V	1, 2, 3		1	128	uA
Vcc RESET Current	Icc5	Vcc = 3.6 V; Vil = Vss + 0.3 V / -0.1 V CE#; RESET# = Vcc +/- 0.3V	1, 2, 3		1	128	uA
Automatic Sleep Mode ³	Icc6	Vcc = 3.6 V; V _{IH} = Vcc +/- 0.3V; VIL = Vss + 0.3V/-0.1V WP# = V _{IH}	1, 2, 3		1	128	uA
Input Low Voltage	V _{IL}		1, 2, 3	-0.1		.3 x V _{CC}	V
Input High Voltage	V _{IH}		1, 2, 3	0.7x V _{CC}		V _{CC} + .3	V
Output Low Voltage ¹	V _{OL}	I _{OL} = 100 uA	1, 2, 3			0.15 x V _{CC}	V
Output High Voltage ¹	V _{OH}	I _{OH} = 100 uA	1, 2, 3	0.85 x V _{CC}			V
Low Vcc Lock-out Voltage	V _{LKO}		1, 2, 3	2.2		2.9	V

08.20.15 Rev 2 All data sheets are subject to change without notice 5

- 1. The Icc current is typically less than 2 mA/MHz, with OE# at ViH.
- 2. Icc active while Embedded Erase or Embedded Program or Write Buffer Programming is in progress.
- 3. Automatic sleep mode enables the lower power mode when addresses remain stable for t_{ACC} + 30ns.

56F6408

Table 7. 56F6408 AC Electrical Characteristics
Read-Only Operation ¹

DESCRIPTION	Symbol	Test Conditions	SUBGROUPS	Min	Max	Unit
Read Cycle Time	t _{RC}	V _{CC} = 3 V	9, 10, 11		115	ns
Address to Output Delay	t _{ACC}	$V_{\rm CC}$ = 3 V	9, 10, 11		115	ns
Chip Enable to Output Delay	t _{CE}	$V_{\rm CC}$ = 3 V	9, 10, 11		115	ns
Page Access Time	t _{PACC}		9, 10, 11		40	ns
Output Enable to Out- put Delay ¹	t _{OE}		9, 10, 11		35	ns
Chip Enable to Output High Z ²	t _{DF}		9, 10, 11		30	ns
Output Hold Time from Addresses, CE# or OE#, Whichever Occurs First	t _{OH}		9, 10, 11	0		ns
Output Enable Hold Time ²	t _{OEH}		9, 10, 11	10		ns
Chip Enable Hold Time ²	t _{CEH}		9, 10, 11	35		ns

(V_{CC} = 3.3 ±0.3, T_A = -55 to +125 $^{\circ}$ C, unless otherwise specified)

1) 35pF Load

2) NOT 100% TESTED

08.20.15 Rev 2 All data sheets are subject to change without notice 7

56F6408

Figure 1: Read Operation Timing

Table 8. Hardware RESET (RESET#)

DESCRIPTION	Symble	SUBGROUPS	Min	Max	Units
RESET# PIN LOW (DURING EMBEDDED ALGORITHMS) TO READ MODE ¹	t _{READY}	9, 10, 11		20	ns
RESET# PIN LOW (NOT DURING EMBEDDED Algorithms) to Read Mode	t _{READY}	9, 10, 11		500	ns
RESET# Pulse Width	t _{RP}	9, 10, 11	500		ns
RESET High Time Before Read ¹	t _{RH}	9, 10, 11	50		ns
RESET# Low to Standby Mode ¹	t _{RPD}	9, 10, 11	20		ns
RDY/BZY# Recovery Time ¹	t _{RB}	9, 10, 11	0		ns

1. Not 100% tested. If ramp rate is equal or faster than 1V/100us with a falling edge of the RESET# pin initiated, the RESET# input needs to be held low for 100 uS for power-up.

Figure 2: Reset Timing

DESCRIPTION	Symble	SUBGROUPS	Min	Түр	Max ¹	UNITS
Write Cycle Time ²	t _{wc}	9, 10, 11	110			ns
Address Setup Time	t _{AS}	9, 10, 11	0			ns
Address Setup Time to OE# low during tog- gle bit polling ²	t _{ASO}	9, 10, 11	15			ns
Address Hold Time	t _{AH}	9, 10, 11	45			ns
Address Hold Time From CE# or OE# high during toggle bit polling ²	t _{AHT}	9, 10, 11	0			ns
Data Setup Time	t _{DS}	9, 10, 11	45			ns
Data Hold Time	t _{DH}	9, 10, 11	0			ns
CE# High during toggle bit polling ²	t _{CEPH}	9, 10, 11	20			ns
Output Enable High during toggle bit polling ²	t _{OEPH}	9, 10, 11	20			ns
Read Recovery Time Before Write (OE# High to WE# Low) ²	t _{GHWL}	9, 10, 11	2			ns
CE# Setup Time	t _{CE}	9, 10, 11	0			ns
CE# Hold Time	t _{CH}	9, 10, 11	0			ns
Write Pulse Width	t _{WP}	9, 10, 11	35			ns
Write Pulse Width High	t _{wPH}	9, 10, 11	30			ns

08.20.15 Rev 2 All data sheets are subject to change without notice 9

56F6408

DESCRIPTION	Symble	SUBGROUPS	Min	Түр	Max ¹	UNITS
Write Buffer Program Operation ³	t _{WHWH1}	9, 10, 11		240	900	us
Effective Write Buffer Program Operation				15		us
Program Operation				60		us
Sector Erase Operation ⁴	t _{WHWH2}	9, 10, 11		0.5	3.5	sec
V _{CC} Setup Time ²	t _{vcs}	9, 10, 11	50			us
Erase/Program Valid to RY/BY# Delay	t _{BUSY}	9, 10, 11			100	ns
Chip Erase Time				256	1100	sec
Chip Program Time				492		sec

Table 9. Erase and Program Operations

1. Under worst case conditions of 125C, Vcc = 3.0 V, 75,000 cycles.

2. Not 100% Tested

3. For 1 -16 words/1 - 32 bytes programmed.

4. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before eraser.

General Description

The 56F6408 is a 3.0V single power flash memory manufactured using 110 nm technology. The 56F6408 is a 512 Mbit, organized as 33,554,432 words or 67,108,864 bytes. The devices have a 16-bit wide data bus that can also function as an 8-bit wide data bus by using the BYTE# input. The device can be programmed either in the host system or in standard EPROM programmers.

Each device has separate chip enable (CE#), write enable (WE#) and output enable (OE#) controls.

Figure 4: Chip/Sector Erase Operation Timings

Notes

1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data.

2. These waveforms are for the word mode.

Notes

1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data.

08.20.15 Rev 2

Figure 6: Toggle Bit Timings (During Embedded Algorithms)

Notes

VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, and last data read cycle.

Figure 7: DQ2 vs. DQ6

Note

DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle DQ2 and DQ6.

Figure 10: Power-On Reset Timings

Note

The sum of tRP and tRH must be equal to or greater than tRPH

08.20.15 Rev 2 All data sheets are subject to change without notice 13

Each device requires only a single 3.0 volt power supply for both read and write functions.

The devices are entirely command set compatible with the JEDEC single-power-supply Flash standard. Commands are written to the device using standard microprocessor write timing. Write cycles also internally latch addresses and data needed for the programming and erase operations.

The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the data contents of other sectors. The device is programmed with a checkerboard Pattern when shipped from the factory.

Device programming and erasure are initiated through command sequences. Once a program or erase operation has begun, the host system need only poll the DQ7 (Data# Polling) or DQ6 (toggle) status bits or monitor the Ready/Busy# (RY/BY#) output to determine whether the operation is complete. To facilitate programming, an Unlock Bypass mode reduces command sequence overhead by requiring only two write cycles to program data instead of four.

Hardware data protection measures include a low VCC detector that automatically inhibits write operations during power transitions. Persistent Sector Protection provides in-system, command-enabled protection of any combination of sectors using a single power supply at VCC.

The Erase Suspend/Erase Resume feature allows the host system to pause an erase operation in a given sector to read or program any other sector and then complete the erase operation. The Program Suspend/ Program Resume feature enables the host system to pause a program operation in a given sector to read any other sector and then complete the program operation.

The hardware RESET# pin terminates any operation in progress and resets the device, after which it is then ready for a new operation. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the host system to read boot-up firmware from the Flash memory device.

The device reduces power consumption in the standby mode when it detects specific voltage levels on CE# and RESET#, or when addresses have been stable for a specified period of time.

The Secured Silicon Sector provides a 128-word/256-byte area for code or data that can be permanently protected. Once this sector is protected, no further changes within the sector can occur.

The Write Protect (WP#) feature protects the first or last sector by asserting a logic low on the WP# pin. The flash technology combines years of Flash memory manufacturing experience to produce the highest levels of quality, reliability and cost effectiveness.

Device Bus Operations

This section describes the requirements and use of the device bus operations, which are initiated through the internal command register. The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device. The following subsections describe each of these operations in further detail.

								DQ8	- DQ15
Operation	CE#	OE#	WE#	RESET#	WP#	Address	DQ0-DQ7	BYTE#=Voh	BYTE#=Vil
Read	L	L	Н	Н	Н	Ain	Dout	Dout	DQ8-DQ14 - High-Z
Write (Program/Erase)	L	Н	L	Н	(Note 2)	Ain	(Note 3)	(Note 3)	DQ15=A-1
Standby	Vcc +/- 0.3V	Х	Х	Н	Vcc +/- 0.3V	Н	High-Z	High-Z	High-Z
Output Disable	L	Н	Н	Н	Х	Х	High-Z	High-Z	High-Z
RESET#	Х	Х	Х	L	Х	Х	High-Z	High-Z	High-Z

Legend

L = Logic Low = VIL, H = Logic High = VIH, X = Don't Care, SA = Sector Address, AIN = Address In, DIN = Data In, DOUT = Data Out Notes

1. Addresses are AMax:A0 in word mode; AMax:A-1 in byte mode. Sector addresses are AMax:A16 in both modes.

2. If WP# = VIL, the first remains protected. I All sectors are protected when shipped from the factory (using PPB bits).

3. DIN or DOUT as required by command sequence, data polling, or sector protect algorithm.

Word/Byte Configuration

The BYTE# pin controls whether the device data I/O pins operate in the byte or word configuration. If the BYTE# pin is set at logic '1', the device is in word configuration, DQ0–DQ15 are active and controlled by CE# and OE#. If the BYTE# pin is set at logic '0', the device is in byte configuration, and only data I/O pins DQ0–DQ7 are active and controlled by CE# and OE#. The data I/O pins DQ8–DQ14 are tri-stated, and the DQ15 pin is used as an input for the LSB (A-1) address function.

Requirements for Reading Array Data

To read array data from the outputs, the system must drive the CE# and OE# pins to VIL. CE# is the power control and selects the device. OE# is the output control and gates array data to the output pins. WE# should remain at VIH.

The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses on the device address nputs produce valid data on the device data outputs. The device remains enabled for read access until the command register contents are altered.

Page Mode Read

The device is capable of fast page mode read and is compatible with the page mode Mask ROM read operation. This mode provides faster read access speed for random locations within a page. The page size of the device is 8 words/16 bytes. The appropriate page is selected by the higher address bits A(max)–A3. Address bits A2–A0 in word mode (A2–A-1 in byte mode) determine the specific word within a page. This is an asynchronous operation; the microprocessor supplies the specific word locations. The random or initial page access is equal to tACC or tCE and subsequent page read accesses (as long as the locations specified by the microprocessor falls within that page) is equivalent to tPACC. When CE# is deasserted and reasserted for a subsequent access, the access time is tACC or tCE. Fast page mode accesses

are obtained by keeping the "read-page addresses" constant and changing the "intra-read page" addresses.

Writing Commands/Command Sequences

To write a command or command sequence (which includes programming data to the device and erasing sectors of memory), the system must drive WE# and CE# to VIL, and OE# to VIH. The device features an **Unlock Bypass** mode to facilitate faster programming. Once the device enters the Unlock Bypass mode, only two write cycles are required to program a word or byte, instead of four. The "Word Program Command Sequence" section has details on programming data to the device using both standard and Unlock Bypass command sequences.

An erase operation can erase one sector, multiple sectors, or the entire device.

08.20.15 Rev 2 All data sheets are subject to change without notice 15

Refer to the DC Characteristics table for the active current specification for the write mode. The AC Characteristics section contains timing specification tables and timing diagrams for write operations.

Write Buffer

Write Buffer Programming allows the system write to a maximum of 16 words/32 bytes in one programming operation. This results in faster effective programming time than the standard programming algorithms.

Autoselect Functions

If the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read autoselect codes from the internal register (which is separate from the memory array) on DQ7–DQ0. Standard read cycle timings apply in this mode.

Standby Mode

When the system is not reading or writing to the device, it can place the device in the standby mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE# input.

The device enters the CMOS standby mode when the CE# and RESET# pins are both held at $V_{CC} \pm 0.3$ V. (Note that this is a more restricted voltage range than VIH.) If CE# and RESET# are held at VIH, but not within $V_{CC} \pm 0.3$ V, the device is in the standby mode, but the standby current is greater. The device requires standard access time (tCE) for read access when the device is in either of these standby modes, before it is ready to read data.

If the device is deselected during erasure or programming, the device draws active current until the operation is completed.

Automatic Sleep Mode

The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when addresses remain stable for $t_{ACC} + 30$ ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and always available to the system.

RESET#: Hardware Reset Pin

The RESET# pin provides a hardware method of resetting the device to reading array data. When the RESET# pin is driven low for at least a period of tRP, the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET# pulse. The device also resets the internal state machine to reading array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity.

Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS±0.3 V, the device draws CMOS standby current (ICC5). If RESET# is held at VIL but not within VSS±0.3 V, the standby current is greater.

The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firmware from the Flash memory.

Output Disable Mode

When the OE# input is at VIH, output from the device is disabled. The output pins are placed in the high impedance state.

Sector				A	24-A1	16				Sector Size (Kbytes/ Kwords)	8-bit Address Range (in hexadecimal)	16-bit Address Range (in hexadecimal)
SA0	0	0	0	0	0	0	0	0	0	128/64	0000000-001FFFF	0000000-000FFFF
SA1	0	0	0	0	0	0	0	0	1	128/64	0020000-003FFFF	0010000-001FFFF
SA2	0	0	0	0	0	0	0	1	0	128/64	0040000-005FFFF	0020000-002FFFF
SA3	0	0	0	0	0	0	0	1	1	128/64	0060000-007FFFF	0030000-003FFFF
SA4	0	0	0	0	0	0	1	0	0	128/64	0080000-009FFFF	0040000-004FFFF
SA5	0	0	0	0	0	0	1	0	1	128/64	00A0000-00BFFFF	0050000-005FFFF
SA6	0	0	0	0	0	0	1	1	0	128/64	00C0000-00DFFFF	0060000-006FFFF
SA7	0	0	0	0	0	0	1	1	1	128/64	00E0000-00FFFFF	0070000-007FFFF
SA8	0	0	0	0	0	1	0	0	0	128/64	0100000-011FFFF	0080000-008FFFF
SA9	0	0	0	0	0	1	0	0	1	128/64	0120000-013FFFF	0090000-009FFFF
SA10	0	0	0	0	0	1	0	1	0	128/64	0140000-015FFFF	00A0000-00AFFFF
SA11	0	0	0	0	0	1	0	1	1	128/64	0160000-017FFFF	00B0000-00BFFFF
SA12	0	0	0	0	0	1	1	0	0	128/64	0180000-019FFFF	00C0000-00CFFFF
SA13	0	0	0	0	0	1	1	0	1	128/64	01A0000-01BFFFF	00D0000-00DFFFF
SA14	0	0	0	0	0	1	1	1	0	128/64	01C0000-01DFFFF	00E0000-00EFFFF
SA15	0	0	0	0	0	1	1	1	1	128/64	01E0000-01FFFFF	00F0000-00FFFFF
SA16	0	0	0	0	1	0	0	0	0	128/64	0200000-021FFFF	0100000-010FFFF
SA17	0	0	0	0	1	0	0	0	1	128/64	0220000-023FFFF	0110000-011FFFF
SA18	0	0	0	0	1	0	0	1	0	128/64	0240000-025FFFF	0120000-012FFFF
SA19	0	0	0	0	1	0	0	1	1	128/64	0260000-027FFFF	0130000-013FFFF
SA20	0	0	0	0	1	0	1	0	0	128/64	0280000-029FFFF	0140000-014FFFF
SA21	0	0	0	0	1	0	1	0	1	128/64	02A0000-02BFFFF	0150000-015FFFF
SA22	0	0	0	0	1	0	1	1	0	128/64	02C0000-02DFFFF	0160000-016FFFF
SA23	0	0	0	0	1	0	1	1	1	128/64	02E0000-02FFFFF	0170000-017FFFF
SA24	0	0	0	0	1	1	0	0	0	128/64	0300000-031FFFF	0180000-018FFFF
SA25	0	0	0	0	1	1	0	0	1	128/64	0320000-033FFFF	0190000-019FFFF
SA26	0	0	0	0	1	1	0	1	0	128/64	0340000-035FFFF	01A0000-01AFFFF
SA27	0	0	0	0	1	1	0	1	1	128/64	0360000-037FFFF	01B0000-01BFFFF
SA28	0	0	0	0	1	1	1	0	0	128/64	0380000-039FFFF	01C0000-01CFFFF
SA29	0	0	0	0	1	1	1	0	1	128/64	03A0000-03BFFFF	01D0000-01DFFFF
SA30	0	0	0	0	1	1	1	1	0	128/64	03C0000-03DFFFF	01E0000-01EFFFF
SA31	0	0	0	0	1	1	1	1	1	128/64	03E0000-0EFFFFF	01F0000-01FFFFF
SA32	0	0	0	1	0	0	0	0	0	128/64	0400000-041FFFF	0200000-020FFFF
SA33	0	0	0	1	0	0	0	0	1	128/64	0420000-043FFFF	0210000-021FFFF
SA34	0	0	0	1	0	0	0	1	0	128/64	0440000-045FFFF	0220000-022FFFF
SA35	0	0	0	1	0	0	0	1	1	128/64	0460000-047FFFF	0230000-023FFFF
SA36	0	0	0	1	0	0	1	0	0	128/64	0480000-049FFFF	0240000-024FFFF
SA37	0	0	0	1	0	0	1	0	1	128/64	04A0000-04BFFFF	0250000-025FFFF
SA38	0	0	0	1	0	0	1	1	0	128/64	04C0000-04DFFFF	0260000-026FFFF
SA39	0	0	0	1	0	0	1	1	1	128/64	04E0000-04FFFFF	0270000-027FFFF
SA40	0	0	0	1	0	1	0	0	0	128/64	0500000-051FFFF	0280000-028FFFF
SA41	0	0	0	1	0	1	0	0	1	128/64	0520000-053FFFF	0290000-029FFFF
SA42	0	0	0	1	0	1	0	1	0	128/64	0540000-055FFFF	02A0000-02AFFFF
SA43	0	0	0	1	0	1	0	1	1	128/64	0560000-057EEEE	02B0000-02BEEEE

