

N-channel 950 V, 1 Ω typ., 9 A MDmesh™ K5 Power MOSFETs in DPAK, TO-220, IPAK and TO-247 packages

Features

Order codes	V _{DS}	R _{DS(on)} max.	۱ _D	P _{TOT}
STD6N95K5				
STP6N95K5	950 V	1.25 Ω	9 A	90 W
STU6N95K5				90 W
STW6N95K5				

DPAK 950 V worldwide best R_{DS(on)}

- Worldwide best FOM (figure of merit)
- Ultra low gate charge
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

These very high voltage N-channel Power MOSFETs are designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Product status link
STD6N95K5
STP6N95K5
STU6N95K5
STW6N95K5

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate- source voltage	± 30	V
ID	Drain current (continuous) at T _C = 25 °C	9	А
ID	Drain current (continuous) at T _C = 100 °C	6	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	24	Α
P _{TOT}	Total dissipation at T_C = 25 °C	90	W
I _{AR} ⁽²⁾	Max current during repetitive or single pulse avalanche	3	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25 \text{ °C}, I_D = I_{AS}, V_{DD} = 50 \text{ V}$)	90	mJ
dv/dt (3)	Peak diode recovery voltage slope	4.5	V/ns
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/ns
Тј	Operating junction temperature range	EE to 150	°C
T _{stg}	Storage temperature range	- 55 to 150	

1. Pulse width limited by safe operating area.

2. Pulse width limited by T_{Jmax}.

3. $I_{SD} \leq 9 \text{ A}, \text{ di/dt} \leq 100 \text{ A/}\mu\text{s}, V_{DS(peak)} \leq V_{(BR)DSS}$

4. $V_{DS} \leq 760 V$

Table 2. Thermal data

Symbol	Parameter	TO-220, IPAK	DPAK	TO-247	Unit
R _{thj-case}	Thermal resistance junction-case	1.39			°C/W
R _{thj-amb}	Thermal resistance junction-amb	62.5		50	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb		50		°C/W

1. When mounted on 1 inch² FR-4 board, 2 oz Cu

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	950			V
I ===	I _{DSS} Zero gate voltage drain current	V_{GS} = 0 V, V_{DS} = 950 V			1	μA
IDSS		V_{GS} = 0 V, V_{DS} = 950 V, Tc=125 °C ⁽¹⁾			50	μA
I _{GSS}	Gate body leakage current	V_{DS} = 0, V_{GS} = ± 20 V			±10	μA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 100 μ A	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 3 A		1	1.25	Ω

Table 3. On/off states

1. Defined by design, not subject to production test.

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	450	-	pF
C _{oss}	Output capacitance	V _{GS} =0 V, V _{DS} =100 V, f=1 MHz	-	30	-	pF
C _{rss}	Reverse transfer capacitance		-	1.6	-	pF
C _{o(tr)} (1)	Equivalent capacitance time related	V _{GS} = 0 V, V _{DS} = 0 to 760 V	-	45	-	pF
$C_{o(er)}$ ⁽²⁾	Equivalent capacitance energy related	VGS - 0 V, VDS - 0 10 700 V	-	19	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	7	-	Ω
Qg	Total gate charge	V _{DD} = 760 V, I _D = 6 A,	-	13	-	nC
Q _{gs}	Gate-source charge	V_{GS} = 0 to 10 V, (see Figure 17. Test	-	3	-	nC
Q _{gd}	Gate-drain charge	circuit for gate charge behavior)	-	7	-	nC

1. $C_{o(tr)}$ is a constant capacitance value that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

2. $C_{o(er)}$ is a constant capacitance value that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Table 5. Switching times

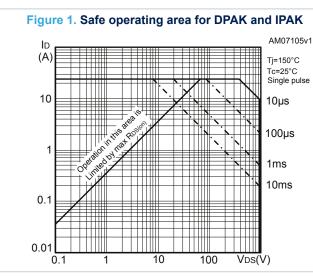
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 475 V, I _D = 3 A, R _G =4.7 Ω,	-	12	-	ns
tr	Rise time	V _{GS} =10 V (see Figure 16. Test circuit for resistive load switching times and	-	12	-	ns
t _{d(off)}	Turn-off delay time		-	33	-	ns
t _f	Fall time	Figure 21. Switching time waveform)	-	21	-	ns

