29F10

29F10

Microprogram Controlier

D‘Q@

The 29] eed bipolar microprogram controller. It is intended
for use in ngfthe sequence of execution of microinstructions
stored in micr am . The 29F10 provides a 12-bit address
during each clock € s comes frorm one of four sources:
1) Direct input from Dg-D ‘counter; 3) A microprogram
counter; or 4) A five-deep LI %ss outputs are 3-state for

maximum versatility.

The microprogram controller is compatible w (Rirchild Advanced
Schottky TTL) devices and can be used along w S sin
microprogrammed systems to minimize cycle times.

¢ Addresses up to 4096 Words of Microcode

* Directly Loadable Down-Counter for Counting Loop Iterations

¢ Provides Count Capacity of 4096

¢ An Up Counter Providing Sequential Microlnstruction Execution

¢ A 5-Deep Push/Pop LIFO Stack Providing Subroutine Linkage
and Branch Capabilities

* Registers are all Positive Edge-Triggered

* Plug-in Replacement for Standard 2910

Ordering Code: See Section 5

Logic Symbol

SEENEEEEEEN

]

Dy Dy D2 D3 Dy Dg Dg D7 Dg Dy Dy Dyy [

—1,, STF jo—

VECT [O—

—o]cc)

—O] CCE PL jo— g

—O|RLD =

—c MAP [O— £
~—o0| oe
—]cp

Yo Yy Yy Y3 Y Y5 Yg Y7 Yg Yg Yo Yoy

RERRERRERRR

4580

Connection Diagrams

Ya[1]
Ds[2]
vs[3]
Ds[4]
veeT {5 |
P[5
AP 7]
ia[8]
12[9]
Vee [10]
1 [11]

o [12]
CCEN[13
cc{14
RLD[15
FULL[16
D5 [17]
ve 18]
;19

¥;[20

40,
[39] v,
38]
36]D,
[34] 0o
33] v,

32|ci
31]cp
30|Gnd
29| O
28] v,
27] oy,
Eho
EDm
[24]vs
23] 05
[21] 08

Pin Assignment
for DIP

w6 fE e) @ @R D E
[o d Tod o o |

[} (] []
B3 B B B2 B9 B4 Bd B8 BT BE Y

Pin Assignment
for LCC and PCC

EEEERENBEBE

Input Loading/Fan-Out: See Section 3 for U.L. definitions

29F10

29F(U.L.)
Pin Names Description HIGH/LOW
D; Direct Input 0.5/0.225
i Instruct Bit 0.5/0.225
CcC Condition Code 0.5/0.225
CCEN Condition Code Enable 0.5/0.225
Ci Carry-in 0.5/0.225
RLD Register Load 0.5/0.225
[e] Output Enable 0.5/0.450
CP Clock Pulse 1.0/0.788
Yo Y1y Microprogram Address Bits 0.5/0.225
FULL Status Full 0.5/0.225
PL Pipeline Address Enable 0.5/0.225
MAP Map Address Enable 0.5/0.225
VECT Vector Address Enable 0.5/0.225

Block Diagram

[(?
RLD
© REGISTER/] STACK FOLL
countern < POINTER
— -
2680
oetecTor |
5WORD X 12BIT
STACK
our
N £
2 J L
2
< =2 ° A Pk P> microrroGRAM
o 3 MULTIPLEXER COUNTER-
- REGISTER
4PC
g T?
£
2
& o
o 5 c
ZD z = INCREMENTER }—<
z
3 3
CCEN =
La
2@ |euswiporiHoLD/ICLEAR
\ B
' . z
OF
[

vieT <&

T%

") 12-BIT DATA PATH

CONTROL PATH

4-581

29F10

Instruction Set

The 29F10 provides sixteen instructions which
select the address of the next microinstruction to
be executed. Four of the instructions are
unconditional—their effect depends only on the
instruction. Ten of the instructions have an effect
which is partially controlled by an external, data-
dependent condition. Three of the instructions
have an effect which is partially controlled by the
contents of the internal register/counter. The
instruction set is shown in Table 1. In this
discussion it is assumed that Cli is tied HIGH.