Table 9: 56F6408 Sector Address (1 of 11)

56F6408

SA90

0 0 1 0 1 1 0 1 0

Table 10: 56F6408 Sector Address (2 of 11) Sector Size 8-bit 16-bit (Kbytes/ Address Range Address Range Sector A24-A16 Kwords) (in hexadecimal) (in hexadecimal) SA44 128/64 0580000-059EEEE 02C0000-02CEEEE 05A0000-05BFFFF SA45 128/64 02D0000-02DFFFF SA46 128/64 05C0000-05DFFFF 02E0000-02EFFFF 128/64 02F0000-02FFFFF SA47 05E0000-05FFFFF **SA48** 128/64 0600000-061FFFF 0300000-030FFFF SA49 128/64 0620000-063FFFF 0310000-031FFFF **SA50** 128/64 0640000-065FFFF 0320000-032FFFF SA51 128/64 0660000-067FFFF 0330000-033EEEE SA52 128/64 0680000-069FFFF 0340000-034FFFF SA53 128/64 06A0000-06BFFFF 0350000-035FFFF SA54 128/64 06C0000-06DFFFF 0360000-036FFFF SA55 128/64 06E0000-06FFFFF 0370000-037FFFF SA56 128/64 0700000-071EEEE 0380000-038FFFF **SA57** 128/64 0720000-073FFFF 0390000-039FFFF SA58 128/64 0740000-075FFFF 03A0000-03AFFFF 128/64 SA59 0760000-077FFFF 03B0000-03BFFFF SA60 128/64 0780000-079FFFF 03C0000-03CFFFF SA61 128/64 07A0000-07BFFFF 03D0000-03DFFFF SA62 128/64 07C0000-07DFFFF 03E0000-03EFFFF SA63 128/64 07E0000-07FFFFF 03E0000-03EEEEE 0400000-040FFFF SA64 128/64 0800000-081FFFF SA65 128/64 0820000-083FFFF 0410000-041FFFF 128/64 0420000-042FFFF SA66 0840000-085FFFF SA67 128/64 0860000-087FFFF 0430000-043FFFF SA68 128/64 0880000-089FFFF 0440000-044FFFF SA69 128/64 08A0000-08BFFFF 0450000-045FFFF **SA70** 128/64 08C0000-08DFFFF 0460000-046FFFF SA71 128/64 08E0000-08FFFFF 0470000-047FFFF 128/64 SA72 0900000-091FFFF 0480000-048FFFF SA73 128/64 0920000-093FFFF 0490000-049FFFF **SA74** 128/64 0940000-095FFFF 04A0000-04AFFFF **SA75** 128/64 0960000-097FFFF 04B0000-04BFFFF **SA76** 128/64 04C0000-04CFFFF 0980000-099FFFF **SA77** 128/64 09A0000-09BFFFF 04D0000-04DFFFF **SA78** 128/64 09C0000-09DFFFF 04E0000-04EFFFF 128/64 **SA79** 09E0000-09FFFFF 04F0000-04FFFFF SA80 128/64 0A00000-0A1FFFF 0500000-050FFFF SA81 128/64 0A20000-0A3FFFF 0510000-051FFFF **SA82** 128/64 0A40000-0A5FFFF 0520000-052FFFF SA83 128/64 0A60000-0A7FFFF 0530000-053FFFF 0540000-054FFFF **SA84** 128/64 0A80000-0A9FFFF SA85 128/64 0AA0000-0ABFFFF 0550000-055FFFF SA86 128/64 0AC0000-0ADFFFF 0560000-056FFFF SA87 128/64 0AE0000-0AFFFFF 0570000-057FFFF SARR 128/64 0B00000-0B1FFFF 0580000-058FFFF **SA89** 128/64 0B20000-0B3FFFF 0590000-059FFFF

All data sheets are subject to change without notice 18

05A0000-05AFFFF

0B40000-0B5FFFF

128/64

56F6408

56F6408

Table 11: 56F6408 Sector Address (3 of 11)

Sector				A	24–A1	16				Sector Size (Kbytes/ Kwords)	8-bit Address Range (in hexadecimal)	16-bit Address Range (in hexadecimal)
SA91	0	0	1	0	1	1	0	1	1	128/64	0B60000-0B7FFFF	05B0000-05BFFFF
SA92	0	0	1	0	1	1	1	0	0	128/64	0B80000-0B9FFFF	05C0000-05CFFFF
SA93	0	0	1	0	1	1	1	0	1	128/64	0BA0000-0BBFFFF	05D0000-05DFFFF
SA94	0	0	1	0	1	1	1	1	0	128/64	0BC0000-0BDFFFF	05E0000-05EFFFF
SA95	0	0	1	0	1	1	1	1	1	128/64	0BE0000-0BFFFFF	05F0000-05FFFFF
SA96	0	0	1	1	0	0	0	0	0	128/64	0C00000-0C1FFFF	0600000-060FFFF
SA97	0	0	1	1	0	0	0	0	1	128/64	0C20000-0C3FFFF	0610000-061FFFF
SA98	0	0	1	1	0	0	0	1	0	128/64	0C40000-0C5FFFF	0620000-062FFFF
SA99	0	0	1	1	0	0	0	1	1	128/64	0C60000-0C7FFFF	0630000-063FFFF
SA100	0	0	1	1	0	0	1	0	0	128/64	0C80000-0C9FFFF	0640000-064FFFF
SA101	0	0	1	1	0	0	1	0	1	128/64	0CA0000-0CBFFFF	0650000-065FFFF
SA102	0	0	1	1	0	0	1	1	0	128/64	0CC0000-0CDFFFF	0660000-066FFFF
SA103	0	0	1	1	0	0	1	1	1	128/64	0CE0000-0CFFFFF	0670000-067FFFF
SA104	0	0	1	1	0	1	0	0	0	128/64	0D00000-0D1FFFF	0680000-068FFFF
SA105	0	0	1	1	0	1	0	0	1	128/64	0D20000-0D3FFFF	0690000-069FFFF
SA106	0	0	1	1	0	1	0	1	0	128/64	0D40000-0D5FFFF	06A0000-06AFFFF
SA107	0	0	1	1	0	1	0	1	1	128/64	0D60000-0D7FFFF	06B0000-06BFFFF
SA108	0	0	1	1	0	1	1	0	0	128/64	0D80000-0D9FFFF	06C0000-06CFFFF
SA109	0	0	1	1	0	1	1	0	1	128/64	0DA0000-0DBFFFF	06D0000-06DFFFF
SA110	0	0	1	1	0	1	1	1	0	128/64	0DC0000-0DDFFFF	06E0000-06EFFFF
SA111	0	0	1	1	0	1	1	1	1	128/64	0DE0000-0DFFFFF	06F0000-06FFFFF
SA112	0	0	1	1	1	0	0	0	0	128/64	0E00000-0E1FFFF	0700000-070FFFF
SA113	0	0	1	1	1	0	0	0	1	128/64	0E20000-0E3FFFF	0710000-071FFFF
SA114	0	0	1	1	1	0	0	1	0	128/64	0E40000-0E5FFFF	0720000-072FFFF
SA115	0	0	1	1	1	0	0	1	1	128/64	0E60000-0E7FFFF	0730000-073FFFF
SA116	0	0	1	1	1	0	1	0	0	128/64	0E80000-0E9FFFF	0740000-074FFFF
SA117	0	0	1	1	1	0	1	0	1	128/64	0EA0000-0EBFFFF	0750000-075FFFF
SA118	0	0	1	1	1	0	1	1	0	128/64	0EC0000-0EDFFFF	0760000-076FFFF
SA119	0	0	1	1	1	0	1	1	1	128/64	0EE0000-0EFFFFF	0770000-077FFFF
SA120	0	0	1	1	1	1	0	0	0	128/64	0F00000-0F1FFFF	0780000-078FFFF
SA121	0	0	1	1	1	1	0	0	1	128/64	0F20000-0F3FFFF	0790000-079FFFF
SA122	0	0	1	1	1	1	0	1	0	128/64	0F40000-0F5FFFF	07A0000-07AFFFF
SA123	0	0	1	1	1	1	0	1	1	128/64	0F60000-0F7FFFF	07B0000-07BFFFF
SA124	0	0	1	1	1	1	1	0	0	128/64	0F80000-0F9FFFF	07C0000-07CFFFF
SA125	0	0	1	1	1	1	1	0	1	128/64	0FA0000-0FBFFFF	07D0000-07DFFFF
SA126	0	0	1	1	1	1	1	1	0	128/64	0FC0000-0FDFFFF	07E0000-07EFFFF
SA127	0	0	1	1	1	1	1	1	1	128/64	0FE0000-0FFFFFF	07F0000-07FFFFF
SA128	0	1	0	0	0	0	0	0	0	128/64	1000000-101FFFF	0800000-080FFFF
SA129	0	1	0	0	0	0	0	0	1	128/64	1020000-103FFFF	0810000-081FFFF
SA130	0	1	0	0	0	0	0	1	0	128/64	1040000-105FFFF	0820000-082FFFF
SA131	0	1	0	0	0	0	0	1	1	128/64	1060000-017FFFF	0830000-083FFFF
SA132	0	1	0	0	0	0	1	0	0	128/64	1080000-109FFFF	0840000-084FFFF
SA133	0	1	0	0	0	0	1	0	1	128/64	10A0000-10BFFFF	0850000-085FFFF
SA134	0	1	0	0	0	0	1	1	0	128/64	10C0000-10DFFFF	0860000-086FFFF
SA135	0	1	0	0	0	0	1	1	1	128/64	10E0000-10FFFFF	0870000-087FFFF
SA136	0	1	0	0	0	1	0	0	0	128/64	1100000-111FFFF	0880000-088FFFF
SA137	0	1	0	0	0	1	0	0	1	128/64	1120000-113FFFF	0890000-089FFFF

56F6408

Sector				A	24– A 1	16				Sector Size (Kbytes/ Kwords)	8-bit Address Range (in hexadecimal)	16-bit Address Range (in hexadecimal)
SA138	0	1	0	0	0	1	0	1	0	128/64	1140000-115FFFF	08A0000-08AFFFF
SA139	0	1	0	0	0	1	0	1	1	128/64	1160000-117FFFF	08B0000-08BFFFF
SA140	0	1	0	0	0	1	1	0	0	128/64	1180000-119FFFF	08C0000-08CFFFF
SA141	0	1	0	0	0	1	1	0	1	128/64	11A0000-11BFFFF	08D0000-08DFFFF
SA142	0	1	0	0	0	1	1	1	0	128/64	11C0000-11DFFFF	08E0000-08EFFFF
SA143	0	1	0	0	0	1	1	1	1	128/64	11E0000-11FFFFF	08F0000-08FFFFF
SA144	0	1	0	0	1	0	0	0	0	128/64	1200000-121FFFF	0900000-090FFFF
SA145	0	1	0	0	1	0	0	0	1	128/64	1220000-123FFFF	0910000-091FFFF
SA146	0	1	0	0	1	0	0	1	0	128/64	1240000-125FFFF	0920000-092FFFF
SA147	0	1	0	0	1	0	0	1	1	128/64	1260000-127FFFF	0930000-093FFFF
SA148	0	1	0	0	1	0	1	0	0	128/64	1280000-129FFFF	0940000-094FFFF
SA149	0	1	0	0	1	0	1	0	1	128/64	12A0000-12BFFFF	0950000-095FFFF
SA150	0	1	0	0	1	0	1	1	0	128/64	12C0000-12DFFFF	0960000-096FFFF
SA151	0	1	0	0	1	0	1	1	1	128/64	12E0000-12FFFFF	0970000-097FFFF
SA152	0	1	0	0	1	1	0	0	0	128/64	1300000-131FFFF	0980000-098FFFF
SA153	0	1	0	0	1	1	0	0	1	128/64	1320000-133FFFF	0990000-099FFFF
SA154	0	1	0	0	1	1	0	1	0	128/64	1340000-135FFFF	09A0000-09AFFFF
SA155	0	1	0	0	1	1	0	1	1	128/64	1360000-137FFFF	09B0000-09BFFFF
SA156	0	1	0	0	1	1	1	0	0	128/64	1380000-139FFFF	09C0000-09CFFFF
SA157	0	1	0	0	1	1	1	0	1	128/64	13A0000-13BFFFF	09D0000-09DFFFF
SA158	0	1	0	0	1	1	1	1	0	128/64	13C0000-13DFFFF	09E0000-09EFFFF
SA159	0	1	0	0	1	1	1	1	1	128/64	13E0000-13FFFFF	09F0000-09FFFFF
SA160	0	1	0	1	0	0	0	0	0	128/64	1400000-141FFFF	0A00000-0A0FFFF
SA161	0	1	0	1	0	0	0	0	1	128/64	1420000-143FFFF	0A10000-0A1FFFF
SA162	0	1	0	1	0	0	0	1	0	128/64	1440000-145FFFF	0A20000-0A2FFFF
SA163	0	1	0	1	0	0	0	1	1	128/64	1460000-147FFFF	0A30000-0A3FFFF
SA164	0	1	0	1	0	0	1	0	0	128/64	1480000-149FFFF	0A40000-0A4FFFF
SA165	0	1	0	1	0	0	1	0	1	128/64	14A0000-14BFFFF	0A50000-0A5FFFF
SA166	0	1	0	1	0	0	1	1	0	128/64	14C0000-14DFFFF	0A60000-0A6FFFF
SA167	0	1	0	1	0	0	1	1	1	128/64	14E0000-14FFFFF	0A70000-0A7FFFF
SA168	0	1	0	1	0	1	0	0	0	128/64	1500000-151FFFF	0A80000-0A8FFFF
SA169	0	1	0	1	0	1	0	0	1	128/64	1520000-153FFFF	0A90000-0A9FFFF
SA170	0	1	0	1	0	1	0	1	0	128/64	1540000-155FFFF	0AA0000-0AAFFFF
SA171	0	1	0	1	0	1	0	1	1	128/64	1560000-157FFFF	0AB0000-0ABFFFF
SA172	0	1	0	1	0	1	1	0	0	128/64	1580000-159FFFF	0AC0000-0ACFFFF
SA173	0	1	0	1	0	1	1	0	1	128/64	15A0000-15BFFFF	0AD0000-0ADFFFF
SA174	0	1	0	1	0	1	1	1	0	128/64	15C0000-15DFFFF	0AE0000-0AEFFFF
SA175	0	1	0	1	0	1	1	1	1	128/64	15E0000-15FFFFF	0AF0000-0AFFFFF
SA176	0	1	0	1	1	0	0	0	0	128/64	160000-161FFFF	0B00000-0B0FFFF
SA177	0	1	0	1	1	0	0	0	1	128/64	1620000-163FFFF	0B10000-0B1FFFF
SA178	0	1	0	1	1	0	0	1	0	128/64	1640000-165FFFF	0B20000-0B2FFFF
SA179	0	1	0	1	1	0	0	1	1	128/64	1660000-167FFFF	0B30000-0B3FFFF
SA180	0	1	0	1	1	0	1	0	0	128/64	1680000-169FFFF	0B40000-0B4FFFF
SA181	0	1	0	1	1	0	1	0	1	128/64	16A0000-16BFFFF	0B50000-0B5FFFF
SA182	0	1	0	1	1	0	1	1	0	128/64	16C0000-16DFFFF	0B60000-0B6FFFF
SA183	0	1	0	1	1	0	1	1	1	128/64	16E0000-16FFFFF	0B70000-0B7FFFF
SA184	0	1	0	1	1	1	0	0	0	128/64	1700000–171FFFF	0B80000-0B8FFFF