Table 6. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		9	A
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		24	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 6 A, V _{GS} =0 V	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 6 A, V _{DD} = 60 V	-	372		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/µs,	-	4		μC
I _{RRM}	Reverse recovery current	(see Figure 18. Test circuit for inductive load switching and diode recovery times)	-	22		A
t _{rr}	Reverse recovery time	I _{SD} = 6 A,V _{DD} = 60 V	-	522		ns
Q _{rr}	Reverse recovery charge	di/dt=100 A/µs, Tj=150 °C	-	5		μC
I _{RRM}	Reverse recovery current	(see Figure 18. Test circuit for inductive load switching and diode recovery times)	-	20		А

1. Pulse width limited by safe operating area.

2. Pulsed: pulse duration = 300µs, duty cycle 1.5%


Table 7. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 1$ mA, $I_D = 0$ A	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

2.1 Electrical characteristics (curves)

Figure 3. Safe operating area for TO-220 and TO-247

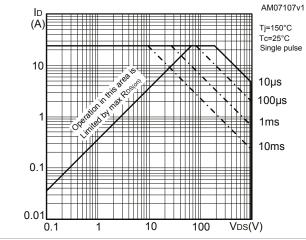
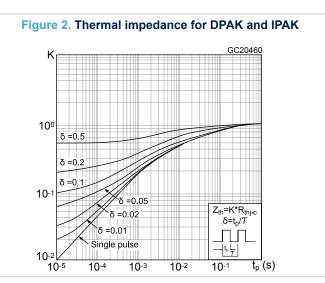
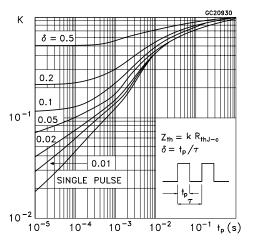
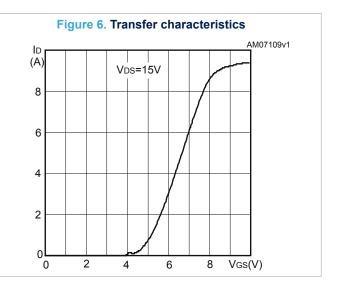
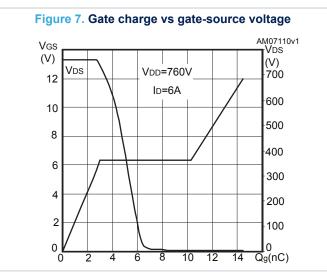
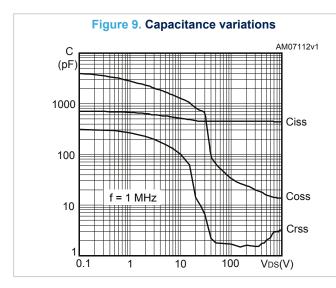
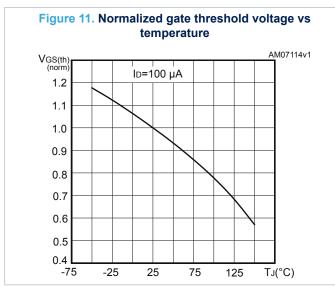
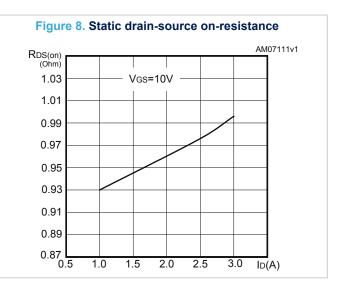