In the ten conditional instructions, the result of the
data-dependent test is applied to CC. If the CC
input is LOW, the test is considered to have been
passed and the action specified in the name
occurs; otherwise, the test has failed and an
alternate operation (often simply the execution of
the next sequential microinstruction) occurs.
Testing of CC may be disabled for a specific
microinstruction by setting CCEN HIGH, which
unconditionally forces the action specified in the
name; that is, it forces a pass. Other ways of using
CCEN include (1) tying it HIGH, which is useful if
no microinstruction is data-dependent; (2) tying it
LOW if data-dependent instructions are never
forced unconditionally; or (3) tying it to the source
of 29F10 instruction bit I, which leaves
instructions 4, 6, and 10 as data-dependent but
makes others unconditional. All of these tricks
save one bit of microcode width.

The effect of three instructions depends on the
contents of the register/counter. Unless the
counter holds a value of zerg, it is decremented; if
it does hold zero, it is held and a different
microprogram next address is selected. These
instructions are useful for executing a
microinstruction loop a known number of times.
Instruction 15 is affected both by the external
condition code and the internal register/counter.

Perhaps the best technique for understanding the
29F10 is to simply take each instruction and review
its operation. In order to provide some feel for the
actual execution of these instructions, Figure a is
included and depicts examples of all sixteen
instructions.

The examples given in Figure a should be
interpreted in the following manner: The intent is
to show microprogram flow as various
microprogram memory words are executed. For
example, the CONTINUE instruction, instruction

number 14, as shown in Figure a, simply means
that the contents of microprogram memory word 50
are executed, then the contents of word 51 are
executed. This is followed by the contents of
microprogram memory word 52 and the contents of
microprogram memory word 53. The microprogram
addresses used in the examples were arbitrarily
chosen and have no meaning other than to show
instruction flow. The exception to this is the first
example, JUMP ZERO, which forces the
microprogram location counter to address ZERO.
Each dot refers to the time that the contents of the
microprogram memory word are in the pipeline
register. While no special symbology is used for
the conditional instructions, the text to follow will
explain what the conditional choices are in each
example.

Instruction 0, JZ (JUMP and ZERO, or RESET)
unconditionally specifies that the address of the
next microinstruction is zero. Many designs use
this feature for power-up sequences and provide
the power-up firmware beginning at microprogram
memory word location 0.

Instruction 1 is a CONDITIONAL JUMP-TO-
SUBROUTING via the address provided in the
pipeline register. As shown in Figure a, the
machine might have executed words at address 50,
51, and 52. When the contents of address 52 are in
the pipeline register, the next address control
function is the CONDITIONAL JUMP-TO-
SUBROUTINE. Here, if the test is passed, the next
instruction executed will be the contents of
microprogram memory location 90. If the test has
failed, the JUMP-TO-SUBROUTINE will not be
executed; the contents of microprogram memory
location 53 will be executed instead. Thus, the
CONDITIONAL JUMP-TO-SUBROUTINE instruction
at location 52 will cause the instruction either in
location 90 or in location 53 to be executed next. If
the TEST input is such that location 90 is selected,
value 53 will be pushed onto the internal stack.
This provides the return linkage for the machine
when the subroutine beginning at location 90 is
completed. In this example, the subroutine was
completed at focation 93 and a RETURN-FROM-
SUBROUTINE would be found at location 93.

Instruction 2 is the JUMP MAP instruction. This is
an unconditional instruction which causes the
MAP output to be enabled so that the next

microinstruction location is determined by the
address supplied via the mapping PROMs.
Normally, the JUMP MAP instruction is used at the
end of the instruction fetch sequence for the
machine. In the example of Figure a,
microinstructions at locations 50, 51, 52, and 53
might have been the fetch sequence and at its
completion at location 53, the jump map function
would be contained the pipeline register. This
example shows the mapping PROM outputs to be
90; therefore, an unconditional jump to
microprogram memory address 90 is performed.