Table 12: 56F6408 Sector Address (4 of 11)

56F6408

Table 13: 56F6408 Sector	Address	(5 of 11)
--------------------------	---------	----------	---

Sector				A	24–A	16				Sector Size (Kbytes/ Kwords)	8-bit Address Range (in hexadecimal)	16-bit Address Range (in hexadecimal)
SA185	0	1	0	1	1	1	0	0	1	128/64	1720000-173FFFF	0B90000-0B9FFFF
SA186	0	1	0	1	1	1	0	1	0	128/64	1740000-175FFFF	0BA0000-0BAFFFF
SA187	0	1	0	1	1	1	0	1	1	128/64	1760000-177FFFF	0BB0000-0BBFFFF
SA188	0	1	0	1	1	1	1	0	0	128/64	1780000-179FFFF	0BC0000-0BCFFFF
SA189	0	1	0	1	1	1	1	0	1	128/64	17A0000-17BFFFF	0BD0000-0BDFFFF
SA190	0	1	0	1	1	1	1	1	0	128/64	17C0000-17DFFFF	0BE0000-0BEFFFF
SA191	0	1	0	1	1	1	1	1	1	128/64	17E0000-17FFFFF	0BF0000-0BFFFFF
SA192	0	1	1	0	0	0	0	0	0	128/64	1800000-181FFFF	0C00000-0C0FFFF
SA193	0	1	1	0	0	0	0	0	1	128/64	1820000-183FFFF	0C10000-0C1FFFF
SA194	0	1	1	0	0	0	0	1	0	128/64	1840000-185FFFF	0C20000-0C2FFFF
SA195	0	1	1	0	0	0	0	1	1	128/64	1860000-187FFFF	0C30000-0C3FFFF
SA196	0	1	1	0	0	0	1	0	0	128/64	1880000-189FFFF	0C40000-0C4FFFF
SA197	0	1	1	0	0	0	1	0	1	128/64	18A0000-18BFFFF	0C50000-0C5FFFF
SA198	0	1	1	0	0	0	1	1	0	128/64	18C0000-18DFFFF	0C60000-0C6FFFF
SA199	0	1	1	0	0	0	1	1	1	128/64	18E0000-18FFFFF	0C70000-0C7FFFF
SA200	0	1	1	0	0	1	0	0	0	128/64	1900000-191FFFF	0C80000-0C8FFFF
SA201	0	1	1	0	0	1	0	0	1	128/64	1920000-193FFFF	0C90000-0C9FFFF
SA202	0	1	1	0	0	1	0	1	0	128/64	1940000-195FFFF	0CA0000-0CAFFFF
SA203	0	1	1	0	0	1	0	1	1	128/64	1960000-197FFFF	0CB0000-0CBFFFF
SA204	0	1	1	0	0	1	1	0	0	128/64	1980000-199FFFF	0CC0000-0CCFFFF
SA205	0	1	1	0	0	1	1	0	1	128/64	19A0000-19BFFFF	0CD0000-0CDFFFF
SA206	0	1	1	0	0	1	1	1	0	128/64	19C0000-19DFFFF	0CE0000-0CEFFFF
SA207	0	1	1	0	0	1	1	1	1	128/64	19E0000-19FFFFF	0CF0000-0CFFFFF
SA208	0	1	1	0	1	0	0	0	0	128/64	1A00000-1A1FFFF	0D00000-0D0FFFF
SA209	0	1	1	0	1	0	0	0	1	128/64	1A20000-1A3FFFF	0D10000-0D1FFFF
SA210	0	1	1	0	1	0	0	1	0	128/64	1A40000-1A5FFFF	0D20000-0D2FFFF
SA211	0	1	1	0	1	0	0	1	1	128/64	1A60000-1A7FFFF	0D30000-0D3FFFF
SA212	0	1	1	0	1	0	1	0	0	128/64	1A80000-1A9FFFF	0D40000-0D4FFFF
SA213	0	1	1	0	1	0	1	0	1	128/64	1AA0000-1ABFFFF	0D50000-0D5FFFF
SA214	0	1	1	0	1	0	1	1	0	128/64	1AC0000-1ADFFFF	0D60000-0D6FFFF
SA215	0	1	1	0	1	0	1	1	1	128/64	1AE0000-1AFFFFF	0D70000-0D7FFFF
SA216	0	1	1	0	1	1	0	0	0	128/64	1B00000-1B1FFFF	0D80000-0D8FFFF
SA217	0	1	1	0	1	1	0	0	1	128/64	1B20000-1B3FFFF	0D90000-0D9FFFF
SA218	0	1	1	0	1	1	0	1	0	128/64	1B40000-1B5FFFF	0DA0000-0DAFFFF
SA219	0	1	1	0	1	1	0	1	1	128/64	1B60000-1B7FFFF	0DB0000-0DBFFFF
SA220	0	1	1	0	1	1	1	0	0	128/64	1B80000-1B9FFFF	0DC0000-0DCFFFF
SA221	0	1	1	0	1	1	1	0	1	128/64	1BA0000-1BBFFFF	0DD0000-0DDFFFF
SA222	0	1	1	0	1	1	1	1	0	128/64	1BC0000-1BDFFFF	0DE0000-0DEFFFF
SA223	0	1	1	0	1	1	1	1	1	128/64	1BE0000-1BFFFFF	0DF0000-0DFFFFF
SA224	0	1	1	1	0	0	0	0	0	128/64	1C00000-1C1FFFF	0E00000-0E0FFFF
SA225	0	1	1	1	0	0	0	0	1	128/64	1C20000-1C3FFFF	0E10000-0E1FFFF
SA226	0	1	1	1	0	0	0	1	0	128/64	1C40000-1C5FFFF	0E20000-0E2FFFF
SA227	0	1	1	1	0	0	0	1	1	128/64	1C60000-1C7FFFF	0E30000-0E3FFFF
SA228	0	1	1	1	0	0	1	0	0	128/64	1C80000-1C9FFFF	0E40000-0E4FFFF
SA229	0	1	1	1	0	0	1	0	1	128/64	1CA0000-1CBFFFF	0E50000-0E5FFFF
SA230	0	1	1	1	0	0	1	1	0	128/64	1CC0000-1CDFFFF	0E60000-0E6FFFF
SA231	0	1	1	1	0	0	1	1	1	128/64	1CE0000-1CFFFFF	0E70000-0E7FFFF

56F6408

Table 14: 56F6408 Sector Address (6 of 11)

Sector				A	24-A	16				Sector Size (Kbytes/ Kwords)	8-bit Address Range (in hexadecimal)	16-bit Address Range (in hexadecimal)
SA232	0	1	1	1	0	1	0	0	0	128/64	1D00000-1D1FFFF	0E80000-0E8FFFF
SA233	0	1	1	1	0	1	0	0	1	128/64	1D20000-1D3FFFF	0E90000-0E9FFFF
SA234	0	1	1	1	0	1	0	1	0	128/64	1D40000-1D5FFFF	0EA0000-0EAFFFF
SA235	0	1	1	1	0	1	0	1	1	128/64	1D60000-1D7FFFF	0EB0000-0EBFFFF
SA236	0	1	1	1	0	1	1	0	0	128/64	1D80000-1D9FFFF	0EC0000-0ECFFFF
SA237	0	1	1	1	0	1	1	0	1	128/64	1DA0000-1DBFFFF	0ED0000-0EDFFFF
SA238	0	1	1	1	0	1	1	1	0	128/64	1DC0000-1DDFFFF	0EE0000-0EEFFFF
SA239	0	1	1	1	0	1	1	1	1	128/64	1DE0000-1DFFFFF	0EF0000-0EFFFFF
SA240	0	1	1	1	1	0	0	0	0	128/64	1E00000-1E1FFFF	0F00000-0F0FFFF
SA241	0	1	1	1	1	0	0	0	1	128/64	1E20000-1E3FFFF	0F10000-0F1FFFF
SA242	0	1	1	1	1	0	0	1	0	128/64	1E40000-1E5FFFF	0F20000-0F2FFFF
SA243	0	1	1	1	1	0	0	1	1	128/64	1E60000-1E7FFFF	0F30000-0F3FFFF
SA244	0	1	1	1	1	0	1	0	0	128/64	1E80000-1E9FFFF	0F40000-0F4FFFF
SA245	0	1	1	1	1	0	1	0	1	128/64	1EA0000-1EBFFFF	0F50000-0F5FFFF
SA246	0	1	1	1	1	0	1	1	0	128/64	1EC0000-1EDFFFF	0F60000-0F6FFFF
SA247	0	1	1	1	1	0	1	1	1	128/64	1EE0000-1EFFFFF	0F70000-0F7FFFF
SA248	0	1	1	1	1	1	0	0	0	128/64	1E00000-1E1EEEE	0E80000-0E8EEEE
SA249	0	1	1	1	1	1	0	0	1	128/64	1E20000-1E3EEEE	0E90000-0E9EEEE
SA250	0	1	1	1	1	1	0	1	0	128/64	1E40000-1E5EEEE	0FA0000-0FAFFFF
SA251	0	1	1	1	1	1	0	1	1	128/64	1E60000-1E7EEEE	0EB0000-0EBEEEE
SA252	0	1	1	1	1	1	1	0	0	128/64	1E80000_1E9EEEE	
SA253	0	1	1	1	1	1	1	0	1	128/64	1E40000_1EBEEEE	
SA254	0	1	1	1	1	1	1	1	0	128/64	1EC0000_1EDEEEE	0550000-0555555
SA255	0	1	1	1	1	1	1	1	1	128/64	1EE0000_1EEEEEE	0550000-0555555
SA256	1	0	0	0	0	0	0	0	0	128/64	2000000_2015555	1000000-100EEEE
SA257	1	0	0	0	0	0	0	0	1	120/64	2020000-2025555	1010000_101EEEE
SA258	1	0	0	0	0	0	0	1	0	128/64	2020000-205FFFF	1020000-102EEEE
SA250	1	0	0	0	0	0	0	1	1	128/64	2060000_207EEEE	1020000-1025555
SA260	1	0	0	0	0	0	1	0	0	128/64	2000000-2005555	1040000-104FEFE
SA261	1	0	0	0	0	0	4	0	1	128/64	2000000-208FEFF	1050000-105EEEE
SA262	4	0	0	0	0	0	4	1	0	120/64	2000000-2005555	1060000_106EEEE
SA202	1	0	0	0	0	0	4	1	1	120/04	2000000-200FFFF	1070000 107EEEE
SA203	4	0	0	0	0	4	0	0	0	128/04	2100000 2115555	100000 100FFFF
SA204	4	0	0	0	0	1	0	0	1	128/04	2100000-211FFFF	1000000 100FFFF
SA265	1	0	0	0	0	4	0	4	0	120/64	2120000-215FFFF	1040000 104FEFE
SA200	4	0	0	0	0	-	0	4	•	128/04	2140000-213FFFF	102000-102555
0A207	-	0	0	0	0	-	4	-	0	128/04	2100000-21/FFFF	1000000 100FFFF
0A208	1	0	0	0	0	1	1	0	0	128/64	2180000-219FFFF	100000-100FFFF
SA269	1	0	0	0	0	1	1	0	1	128/64	21A0000-218FFFF	10D000-10DFFFF
SA270	1	0	0	0	0	1	1	1	0	128/64	21C0000-21DFFFF	10E0000-10EFFFF
SA2/1	1	0	0	0	0	1	1	1	1	128/64	21E0000-21FFFF	10F0000-10FFFFF
0A272	1	0	0	0	1	0	0	0	0	128/64	220000-221FFF	
5A2/3	1	0	0	0	1	0	0	0		128/64	2220000-223FFFF	1110000-111FFFF
SA2/4	1	0	0	0	1	0	0	1	0	128/64	2240000-225FFFF	1120000-112FFFF
SA275	1	0	0	0	1	0	0	1	1	128/64	2260000-227FFFF	1130000-113FFFF
SA276	1	0	0	0	1	0	1	0	0	128/64	2280000-229FFFF	1140000-114FFFF
SA277	1	0	0	0	1	0	1	0	1	128/64	22A0000-22BFFFF	1150000-115FFFF
SA278	1	0	0	0	1	0	1	1	0	128/64	22C0000-22DFFFF	1160000-116FFFF