Figure 5. Output characteristics


Figure 4. Thermal impedance for TO-220 and TO-247





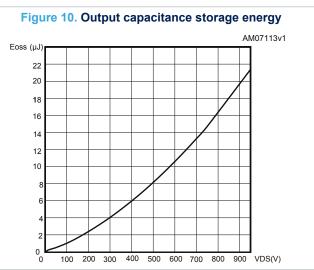
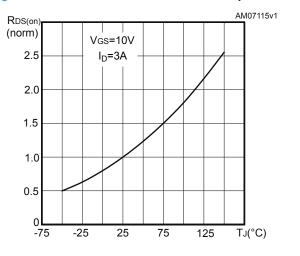
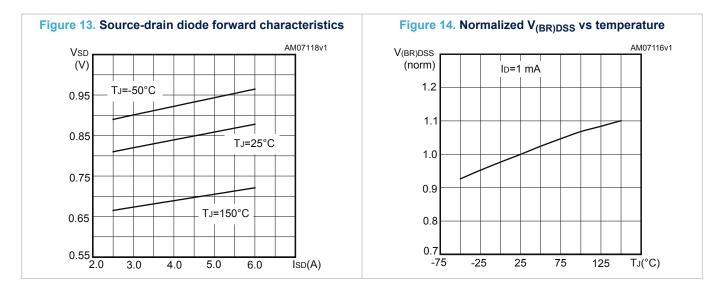
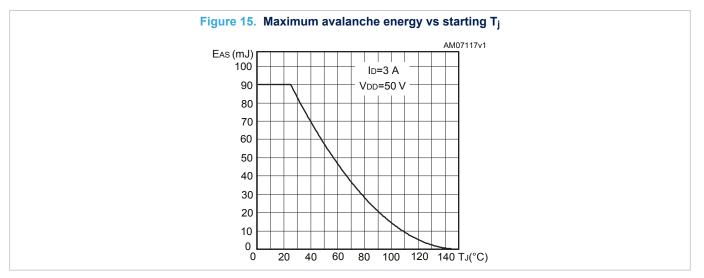
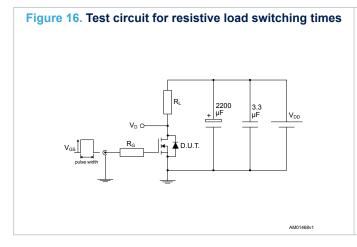
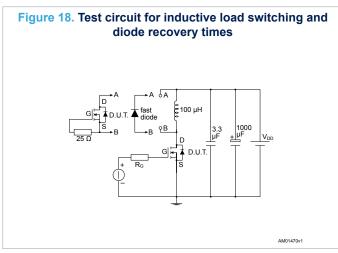
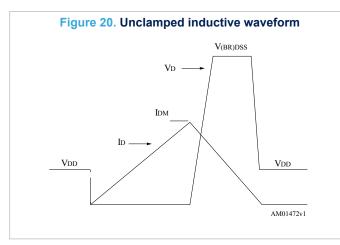
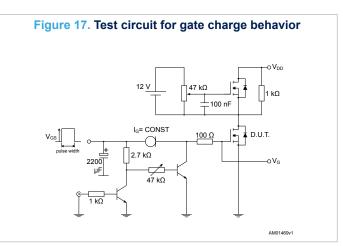





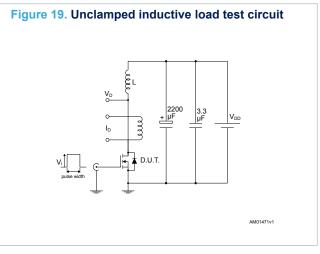
Figure 12. Normalized on-resistance vs temperature

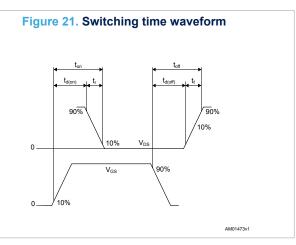


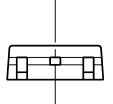


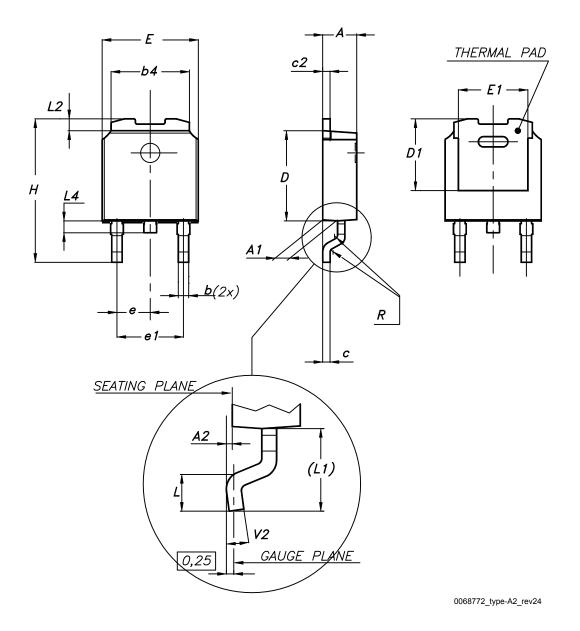





3 Test circuits

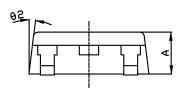


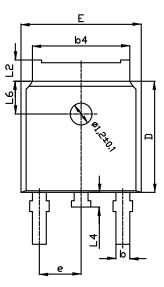

4 Package information

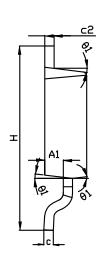

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

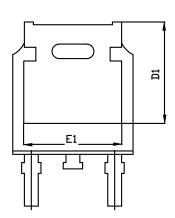
4.1 DPAK (TO-252) type A2 package information