Instruction 3, CONDITIONAL JUMP PIPELINE,
derives its branch address from the pipeline
register branch address value. This instruction
provides a technique for branching to various
microprogram sequences depending upon the test
condition inputs. Quite often, state machines are
designed which simply execute tests on various
inputs waiting for the condition to come true.
When the true condition is reached, the machine
then branches and executes a set of
microinstructions to perform some function. This
usually has the effect of resetting the input being
tested until some point in the future. Figure a
shows the conditional jump via the pipeline
register address at location 52. When the contents
of microprogram memory word 52 are in the
pipeline register, the next address will be sither
location 53 or location 30 in this example. If the
test is passed, the value currently in the pipeline
register (30) will be selected. If the test fails, the
next address selected will be contained in the
microprogram counter which, in this example, is
53.

Instruction 4 is the PUSH/CONDITIONAL LOAD
COUNTER instruction and is used primarily for
setting up loops in microprogram firmware. In
Figure a, when instruction 52 is in the pipeline
register, a PUSH will be made onto the stack and
the counter will be loaded based on the condition.
When a PUSH occurs, the value pushed is always
the next sequential instruction address. In this
case, the address is 53. If the test fails, the
counter is not loaded; if it is passed, the counter is
loaded with the value contained in the pipeline
register branch address field. Thus, a singie
microinstruction can be used to set up a loop to
be executed a specific number of times.
Instruction 8 will describe how to use the pushed
value and the register/counter for looping.

29F10

Instruction 5 is a CONDITIONAL JUMP-TO-
SUBROUTINE via the register/counter or the
contents of the PIPELINE register. As shown in
Figure a, a PUSH is always performed and one of
two subroutines executed. In this example, either
the subroutine beginning at address 80 or the
subroutine beginning at address 90 will be
performed. A return-from-subroutine (instruction
number 10) returns the microprogram flow to
address 55. In order for this microinstruction
control sequence to operate correctly, both the
next address fields of instruction 53 and the next
address fields of instruction 54 would have to
contain the proper value. Let’s assume that the
branch address fields of instruction 53 contain the
value 90 so that it will be in the 29F10
register/counter when the contents of address 54
are in the pipeline register. This requires that the
instruction at address 53 load the register/counter.
Now, during the execution of instruction 5 (at
address 54), if the test failed, the contents of the
register (value = 90) will select the address of the
next microinstruction. If the test input passes, the
pipeline register contents (value = 80) will
determine the address of the next microinstruction.
Therefore, this instruction provides the ability to
select one of two subroutines to be executed
based on a test condition.

Instruction 6 is a CONDITIONAL JUMP VECTOR
instruction which provides the capability to take
the branch address from a third source heretofore
not discussed. In order for this instruction to be
useful, the 29F10 output, VECT is used to control a
3-state control input of a register, buffer, or PROM
containing the next microprogram address. This
instruction provides one technique for performing
interrupt type branching at the microprogram level.
Since this instruction is conditional, a pass causes
the next address to be taken from the vector
source, while failure causes the next address to be
taken from the microprogram counter. In the
example of Figure a, if the CONDITIONAL JUMP
VECTOR instruction is contained at location 52,
execution will continue at vector address 20 if the
CC input is LOW and the microinstruction at
address 53 will be executed if the CC input is
HIGH.

Instruction 7 is a CONDITIONAL JUMP via the
contents of the 29F10 REGISTER/COUNTER or the
contents of the PIPELINE register. This instruction
is very similar to instruction 5; the conditional

29F10

jump-to-subroutine via R or PL. The major
difference between instruction 5§ and instruction 7
is that no push onto the stack is perfomed with
instruction 7. Figure a depicts this instruction as a
branch to one of two locations depending on the
test condition. The example assumes the pipeline
register contains the value 70 when the contents of
address 52 are being executed. As the contents of
address 53 are clocked into the pipeline register,
the value 70 is loaded into the register/counter in
the 29F10. The value 80 is available when the
contents of address 53 are in the pipeline register.
Thus, control is transferred to either address 70 or
address 80 depending on the test condition.

