The HD74HC677 address comparator simplifies addressing of memory boards and/or other peripheral devices. The four P inputs are normally hard wired with a preprogrammed address. An internal decoder determines what input information applied to the 16 A inputs must be low or high to cause a low state at the output (Y). For example, a positive-logic bit combination of 0111 (decimal 7) at the P input determines that inputs A₁ through A₇ must be low and that inputs A₈ through A₁₆ must be high to cause the output to go low. Equality of the address applied at the A inputs to the preprogrammed address is indicated by the output being low.

The HD74HC677 features an enable input (G). When G is low, the device is enabled. When G is high, the device is disabled and the output is high regardless of the A and P inputs.

■ FEATURES

- High Speed Operation : tpd (A to Y)=17ns typ. $\{C_L=50pF\}$
- High Output Current: Fanout of 10 LSTTL Loads
- Wide Operating Voltage: V_{CC}=2~6V
- Low Input Current: 1µA max.
- Low Quiescent Supply Current: I_{cc} (static)=4μA max. (Ta=25°C)

■ LOGIC DIAGRAM

PIN ARRANGEMENT

FUNCTION TABLE

G	Inputs													Output							
	P ₃	P_2	\mathbf{P}_1	Po	Αı	A2	A3	A.	A_5	A6	A2	As	A۹	A10	An	A12	A13	A14	A15	A16	Y
L	L	L	L	L	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
L	L	L	L	Н	L	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Η.	Н	H	Н	L
L	L	L	Н	L	L	L	H	H	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	H	Н	L
L	L	L	Η	Н	L	L	L	H	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	H	L
L	L	Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
L	L	Η	L	Н	L	L	L	L	L	Н	Н	H	Н	Н	Н	Н	Η	Н	Н	Н	L
L	L	H	Н	L	L	L	L	L	L	L	Н	H	Н	Н	Н	Н	Н	Н	H	Н	L
L	L	Н	Н	Н	L	L	L	L	L	L	L	H	Н	Н	Н	Н	Н	Ħ	H	Н	L
L	Н	L	L	L	I.	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	L
L	Н	L	L	Н	L	L	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	L
L	Н	L	Н	L	L	L	L	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	L
L	Н	L	H	Н	L	L	L	L	L	L	L	L	L	L	L	Н	Н	Н	Н	Н	L
L	Н	Н	L	L	L	L	L	Ĺ	L	Ļ	L	L	L	L	L	L	H	Н	Н	Н	L
L	Н	Н	L	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	H	H	Н	L
L	H	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	Н	L
L	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	L
L	All other combinations												Н								
Н	Any combination												Н								

■ DC CHARACTERISTICS

Îtem	Symbol	Test Conditions				$Ta - 25^{\circ}$	С	Ta 4	17-14	
	3,1100	$V_{cc}(V)$		min	typ	max	min	max	Unit	
		2.0			1.5	_	_	1.5		
	V _{IH}	4.5			3.15	_	_	3.15	_	v
Input Voltage	L	6.0			4.2			4.2	_	
input voitage		2.0				-	0.5		0.5	v
	Vit	4.5			_	_	1.35		1.35	
		6.0			_	-	1.8	_	1.8	
		2.0	VViH or ViL Vin-ViH or ViL		1.9	2.0	_	1.9	_	v
		4.5		$I_{OH} = -20\mu A$	4.4	4.5		4.4	-	
	V _{OH}	6.0			5.9	6.0	_	5.9	_	
		4.5		Ion 4mA	4.18	_	_	4.13	_	
Output Voltage		6.0		Io H = -5.2 mA	5.68			5.63	_	
Output Voltage		2.0			. —	0.0	0.1	_	0.1	
		4.5		Iοι – 20μΑ	_	0.0	0.1		0.1	
	Vol	6.0			_	0.0	0.1	T -	0.1	
	İ	4.5		Io L = 4 mA	_	_	0.26	_	0.33	
		6.0		IoL = 5.2mA		-	0.26		0.33	
Input Current	I	6.0	$V_{i*} = V_{cc}$ or GND	-	_	±0.1	-	±1.0	μA	
Quiescent Supply Current	Icc	6.0	$V_{i*}=V_{cc}$ or GND, I	_	_	4.0	_	40	μA	

AC CHARACTERISTICS ($C_L = 50 \text{pF}$, Input $t_r = t_f = 6 \text{ns}$)

Item	Symbol	L	Test Conditions		0	Ta= -4			
	Oy moor	$V_{cc}(V)$	1 est Conditions	min,	typ.	max.	min.	max.	Unit
	t _{PLH}	2.0		_	-	310	-	390	ns ns
	tPHL	4.5	P to Y		23	62	-	78	
	*****	6.0		_		52	_	66	
	t PLH	2.0			-	180	-	225	
Propagation Delay Time	t PHL	4.5	A to Y	-	17	36	-	45	
		6.0			- "	31	_	38	
15		2.0	<u> </u>			125	_	155	
,		4.5	G to Y		13	25	-	31	
		6.0		_	-	21	_	26	
	ttlh	2.0				75	-	95	ns
Output Rise/Fall Time	1 THL	4.5			5	15		19	
	-	6.0			_	13	_	16	
Input Capacitance	Cin	_		-	5	10	_	10	pF