512 Megabit Flash NOR Table 15: 56F6408 Sector Address (7 of 11)

Sector				А	24–A1	16				Sector Size (Kbytes/ Kwords)	8-bit Address Range (in hexadecimal)	16-bit Address Range (in hexadecimal)
SA279	1	0	0	0	1	0	1	1	1	128/64	22E0000-22FFFFF	1170000-117FFFF
SA280	1	0	0	0	1	1	0	0	0	128/64	2300000-231FFFF	1180000-118FFFF
SA281	1	0	0	0	1	1	0	0	1	128/64	2320000-233FFFF	1190000-119FFFF
SA282	1	0	0	0	1	1	0	1	0	128/64	2340000-235FFFF	11A0000-11AFFFF
SA283	1	0	0	0	1	1	0	1	1	128/64	2360000-237FFFF	11B0000-11BFFFF
SA284	1	0	0	0	1	1	1	0	0	128/64	2380000-239FFFF	11C0000-11CFFFF
SA285	1	0	0	0	1	1	1	0	1	128/64	23A0000-23BFFFF	11D0000-11DFFFF
SA286	1	0	0	0	1	1	1	1	0	128/64	23C0000-23DFFFF	11E0000-11EFFFF
SA287	1	0	0	0	1	1	1	1	1	128/64	23E0000-23FFFFF	11F0000-11FFFFF
SA288	1	0	0	1	0	0	0	0	0	128/64	2400000-241FFFF	1200000-120FFFF
SA289	1	0	0	1	0	0	0	0	1	128/64	2420000-243FFFF	1210000-121FFFF
SA290	1	0	0	1	0	0	0	1	0	128/64	2440000-245FFFF	1220000-122FFFF
SA291	1	0	0	1	0	0	0	1	1	128/64	2460000-247FFFF	1230000-123FFFF
SA292	1	0	0	1	0	0	1	0	0	128/64	2480000-249FFFF	1240000-124FFFF
SA293	1	0	0	1	0	0	1	0	1	128/64	24A0000-24BFFFF	1250000-125FFFF
SA294	1	0	0	1	0	0	1	1	0	128/64	24C0000-24DFFFF	1260000-126FFFF
SA295	1	0	0	1	0	0	1	1	1	128/64	24E0000-24FFFFF	1270000-127FFFF
SA296	1	0	0	1	0	1	0	0	0	128/64	2500000-251FFFF	1280000-128FFFF
SA297	1	0	0	1	0	1	0	0	1	128/64	2520000-253FFFF	1290000-129FFFF
SA298	1	0	0	1	0	1	0	1	0	128/64	2540000-255FFFF	12A0000-12AFFFF
SA299	1	0	0	1	0	1	0	1	1	128/64	2560000-257FFFF	12B0000-12BFFFF
SA300	1	0	0	1	0	1	1	0	0	128/64	2580000-259FFFF	12C0000-12CFFFF
SA301	1	0	0	1	0	1	1	0	1	128/64	25A0000-25BFFFF	12D0000-12DFFFF
SA302	1	0	0	1	0	1	1	1	0	128/64	25C0000-25DFFFF	12E0000-12EFFFF
SA303	1	0	0	1	0	1	1	1	1	128/64	25E0000-25FFFFF	12F0000-12FFFFF
SA304	1	0	0	1	1	0	0	0	0	128/64	2600000-261FFFF	1300000-130FFFF
SA305	1	0	0	1	1	0	0	0	1	128/64	2620000-263FFFF	1310000-131FFFF
SA306	1	0	0	1	1	0	0	1	0	128/64	2640000-265FFFF	1320000-132FFFF
SA307	1	0	0	1	1	0	0	1	1	128/64	2660000-267FFFF	1330000-133FFFF
SA308	1	0	0	1	1	0	1	0	0	128/64	2680000-269FFFF	1340000-134FFFF
SA309	1	0	0	1	1	0	1	0	1	128/64	26A0000-26BFFFF	1350000-135FFFF
SA310	1	0	0	1	1	0	1	1	0	128/64	26C0000-26DFFFF	1360000-136FFFF
SA311	1	0	0	1	1	0	1	1	1	128/64	26E0000-26FFFFF	1370000-137FFFF
SA312	1	0	0	1	1	1	0	0	0	128/64	2700000-271FFFF	1380000-138FFFF
SA313	1	0	0	1	1	1	0	0	1	128/64	2720000-273FFFF	1390000-139FFFF
SA314	1	0	0	1	1	1	0	1	0	128/64	2740000-275FFFF	13A0000-13AFFFF
SA315	1	0	0	1	1	1	0	1	1	128/64	2760000-277FFFF	13B0000-13BFFFF
SA316	1	0	0	1	1	1	1	0	0	128/64	2780000-279FFFF	13C0000-13CFFFF
SA317	1	0	0	1	1	1	1	0	1	128/64	27A0000-27BFFFF	13D0000-13DFFFF
SA318	1	0	0	1	1	1	1	1	0	128/64	27C0000-27DFFFF	13E0000-13EFFFF
SA319	1	0	0	1	1	1	1	1	1	128/64	27E0000-27FFFFF	13F0000-13FFFFF
SA320	1	0	1	0	0	0	0	0	0	128/64	2800000-281FFFF	1400000-140FFFF
SA321	1	0	1	0	0	0	0	0	1	128/64	2820000-283FFFF	1410000-141FFFF
SA322	1	0	1	0	0	0	0	1	0	128/64	2840000-285FFFF	1420000-142FFFF
SA323	1	0	1	0	0	0	0	1	1	128/64	2860000-287FFFF	1430000-143FFFF
SA324	1	0	1	0	0	0	1	0	0	128/64	2880000-289FFFF	1440000-144FFFF
SA325	1	0	1	0	0	0	1	0	1	128/64	28A0000-28BFFFF	1450000-145FFFF

Table 16: 56F6408 Sector Address (8 of 11)

Sector				A	24-A	16				Sector Size (Kbytes/ Kwords)	8-bit Address Range (in hexadecimal)	16-bit Address Range (in hexadecimal)
SA326	1	0	1	0	0	0	1	1	0	128/64	28C0000-28DFFFF	1460000-146FFFF
SA327	1	0	1	0	0	0	1	1	1	128/64	28E0000-28FFFFF	1470000-147FFFF
SA328	1	0	1	0	0	1	0	0	0	128/64	2900000-291FFFF	1480000-148FFFF
SA329	1	0	1	0	0	1	0	0	1	128/64	2920000-293FFFF	1490000-149FFFF
SA330	1	0	1	0	0	1	0	1	0	128/64	2940000-295FFFF	14A0000-14AFFFF
SA331	1	0	1	0	0	1	0	1	1	128/64	2960000-297FFFF	14B0000-14BFFFF
SA332	1	0	1	0	0	1	1	0	0	128/64	2980000-299FFFF	14C0000-14CFFFF
SA333	1	0	1	0	0	1	1	0	1	128/64	29A0000-29BFFFF	14D0000-14DFFFF
SA334	1	0	1	0	0	1	1	1	0	128/64	29C0000-29DFFFF	14E0000-14EFFFF
SA335	1	0	1	0	0	1	1	1	1	128/64	29E0000-29FFFFF	14F0000-14FFFFF
SA336	1	0	1	0	1	0	0	0	0	128/64	2A00000-2A1FFFF	1500000-150FFFF
SA337	1	0	1	0	1	0	0	0	1	128/64	2A20000-2A3FFFF	1510000-151FFFF
SA338	1	0	1	0	1	0	0	1	0	128/64	2A40000-2A5FFFF	1520000-152FFFF
SA339	1	0	1	0	1	0	0	1	1	128/64	2A60000-2A7FFFF	1530000-153FFFF
SA340	1	0	1	0	1	0	1	0	0	128/64	2A80000-2A9FFFF	1540000-154FFFF
SA341	1	0	1	0	1	0	1	0	1	128/64	2AA0000-2ABFFFF	1550000-155EEEE
SA342	1	0	1	0	1	0	1	1	0	128/64	2AC0000-2ADFFFF	1560000-156FFFF
SA343	1	0	1	0	1	0	1	1	1	128/64	2AE00000-2EEEEE	1570000-157EEEE
SA344	1	0	1	0	1	1	0	0	0	128/64	2800000-281FFFF	1580000-158FFFF
SA345	1	0	1	0	1	1	0	0	1	128/64	2B20000-2B3EEEE	1590000-159EEEE
SA346	1	0	1	0	1	1	0	1	0	128/64	2840000-285FFFF	1540000-154FEFE
SA347	1	0	1	0	1	1	0	1	1	128/64	2860000_287EEEE	1580000-158EEEE
SA249	1	0	1	0	1	1	1	0	0	129/64	280000-2805555	150000-150FFFF
SA240	1	0	1	0	1	1	1	0	1	128/64	2840000-288FFFF	1500000-150FFFF
SA250	1	0	1	0	4	4	1	1	0	120/64	2BC0000_2DECEEE	1550000-155555
SA251	1	0	1	0		•	1	1	1	128/64	2800000-20FFFFF	15E0000-15EEEEE
SA352	1	0	1	1	0	0	0	0	0	128/64	200000-201EEEE	160000-160EEEE
SA353	1	0	1	1	0	0	0	0	1	128/64	2000000-203FFFF	1610000-161EEEE
SA254	1	0	1	1	0	0	0	1	0	129/64	2020000-20555555	1620000_162EEEE
SA255	1	0	1	1	0	0	0	1	1	129/64	2040000-203FFFF	1620000-162EEEE
SASE	4	0	4	4	0	0	1	0	0	120/64	2000000-20077777	1640000 1645555
SA350 CA257	1	0	1	1	0	0	1	0	1	120/04	2080000-209FFFF	1040000-104FFFF
04357	1	0	-	-	0	0	-	0	0	128/04	20A0000-20BFFFF	1650000-165FFFF
SA350	1	0	1	1	0	0	1	1	1	128/64	200000-200FFFF	1670000-167EEEE
CADED	1	0		1	0	4	0	0	0	128/04	2020000-20FFFF	10/000-10/FFF
5A300	1	0	1	1	0	1	0	0	0	128/64	200000-201FFFF	1680000-168FFFF
5A301	1	0	1	1	0	1	0	0	1	128/64	2020000-203FFFF	1090000-109FFFF
SA362	1	0	1	1	0	1	0	1	0	128/64	2D40000-2D5FFFF	16A0000-16AFFFF
SA363	1	0	1	1	0	1	0	1	1	128/64	2060000-20/FFFF	10BUUUU-10BFFFF
5A364	1	0	1	1	0	1	1	0	0	128/64	2D80000-2D9FFFF	16C0000-16CFFFF
SA365	1	0	1	1	0	1	1	0	1	128/64	2DAUUUU-2DBFFFF	16D0000-16DFFFF
SA366	1	0	1	1	0	1	1	1	0	128/64		10EUUUU-16EFFFF
SA36/	1	0	1	1	0	1	1	1	1	128/64	2DE0000-2DFFFFF	16F0000-16FFFFF
SA368	1	0	1	1	1	0	0	0	0	128/64	2E00000-2E1FFFF	1/00000-170FFFF
SA369	1	0	1	1	1	0	0	0	1	128/64	2E20000-2E3FFFF	1710000-171FFFF
SA370	1	0	1	1	1	0	0	1	0	128/64	2E40000-2E5FFFF	1720000-172FFFF
SA371	1	0	1	1	1	0	0	1	1	128/64	2E60000-2E7FFFF	1730000-173FFFF
SA372	1	0	1	1	1	0	1	0	0	128/64	2E80000-2E9FFFF	1740000-174FFFF

Table 17: 56F6408 Sector Address (9 of 11)

Sector				A	24-A	16				Sector Size (Kbytes/ Kwords)	8-bit Address Range (in hexadecimal)	16-bit Address Range (in hexadecimal)
SA373	1	0	1	1	1	0	1	0	1	128/64	2EA0000-2EBFFFF	1750000-175FFFF
SA374	1	0	1	1	1	0	1	1	0	128/64	2EC0000-2EDFFFF	1760000-176FFFF
SA375	1	0	1	1	1	0	1	1	1	128/64	2EE0000-2EFFFFF	1770000-177FFFF
SA376	1	0	1	1	1	1	0	0	0	128/64	2F00000-2F1FFFF	1780000-178FFFF
SA377	1	0	1	1	1	1	0	0	1	128/64	2F20000-2F3FFFF	1790000-179FFFF
SA378	1	0	1	1	1	1	0	1	0	128/64	2F40000-2F5FFFF	17A0000-17AFFFF
SA379	1	0	1	1	1	1	0	1	1	128/64	2F60000-2F7FFFF	17B0000-17BFFFF
SA380	1	0	1	1	1	1	1	0	0	128/64	2F80000-2F9FFFF	17C0000-17CFFFF
SA381	1	0	1	1	1	1	1	0	1	128/64	2FA0000-2FBFFFF	17D0000-17DFFFF
SA382	1	0	1	1	1	1	1	1	0	128/64	2FC0000-2FDFFFF	17E0000-17EFFFF
SA383	1	0	1	1	1	1	1	1	1	128/64	3FE0000-3FFFFFF	17F0000-17FFFFF
SA384	1	1	0	0	0	0	0	0	0	128/64	3000000-301FFFF	1800000-180FFFF
SA385	1	1	0	0	0	0	0	0	1	128/64	3020000-303FFFF	1810000-181FFFF
SA386	1	1	0	0	0	0	0	1	0	128/64	3040000-305FFFF	1820000-182FFFF
SA387	1	1	0	0	0	0	0	1	1	128/64	3060000-307FFFF	1830000-183FFFF
SA388	1	1	0	0	0	0	1	0	0	128/64	3080000-309FFFF	1840000-184FFFF
SA389	1	1	0	0	0	0	1	0	1	128/64	30A0000-30BFFFF	1850000-185FFFF
SA390	1	1	0	0	0	0	1	1	0	128/64	30C0000-30DFFFF	1860000-186FFFF
SA391	1	1	0	0	0	0	1	1	1	128/64	30E0000-30FFFFF	1870000-187FFFF
SA392	1	1	0	0	0	1	0	0	0	128/64	3100000-311FFFF	1880000-188FFFF
SA393	1	1	0	0	0	1	0	0	1	128/64	3120000-313FFFF	1890000-189FFFF
SA394	1	1	0	0	0	1	0	1	0	128/64	3140000-315FFFF	18A0000-18AFFFF
SA395	1	1	0	0	0	1	0	1	1	128/64	3160000-317FFFF	18B0000-18BFFFF
SA396	1	1	0	0	0	1	1	0	0	128/64	3180000-319FFFF	18C0000-18CFFFF
SA397	1	1	0	0	0	1	1	0	1	128/64	31A0000-31BFFFF	18D0000-18DFFFF
SA398	1	1	0	0	0	1	1	1	0	128/64	31C0000-31DFFFF	18E0000-18EFFFF
SA399	1	1	0	0	0	1	1	1	1	128/64	31E0000-31FFFFF	18F0000-18FFFFF
SA400	1	1	0	0	1	0	0	0	0	128/64	3200000-321FFFF	1900000-190FFFF
SA401	1	1	0	0	1	0	0	0	1	128/64	3220000-323FFFF	1910000-191FFFF
SA402	1	1	0	0	1	0	0	1	0	128/64	3240000-325FFFF	1920000-192FFFF
SA403	1	1	0	0	1	0	0	1	1	128/64	3260000-327FFFF	1930000-193FFFF
SA404	1	1	0	0	1	0	1	0	0	128/64	3280000-329FFFF	1940000-194FFFF
SA405	1	1	0	0	1	0	1	0	1	128/64	32A0000-32BFFFF	1950000-195FFFF
SA406	1	1	0	0	1	0	1	1	0	128/64	32C0000-32DFFFF	1960000-196FFFF
SA407	1	1	0	0	1	0	1	1	1	128/64	32E0000-32FFFFF	1970000-197FFFF
SA408	1	1	0	0	1	1	0	0	0	128/64	3300000-331FFFF	1980000-198FFFF
SA409	1	1	0	0	1	1	0	0	1	128/64	3320000-333FFFF	1990000-199FFFF
SA410	1	1	0	0	1	1	0	1	0	128/64	3340000-335FFFF	19A0000-19AFFFF
SA411	1	1	0	0	1	1	0	1	1	128/64	3360000-337FFFF	19B0000-19BFFFF
SA412	1	1	0	0	1	1	1	0	0	128/64	3380000-339FFFF	19C0000-19CFFFF
SA413	1	1	0	0	1	1	1	0	1	128/64	33A0000-33BFFFF	19D0000-19DFFFF
SA414	1	1	0	0	1	1	1	1	0	128/64	33C0000-33DFFFF	19E0000-19EFFFF
SA415	1	1	0	0	1	1	1	1	1	128/64	33E0000-33FFFFF	19F0000-19FFFFF
SA416	1	1	0	1	0	0	0	0	0	128/64	3400000-341FFFF	1A00000-1A0FFFF
SA417	1	1	0	1	0	0	0	0	1	128/64	3420000-343FFFF	1A10000-1A1FFFF
SA418	1	1	0	1	0	0	0	1	0	128/64	3440000-345FFFF	1A20000-1A2FFFF
SA419	1	1	0	1	0	0	0	1	1	128/64	3460000-347FFFF	1A30000-1A3FFFF