Instruction 8 is the REPEAT LOOP, COUNTER
ZERO instruction. This microinstruction makes use
of the decrementing capability of the
register/counter. To be useful, some previous
instruction, such as 4, must have loaded a count
value into the register/counter. This instruction
checks to see whether the register/counter
contains a non-zero value. If so, the
register/counter is decremented, and the address
of the next microinstruction is taken from the top
of the stack. If the register counter contains zero,
the loop exit condition is occuring; control falls
through to the next sequential microinstruction by
selecting uPC; the stack is POPed by decrementing
the stack pointer, but the contents of the top of
the stack are thrown away.

An example of the REPEAT LOOP, COUNTER
ZERO instruction is shown in Figure a. In this
example, location 50 most likely would contain a
PUSHICONDITIONAL LOAD COUNTER instruction
which would have caused address 51 to be
PUSHed on the stack and the counter to be loaded
with the proper vaiue for looping the desired
number of times.

In this example, since the loop test is made at the
end of the instructions to be repeated
(microaddress 54), the proper value to be loaded by
the instructions at address 50 is one less than the
desired number of passes through the loop. This
method allows a loop to be executed 1 to 4096
times. If it is desired to execute the loop from 0 to
4095 times, the firmware should be written to make
the loop exit test immediately after loop entry.

Single-microinstruction loops provide a highly
efficient capability for executing a specific

microinstruction a fixed number of times.
Examples include fixed rotates, byte swap, fixed
point multiply, and fixed point divide.

Instruction 9 is the REPEAT PIPELINE REGISTER,
COUNTER ZERO instruction. This instruction is
similar to instruction 8 except that the branch
address now comes from the pipeline register
rather than the file. In some cases, this instruction
may be thought of as a one-word file extension;
that is, by using this instruction, a loop with the
counter can still be performed when subroutines
are nested five deep. This instruction’s operation is
very similar to that of instruction 8. The differences
are that on this instruction a failed test condition
causes the source of the next microinstruction
address to be the D inputs, and when the test
condition is passed, this instruction does not
perform a POP because the stack is not being
used.

In the example of Figure a, the REPEAT PIPELINE,
COUNTER ZERO instruction is instruction 52 and
is shown as a single microinstruction loop. The
address in the pipeline register would be 52.
instruction 51 in this example could be the LOAD
COUNTER AND CONTINUE instruction (number
12). While the example shows a single
microinstruction loop, by simply changing the
address in a pipeline register, multi-instruction
loops can be performed in this manner for a fixed
number of times as determined by the counter.

Instruction 10 is the conditional RETURN-FROM-
SUBROUTINE instruction. As the name implies,
this instruction is used to branch from the
subroutine back to the next microinstruction
address following the subroutine call. Since this
instruction is conditional, the return is performed
only if the test is passed. If the test is failed, the
next sequential microinstruction is performed. The
example in Figure a depicts the use of the
conditional RETURN-FROM-SUBROUTINE
instruction in both the conditional and the
unconditional modes. This example first shows a
jump-to-subroutine at instruction location 52 where
control is transferred to location 90. At location 93,
a conditional RETURN-FROM-SUBROUTINE
instruction is performed. If the test is passed, the
stack is accessed and the program will transfer to
the next instruction at address 53. If the test if
failed, the next microinstruction at address 94 will
be executed. The program will continue to address

29F10

97 where the subroutine is complete. To perform
an unconditional RETURN-FROM-SUBROUTINE, the
conditional RETURN-FROM-SUBROUTINE
instruction is executed unconditionally; the
microinstruction at address 97 is programmed to
force CCEN HIGH, disabling the test and the
forced PASS causes an unconditional return.

Instruction 11 is the CONDITIONAL JUMP
PIPELINE register address and POP stack
instruction. This instruction provides another
technique for loop termination and stack
maintenance. The example in Figure a shows a
loop being performed from address 55 back to
address 51. The instructions at location 52, 53, and
54 are all conditional JUMP and POP instructions.
At address 52, if the CC input is LOW, a branch
will be made to address 70 and the stack will be
properly maintained via a POP. Should the test fail,
the instruction at location 53 (the next sequential
instruction) will be executed. Likewise, at address
53, either the instruction at 90 or 54 will be
subsequently executed, respective to the test
being passed or failed. The instruction at 54
follows the same rules, going to either 80 or 55. An
instruction sequence as described here, using the
CONDITIONAL JUMP PIPELINE and POP
instruction, is very useful when several inputs are
being tested and the microprogram is looping
waiting for any of the inputs being tested to occur
before proceeding to another sequence of
instructions. This provides the powerful jump-table
programming technique at the firmware level.

