Philips Components-Signetics | Document No. | | | | |-----------------------------|---------------------------|--|--| | ECN No. | | | | | Date of Issue | December 1988 | | | | Status | Preliminary Specification | | | | Data Communication Products | | | | # NE5080 High-speed FSK modem transmitter #### DESCRIPTION The NE5080 is the transmitter chip, of a two-chip set, designed to be the heart of an FSK modem. (The NE5081 is the receiver chip.) The chips are compatible with the IEEE 802.4 standard for a "Single-Channel" Phase-Continuous-FSK Token Bus." The specifications shown in this data sheet are those guaranteed when the transmitter is tuned for the frequencies given in the 802 standard. However, both the NE5080 and the NE5081 may be used at other frequencies. The ratio of logic high to logic low frequencies is normally at 1.67 to 1.00 at any center frequency; however, it can be varied externally. (See AN1950.) #### **FEATURES** - Meets IEEE 802.4 standard - Data rates to several Megabaud - Half- or full-duplex operation - Jabber function on-chip #### **APPLICATIONS** - Local Area Networks - Point-to-point communications - · Factory automation - Process control - Office automation #### **PIN CONFIGURATION** #### **ORDERING CODE** | DESCRIPTION | CRIPTION TEMPERATURE RANGE | | |--------------------|----------------------------|---------| | 16-Pin Plastic DIP | 0°C to +70°C | NE5080N | #### **BLOCK DIAGRAM** ### High-speed FSK modem transmitter ### NE5080 #### **GENERAL DESCRIPTION** The NE5080 is designed to transmit high frequency asynchronous data on coaxial cable, at rates from DC to 2M baud (see Note 1). The chip accepts serial data and transmits it as a periodic signal whose frequency depends on whether the data is high or low. The device is meant to operate at a frequency of 6.25MHz for a logic high and 3.75MHz for a logic low (see Note 2). The frequency is set up by external trimming components; however, the ratio of the high and low frequencies is set internally and cannot be altered. The FSK output can be turned off by use of the transmit gate pin. When turned off, the transmitter has a high output impedance and the oscillator is disabled. The length of time a transmitter can transmit can be controlled by the use of the Jabber control pin (see description of Jabber Control Pin). #### **Jabber Control Pin** During the time the transmitter is transmitting, this pin sources a current. This current can be used to set the maximum time that the transmitter can be on. There are three options that can be used: - 1 Use the current to charge a capacitor. When the voltage across the cap gets to approximately 1.4V, the transmitter will turn off. A logic low applied to Pin 3 will reset the Jabber function; an open collector output should be used for this purpose. A logic high applied to the pin will disable the transmitter. - 2. Use to externally sense the current and have external circuitry to control the length of time the transmitter is on - The pin can be tied to ground and is then not active. Transmission is then controlled solely by the signal at the transmit gate pin. #### Jabber Flag Pin This pin will go to a logic high when the Jabber Control pin is used to shut off the transmitter. It will latch and can be reset by applying a logic low to the Jabber Control pin. #### NOTES - The NE5080 is capable of transmitting up to 1M baud of differential Manchester code at a center frequency of 5MHz. - Although the chip is designed to meet the requirements of IEEE standard 802.4 (Token-Passing Single-Channel Phase-Continuous-FSK Bus), it can be used at other frequencies. #### **ABSOLUTE MAXIMUM RATINGS** | SYMBOL PARAMETER | | RATING | UNIT | | |--------------------------------------|-------------------------------------|-------------------------------|------|--| | V _{CC1}