All data sheets are subject to change without notice 25

56F6408

Sector		A24-A16								Sector Size (Kbytes/ Kwords)	8-bit Address Range (in hexadecimal)	16-bit Address Range (in hexadecimal)	
SA420	1	1	0	1	0	0	1	0	0	128/64	3480000-349FFFF	1A40000-1A4FFFF	
SA421	1	1	0	1	0	0	1	0	1	128/64	34A0000-34BFFFF	1A50000-1A5FFFF	
SA422	1	1	0	1	0	0	1	1	0	128/64	34C0000-34DFFFF	1A60000-1A6FFFF	
SA423	1	1	0	1	0	0	1	1	1	128/64	34E0000-34FFFFF	1A70000-1A7FFFF	
SA424	1	1	0	1	0	1	0	0	0	128/64	350000-351FFFF	1A80000-1A8FFFF	
SA425	1	1	0	1	0	1	0	0	1	128/64	3520000-353FFFF	1A90000-1A9FFFF	
SA426	1	1	0	1	0	1	0	1	0	128/64	3540000-355FFFF	1AA0000-1AAFFFF	
SA427	1	1	0	1	0	1	0	1	1	128/64	3560000-357FFFF	1AB0000-1ABFFFF	
SA428	1	1	0	1	0	1	1	0	0	128/64	3580000-359FFFF	1AC0000-1ACFFFF	
SA429	1	1	0	1	0	1	1	0	1	128/64	35A0000-35BFFFF	1AD0000-1ADFFFF	
SA430	1	1	0	1	0	1	1	1	0	128/64	35C0000-35DFFFF	1AE0000-1AEFFFF	
SA431	1	1	0	1	0	1	1	1	1	128/64	35E0000-35FFFFF	1AF0000-1AFFFFF	
SA432	1	1	0	1	1	0	0	0	0	128/64	3600000-361FFFF	1B00000-1B0FFFF	
SA433	1	1	0	1	1	0	0	0	1	128/64	3620000-363FFFF	1B10000-1B1FFFF	
SA434	1	1	0	1	1	0	0	1	0	128/64	3640000-365FFFF	1B20000-1B2FFFF	
SA435	1	1	0	1	1	0	0	1	1	128/64	3660000-367FFFF	1B30000-1B3FFFF	
SA436	1	1	0	1	1	0	1	0	0	128/64	3680000-369FFFF	1B40000-1B4FFFF	
SA437	1	1	0	1	1	0	1	0	1	128/64	36A0000-36BFFFF	1B50000-1B5FFFF	
SA438	1	1	0	1	1	0	1	1	0	128/64	36C0000-36DFFFF	1B60000-1B6FFFF	
SA439	1	1	0	1	1	0	1	1	1	128/64	36E0000-36EEEEE	1B70000-1B7FFFF	
SA440	1	1	0	1	1	1	0	0	0	128/64	370000-371FFFF	1B80000-1B8FFFF	
SA441	1	1	0	1	1	1	0	0	1	128/64	3720000-373EEEE	1890000-189FFFF	
SA442	1	1	0	1	1	1	0	1	0	128/64	3740000-375EEEE	1BA0000-1BAFFFF	
SA443	1	1	0	1	1	1	0	1	1	128/64	3760000-377EEEE	1880000-188FFFF	
SAAAA	1	1	0	1	1	1	1	0	0	128/64	3780000-379EEEE	1BC0000-1BCEEEE	
SAME	1	1	0	1	1	1	1	0	1	120/64	2740000-27REEEE	1800000-180FFFF	
SAME	1	1	0	1		1	1	1	0	120/64	27C0000-27DEEEE	1800000-180FFFF	
SA440	1	1	0	1	1	4	1	4	1	120/04	27E0000_27EEEE	10E0000_10EEEEE	
SA447	-	1	1	0	0	0	0	0	0	120/64	2000000 201EEEE	100000-100FFFF	
SA440	1	1	1	0	0	0	0	0	1	120/04	3020000-302EEEE	1C10000-1C1FFFF	
SA449	1	1	1	0	0	0	0	1	0	120/64	2940000 2955555	1020000-1025555	
SA450	1	1	1	0	0	0	0	1	1	120/64	2060000 207EEEE	1020000-102FFFF	
SA452	1	1	1	0	0	0	1	0	0	128/64	3880000-380FFFF	1C40000-1C4FFFF	
SA452	1	1	1	0	0	0	1	0	1	120/04	3840000-309FFFF	1050000-105EEEE	
SA453	1	1	4	0	0	0	1	1	0	120/04	390000-30DEEEE	1060000-106FFFF	
SA454	1	1	1	0	0	0	1	1	1	120/04	29E0000_30EEEE	1070000-107FFF	
SA455	4	1	4	0	0	1	0	0	0	120/04	2000000 201EEE	100000-107FFF	
SA450	4	1	4	0	0	1	0	0	1	128/04	390000-39TFFF	100000 1005555	
SA457	4	1	4	0	0	4	0	1	0	120/04	3920000-393FFFF		
SA458	1	1	1	0	0	1	0	1	1	128/04	3940000-395FFFF	100000-100FFFF	
SA459	1	1		0	0	1	4	1	1	128/64	390000-397FFF	1000000 100FFFF	
SA460	1	1	1	0	0	1	1	0	1	128/64	3980000-399FFFF	100000 1005555	
SA401	1	1	1	0	0	4	4	0	0	128/04	39A0000-39BFFFF		
SA402	1	1		0	0	1	1		0	128/04	390000-39DFFFF	10E0000 10EFFFF	
SA463	1	1	1	0	0	1	1	1	1	128/64	39E0000-39FFFF		
5A464	1	1		0	1	0	0	0	0	128/64	SAUUUUU-SATEFF		
SA465	1	1	1	0	1	0	0	0	1	128/64	3A20000-3A3FFFF	1D10000-1D1FFFF	

Table 18: 56F6408 Sector Address (10 of 11)

Sector	Sector A24-A16				Sector Size (Kbytes/ Kwords)	8-bit Address Range (in hexadecimal)	16-bit Address Range (in hexadecimal)							
SA467	1	1	1	0	1	0	0	1	1	128/64	3A60000-3A7FFFF	1D30000-1D3FFFF		
SA468	1	1	1	0	1	0	1	0	0	128/64	3A80000-3A9FFFF	1D40000-1D4FFFF		
SA469	1	1	1	0	1	0	1	0	1	128/64	3AA0000-3ABFFFF	1D50000-1D5FFFF		
SA470	1	1	1	0	1	0	1	1	0	128/64	3AC0000-3ADFFFF	1D60000-1D6FFFF		
SA471	1	1	1	0	1	0	1	1	1	128/64	3AE0000-3AFFFFF	1D70000-1D7FFFF		
SA472	1	1	1	0	1	1	0	0	0	128/64	3B00000-3B1FFFF	1D80000-1D8FFFF		
SA473	1	1	1	0	1	1	0	0	1	128/64	3B20000-3B3FFFF	1D90000-1D9FFFF		
SA474	1	1	1	0	1	1	0	1	0	128/64	3B40000-3B5FFFF	1DA0000-1DAFFFF		
SA475	1	1	1	0	1	1	0	1	1	128/64	3B60000-3B7FFFF	1DB0000-1DBFFFF		
SA476	1	1	1	0	1	1	1	0	0	128/64	3B80000-3B9FFFF	1DC0000-1DCFFFF		
SA477	1	1	1	0	1	1	1	0	1	128/64	3BA0000-3BBFFFF	1DD0000-1DDFFFF		
SA478	1	1	1	0	1	1	1	1	0	128/64	3BC0000-3BDFFFF	1DE0000-1DEFFFF		
SA479	1	1	1	0	1	1	1	1	1	128/64	3BE0000-3BFFFFF	1DF0000-1DFFFFF		
SA480	1	1	1	1	0	0	0	0	0	128/64	3C00000-3C1FFFF	1E00000-1E0FFFF		
SA481	1	1	1	1	0	0	0	0	1	128/64	3C20000-3C3FFFF	1E10000-1E1FFFF		
SA482	1	1	1	1	0	0	0	1	0	128/64	3C40000-3C5FFFF	1E20000-1E2FFFF		
SA483	1	1	1	1	0	0	0	1	1	128/64	3C60000-3C7FFFF	1E30000-1E3FFFF		
SA484	1	1	1	1	0	0	1	0	0	128/64	3C80000-3C9FFFF	1E40000-1E4FFFF		
SA485	1	1	1	1	0	0	1	0	1	128/64	3CA0000-3CBFFFF	1E50000-1E5FFFF		
SA486	1	1	1	1	0	0	1	1	0	128/64	3CC0000-3CDFFFF	1E60000-1E6FFFF		
SA487	1	1	1	1	0	0	1	1	1	128/64	3CE0000-3CFFFFF	1E70000-1E7FFFF		
SA488	1	1	1	1	0	1	0	0	0	128/64	3D00000-3D1FFFFF	1E80000-1E8FFFF		
SA489	1	1	1	1	0	1	0	0	1	128/64	3D20000-3D3FFFF	1E90000-1E9FFFF		
SA490	1	1	1	1	0	1	0	1	0	128/64	3D40000-3D5FFFF	1EA0000-1EAFFFF		
SA491	1	1	1	1	0	1	0	1	1	128/64	3D60000-3D7FFFF	1EB0000-1EBFFFF		
SA492	1	1	1	1	0	1	1	0	0	128/64	3D80000-3D9FFFF	1EC0000-1ECFFFF		
SA493	1	1	1	1	0	1	1	0	1	128/64	3DA0000-3DBFFFF	1ED0000-1EDFFFF		
SA494	1	1	1	1	0	1	1	1	0	128/64	3DC0000-3DDFFFF	1EE0000-1EEFFFF		
SA495	1	1	1	1	0	1	1	1	1	128/64	3DE0000-3DFFFFF	1EF0000-1EFFFFF		
SA496	1	1	1	1	1	0	0	0	0	128/64	3E00000-3E1FFFF	1F00000-1F0FFFF		
SA497	1	1	1	1	1	0	0	0	1	128/64	3E20000-3E3FFFF	1F10000-1F1FFFF		
SA498	1	1	1	1	1	0	0	1	0	128/64	3E40000-3E5FFFF	1F20000-1F2FFFF		
SA499	1	1	1	1	1	0	0	1	1	128/64	3E60000-3E7FFFF	1F30000-1F3FFFF		
SA500	1	1	1	1	1	0	1	0	0	128/64	3E80000-3E9FFFF	1F40000-1F4FFFF		
SA501	1	1	1	1	1	0	1	0	1	128/64	3EA0000-3EBFFFF	1F50000-1F5FFFF		
SA502	1	1	1	1	1	0	1	1	0	128/64	3EC00000-3EDFFFF	1F60000-1F6FFFF		
SA503	1	1	1	1	1	0	1	1	1	128/64	3EE0000-3EFFFFF	1F70000-1F7FFFF		
SA504	1	1	1	1	1	1	0	0	0	128/64	3F00000-3F1FFFF	1F80000-1F8FFFF		
SA505	1	1	1	1	1	1	0	0	1	128/64	3F20000-3F3FFFF	1F90000-1F9FFFF		
SA506	1	1	1	1	1	1	0	1	0	128/64	3F40000-3F5FFFF	1FA0000-1FAFFFF		
SA507	1	1	1	1	1	1	0	1	1	128/64	3F60000-3F7FFFF	1FB0000-1FBFFFF		
SA508	1	1	1	1	1	1	1	0	0	128/64	3F80000-3F9FFFF	1FC0000-1FCFFFF		
SA509	1	1	1	1	1	1	1	0	1	128/64	3FA0000-3FBFFFF	1FD0000-1FDFFFF		
SA510	1	1	1	1	1	1	1	1	0	128/64	3FC0000-3FDFFFF	1FE0000-1FEFFFF		
SA511	1	1	1	1	1	1	1	1	1	128/64	3FE0000-3FFFFFF	1FF0000-1FFFFFF		

Table 19: 56F6408 Sector Address (11 of 11)

WP# Hardware Protection

A write protect pin that can prevent program or erase operations in the outermost sectors. The WP# Hardware Protection feature is always available, independent of the software managed protection method chosen.

Selecting a Sector Protection Mode

All parts default to operate in the Persistent Sector Protection mode. Password Protection is not supported. It is recommended to program/select the Persistent Sector protection mode.

The device is shipped with all sectors write protected.

Advanced Sector Protection

Advanced Sector Protection features several levels of sector protection, which can disable both the program and erase operations in certain sectors.

Lock Register

The Lock Register consists of 3 bits (DQ2, DQ1, and DQ0). These DQ1, DQ0 bits of the Lock Register are programmable by the user. Users **shall not** program DQ2. The programming time of the Lock Register is same as the typical word programming time without utilizing the Write Buffer of the device. During a Lock Register programming sequence execution, the DQ6 Toggle Bit I toggles until the programming of the Lock Register has completed to indicate programming status. All Lock Register bits are readable to allow users to verify Lock Register statuses.

The Customer Secured Silicon Sector Protection Bit is DQ0, Persistent Protection Mode Lock Bit is DQ1 are accessible by all users. Each of these bits are non-volatile. DQ15-DQ2 are reserved and must be 1's when the user tries to program the DQ1, and DQ0 bits of the Lock Register. The user is not required to program DQ1 and DQ0 bits of the Lock Register at the same time. This allows users to lock the Secured Silicon Sector and then set the device either permanently into Persistent Protection Mode and then lock the Secured Silicon Sector at separate instances and time frames.

- Secured Silicon Sector Protection allows the user to lock the Secured Silicon Sector area

- Persistent Protection Mode Lock Bit allows the user to set the device permanently to operate in the Persistent Protection Mode

Table 20: Lock Register

DQ15 - 3	DQ-2 ¹	DQ-1	DQ-0
		Persistence Protection Mode	Secured Silicon Sector
Don't Care	1	Lock Bit	Protection Bit

1) Reserved Bit - Never write 0 to this bit.

Persistent Sector Protection

The Persistent Sector Protection method replaces the old 12 V controlled protection method while at the same time enhancing flexibility by providing three different sector protection states:

Dynamically Locked-The sector is protected and can be changed by a simple command

Persistently Locked-A sector is protected and cannot be changed

Unlocked-The sector is unprotected and can be changed by a simple command In order to achieve these states, three types of "bits" are going to be used:

Dynamic Protection Bit (DYB)

A volatile protection bit is assigned for each sector. After power-up or hardware reset, the contents of all DYB bits are in the "unprotected state". Each DYB is individually modifiable through the DYB Set Command and DYB Clear Command. When the parts are first shipped, all of the Persistent Protect Bits (PPB) are cleared into the unprotected state. The DYB bits and PPB Lock bit are defaulted to power up in the cleared state or unprotected state - meaning the all PPB bits are changeable.

The Protection State for each sector is determined by the logical OR of the PPB and the DYB related to that sector. For the sectors that have the PPB bits cleared, the DYB bits control whether or not the sector is protected or unprotected. By issuing the DYB Set and DYB Clear command sequences, the DYB bits is protected or unprotected, thus placing each sector in the protected or unprotected state. These are the socalled Dynamic Locked or Unlocked states. They are called dynamic states because it is very easy to switch back and forth between the protected and un-protected conditions. This allows software to easily protect sectors against inadvertent changes yet does not prevent the easy removal of protection when changes are needed.

The DYB bits maybe set or cleared as often as needed. The PPB bits allow for a more static, and difficult to change, level of protection. The PPB bits retain their state across power cycles because they are Non-Volatile. Individual PPB bits are set with a program command but must all be cleared as a group through an erase command.

The PPB Lock Bit adds an additional level of protection. Once all PPB bits are programmed to the desired settings, the PPB Lock Bit may be set to the "freeze state". Setting the PPB Lock Bit to the "freeze state" disables all program and erase commands to the Non-Volatile PPB bits. In effect, the PPB Lock Bit locks the PPB bits into their current state. The only way to clear the PPB Lock Bit to the "unfreeze state" is to go through a power cycle, or hardware reset. The Software Reset command does not clear the PPB Lock Bit to the "unfreeze state". System boot code can determine if any changes to the PPB bits are needed e.g. to allow new system code to be downloaded. If no changes are needed then the boot code can set the PPB Lock Bit to disable any further changes to the PPB bits during system operation.

The WP# write protect pin adds a final level of hardware protection. When this pin is low it is not possible to change the contents of the WP# protected sectors. These sectors generally hold system boot code. So, the WP# pin can prevent any changes to the boot code that could override the choices made while setting up sector protection during system initialization.

It is possible to have sectors that have been persistently locked, and sectors that are left in the dynamic state. The sectors in the dynamic state are all unprotected. If there is a need to protect some of them, a simple DYB Set command sequence is all that is necessary. The DYB Set and DYB Clear commands for the dynamic sectors switch the DYB bits to signify protected and unprotected, respectively. If there is a need to change the status of the persistently locked ctors, a few more steps are required.

56F6408

	Protection States		
DYB Bit	PPB Bit	PPB Lock Bit	Sector State
Unprotect	Unprotect	Unfreeze	Unprotected – PPB and DYB are changeable
Unprotect	Unprotect	Freeze	Unprotected – PPB not changeable, DYB is changeable
Unprotect	Protect	Unfreeze	Protected – PPB and DYB are changeable
Unprotect	Protect	Freeze	Protected – PPB not changeable, DYB is changeable
Protect	Unprotect	Unfreeze	Protected – PPB and DYB are changeable
Protect	Unprotect	Freeze	Protected – PPB not changeable, DYB is changeable
Protect	Protect	Unfreeze	Protected – PPB and DYB are changeable
Protect	Protect	Freeze	Protected – PPB not changeable, DYB is changeable

Table 21: Sector Protect Schemes

The above table contains all possible combinations of the DYB bit, PPB bit, and PPB Lock Bit relating to the status of the sector. In summary, if the PPB bit is set, and the PPB Lock Bit is set, the sector is protected and the protection cannot be removed until the next power cycle or hardware reset clears the PPB Lock Bit to "unfreeze state". If the PPB bit is cleared, the sector can be dynamically locked or unlocked. The DYB bit then controls whether or not the sector is protected or unprotected. If the user attempts to program or erase a protected sector, the device ignores the command and returns to read mode. A program command to a protected sector enables status polling for approximately 1 µs before the device returns to read mode without having modified the contents of the protected sector. An erase command to a protected sector. The programming of the DYB bit, PPB bit, and PPB Lock Bit for a given sector can be verified by writing a DYB Status Read, PPB Status Read, and PPB Lock Status Read commands to the device.

The Autoselect Sector Protection Verification outputs the OR function of the DYB bit and PPB bit per sector basis. When the OR function of the DYB bit and PPB bit is a 1, the sector is either protected by DYB or PPB or both. When the OR function of the DYB bit and PPB bit is a 0, the sector is unprotected through both the DYB and PPB.