Instruction 12 is the LOAD COUNTER AND
CONTINUE instruction, which simply enables the
counter to be loaded with the value at its parallel
inputs. These inputs are normally connected to the
pipeline branch address field which (in the
architecture being described here) serves to supply
either a branch address or a counter value
depending upon the microinstruction being
executed. There are altogether three ways of
loading the counter—the explicit load by this
instruction 12; the conditional load included as
part of instruction 4; and the use of the RDL input
along with any instruction. The use of RDL with
any instruction overrides any counting or
decrementation specified in the instruction, calling
for a load instead. Its use provides additional
microinstruction power, at the expense of one bit
of microinstruction width. This instruction 12 is
exactly equivalent to the combination of

instruction 14 and RLD LOW. Its purpose is to
provide a simple capability to load the
register/counter in those implementations which do
not provide microprogrammed contro! for RDL.

Instruction 13 is the TEST END-OF-LOOP
instruction, which provides the capability of
conditionally exiting a loop at the bottom; that is,
this is a conditional instruction that will cause the
microprogram to loop, via the file, if the test is
failed else to continue to the next sequential
instruction. The example in Figure a shows the
TEST END-OF-LOOP microinstruction at address
56. If the test fails, the microprogram will branch
to address 52. Address 52 is on the stack because
a PUSH instruction had been executed at address
51. If the test is passed at instruction 56, the loop
is terminated and the next sequential
microinstruction at address 57 is executed, which
also causes the stack to be POPed, thus
accomplishing the required stack maintenance.

Instruction 14 is the CONTINUE instruction, which
simply causes the microprogram counter to
increment so that the next sequential
microinstruction is executed. This is the simpiest
microinstruction of all and should be the defaulit
instruction which the firmware requests whenever
no other instruction is being executed.

Instruction 15, THREE-WAY BRANCH, is the most
complex. It provides for testing of both a data-
dependent condition and the counter during one
microinstruction and provides for selecting among
aone of three microinstruction addresses as the
next microinstruction to be performed. Like
instruction 8, a previous instruction will have
loaded a count into the register/counter while
pushing a microbranch address onto the stack.
Instruction 15 performs a decrement-and-branch-
until-zero function similar to intruction 8. The next
address is taken from the top of the stack until the
count reaches zero; then the next address comes
from the pipeline register. The above action
continues as long as the test condition fails. If at
any execution of instruction 15 the test condition
is passed, no branch is taken; the microprogram
counter register furnishes the next address. When
the loop is ended, either by the count becoming
zero or by passing the conditional test, the stack is
POPed by decrementing the stack pointer, since
interest in the value contained at the top of the
stack is then complete.

29F10

The application of instruction 15 can enhance
performance of a variety of machine-level
instructions. For instance, (1) a memory search
instruction to be terminated either by finding a
desired memory content or by reaching the search
limit; (2) variable-field-length arithmetic terminated
early upon finding that the content of the portion
of the field still unprocessed is all zeroes; (3) key
search in a disc controller processing variable
length records; (4) normalization of a floating point
number.

As one example, consider the case of a memory
search instruction. As shown in Figure a, the
instruction at microprogram address 63 can be
Instruction 4 (PUSH), which will push the value 64
onto the microprogram stack and load the number
N, which is one less than the number of memory

Table 1 Instruction Set

locations to be searched before giving up. Location
64 contains a microinstruction which fetches the
next operand from the memory area to be searched
and compares it with the search key. Location 65
contains a microinstruction which tests the result
of the comparison and also is a THREE-WAY
BRANCH for microprogram control. If no match is
found, the test fails and the microprogram goes
back to location 64 for the next operand address.
When the count becomes zero, the microprogram
branches to location 72, which does whatever is
necessary if no match is found. If a match occurs
on any execution of the THREE-WAY BRANCH at
location 65, control falls through to location 66
which handles this case. Whether the instruction
ends by finding a match or not, the stack will have
been POPed once, removing the value 64 from the
top of the stack.