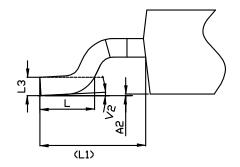
Figure 22. DPAK (TO-252) type A2 package outline


Dim.		mm	
Dim.	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
E	6.40		6.60
E1	5.10	5.20	5.30
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

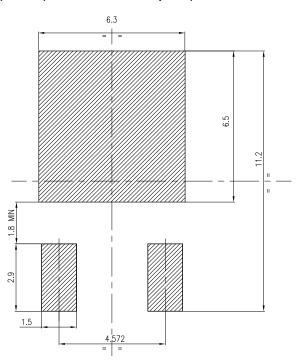

Table 8. DPAK (TO-252) type A2 mechanical data




4.2 DPAK (TO-252) type C2 package information


Figure 23. DPAK (TO-252) type C2 package outline

0068772_C2_24


DS6666 - Rev 5				
Downloaded from	Arrow.com.			

Dim.		mm	
Dim.	Min.	Тур.	Max.
А	2.20	2.30	2.38
A1	0.90	1.01	1.10
A2	0.00		0.10
b	0.72		0.85
b4	5.13	5.33	5.46
С	0.47		0.60
c2	0.47		0.60
D	6.00	6.10	6.20
D1	5.10		5.60
E	6.50	6.60	6.70
E1	5.20		5.50
е	2.186	2.286	2.386
Н	9.80	10.10	10.40
L	1.40	1.50	1.70
L1		2.90 REF	
L2	0.90		1.25
L3		0.51 BSC	
L4	0.60	0.80	1.00
L6		1.80 BSC	
θ1	5°	7°	9°
θ2	5°	7°	9°
V2	0°		8°

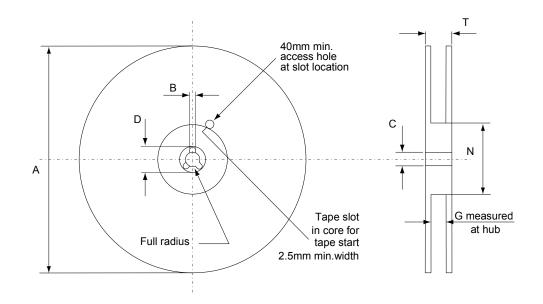
Table 9. DPAK (TO-252) type C2 mechanical data

Figure 24. DPAK (TO-252) recommended footprint (dimensions are in mm)

FP_0068772_24

4.3 DPAK (TO-252) packing information

Figure 25. DPAK (TO-252) tape outline

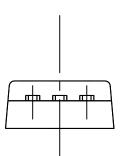


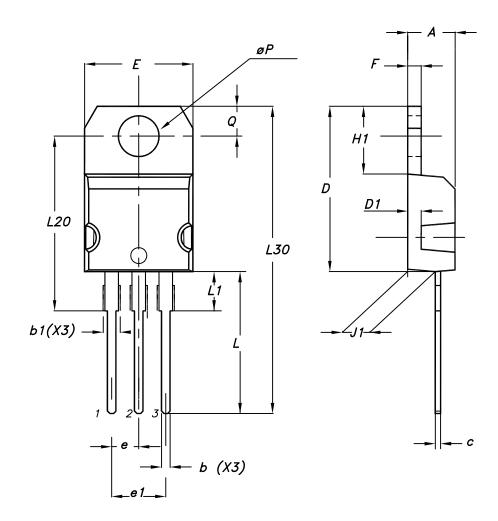
User direction of feed

AM08852v1

Figure 26. DPAK (TO-252) reel outline

AM06038v1

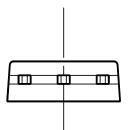

Table 10. DPAK (TO-252) tape and reel mechanical data

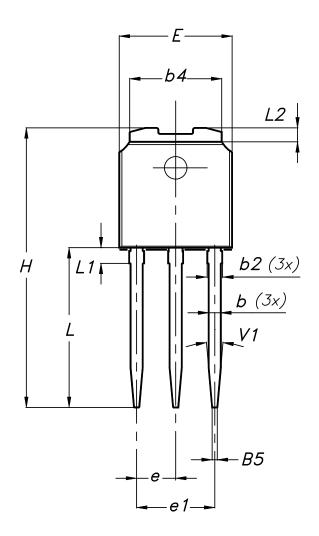

Таре				Reel		
Dim.	mm		– Dim.	mm		
Dim.	Min.	Max.		Min.	Max.	
A0	6.8	7	A		330	
B0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
E	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1	Bas	se qty.	2500	
P1	7.9	8.1	Bulk qty.		2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

