

STANDARD SCR

On-State Current

8 Amp

2 mA to 15 mA

Off-State Voltage 200 V ÷ 800 V

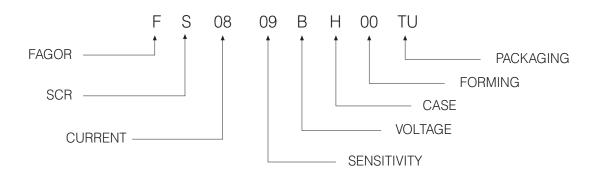
These series of Silicon Controlled Rectifier use a high performance PNPN technology.

These parts are intended for general purpose applications where high gate sensitivity is required.

Absolute Maximum Ratings, according to IEC publication No. 134

SYMBOL	PARAMETER	CONDITIONS	Value	Unit
I _{T(RMS)}	On-state Current	180° Conduction Angle, T _c = 110 °C	8	А
I _{T(AV)}	Average On-state Current	Half Cycle, Θ = 180 °, T _C = 110 °C	5	А
I _{TSM}	Non-repetitive On-State Current	Half Cycle, 60 Hz	100	А
I _{TSM}	Non-repetitive On-State Current	Half Cycle, 50 Hz	95	А
l²t	Fusing Current	t _p = 10ms, Half Cycle	45	A2s
I _{GM}	Peak Gate Current	20 μs max.	4	А
P _{GM}	Peak Gate Dissipation	20 μs max.	10	W
P _{G(AV)}	Gate Dissipation	20ms max.	1	W
T _j	Operating Temperature		(-40 to +125)	°C
T_{stg}	Storage Temperature		(-40 to +150)	°C
T _{sld}	Soldering Temperature	10s max.	260	°C
V_{RGM}	Reverse Gate Voltage		5	V

SYMBOL	PARAMETER	CONDITIONS	VOLTAGE		Unit			
			В	D	М	S	N	
V_{DRM} V_{RRM}	Repetitive Peak Off State Voltage	R_{GK} = 1 k Ω	200	400	600	700	800	V



STANDARD SCR

Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS			SENSITIVITY	Uni
					09	
I _{GT}	Gate Trigger Current	$V_D = 12 V_{DC}$, $R_L = 140 \Omega$. $T_j = 25 ^{\circ}C$			2 15	m A
V_{GT}	Gate Trigger Voltage	$V_D = 12 V_{DC}, R_L = 140$	$2, T_j = 25 ^{\circ}\text{C}$	MAX	1.3	V
$V_{\sf GD}$	Gate Non Trigger Voltage	$V_D = V_{DRM}$, $R_L = 3.3k\Omega$, $T_j = 125$ °C	$R_{GK} = 220\Omega$	MIN	0.2	V
I _H	Holding Current	$I_T = 500 \text{ mA},$		MAX	30	mA
IL	Latching Current	$I_G = 1.2 I_{GT}$		MAX	70	mA
dV / dt	Critical Rate of Voltage Rise	$V_D = 0.67 \times V_{DRM}$, Gate open $T_j = 125 ^{\circ}\text{C}$		MIN	150	V/µs
dl / dt	Critical Rate of Current Rise	$I_G = 2 \times I_{GT}$ $tr \le 100 \text{ ns, } f = 60 \text{ Hz,}$ $T_j = 125 ^{\circ}\text{C}$		MIN	50	A/µs
V_{TM}	On-state Voltage	at I_T = 16 Amp, tp = 380 μ s, T_j = 25 °C		MAX	1.6	V
V _{t (o)}	Threshold Voltage	T _j = 125 °C		MAX	0.85	V
r _d	Dynamic resistance	T _j = 125 °C		MAX	46	m Ω
I _{DRM} / I _{RRM}	Off-State Leakage Current	$\begin{aligned} &V_D = V_{DRM},R_{GK} = 1k\Omega\\ &V_R = V_{RRM}, \end{aligned}$	$T_j = 125 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$	MAX MAX	2 5	mΑ μΑ
R _{th(j-c)}	Thermal Resistance Junction-Case for DC	for AC 360 ° conduction angle			1.6	°C/W
$R_{th(j-a)}$	Thermal Resistance Junction-Amb for DC	S = 1 cm ²			60	°C/W

PART NUMBER INFORMATION

Fig. 1: Maximum average power dissipation versus average on-state current.

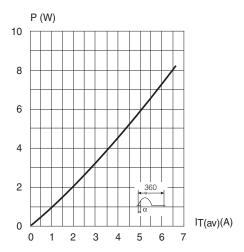


Fig. 3: Relative variation of thermal impedance junction to case versus pulse duration.

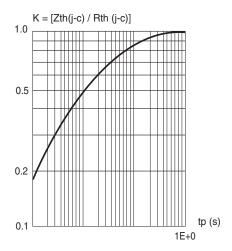
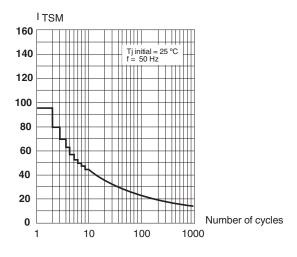



Fig. 5: Non repetitive surge peak on-state current versus number of cycles.

STANDARD SCR

Fig. 2: Average and D.C. on-state current versus case temperature.

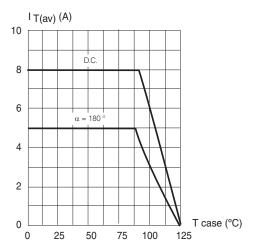
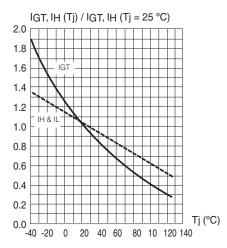
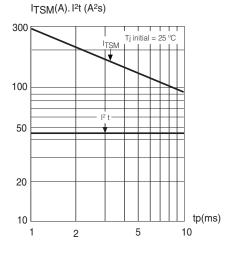
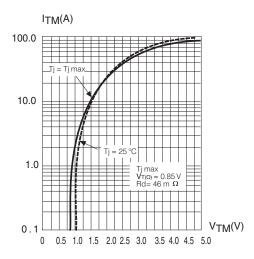


Fig. 4: Relative variation of gate trigger current, holding and latching current versus junction temperature.


Fig. 6: Non repetitive surge peak on-state current for a sinusoidal pulse with width: tp < 10 ms, and corresponding value of l²t.

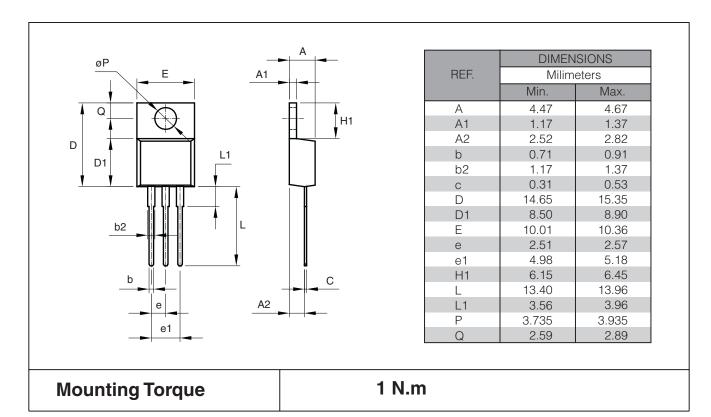

STANDARD SCR

Fig. 7: On-state characteristics (maximum values).

PACKAGE MECHANICAL DATA

TO-220AB

(*) Limiting values and life support applications, see Web page.