Fail Pass
CCEN - Low CCEN - HIGH
Reg/ and __or
oo CC - HIGH TC = LOW Reg/
I3-lo Mnemonic Name Contents Y Stack Y Stack Cntr Enable
) Jz JUMP ZERO X 0 CLEAR | 0 CLEAR | HOLD PL
1 cJs COND JSB PL M PC | HOLD D PUSH HOLD PL
2 JMAP JUMP MAP X D HOLD D HOLD HOLD MAP
3 cJP COND JUMP PL X pPC | HOLD D HOLD HOLD PL
4 PUSH PUSH-COND LD CNTR X pc | pusk PC | PusH Note 1 PL
5 JSAP COND JSB R/PL X R PUSH D PUSH HOLD PL
6 cv COND JUMP VECTOR X PC | HOLD HOLD HOLD VECT
7 JRP COND JUMP R/PL X R HOLD HOLD HOLD PL
=Y
8 | RFCT REPEAT LOOP. CNTR = 0 =0 F HOWD | F HOLD | DEC -
=0 pc | PoP pc | PoP HOLD PL
P
9 RPCT REPEAT PL. CNTR = 0 0 b HOLD o HOLD DEC L
= pc | HoLD PC | HOLD HOLD PL
10 CRTN COND RTN X pc | HouD F POP HOLD PL
11 CJPP COND JUMP PL & PQP X pc | HoLD D POP HOLD PL
12 LDCT LD CNTR & CONTINUE X pc | HoLD pc | mHoLD LOAD PL
13 LOOP TEST END LOOP X F HOLD pc | PoP HOLD PL
14 CONT CONTINUE X PC | HOLD PC | HOLD HOLD PL
P PL
15 | Twa THREE-WAY BRANCH 70 F HOLD c | PoP DEC
-0 D POP pc | Pop HOLD PL

Note 1: 1t TCEN = LOW ang CC - HIGH. nold else load X - Don't Care

4-586

Fig. a

Execution Examples

29F10

INSTRUCTION 0
0
1 n
2

Jump Zero (JZ)

INSTRUCTION 1

50 STACK
51

52 90

53 91

54 92

55 93

Conditional Jump-To-Subroutine (CJS)

INSTRUCTION 2

50

51

52

53 90
91

Jump Map (JMAP)

INSTRUCTION 3

50

51

52

53

54 30
31

Conditional Jump Pipeline (CJP)

INSTRUCTION 4

50 STACK

51

gg REGISTER/
COUNTER

Push/Conditional Load Counter (PUSH)

INSTRUCTION 6

50
51
52
53 20
54 21

Conditional Jump Vector (CdV)

{NSTRUCTION 7

50

51

52

53
70 80
71 81

Conditional Jump Via Register
or Pipeline Register (JRP)

INSTRUCTION 5

Conditional Jump-To-Subroutine
Via Register or Pipeline Register
{COND JSB R/PL)

INSTRUCTION 8

STACK
{(PUSH)
50 REGISTER/
51 COUNTER
52
53
54
55

Repeat Loop, Counter + 0 (RFCT)

INSTRUCTION 9

COUNTER
50 (LDCT)
51
52
53

Repeat Pipeline Register,
Counter = 0 (RPCT)

INSTRUCTION 11

STACK
5 /@ (PUSH)

51 ¢

52 2 ¢ 70
53 (b 4-90’}71
54 ¢80 $91 #72
55 1 481 #92

56 82

Conditional Jump Pipeline & Pop (CJPP)

INSTRUCTION 12

50 COUNTER
51
52
53

Load Counter and Continue (LDCT)

INSTRUCTION 10

STACK

50

51 90

52 9

53 82

54 a3

55 94
95
96
97

Return From Subroutine (CRTN)