V _{CC2} | Supply Voltage | +6 | V | | | VIN | Input voltage range (Data, Gate) | -0.3 to V_{CC} | V | | | P _D | Power dissipation | 800 | mW | | | TA | Operating temperature range | 0 to +70 | °C | | | Tj | Maximum junction temperature | +150 | °C | | | T _{STG} | Storage temperature range | temperature range -65 to +150 | | | | T _{SOLD} | Lead temperature (soldering, 10sec) | 300 | °C | | #### **NE5080 PIN FUNCTION** | PIN | FUNCTION | | | | | |-----|---|--|--|--|--| | 1 | OSC 1: One end of the external capacitor used to set the carrier frequency. | | | | | | 2 | Jabber Flag: This pin goes to a logic high if the transmitter attempts to transmit for a longer time than allowed by the Jabber control function. | | | | | | 3 | Jabber Control: Used to control transmit time. See note on Jabber function. | | | | | | 4 | V _{CC1} : Voltage supply | | | | | | 5 | Transmit Gate: A logic flow on this pin will enable the transmitter, a logic high will disable it. | | | | | | 6 | Transmitter FSK Output | | | | | | 7 | Cable Ground: The shield of the coax cable should be connected to this pin and to Pin 11. | | | | | | 8 | V _{CC2} : Connect to Pin 4 close to device. | | | | | | 9 | No Connection | | | | | | 10 | No Connection | | | | | | 11 | Ground 2: Connect to Analog ground close to device | | | | | | 12 | OSC 3: A variable resistor between this point and ground is used to set the carrier frequencies | | | | | | 13 | Ground 1: Connect to Analog close to device | | | | | | 14 | Data Input | | | | | | 15 | Regulator Bypass: A bypass capacitor between this pin and V _{CC1} is required for the internal voltage regulator function. | | | | | | 16 | OSC 2: One end of a capacitor that is between Pin 1 and Pin 16 and is used to set the carrier frequency. | | | | | December 1988 # **High-speed FSK modem transmitter** NE5080 # DC ELECTRICAL CHARACTERISTICS $V_{CC1, 2} = 4.75 - 5.25V$, $T_A = 0$ °C to +70°C. | SYMBOL | PARAMETER | | LIMITS | | | | |------------------------------------|--|---|---------|-------------------|--------------------|-------------------| | | | TEST CONDITIONS | Min Typ | | Max | UNIT | | f ₁ | Output frequency (Logic high) | Data input ≥2.0V (See Note 1) | 6.17 | 6.25 | 6.33 | MHz | | fo | Output frequency (Logic low) | Data input ≤0 8V (See Note 1) | | 3 75 | 3.83 | MHz | | v _o | Output amplitude | Data input ≥2.0V or ≤0.8V
Output Load = 37.5Ω | 0.5 | 0.5 | | V _{RMS} | | Roff | Output impedance (gated off) | Transmit gate ≥2.0V | 100 | | | kΩ | | Ron | Output impedance (gated on) | Transmit gate ≤0.8V | | | 375 | Ω | | Со | Output capacitance | Transmit gate ≥2 0V or ≤0.8V | | | 10 | pF | | V _F | Feedthrough | Transmit gate ≥2.0V
2.0MHz sq. wave (TTL levels) input | | | 1 | mV _{RMS} | | را | Jabber current | Transmit gate ≤0.8V 1.25 Input ≥2.0V or ≤0.8V | | | | μА | | lcc | Supply current | V _{CC1} connected to V _{CC2} | | 75 | 100 | mA | | Logic lev | rels | | | | | | | V _{iH} | Data Input
Logic high | Input high voltage | 2.0 | | | V | | VIL
I _{IH}
JiL | Logic low Input current Input current | Input low voltage V _{IN} = 2 4V V _{IN} = 0.4V | | | 0.8
40
-1.6 | V
μA
mA | | VIH
VIL
IIH | Transmit gate Logic high Logic low Input current Input current | Input high voltage Input low voltage VG = 2.4V VG = 0.4V | | 0.8
40
-1.6 | V
V
µA
mA | | | V _{OH}
V _{OL} | Jabber flag
Logic high
Logic low | gic high I _{OH} = -400μA | | | 0 4 | V
V | | V _{iH}
V _{IL} | Jabber control
Logic high
Logic low | Input high voltage
Input low voltage | 20 | | 0.8 | v
v | NOTE: 1. Tuned per instructions in AN195. ### **AC ELECTRICAL CHARACTERISTICS** | | | | | | LIMITS | | İ | | |----------------|---|------------------------|-----------------|-----------------|--------|-----|-----|------| | SYMBOL | PARAMETER | то | FROM | TEST CONDITIONS | Min | Тур | Max | UNIT | | t _S | Setup time | Data in | Gate on | Figure 1 | 2 | 0.1 | | μs | | tA | Delay time | Output freq.
change | Data transition | Figure 2 | | | 150 | ns | | t _B | Delay time | Output
disabled | Gate off | Figure 3 | | 0.4 | 2 | μѕ | | S | Delay time | Output
disabled | Jabber control | Figure 4 | | | 100 | ns | | t _D | Delay time | Jabber flag | Jabber control | Figure 5 | | | 100 | ns | | | Jabber control reset
Pulse width (Logic low) | | | | 100 | | | ns | December 1988 402 # High-speed FSK modem transmitter # NE5080