Persistent Protection Mode Lock Bit

The Persistent Protection Mode Lock Bit exists to guarantee that the device remain in software sector protection.

Persistent Protection Bit Lock (PPB Lock Bit)

A global volatile bit.

The device defaults to Persistent Protection Mode. In the Persistent Protection Mode, the PPB Lock Bit is cleared to the *unfreeze state* after power-up or hardware reset. The PPB Lock Bit is set to the *freeze state* by issuing the PPB Lock Bit Set command. Once set to the *freeze state* the only means for clearing the PPB Lock Bit to the "unfreeze state" is by issuing a hardware or power-up reset. Reading the PPB Lock Bit requires a 200ns access time.

Secured Silicon Sector Flash Memory Region

The Secured Silicon Sector feature provides a Flash memory region that enables permanent part identification through an Electronic Serial Number (ESN). The Secured Silicon Sector is 256 bytes in length, and uses a Secured Silicon Sector Indicator Bit (DQ7) to indicate whether or not the Secured Silicon Sector is locked when shipped from the factory. Bytes 0 - 23 are factory reserved.

This bit is permanently set at the factory and cannot be changed, which prevents cloning of a factory locked part. This ensures the security of the ESN once the product is shipped to the field.

The factory offers the device with the Secured Silicon Sector customer lockable. The customer lockable version is shipped with the Secured Silicon Sector unprotected, allowing customers to program the sector after receiving the device. The customer-lockable version also has the Secured Silicon Sector Indicator Bit permanently set to a 0. Thus, the Secured Silicon Sector Indicator Bit prevents customer-lockable devices from being used to replace devices that are factory locked. The Secured Silicon sector address space in this device is allocated as follows:

TABLE 1. SECURED SILICON ADDRESS RANG	θE
---------------------------------------	----

0h - 17h	Reserved
018h - 7Fh	User

The system accesses the Secured Silicon Sector through a command sequence. After the system has written the Enter Secured Silicon Sector command sequence, it may read the Secured Silicon Sector by using the addresses normally occupied by the first sector (SA0). This mode of operation continues until the system issues the Exit Secured Silicon Sector command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the device reverts to sending commands to sector SA0.

Customer Lockable: Secured Silicon Sector NOT Programmed or Protected

At the Factory

Unless otherwise specified, the device is shipped such that the customer may program and protect the 256-byte Secured Silicon sector minus the factory reserved 24 bytes. The system may program the Secured Silicon Sector using the write-buffer, unlock bypass methods, in addition to the standard programming command sequence.

Programming and protecting the Secured Silicon Sector must be used with caution since, once protected, there is no procedure available for unprotecting the Secured Silicon Sector area and none of the bits in the Secured Silicon Sector memory space can be modified in any way.

The Secured Silicon Sector area can be protected using one of the following procedures:

- & Write the three-cycle Enter Secured Silicon Sector Region command.
- Z To verify the protect/unprotect status of the Secured Silicon Sector, follow the algorithm.

Once the Secured Silicon Sector is programmed, locked and verified, the system must write the Exit Secured Silicon Sector Region command sequence to return to reading and writing within the remainder of the array.

Write Protect (WP#)

The Write Protect function provides a hardware method of protecting the first sector. Write Protect is one of two functions provided by the WP# input. If the system asserts VIL on the WP# pin, the device disables program and erase functions in the first sector group independently of whether those sector groups were protected or unprotected using the method. Note that if WP# is at VIL when the device is in the standby mode, the maximum input load current is increased.

If the system asserts VIH on the WP# pin, the device reverts to whether the first sector was previously set to be protected or unprotected. Note that WP# has an internal pull-up; when unconnected, WP# is at VIH.

Hardware Data Protection

The command sequence requirement of unlock cycles for programming or erasing provides data protection against inadvertent writes. In addition, the following hardware data protection measures prevent accidental erasure or programming, which might otherwise be caused by spurious system level signals during Vcc power-up and power-down transitions, or from system noise.

Low VCC Write Inhibit

When VCC is less than VLKO, the device does not accept any write cycles. This protects data during VCC power-up and power-down. The command register and all internal program/erase circuits are disabled, and the device resets to the read mode. Subsequent writes are ignored until VCC is greater than VLKO. The system must provide the proper signals to the control pins to prevent unintentional writes when VCC is greater than VLKO. The RESET# input pin may be used when VLKO is exceeded but control signals are unstable.

Write Pulse Glitch Protection

Noise pulses of less than 5 ns (typical) on OE#, CE# or WE# do not initiate a write cycle.

Logical Inhibit

Write cycles are inhibited by holding any one of OE# = VIL, CE# = VIH or WE# = VIH. To initiate a write cycle, CE# and WE# must be a logical zero while OE# is a logical one.

Power-Up Write Inhibit

If WE# = CE# = VIL and OE# = VIH during power up, the device does not accept commands on the rising edge of WE#. The internal state machine is automatically reset to the read mode on power-up.

Common Flash Memory Interface (CFI)

The Common Flash Interface (CFI) specification outlines device and host system software interrogation handshake, which allows specific vendor-specified software algorithms to be used for entire families of devices. Software support can then be device-independent, JEDEC ID-independent, and forward- and backward-compatible for the specified flash device families. Flash vendors can standardize their existing interfaces for long-term compatibility.

This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address 55h, any time the device is ready to read array data. To terminate reading CFI data, the system must write the reset command. The system can also write the CFI query command when the device is in the autoselect mode. The device enters the CFI query mode, and the system can read CFI data at the addresses. The system must write the reset command to return the device to reading array data.

Table 22: CFI Query Identification String

Addresses (x16)	Addresses (x8)	Data	Description
10h	20h	0051h	Query Unique ASCII string "QRY"
11h	22h	0052h	
12h	24h	0059h	
13h	26h	0002h	Primary OEM Command Set
14h	28h	0000h	
15h	2Ah	0040h	Address for Primary Extended Table
16h	2Ch	0000h	
17h	2Eh	0000h	Alternate OEM Command Set (00h = none exists)
18h	30h	0000h	
19h	32h	0000h	Address for Alternate OEM Extended Table (00h = none exists)
1Ah	34h	0000h	

Table 23: System Interface String

Addresses (x16)	Addresses (x8)	Data	Description
1Bh	36h	0027h	V _{CC} Min. (write/erase) D7–D4: volt, D3–D0: 100 millivolt
1Ch	38h	0036h	V _{CC} Max. (write/erase) D7–D4: volt, D3–D0: 100 millivolt
1Dh	3Ah	0000h	V _{pp} Min. voltage (00h = no V _{pp} pin present)
1Eh	3Ch	0000h	V _{pp} Max. voltage (00h = no V _{pp} pin present)
1Fh	3Eh	0007h	Typical timeout per single byte/word write 2 ^N µs
20h	40h	0007h	Typical timeout for Min. size buffer write 2 ^N µs (00h = not supported)
21h	42h	000Ah	Typical timeout per individual block erase 2 ^N ms
22h	44h	0000h	Typical timeout for full chip erase 2 ^N ms (00h = not supported)
23h	46h	0003h	Max. timeout for byte/word write 2 ^N times typical
24h	48h	0005h	Max. timeout for buffer write 2 ^N times typical
25h	4Ah	0004h	Max. timeout per individual block erase 2 ^N times typical
26h	4Ch	0000h	Max. timeout for full chip erase 2 ^N times typical (00h = not supported)

Note: Values are for commercial specifications. See AC/DC specifications in this document for actuals.

08.20.15 Rev 2 All data sheets are subject to change without notice 33

56F6408

Addresses (x16)	Addresses (x8)	Data	Description
40h 41h 42h	80h 82h 84h	0050h 0052h 0049h	Query-unique ASCII string "PRI"
43h	86h	0031h	Major version number, ASCII
44h	88h	0033h	Minor version number, ASCII
45h	8Ah	0010h	Address Sensitive Unlock (Bits 1-0) 0 = Required, 1 = Not Required Process Technology (Bits 7-2) 0100b = 110 nm MirrorBit
46h	8Ch	0002h	Erase Suspend 0 = Not Supported, 1 = To Read Only, 2 = To Read & Write
47h	8Eh	0001h	Sector Protect 0 = Not Supported, X = Number of sectors in per group
48h	90h	0000h	Sector Temporary Unprotect 00 = Not Supported, 01 = Supported
49h	92h	0008h	Sector Protect/Unprotect scheme 0008h = Advanced Sector Protection
4Ah	94h	0000h	Simultaneous Operation 00 = Not Supported, X = Number of Sectors in Bank
4Bh	96h	0000h	Burst Mode Type 00 = Not Supported, 01 = Supported
4Ch	98h	0002h	Page Mode Type 00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page
4Dh	9Ah	00B5h	Reserved
4Eh	9Ch	00C5h	Reserved
4Fh	9Eh	00xxh	WP# Protection
50h	A0h	0001h	

Table 24: Primary Vendor-Specific Extended Query

Command Definitions

Writing specific address and data commands or sequences into the command register initiates device operations. Writing incorrect address and data values or writing them in the improper sequence may place the device in *an unknown state*. A reset command is then required to return the device to reading array data. All addresses are latched on the falling edge of WE# or CE#, whichever happens later. All data is latched on the rising edge of WE# or CE#, whichever happens first. Refer to the AC Characteristics section for timing diagrams.

Reading Array Data

The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device is ready to read array data after completing an Embedded Program or Embedded Erase algorithm.

After the device accepts an Erase Suspend command, the device enters the erase-suspend-read mode, after which the system can read data from any non-erase-suspended sector. After completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same exception. See the Erase Suspend/Erase Resume Commands section for more information.

The system *must* issue the reset command to return the device to the read (or erase-suspend-read) mode if DQ5 goes high during an active program or erase operation, or if the device is in the autoselect mode. See the next section, Reset Command, for more information.

Reset Command

Writing the reset command resets the device to the read or erase-suspend-read mode. Address bits are don't cares for this command.

The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This resets the device to the read mode. Once erasure begins, however, the device ignores reset commands until the operation is complete.

The reset command may be written between the sequence cycles in a program command sequence before programming begins. This resets the device to the read mode. If the program command sequence is written while the device is in the Erase Suspend mode, writing the reset command returns the device to the erasesuspend-read mode. Once programming begins, however, the device ignores reset commands until the operation is complete.

The reset command may be written between the sequence cycles in an autoselect command sequence. Once in the autoselect mode, the reset command must be written to return to the read mode. If the device entered the autoselect mode while in the Erase Suspend mode, writing the reset command returns the device to the erase-suspend-read mode.

If DQ5 goes high during a program or erase operation, writing the reset command returns the device to the read mode (or erasesuspend-read mode if the device was in Erase Suspend).

Note that if DQ1 goes high during a Write Buffer Programming operation, the system must write the Write-to-Buffer-Abort Reset command sequence to reset the device for the next operation.

Autoselect Command Sequence

The autoselect command sequence allows the host system to access the manufacturer and device codes, and determine whether or not a sector is protected. The autoselect command sequence may be written to an address that is either in the read or erase-suspend-read mode. The autoselect command may not be written while the device is actively programming or erasing.

The autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle that contains the autoselect command. The device then enters the autoselect mode. The system may read at any address any number of times without initiating another autoselect command sequence:

- A read cycle at address XX00h returns the manufacturer code.
- Three read cycles at addresses 01h, 0Eh, and 0Fh return the device code.
- A read cycle to an address containing a sector address (SA), and the address 02h on A7–A0 in word mode returns 01h if the sector is protected, or 00h if it is unprotected.

The system must write the reset command to return to the read mode (or erase-suspend-read mode if the device was previously in Erase Suspend).

Enter Secured Silicon Sector/Exit Secured Silicon Sector Command Sequence

The Secured Silicon Sector region provides a secured data area containing an 8-word/16-byte random Electronic Serial Number (ESN). The system can access the Secured Silicon Sector region by issuing the three-cycle Enter Secured Silicon Sector command sequence. The device continues to access the Secured Silicon Sector region until the system issues the four-cycle Exit Secured Silicon Sector command sequence. The Exit Secured Silicon Sector command sequence returns the device to normal operation.

Note that the ACC function and unlock bypass modes are not available when the Secured Silicon Sector is enabled.

Word Program Command Sequence

Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles, followed by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program algorithm. The system is *not* required to provide further controls or timings. The device automatically provides internally generated program pulses and verifies the programmed cell margin. When the Embedded Program algorithm is complete, the device then returns to the read mode and addresses are no longer latched. The system can determine the status of the program operation by using DQ7 or DQ6. Refer to the Write Operation Status section for information on these status bits. Any commands written to the device during the Embedded Program Algorithm are ignored. *Note that the* Secured Silicon Sector, autoselect, and CFI functions are unavailable when a program operation is in *progress*. Note that a hardware reset immediately terminates the program operation. The program command sequence should be reinitiated once the device has returned to the read mode, to ensure data integrity.

Programming is allowed in any sequence of address locations and across sector boundaries. Programming to the same word address multiple times without intervening erases (incremental bit programming) is permitted. Word programming is supported for backward compatibility with existing Flash driver software and for occasional writing of individual words. Use of Write Buffer Programming is faster for general programming use when more than a few words are to be programmed. The effective word programming time using Write Buffer Programming is much shorter than the single word programming time. Any bit cannot be programmed from 0 back to a 1. Attempting to do so may cause the device to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate the operation was successful. However, a succeeding read shows that the data is still 0. Only erase operations can convert a 0 to a 1.

Unlock Bypass Command Sequence

The unlock bypass feature allows the system to program words to the device faster than using the standard program command sequence. The unlock bypass command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the unlock bypass command, 20h. The device then enters the unlock bypass mode. A two-cycle unlock bypass program command sequence is all that is required to program in this mode. The first cycle in this sequence contains the unlock bypass program command, A0h; the second cycle contains the program address and data. Additional data is programmed in the same manner. This mode dispenses with the initial two unlock cycles required in the standard program command sequence, resulting in faster total programming time.

During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands are valid. To exit the unlock bypass mode, the system must issue the two-cycle unlock bypass reset command sequence.

Write Buffer Programming

Write Buffer Programming allows the system write to a maximum of 16 words/32 bytes in one programming operation. This results in faster effective programming time than the standard programming algorithms. The Write Buffer Programming command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the Write Buffer Load command written at the Sector Address in which programming occurs. The fourth cycle writes the sector address and the number of word locations, minus one, to be programmed. For example, if the system programs six unique address locations, then 05h should be written to the device. This tells the device how many write buffer addresses are loaded with data and therefore when to expect the Program Buffer to Flash command. The number of locations to program cannot exceed the size of the write buffer or the operation aborts.

The fifth cycle writes the first address location and data to be programmed. The write-buffer-page is selected by address bits AMAX-A4. All subsequent address/data pairs must fall within the selected-write-buffer-page. The system then writes the remaining address/data pairs into the write buffer. Write buffer locations may be loaded in any order.

The write-buffer-page address must be the same for all address/data pairs loaded into the write buffer. (This means Write Buffer Programming cannot be performed across multiple write-buffer pages. This also means that Write Buffer Programming cannot be performed across multiple sectors. If the system attempts to load programming data outside of the selected write-buffer page, the operation aborts.)

Note that if a Write Buffer address location is loaded multiple times, the address/data pair counter is decremented for every data load operation. The host system must therefore account for loading a write-buffer location more than once. The counter decrements for each data load operation, not for each unique writebuffer-address location. Note also that if an address location is loaded more than once into the buffer, the final data loaded for that address is programmed.

Once the specified number of write buffer locations have been loaded, the system must then write the Program Buffer to Flash command at the sector address. Any other address and data combination aborts the Write Buffer Programming operation. The device then begins programming. Data polling should be used while monitoring the last address location loaded into the write buffer. DQ7, DQ6, DQ5, and DQ1 should be monitored to determine the device status during Write Buffer Programming.

The write-buffer programming operation can be suspended using the standard program suspend/resume commands. Upon successful completion of the Write Buffer Programming operation, the device is ready to execute the next command.

The Write Buffer Programming Sequence can be aborted in the following ways:

- Load a value that is greater than the page buffer size during the Number of Locations to Program step.
- Write to an address in a sector different than the one specified during the Write-Buffer-Load command.
- Write an Address/Data pair to a different write-buffer-page than the one selected by the Starting Address
- during the write buffer data loading stage of the operation.
- Write data other than the Confirm Command after the specified number of data load cycles.

The abort condition is indicated by DQ1 = 1, DQ7 = DATA# (for the last address location loaded), DQ6 = toggle, and DQ5=0. A Write-to-Buffer-Abort Reset command sequence must be written to reset the device for the next operation.

Write buffer programming is allowed in any sequence. Note that the Secured Silicon sector, autoselect, and CFI functions are unavailable when a program operation is in progress. This flash device is capable of handling multiple write buffer programming operations on the same write buffer address range without intervening erases. Any bit in a write buffer address range cannot be programmed from 0 back to a 1. Attempting to do so may cause the device to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate the operation was successful. However, a succeeding read shows that the data is still 0. Only erase operations can convert a 0 to a 1.

Figure 11: Write Buffer Programming Operation

Notes

- 1. When Sector Address is specified, any address in the selected sector is acceptable. However, when loading Write-Buffer address locations with data, all addresses must fall within the selected Write-Buffer Page.
- 2. DQ7 may change simultaneously with DQ5. Therefore, DQ7 should be verified.
- 3. If this flowchart location was reached because DQ5= 1, then the device FAILED. If this flowchart location was reached because DQ1= 1, then the Write to Buffer operation was ABORTED. In either case, the proper reset command must be written before the device can begin another operation. If DQ1=1, write the Write-Buffer-Programming-Abort-Reset command. if DQ5=1, write the Reset command.

08.20.15 Rev 2 All data sheets are subject to change without notice 38

Figure 12: Program Operation

Program Suspend/Program Resume Command Sequence

The Program Suspend command allows the system to interrupt a programming operation or a Write to Buffer programming operation so that data can be read from any non-suspended sector. When the Program Suspend command is written during a programming process, the device halts the program operation within 15 μ s maximum (5 μ s typical) and updates the status bits. Addresses are not required when writing the Program Suspend command.

After the programming operation is suspended, the system can read array data from any non-suspended sector. The Program Suspend command may also be issued during a programming operation while an erase is suspended. In this case, data may be read from any addresses not in Erase Suspend or Program Suspend. If a read is needed from the Secured Silicon Sector area (One-time Program area), then user must use the proper command sequences to enter and exit this region. Note that the Secured Silicon Sector autoselect, and CFI functions are unavailable when program operation is in progress.

The system may also write the autoselect command sequence when the device is in the Program Suspend mode. The system can read as many autoselect codes as required. When the device exits the autoselect mode, the device reverts to the Program Suspend mode, and is ready for another valid operation.

After the Program Resume command is written, the device reverts to programming. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard program operation.

The system must write the Program Resume command (address bits are don't care) to exit the Program Suspend mode and continue the programming operation. Further writes of the Resume command are ignored. Another Program Suspend command can be written after the device has resume programming.

Figure 13: Program Suspend/Program Resume

Program Suspend/Program Resume Command Sequence

The Program Suspend command allows the system to interrupt a programming operation or a Write to Buffer programming operation so that data can be read from any non-suspended sector. When the Program uspend command is written during a programming process, the device halts the program operation within 15 μ s maximum (5 μ s typical) and updates the status bits. Addresses are not required when writing the Program Suspend command.

After the programming operation is suspended, the system can read array data from any non-suspended sector. The Program Suspend command may also be issued during a programming operation while an erase is suspended. In this case, data may be read from any addresses not in Erase Suspend or Program Suspend. If a read is needed from the Secured Silicon Sector area (One-time Program area), then user must use the proper command sequences to enter and exit this region. Note that the Secured Silicon Sector autoselect, and CFI functions are unavailable when program operation is in progress.

The system may also write the autoselect command sequence when the device is in the Program Suspend mode. The system can read as many autoselect codes as required. When the device exits the autoselect mode, the device reverts to the Program Suspend mode, and is ready for another valid operation.

After the Program Resume command is written, the device reverts to programming. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard program operation.

The system must write the Program Resume command (address bits are don't care) to exit the Program Suspend mode and continue the programming operation. Further writes of the Resume command are ignored. Another Program Suspend command can be written after the device has resume programming.

Figure 14: Program Suspend/Program Resume

Chip Erase Command Sequence

Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The device does *not* require the system to preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations.

When the Embedded Erase algorithm is complete, the device returns to the read mode and addresses are no longer latched. The system can determine the status of the erase operation by using DQ7, DQ6, or DQ2.

Any commands written during the chip erase operation are ignored, including erase suspend commands. However, note that a **hardware reset** immediately terminates the erase operation. If that occurs, the chip erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity.

Note that the Secured Silicon Sector, autoselect, and CFI functions are unavailable when an erase operation in is progress.

Sector Erase Command Sequence

Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock cycles are written, and are then followed by the address of the sector to be erased, and the sector erase command.

The device does *not* require the system to preprogram prior to erase. The Embedded Erase algorithm automatically programs and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations.

After the command sequence is written, a sector erase time-out of 50 µs occurs. During the time-out period, additional sector addresses and sector erase commands may be written. Loading the sector erase buffer may be done in any sequence, and the number of sectors may be from one sector to all sectors. The time between these additional cycles must be less than 50 µs, otherwise erasure may begin. Any sector erase address and command following the exceeded time-out may or may not be accepted. It is recommended that processor interrupts be disabled during this time to ensure all commands are accepted. The interrupts can be re-enabled after the last Sector Erase command is written. Any command other than Sector Erase or Erase Suspend during the time-out period resets the device to the read mode. Note that the Secured Silicon Sector, autoselect, and CFI functions are unavailable when an erase operation in is progress. The system must rewrite the command sequence and any additional addresses and commands.

The system can monitor DQ3 to determine if the sector erase timer has timed out. The time-out begins from the rising edge of the final WE# pulse in the command sequence. When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. The system can determine the status of the erase operation by reading DQ7, DQ6, or DQ2 in the erasing sector. Refer to the Write Operation Status section for information on these status bits.

Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands are ignored. However, note that a hardware reset immediately terminates the erase operation. If that occurs, the sector erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity.

Erase Suspend/Erase Resume Commands

The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and then read data from, or program data to, any sector not selected for erasure. This command is valid only during the sector erase operation, including the 50 µs time-out period during the sector erase command sequence. The Erase Suspend command is ignored if written during the chip erase operation or Embedded Program algorithm.

When the Erase Suspend command is written during the sector erase operation, the device requires a typical of 5 s (maximum of 20 s) to suspend the erase operation. However, when the Erase Suspend command is written during the sector erase time-out, the device immediately terminates the time-out period and suspends the erase operation.

After the erase operation is suspended, the device enters the erase-suspend-read mode. The system can read data from or program data to any sector not selected for erasure. (The device erase suspends all sectors selected for erasure.) Reading at any address within erase-suspended sectors produces status information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. Refer to the Write Operation Status section for information on these status bits.

After an erase-suspended program operation is complete, the device returns to the erase-suspend-read mode. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard word program operation.

In the erase-suspend-read mode, the system can also issue the autoselect command sequence. To resume the sector erase operation, the system must write the Erase Resume command. The address of the erase-suspended sector is required when writing this command. Further writes of the Resume command are ignored. Another Erase Suspend command can be written after the chip has resumed erasing. It is important to allow an interval of at least 5 ms between Erase Resume and Erase Suspend.

Lock Register Command Set Definitions

The Lock Register Command Set permits the user to one-time program the Secured Silicon Sector Protection Bit, Persistent Protection Mode Lock Bit. The Lock Register bits are all readable after an initial access delay.

The Lock Register Command Set Entry command sequence must be issued prior to any of the following commands listed, to enable proper command execution.

Note that issuing the Lock Register Command Set Entry command disables reads and writes for the flash memory.

Lock Register Program Command Lock Register Read Command

The Lock Register Command Set Exit command must be issued after the execution of the commands to reset the device to read mode. Otherwise the device hangs. If this happens, the flash device must be reset. Please refer to RESET# for more information. For either the Secured Silicon Sector to be locked, or the device to be permanently set to the Persistent Protection Mode the associated Lock Register bits must be programmed.

Note that only the Persistent Protection Mode Lock Bitcan be programmed. The Lock Register Program operation aborts if there is an attempt to program the Persistent Protection Mode.

The Lock Register Command Set Exit command must be initiated to re-enable reads and writes to the main memory.

Non-Volatile Sector Protection Command Set Definitions

The Non-Volatile Sector Protection Command Set permits the user to program the Persistent Protection Bits (PPB bits), erase all of the Persistent Protection Bits (PPB bits), and read the logic state of the Persistent Protection Bits (PPB bits).

The Non-Volatile Sector Protection Command Set Entry command sequence must be issued prior to any of the commands listed following to enable proper command execution. Note that issuing the Non-Volatile Sector Protection Command Set Entry command disables reads and writes for the main memory.

PPB Program Command

The PPB Program command is used to program, or set, a given PPB bit. Each PPB bit is individually programmed (but is bulk erased with the other PPB bits). The specific sector address (A22 - A16) is written at the same time as the program command. If the PPB Lock Bit is set to the *freeze state*, the PPB Program command does not execute and the command times-out without programming the PPB bit.

All PPB Erase Command

The All PPB Erase command is used to erase all PPB bits in bulk. There is no means for individually erasing a specific PPB bit. Unlike the PPB program, no specific sector address is required. However, when the All PPB Erase command is issued, all Sector PPB bits are erased in parallel. If the PPB Lock Bit is set to freeze state, the ALL PPB Erase command does not execute and the command times-out without erasing the PPB bits.

The device preprograms all PPB bits prior to erasing when issuing the All PPB Erase command. Also note that the total number of PPB program/erase cycles has the same endurance as the flash memory array.

PPB Status Read Command

The programming state of the PPB for a given sector can be verified by writing a PPB Status Read Command to the device. This requires an initial access time latency.

The **Non-Volatile Sector Protection Command Set Exit** command must be issued after the execution of the commands listed previously to reset the device to read mode.

Note that issuing the Non-Volatile Sector Protection Command Set Exit command re-enables reads and writes for the main memory.

Global Volatile Sector Protection Freeze Command Set

The Global Volatile Sector Protect on Freeze Command Set permits the user to set the PPB Lock Bit and reading the logic state of the PPB Lock Bit. The Global Volatile Sector Protection Freeze Command Set Entry command sequence must be issued prior to any of the commands listed following to enable proper command execution. Reads and writes from the main memory are not allowed.

PPB Lock Bit Set Command

The PPB Lock Bit Set command is used to set the PPB Lock Bit to the freeze state if it is cleared at reset. There is no PPB Lock Bit Clear command. Once the PPB Lock Bit is set to the freeze state, it cannot be cleared unless the device is taken through a power-on clear (for Persistent Protection Mode).

PPB Lock Bit Status Read Command

The programming state of the PPB Lock Bit can be verified by executing a PPB Lock Bit Status Read command to the device.

The **Global Volatile Sector Protection Freeze Command Set Exit** command must be issued after the execution of the commands listed previously to reset the device to read mode.

Volatile Sector Protection Command Set

The Volatile Sector Protection Command Set permits the user to set the Dynamic Protection Bit (DYB) to the *protected state*, clear the Dynamic Protection Bit (DYB) to the unprotected state, and read the logic state of the Dynamic Protection Bit (DYB).

The **Volatile Sector Protection Command Set Entry** command sequence must be issued prior to any of the commands listed following to enable proper command execution.

Note that issuing the Volatile Sector Protection Command Set Entry command disables reads and writes from main memory.

DYB Set Command / DYB Clear Command

The DYB Set and DYB Clear commands are used to protect or unprotect a given sector. The high order address bits are issued at the same time as the code 00h or 01h on DQ7-DQ0. All other DQ data bus pins are ignored during the data write cycle. The DYB bits are modifiable at any time, regardless of the state of the PPB bit or PPB Lock Bit. The DYB bits are cleared to the *unprotected state* at power-up or hardware reset.

DYB Status Read Command

The programming state of the DYB bit for a given sector can be verified by writing a DYB Status Read command to the device. This requires an initial access delay.

The Volatile Sector Protection Command Set Exit command must be issued after the execution of the commands listed previously to reset the device to read mode.

Note that issuing the Volatile Sector Protection Command Set Exit command re-enables reads and writes to the main memory.

Secured Silicon Sector Entry Command

The Secured Silicon Sector Entry command allows the following commands to be executed

- Read from Secured Silicon Sector
- Program to Secured Silicon Sector

Once the Secured Silicon Sector Entry Command is issued, the Secured Silicon Sector Exit command has to be issued to exit Secured Silicon Sector Mode.

Secured Silicon Sector Exit Command

The Secured Silicon Sector Exit command may be issued to exit the Secured Silicon Sector Mode.

56F6408

Command Definitions

		s					Bus	Cycles						
	Command Sequence	ycle	Firs	t	Seco	ond	Thir	d	Four	th	Fift	h	Six	th
	(Notes)	O.	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Asynchro	onous Read	1	RA	RD										
Reset		1	XXX	F0										
	Manufacturer ID	4	555	AA	2AA	55	555	90	X00	01				
et p	Device ID	6	555	AA	2AA	55	555	90	X01	227E	X0E	Data	X0F	Data
Au 881	Sector Protect Verify	4	555	AA	2AA	55	555	90	[SA]X02	Data				
	Secure Device Verify	4	555	AA	2AA	55	555	90	X03	Data				
CFI Que	ry	1	55	98										
Program		4	555	AA	2AA	55	555	A0	PA	PD				
Write to Buffer		6	555	AA	2AA	55	PA	25	SA	WC	PA	PD	WBL	PD
Program Buffer to Flash		1	SA	29										
Write to	Buffer Abort Reset	3	555	AA	2AA	55	555	F0						
	Entry	3	555	AA	2AA	55	555	20						
× °° o	Program	2	XXX	A0	PA	PD								
nloc Aode	Sector Erase	2	XXX	80	SA	30								
⊃@<	Chip Erase	2	XXX	80	SA	10								
	Reset	2	XXX	90	XXX	00								
Chip Era	se	6	555	AA	2AA	55	555	80	555	AA	2AA	55	555	10
Sector E	rase	6	555	AA	2AA	55	555	80	555	AA	2AA	55	SA	30
Erase/Pr	ogram Suspend	1	XXX	B0										
Erase/Pr	ogram Resume	1	XXX	30										
	Entry	3	555	AA	2AA	55	555	88						
to n	Program	4	555	AA	2AA	55	555	A 0	PA	PD				
Sect	Read	1	00	Data										
~	Exit	4	555	AA	2AA	55	555	90	XXX	00				

Table 25: Memory Array Commands (x16)

Legend

X = Don't care.

RA = Read Address.

RD = Read Data.

PA = Program Address. Addresses latch on the falling edge of WE# or CE# pulse, whichever occurs later.

PD = Program Data. Data latches on the rising edge of WE# or CE# pulse, whichever occurs first.

SA = Sector Address. Any address that falls within a specified sector.

WBL = Write Buffer Location. Address must be within the same write buffer page as PA.

WC = Word Count. Number of write buffer locations to load minus 1.

Notes

1. All values are in hexadecimal.

2. Shaded cells indicate read cycles.

3. Address and data bits not specified in table, legend, or notes are don't cares (each hex digit implies 4 bits of data).

4. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. The system must write the reset command to return reading array data.

5. No unlock or command cycles required when bank is reading array data.

Reset command is required to return to reading array data in certain cases.

7. Data in cycles 5 and 6 are listed.

8. The data is 00h for an unprotected sector and 01h for a protected sector. PPB Status Read provides the same data but in inverted form.

9. If DQ7 = 1, region is factory serialized and protected. If DQ7 = 0, region is unserialized and unprotected when shipped from factory.

10.Command is valid when device is ready to read array data or when device is in autoselect mode.

11. Total number of cycles in the command sequence is determined by the number of words written to the write buffer.

12.Command sequence resets device for next command after write-to-buffer operation.

13.Requires Entry command sequence prior to execution. Unlock Bypass Reset command is required to return to reading array data.

14.System may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation.

15. Erase Resume command is valid only during the Erase Suspend mode.

16.Requires Entry command sequence prior to execution. Secured Silicon Sector Exit Reset command is required to exit this mode; device may otherwise be placed in an unknown state.