INSTRUCTION 14

50
51
52
53

Continue (CONT)

INSTRUCTION 15

STACK
(PUSH)
62
63 REGISTER/
64 COUNTER

72
73

Three-Way Branch (TWB)

INSTRUCTION 13

STACK
> (PUSH)
52
53
54 4
55
56
57

Test End-Of-Loop (LOOP)

4-587

29F10

DC Characteristics over Operating Temperature Range (unless otherwise specified)

29F

Symbol Parameter Min Typ Max Units Conditions

lec Power Supply Current 195 295 mA Vee = Max

AC Characteristics: See Section 3 for waveforms and load configurations

Military Commercial
29F 29F 29F
TA= +25°C TAI VCC= TA, VCC=
Symbol Parameter Vee= +50V Mit Com Units
C_=50pF C_.=50pF | C_ =50pF
Min Typ Max Min Max Min Max
ton Propagation Delay 26.0 ns
tenL D,toY 26.0
tpLH Propagation Delay 40.0 ns
tPHL ln toY 40.0
teLn Propagation Delay 30.0 ns
tpnL I, to PL, VECT, MAP 30.0 ?
toy Propagation Delay 35.0 ns
tPHL CCtoY 35.0
teLH Propagation Delay 35.0 ns
tenL CCENto Y 35.0
toLmH Propagation Delay 30.0 ns
tPHL CPtoY 30.0
tpLH Propagation Delay 55.0 ns
teHL CP(1=8,9, 15 to Y 55.0
teLn Propagation Delay 40.0 ns
teHL CP to FULL 40.0
tpLH Propagation Delay 40.0 ns
tPHL CP (| =8, 9, 15) to FULL 40.0
tpzH Output Enable Time 17.0 ns
tPZL ﬁ toY 17.0
tphz Output Disable Time 21.0 ns

4-588

AC Operating Requirements: See Section 3 for waveforms

29F10

Military Commercial
29F 29F 29F
TA =+ 25°C TA' VCC = TA! VCC =
Symbol Parameter Veg= +5.0V Mil Com Units
Min Typ Max | Min Max | Min Max
t(H) Setup Time, HIGH or LOW 7.0 n
t,(L) D (RC) to CP 7.0 s
ty{H) Hold Time, HIGH or LOW 0 n
tn(L) D (RC) to CP 0 s
t(H) Setup Time, HIGH or LOW 9.0 ns
t4(L) D (PC) to CP 9.0
tr(H) Hold Time, HIGH or LOW 0 ns
th(L) D (PC) to CP 0
ts(H) Setup Time, HIGH or LOW 20.0 n
t(L) lo-l3 to GP 20.0 s
ty(H) Hold Time, HIGH or LOW 6.0 n
th(L) lols to CP 0 s
ts(H) ie_tup Time, HIGH or LOW 21.0 n
t(L) CC to CP 210 s
th(H) Hold Time, HIGH or LOW 0 n
th(L) CCtoCP 0 s
tg(H) Setup Time, HIGH or LOW 18.0 ns
t(L) CCEN to CP 18.0
th(H) Hold Time, HIGH or LOW 0 n
tp(L) CCEN to CP 0 s
ts(H) S_etup Time, HIGH or LOW 12.0 ns
ts(L) Cl to CP 12.0
th(H) Hold Time, HIGH or LOW 0 ns
th(L) Cito CP 0
ts(H) ie_t_up Time, HIGH or LOW 24.0 ns
ta(L) RLD to CP 240
th(H) Hold Time, HIGH or LOW 0 ns
th(L) RLD to CP 0
tu(H) Clock Pulse Width 8.0 n
t(L) HIGH or LOW 12.0 s

4-589

29F10

Fig. b Switching Waveforms

INPUTS
CLOCK 15V ‘ S-15V
! :
‘ . Input To
‘ Output Delay!
'« Clock To Qutput _
Delay
"""" 0 XXRKAX 00 KX
OUTPUTS 5 5%;’«. 2 ,.~.'f
Gk

4590