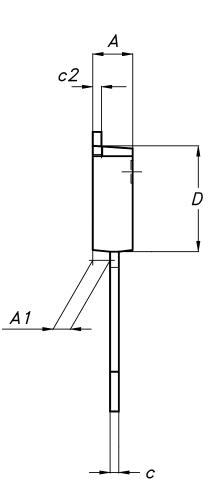
4.4 TO-220 type A package information

Figure 27. TO-220 type A package outline

0015988_typeA_Rev_21


Dim.		mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øP	3.75		3.85
Q	2.65		2.95


Table 11. TO-220 type A package mechanical data



4.5 IPAK (TO-251) type A package information

Figure 28. IPAK (TO-251) type A package outline

0068771_IK_typeA_rev14

DS6666 - Rev 5				
Downloaded from	Arrow.com.			

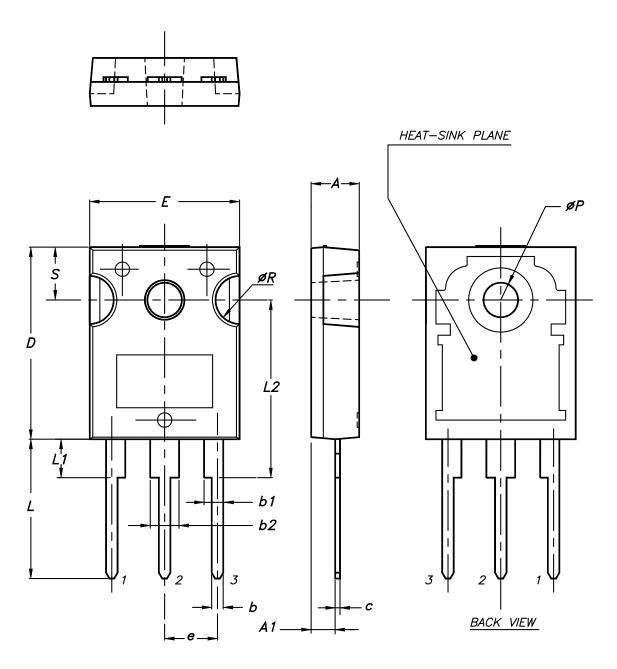

Dim.		mm	
Dim.	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.30	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
E	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10°	

Table 12. IPAK (TO-251) type A package mechanical data

4.6 TO-247 package information

Figure 29. TO-247 package outline

0075325_9

Dim.		mm	
Dim.	Min.	Тур.	Max.
A	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

Table 13. TO-247 package mechanical data

5 Ordering information

Table 14.	Ordering	information	
-----------	----------	-------------	--

Order code	Marking	Package	Packing
STD6N95K5	6N95K5	DPAK	Tape and reel
STP6N95K5	6N95K5	TO-220	Tube
STU6N95K5	6N95K5	IPAK	Tube
STW6N95K5	6N95K5	TO-247	Tube

Revision history

Table 15. Document revision history

Date	Revision	Changes
12-Jan-2010	1	First release.
01-Jul-2010	2	Document status promoted from preliminary data to datasheet.
31-Aug-2012	3	Inserted new device in IPAK. Updated <i>Table 1: Device summary</i> , <i>Table 2: Absolute maximum ratings</i> , and <i>Table 3: Thermal data</i> . Updated <i>Section 4: Package mechanical data</i> and <i>Section 5: Packaging mechanical data</i> . Minor text changes in the cover page.
16-May-2014	4	The part number STF6N95K5 has been moved to a separate datasheet. Added: MOSFET dv/dt ruggedness parameter in <i>Table 2</i> Updated: <i>Section 4: Package mechanical data</i> Minor text changes
22-Mar-2018	5	Removed maturity status indication and updated title and description from cover page. The document status is production data. Updated Section 1 Electrical ratings, Section 2 Electrical characteristics. Updated Figure 9. Capacitance variations and Figure 12. Normalized on-resistance vs temperature. Updated Section 4 Package information. Minor text changes.

Contents

1	Elect	rical ratings	2		
2 Electrical characteristics					
	2.1	Electrical characteristics (curves).	5		
3	Test circuits				
4	Packa	age information	9		
	4.1	DPAK (TO-252) type A2 package information	10		
	4.2	DPAK (TO-252) type C2 package information	12		
	4.3	DPAK (TO-252) packing information	15		
	4.4	TO-220 type A package information	17		
	4.5	IPAK (TO-251) type A package information	19		
	4.6	TO-247 package information	21		
5	Ordering information				
Revi	ision h	nistory	24		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved