54F/74F784

8-Bit Serial/Parallel Multiplier with Adder/Subtractor

General Description

The 'F784 is an 8-bit by 1-bit sequential logic element that multiplies two numbers represented in twos complement notation. The device implements Booth's algorithm internally to produce a twos complement product that needs no subsequent correction. In addition to the serial product output (SP), an S \pm B output is obtained with an internal adder/subtractor stage which adds a B bit to the SP product. Parallel inputs accept and store an 8-bit multiplicand (X_0-X_7) . The add/subtract (\$\overline{A}/S), \$B_n\$ and \$B_{n-1}\$ inputs control the internal adder/subtractor stage. The multiplier word is then applied to the Y input in a serial bit stream, least significant bit first. The product is clocked out at the SP output and the product \pm B at the S \pm B output delayed by one clock cycle. Both appear least significant bit first.

The K input is used for expansion to longer X words, using two or more 'F784 devices by connecting the output (SP) of

one device to the K input of the other device. The Mode Control (M) input is used to establish the most significant device. An asynchronous Parallel Load ($\overline{\text{PL}}$) input clears the internal flip-flops to the start condition and enables the X latches to accept new multiplicand data. The Parallel Load ($\overline{\text{PL}}$) also clears the outputs (SP and S \pm B).

Features

- Twos complement multiplication
- 8-bit by 1-bit sequential logic element
- Includes product output (SP) and product ±B output (S±B)
- Parallel inputs accept and store an 8-bit multiplicand (X₀-X₇)
- K input is used for expansion to longer X words
- Combines the 'F384 and 'F385 in one chip

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Input Loading/Fan-Out: See Section 2

Pin Names	Description	54F/74F (U.L.) High/Low	l _{IH} /l _{IL} l _{OH} /l _{OL}		
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/ – 0.6 mA		
K	Serial Expansion Input	1.0/1.0	20 μA/-0.6 mA		
М	Mode Control Input	1.0/1.0	20 μA/ – 0.6 mA		
PL	Asynchronous Parallel Load Input (Active LOW)	1.0/2.0	20 μA/ – 1.2 mA		
X ₀ -X ₇	Multiplicand Data Inputs	1.0/1.0	20 μA/ – 0.6 mA		
Υ	Serial Multiplier Input	1.0/1.0	20 μA/ – 0.6 mA		
Ā/S	Add/Subtract	1.0/1.0	20 μA/-0.6 mA		
B _n	Serial B Input	1.0/1.0	20 μA/-0.6 mA		
B _{n-1}	Delayed Serial B Input	1.0/1.0	20 μA/-0.6 mA		
S±B	Serial X • Y ± B Output	50/33.3	- 1 mA/20 mA		
SP	Serial X ◆ Y Product Output	50/33.3	-1 mA/20 mA		

Functional Description

The 'F784 is a serial-parallel 8-bit multiplier. Also included is an adder/subtractor stage. The X word (multiplicand) is loaded into a register while simultaneously clearing the arithmetic cell flip-flops in preparation for a multiplication. The Y word (multiplier) is clocked in serially. (See *Figure A*).

Expansion capability is provided via the M and K inputs. The K (cascade) input is connected to the S₀ output of the more significant chip. The M (mode) input is used to determine whether the multiplicand is to be treated as a two's complement or unsigned number.

The 'F784 has logic to enable complex arithmetic to be performed. A serial adder/subtractor enables constants to be added to the product. Typically this feature would be used in FFT butterfly networks to reduce package count and power.

Two outputs are provided: the product XY and the product XY \pm B. Because of the internal adder/subtractor, a speed advantage is gained when using the 'F784 over using a separate adder and multiplier chip. (Refer to Figure B).

During a multiplication operation, the first clock cycle is used to load both the X word (multiplicand) and the first bit

of the Y word (operand) into the input registers. At this time there is no valid data at the SP output so that B bits added will not give the correct sum output. In order to load the first B bit on the same clock as X and Y, a B_{n-1} input is provided which delays the B data by one clock cycle. Thus, a valid output results.

	Input	s	Function
Ā/S	Bn	B _{n-1}	Tullonon
L	Н	Cn	Add C_n to product (C_n loaded at the same time as Y_n)
L	Cn	H	Add C _n to product (C _n must be delayed one clock cycle)
Н	Н	C _n	Subtract C _n from product (C _n loaded at the same time as Y _n)
Н	C _n	Н	Subtract C _n from product (C _n must be delayed one clock cycle)

 $L = LOW Voltage Level H = HIGH Voltage Level C_n = Constant$

Function Table

Inputs						Internal	Ot	utputs	Function		
PL	PL CP K M X		Xi	Υ	Y _{a-1}	SP	S±B	Function			
Х	×	L	L	Х	Х	Х	X	Х	Most Significant Multiplier Device		
χ _	Х	cs	Н	Х	Х	Х	Х	х	Devices Cascaded in Multiplier String		
L	Х	X	Х	OP	Х	L	L	L	Load New Multiplicand and Clear Internal Sum and Carry Registers		
н	Х	х	Х	Х	Х	Х	Х	×	Device Enabled		
Н	1	×	Х	Х	L	L	Р	P±B	Shift Sum Register		
н	1	X	Х	Х	L	Н	Р	P±B	Add Multiplicand to Sum Register and Shift		
н	1	Х	Х	Х	Н	L	Р	P±B	Subtract Multiplicand from Sum Register and Shift		
Н	<u></u> ↑	X	Х	X	I	Н	Р	P±B	Shift Sum Register		

H = HIGH Voltage Level

L = LOW Voltage Level

^{↑ =} LOW-to-HIGH Transition

CS = Connected to SP output of high order device

 $OP = X_i$ latches open for new data (i = 0-7)

P = Output as required per Booth's algorithm

P±B = Product ± a constant (delayed one clock cycle)

X = Immaterial

Logic Diagram

TL/F/10230-4

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Timing Waveforms

TL/F/10230-5

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature -65°C to $+150^{\circ}\text{C}$

Ambient Temperature under Bias -55°C to +125°C Junction Temperature under Bias -55°C to +175°C

V_{CC} Pin Potential

to Ground Pin -0.5V to +7.0V

Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with V_{CC} = 0V)

Standard Output
TRI-STATE® Output

-0.5V to V_{CC} -0.5V to +5.5V Current Applied to Output

in LOW State (Max)

twice the rated IOL (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military $-55^{\circ}\text{C to} + 125^{\circ}\text{C}$

Commercial 0°C to +70°C

Supply Voltage

Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V

DC Electrical Characteristics

Symbol	Parameter -			54F/74	=	Units	Vcc	Conditions	
			Min	Тур	Max	Omis	¥66		
V _{IH}	Input HIGH Voltage	2.0		·	٧		Recognized as a HIGH Signa		
V _{IL}	Input LOW Voltage	Ī			0.8	٧		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	٧	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			٧	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	٧	Min	I _{OL} = 20 mA I _{OL} = 20 mA	
l _{IH}	Input HIGH Current	54F 74F			20.0 5.0	μА	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μА	Max	V _{IN} = 7.0V	
ICEX	Output HIGH Leakage Current	54F 74F			250 50	μΑ	Max	V _{OUT} = V _{CC}	
V _{ID}	Input Leakage Test	74F	4.75			٧	0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded	
lod	Output Leakage Circuit Current	74F	,		3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current	-			-0.6 -1.2	mA mA	Max Max	$V_{IN} = 0.5V \text{ (Except } \overline{PL}\text{)}$ $V_{IN} = 0.5V \text{ (}\overline{PL}\text{)}$	
los	Output Short-Circuit Current		-60		- 150	mA	Max	V _{OUT} = 0V	
Icc	Power Supply Curren	t		70	100	mA	Max	V _O = HIGH	

AC Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	54F/74F T _A = +25°C V _{CC} = +5.0V C _L = 50 pF			54F T _A , V _{CC} = Mil C _L = 50 pF		74F T _A , V _{CC} = Com C _L = 50 pF		Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Max]	
f _{max}	Maximum Clock Frequency	50	65				50		MHz	2-1
t _{PHL}	Propagation Delay PL to SP	6.0	10.0	13.0			5.0	14.5	ns	2-3
t _{PHL}	Propagation Delay PL to S ± B	5.5	9.5	12.0		·	4.5	13.5	ns	2-3
t _{PLH}	Propagation Delay CP to SP	4.0 4.5	6.5 8.0	9.0 10.5			3.5 4.0	10.0 12.0	ns	2-3
t _{PLH}	Propagation Delay CP to S±B	4.0 4.0	7.0 7.0	9.0 9.0			3.5 3.5	10.0 10.0	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol		54F/74F			5	4F	7	4F		
	Parameter		$A = +25^{\circ}$ $CC = +5.$			/cc = /iii	T _A , V _{CC} = Com		Units	Fig. No.
		Min	Тур	Max	Min	Max	Min	Max		
t _s (H) t _s (L)	Setup Time, HIGH or LOW K to CP	9.0 9.0					10.0 10.0		ns	2-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW K to CP	2.0 2.0					2.0 2.0			
t _s (H) t _s (L)	Setup Time, HIGH or LOW Y to CP	15.0 15.0					15.0 15.0		_ ns	2-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW Y to CP	2.0 2.0					2.0 2.0			
t _s (H) t _s (L)	Setup Time, HIGH or LOW X to PL	3.0 6.0					4.0 7.0		_ ns	2-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW X to PL	2.0 4.0					2.0 4.0			
t _s (H) t _s (L)	Setup Time, HIGH or LOW B _n to CP	7.0 7.0					8.0 8.0		ns	2-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW B _n to CP	0 0					0 0		. 115	
t _s (H) t _s (L)	Setup Time, HIGH or LOW A/\$ to CP	12.0 12.0					13.0 13.0		ns	2-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW A/S to CP	0 0					0 0			
t _s (H) t _s (L)	Setup Time, HIGH or LOW B_{n-1} to CP	5.0 5.0					5.0 5.0		ns	2-6
t _h (H) t _h (L)	Hold Time, HIGH or LOW B_{n-1} to CP	1.0 1.0					2.0 2.0			
t _W (L)	PL Pulse Width, LOW	6.5					7.0		ns	2-4
t _W (H) t _W (L)	CP Pulse Width HIGH or LOW	7.0 7.0					7.0 7.0		ns	2-4
t _{rec}	Recovery Time PL to CP	6.0					10.0		ns	2-6