[
		ΞS	Bus Cycle								
Comma	d Sequence	YCLE	Fi	rst	Sec	ond	Th	ird			
		0									
			Addr	Data	Addr	Data	Addr	Data			
Lock	Command Set Entry	3	555	AA	2AA	55	555	40			
Register	Program	2	XX	A0	XXX	Data					
Bits	Read	1	0	Data							
	Command Set Exit	2	XX	90	XXX	00					
Non-volatile	Command Set Entry	3	555	AA	2AA	55	555	C0			
Sector	PPB Program	2	XX	A0	SA	00					
Protection	All PPB Erase	2	XX	80	0	30					
(PPB)	PPB Status Read	1	SA	RD(0)							
	Command Set Exit	2	XX	90	XX	00					
Global	Command Set Entry	3	555	AA	2AA	55	555	50			
Volatile Sector	PPB Lock Bit Set	2	XX	A0	XX	00					
Protection Freeze	PPB Lock Bit Status Read	1	XXX	RD(0)							
(PPB Lock)	Command Set Exit	2	XX	90	XX	00					
	Command Set Entry	3	555	AA	2AA	55	555	EO			
Volatile Sector	DYB Set	2	xx	a0	sa	00					
Protection	DYB Clear	2	XX	A0	SA	01					
(DYB)	DYB Status Read	1	SA	RD(0)							
	Command Set Exit	2	XX	90	XX	00					

Table 26: Sector Protection Commands (x16)

Legend

X = Don't Care

RA = Address of the memory location to be read SA = Sector Address. Any address that falls within a specified sector.

RD(0) = DQ0 protection indicator bit. If protected, DQ0 = 0. If unprotected, DQ0 = 1.

NOTES

1. All values are in hexadecimal.

2. Shaded cells indicate read cycles.

3. Address and data bits not specified in table, legend, or notes are don't cares (each hex digit implies 4 bits of data).

4. Writing incorrect address and data values or writing them in an improper sequence may place the device in an unknown state.

The system must write the reset command to return the device to reading array data. 5. Entry commands are required to enter a specific mode to enable instructions only available within that mode.

6. No unlock or command cycles required when bank is reading array data.

Exit command must be issued to reset the device into read mode; device may otherwise be placed in an unknown state.
 "All PPB Erase" command pre-programs all PPB's before erasure to prevent over-errasure.

		s					Bus	Cycle						
	Command Sequence	cle	First		Sec	ond	Thi	rd	Fourth		Fifth		Six	th
	(Notes)	0	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Asynchr	onous Read	1	RA	RD										
Reset		1	XXX	F0			1							
	Manufacturer ID	4	AAA	AA	555	55	AAA	90	X00	01				
50	Device ID	6	AAA	AA	555	55	AAA	90	X02	XX7E	X1C	Data	X1E	Data
Aut	Sector Protect Verify	4	AAA	AA	555	55	AAA	90	[SA]X04	Data				
	Secure Device Verify	4	AAA	AA	555	55	AAA	90	X06	Data				
CFI Que	ary	1	AA	98										
Program		4	AAA	AA	555	55	AAA	A0	PA	PD				
Write to Buffer		6	AAA	AA	555	55	PA	25	SA	WC	PA	PD	WBL	PD
Program	Buffer to Flash	1	SA	29										
Write to	Buffer Abort Reset	3	AAA	AA	PA	55	555	F0						
	Entry	3	AAA	AA	555	55	AAA	20						
× Ø	Program	2	XXX	A0	PA	PD	1							
pas	Sector Erase	2	XXX	80	SA	30		1						
292	Chip Erase	2	XXX	80	SA	10	1							
	Reset	2	XXX	90	XXX	00								
Chip Era	ase	6	AAA	AA	555	55	AAA	80	AAA	AA	555	55	AAA	10
Sector E	rase	6	AAA	AA	555	55	AAA	80	AAA	AA	555	55	SA	30
Erase/P	rogram Suspend	1	XXX	B 0										
Erase/P	rogram Resume	1	XXX	30			1							
	Entry	3	AAA	AA	555	55	AAA	88						
to red	Program	4	AAA	AA	555	55	AAA	A0	PA	PD				
Silio	Read	1	00	Data			Contract Cont							
0,	Exit	4	AAA	AA	555	55	AAA	90	XXX	00				

Table 27: Memory Array Commands (x8)

Legend

X = Don't care

RA = Read Address RD = Read Data

PA = Program Address. Addresses latch on the falling edge of WE# or CE# pulse, which ever comes first.

PD = Program Data. Data Lartches on the rising edge of WE# or CE# which ever comes first.. SA = Sector Address. Any address that falls within a specified sector.

WBL = Write Buffer Location. Address must be within the same write buffer page as PA.

WC = Word Count. Number of write buffer locations to load minus 1.

Notes

- 1. All values are in hexadecimal.
- 2. Shaded cells indicate read cycles.
- 3. Address and data bits not specified in table, legend or notes are don't cares (each hex digit implies 4 bits of data).
- 4. Writing incorrect addresses or data values or writing them in an improper sequence may place the device in an unknown state. The system must write the reset command to return reading array data.
- 5. No unlock or command cycles required when bank is reading array data.
- 6. Reset command is required to return to reading array data in certain cases.
- 7 The data is 00h for an onprotected sector. PPB Stus Read provides the same data but in inverted form.
- 8. If DQ7 = 1, region is factory serialized and protected. If DQ7 = 0, region is unserialized and unprotected when shipped from factory.
- 9. Command is valid when device is ready to read array data or when device is in autoselect mode.
- 10. Total number of cycles in the command sequence is determined by the number of words written to the write buffer.
- 11. Command sequence resets device for next command after write-to-buffer operation.
- 12. Requires Entry command sequence prior to execution. Unlock Bypass Reset command is required to return to reading array data. System may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. TheErase Suspend is valid only during a sector erase operation.
 Erase Resume command is valid only during the Erase Suspend mode.
- Requires Entry command sequence prior to execution. Secure Silicon Sector Exit Reset command is required to exit this mode; device may otherwise be placed in an unknown state.

56F6408

			Bus Cycles (Notes 1-4)													
			1st/8th		2nd/9th		3rd/10th		4th/11th		5th		6th		7th	
Command Sequence (Notes)		ð	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Add	Data	Add	Data	Add	Data
Lock Register Bits	Command Set Entry (5)	3	AAA	AA	555	55	AAA	40								
	Program (6)	2	XXX	AD	XXX	Data										
	Read (6)	1	00	Data												
	Command Set Exit (7)	2	XXX	90	XXX	00										
Password Protection	Command Set Entry (5)	3	AAA	AA	555	55	AAA	60								
	Program (B)	2	XXX	AO	PWAx	PWDx										
	Read (9)	8	00	PWD 0	01	PWD1	02	PWD 2	03	PWD 3	04	PWD 4	05	PWD 5	06	PWD 6
			07	PWD 7												
	Unlock (10)	1	00	25	00	03	00	PWD 0	01	PWD 1	02	PWD 2	03	PWD 3	04	PWD 4
			05	PWD 5	06	PWD6	07	PWD 7	00	29						
	Command Set Exit (7)	2	XX	90	XX	00										
	Command Set Entry (5)	3	AAA	AA	555	55	AAA	CO								
Non-Volatile	PPB Program (11)	2	XXX	AD	SA	00										
Sector	All PPB Erase (11, 12)	2	XXX	80	00	30										
(PPB)	PPB Status Read	1	SA	RD(0)					· ·							<u> </u>
	Command Set Exit (7)	2	XXX	90	XXX	00										
Global Volatile Sector Protection Freeze (PPB Lock)	Command Set Entry (5)	3	AAA	AA	555	55	AAA	50								
	PPB Look Blt Set	2	XXX	AO	XXX	00										1
	PPB Lock Bit Status Read	1	ххх	RD(0)												
	Command Set Exit (7)	2	XXX	90	XX	00										
Volatile Sector Protection (DYB)	Command Set Entry (5)	3	AAA	AA	555	55	AAA	EO								
	DYB Set	2	XXX	AD	SA	00			с с							
	DYB Clear	2	XXX	AO	SA	01										
	DYB Status Read	1	SA	RD(0)												
	Command Set Exit (7)	2	XXX	90	XXX	00										

Table 28. Sector Protection Commands (x8)

Legend X = Don't care.

RA = Address of the memory location to be read.

SA = Sector Address. Any address that fails within a specified sector. See Tables 7.2-7.4 for sector address ranges.

PWA = Password Address. Address bits A1 and A0 are used to select each 16-bit portion of the 64-bit entity.

PWD = Password Data.

RD(0) = DQ0 protection indicator bit. If protected, DQ0 = 0. If unprotected, DQ0 = 1.

Notes

- 1. All values are in hexadecimal.
- 2. Shaded cells indicate read cycles.
- 3. Address and data bits not specified in table, legend, or notes are don't cares (each hex digit implies 4 bits of data).
- 4. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. The system must write the reset command to return the device to reading array data.

5. Entry commands are required to enter a specific mode to enable instructions only available within that mode.

6. No unlock or command cycles required when bank is reading array data.

7. Exit command must be issued to reset the device into read mode; device may otherwise be placed in an unknown state.

8. Entire two bus-cycle sequence must be entered for each portion of the password.

9. Full address range is required for reading password.

10. Password may be unlocked or read in any order. Unlocking requires the full password (all seven cycles).

11. ACC must be at V_H when setting PPB or DYB.

12. "All PPB Erase" command pre-programs all PPBs before erasure to prevent over-erasure.

08.20.15 Rev 2

Write Operation Status

The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3, DQ5, DQ6, and DQ7. DQ7 and DQ6 each offer a method for determining whether a program or erase operation is complete or in progress. The device also provides a hardware-based output signal, RY/BY#, to determine whether an Embedded Program or Erase operation is in progress or is completed.

DQ7: Data# Polling

The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm is in progress or completed, or whether the device is in Erase Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the command sequence.

During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend. When the Embedded Program algorithm is complete, the device outputs the datum programmed to DQ7. The system must provide the program address to read valid status information on DQ7. If a program address falls within a protected sector, Data# Polling on DQ7 is active for approximately 1 µs, then the device returns to the read mode.

During the Embedded Erase algorithm, Data# Polling produces a 0 on DQ7. When the Embedded Erase algorithm is complete, or if the device enters the Erase Suspend mode, Data# Polling produces a 1 on DQ7. The system must provide an address within any of the sectors selected for erasure to read valid status information on DQ7.

After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling on DQ7 is active for approximately 100 μ s, then the device returns to the read mode. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7 at an address within a protected sector, the status may not be valid.

Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asynchronously with DQ0–DQ6 while Output Enable (OE#) is asserted low. That is, the device may change from providing status information to valid data on DQ7. Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device has completed the program or erase operation and DQ7 has valid data, the data outputs on DQ0–DQ6 may be still invalid. Valid data on DQ0–DQ7 appears on successive read cycles.

Figure 16: Data# Polling Algorithm

Notes

- 1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being erased. During chip erase, a valid address is any non-protected sector address.
- 2. DQ7 should be rechecked even if DQ5 = 1 because DQ& may change simultaneously with DQ5.

RY/BY#: Ready/Busy#

The RY/BY# is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is in progress or complete. The RY/BY# status is valid after the rising edge of the final WE# pulse in the command sequence. Since RY/BY# is an open-drain output, several RY/BY# pins can be tied together in parallel with a pull-up resistor to VCC.

If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.) If the output is high (Ready), the device is in the read mode, the standby mode, or in the erase-suspend-read mode.

DQ6: Toggle Bit I

Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE# pulse in the command sequence (prior to the program or erase operation), and during the sector erase time-out.

During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause DQ6 to toggle. The system may use either OE# or CE# to control the read cycles. When the operation is complete, DQ6 stops toggling.

After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for approximately 100 μ s, then returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected.

The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erasesuspended. When the device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6 stops toggling. However, the system must also use DQ2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use DQ7 (see the subsection on DQ7: Data# Polling).

If a program address falls within a protected sector, DQ6 toggles for approximately 1 µs after the program command sequence is written, then returns to reading array data. DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program algorithm is complete.

Figure 17:Toggle Bit Algorithm

The system should recheck the toggle bit evn if DQ5 = 1 because the toggle bit may stop toggling as DQ5 changes to 1.

08.20.15 Rev 2 All data sheets are subject to change without notice 53

DQ2: Toggle Bit II

The Toggle Bit II on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE# pulse in the command sequence.

DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use either OE# or CE# to control the read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sector and mode information.

Reading Toggle Bits DQ6/DQ2

Whenever the system initially begins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on DQ7–DQ0 on the following read cycle.

However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of DQ5 is high (see the section on DQ5). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or erase operation. If it is still toggling, the device did not completed the operation successfully, and the system must write the reset command to return to reading array data.

The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system may continue to monitor the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation.

DQ5: Exceeded Timing Limits

DQ5 indicates whether the program, erase, or write-to-buffer time has exceeded a specified internal pulse count limit. Under these conditions DQ5 produces a 1, indicating that the program or erase cycle was not successfully completed.

The device may output a 1 on DQ5 if the system tries to program a 1 to a location that was previously programmed to 0. Only an erase operation can change a 0 back to a 1. Under this condition, the device halts the operation, and when the timing limit is exceeded, DQ5 produces a 1.

In all these cases, the system must write the reset command to return the device to the reading the array (or to erasesuspend-read if the device was previously in the erase-suspend-program mode).

DQ3: Sector Erase Timer

After writing a sector erase command sequence, the system may read DQ3 to determine whether or not erasure has begun. (The sector erase timer does not apply to the chip erase command.) If additional sectors are selected for erasure, the entire time-out also applies after each additional sector erase command. When the time-out period is complete, DQ3 switches from a 0 to a 1. If the time between additional sector erase commands from the system can be assumed to be less than 50 µs, the system need not monitor DQ3.

After the sector erase command is written, the system should read the status of DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has

epted the command sequence, and then read DQ3.

If DQ3 = 1, the Embedded Erase algorithm has begun; all further commands (except Erase Suspend) are ignored until the erase operation is complete. If DQ3 is 0, the device accepts additional sector erase commands. To ensure the command is accepted, the system software should check the status of DQ3 prior to and following each subsequent sector erase command. If DQ3 is high on the second status check, the last command might not have been accepted.

DQ1: Write-to-Buffer Abort

DQ1 indicates whether a Write-to-Buffer operation was aborted. Under these conditions DQ1 produces a 1. The system must issue the Write-to-Buffer-Abort-Reset command sequence to return the device to reading array data.

	Sta	itus	DQ7	DQ6	DQ5	DQ3	DQ2	DQ1	RY/BY#	
Standard	Embedded	Program Algorithm	DQ7#	Toggle	0	N/A	No toggle	0	0	
Mode	Embedded Erase Algorithm		0	Toggle	0	1	Toggle	N/A	0	
Program Suspend Mode	Program-	Program-Suspended Sector	Invalid (not allowed)							
	Read	Non-Program Suspended Sector	Data							
Erase Suspend Mode	Erase- Suspend Read	Erase-Suspended Sector	1	No toggle	0	N/A	Toggle	N/A	1	
		Non-Erase Suspended Sector	Data							
	Erase-Suspend-Program (Embedded Program)		DQ7#	Toggle	0	N/A	N/A	N/A	0	
Write-to- Buffer	Busy		DQ7#	Toggle	0	N/A	N/A	0	0	
	Abort		DQ7#	Toggle	0	N/A	N/A	1	0	

Table 29: Write Operation Status

Notes

1. DQ5 switches to 1 when an Embedded Program, Embedded Erase, or Write-to-Buffer operation has exceeded the maximum timing limits. Refer to the section on DQ5 for more information.

2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.

3. The Data# Polling algorithm should be used to monitor the last loaded write-buffer address location.

4. DQ1 switches to 1 when the device has aborted the write-to-buffer operation.

Symbol	DIMENSION							
	Min	Nом	Мах					
A	0.156	0.175	0.194					
b	0.006	0.008	0.010					
С	0.005	0.006	0.008					
D	0.817	0.825	0.833					
е		0.025 BCS						
E	0.544	0.550	0.556					
L		0.460						
Q	0.014	0.021	0.027					
S	0.005	0.070						

Note: All dimensions in inches Top and Bottom of the package are connected internally to ground.

08.20.15 Rev 2 All data sheets are subject to change without notice 56

Important Notice:

These data sheets are created using the chip manufacturer's published specifications. Maxwell Technologies verifies functionality by testing key parameters either by 100% testing, sample testing or characterization.

The specifications presented within these data sheets represent the latest and most accurate information available to date. However, these specifications are subject to change without notice and Maxwell Technologies assumes no responsibility for the use of this information.

Maxwell Technologies' products are not authorized for use as critical components in life support devices or systems without express written approval from Maxwell Technologies.

Any claim against Maxwell Technologies must be made within 90 days from the date of shipment from Maxwell Technologies. Maxwell Technologies' liability shall be limited to replacement of defective parts.

56F6408

Product Ordering Options

1) Products are manufactured and screened to Maxwell Technolgies' self-defined Class B and Class S.

08.20.15 Rev 2 All data sheets are subject to change without notice 58