54F/74F784 ## 8-Bit Serial/Parallel Multiplier with Adder/Subtractor ## **General Description** The 'F784 is an 8-bit by 1-bit sequential logic element that multiplies two numbers represented in twos complement notation. The device implements Booth's algorithm internally to produce a twos complement product that needs no subsequent correction. In addition to the serial product output (SP), an S \pm B output is obtained with an internal adder/subtractor stage which adds a B bit to the SP product. Parallel inputs accept and store an 8-bit multiplicand (X_0-X_7) . The add/subtract (\$\overline{A}/S), \$B_n\$ and \$B_{n-1}\$ inputs control the internal adder/subtractor stage. The multiplier word is then applied to the Y input in a serial bit stream, least significant bit first. The product is clocked out at the SP output and the product \pm B at the S \pm B output delayed by one clock cycle. Both appear least significant bit first. The K input is used for expansion to longer X words, using two or more 'F784 devices by connecting the output (SP) of one device to the K input of the other device. The Mode Control (M) input is used to establish the most significant device. An asynchronous Parallel Load ($\overline{\text{PL}}$) input clears the internal flip-flops to the start condition and enables the X latches to accept new multiplicand data. The Parallel Load ($\overline{\text{PL}}$) also clears the outputs (SP and S \pm B). #### **Features** - Twos complement multiplication - 8-bit by 1-bit sequential logic element - Includes product output (SP) and product ±B output (S±B) - Parallel inputs accept and store an 8-bit multiplicand (X₀-X₇) - K input is used for expansion to longer X words - Combines the 'F384 and 'F385 in one chip #### Ordering Code: See Section 5 ### **Logic Symbol** ## Connection Diagrams ## Input Loading/Fan-Out: See Section 2 | Pin
Names | Description | 54F/74F (U.L.)
High/Low | l _{IH} /l _{IL}
l _{OH} /l _{OL} | | | |--------------------------------|---|----------------------------|--|--|--| | CP | Clock Pulse Input (Active Rising Edge) | 1.0/1.0 | 20 μA/ – 0.6 mA | | | | K | Serial Expansion Input | 1.0/1.0 | 20 μA/-0.6 mA | | | | М | Mode Control Input | 1.0/1.0 | 20 μA/ – 0.6 mA | | | | PL | Asynchronous Parallel Load Input (Active LOW) | 1.0/2.0 | 20 μA/ – 1.2 mA | | | | X ₀ -X ₇ | Multiplicand Data Inputs | 1.0/1.0 | 20 μA/ – 0.6 mA | | | | Υ | Serial Multiplier Input | 1.0/1.0 | 20 μA/ – 0.6 mA | | | | Ā/S | Add/Subtract | 1.0/1.0 | 20 μA/-0.6 mA | | | | B _n | Serial B Input | 1.0/1.0 | 20 μA/-0.6 mA | | | | B _{n-1} | Delayed Serial B Input | 1.0/1.0 | 20 μA/-0.6 mA | | | | S±B | Serial X • Y ± B Output | 50/33.3 | - 1 mA/20 mA | | | | SP | Serial X ◆ Y Product Output | 50/33.3 | -1 mA/20 mA | | | ## **Functional Description** The 'F784 is a serial-parallel 8-bit multiplier. Also included is an adder/subtractor stage. The X word (multiplicand) is loaded into a register while simultaneously clearing the arithmetic cell flip-flops in preparation for a multiplication. The Y word (multiplier) is clocked in serially. (See *Figure A*). Expansion capability is provided via the M and K inputs. The K (cascade) input is connected to the S₀ output of the more significant chip. The M (mode) input is used to determine whether the multiplicand is to be treated as a two's complement or unsigned number. The 'F784 has logic to enable complex arithmetic to be performed. A serial adder/subtractor enables constants to be added to the product. Typically this feature would be used in FFT butterfly networks to reduce package count and power. Two outputs are provided: the product XY and the product XY \pm B. Because of the internal adder/subtractor, a speed advantage is gained when using the 'F784 over using a separate adder and multiplier chip. (Refer to Figure B). During a multiplication operation, the first clock cycle is used to load both the X word (multiplicand) and the first bit of the Y word (operand) into the input registers. At this time there is no valid data at the SP output so that B bits added will not give the correct sum output. In order to load the first B bit on the same clock as X and Y, a B_{n-1} input is provided which delays the B data by one clock cycle. Thus, a valid output results. | | Input | s | Function | |-----|----------------|------------------|--| | Ā/S | Bn | B _{n-1} | Tullonon | | L | Н | Cn | Add C_n to product (C_n loaded at the same time as Y_n) | | L | Cn | H | Add C _n to product (C _n must be delayed one clock cycle) | | Н | Н | C _n | Subtract C _n from product (C _n loaded at the same time as Y _n) | | Н | C _n | Н | Subtract C _n from product (C _n must be delayed one clock cycle) | $L = LOW Voltage Level H = HIGH Voltage Level C_n = Constant$ #### **Function Table** | Inputs | | | | | | Internal | Ot | utputs | Function | | | |--------|-------------|----|----|----|------------------|----------|-----|----------|---|--|--| | PL | PL CP K M X | | Xi | Υ | Y _{a-1} | SP | S±B | Function | | | | | Х | × | L | L | Х | Х | Х | X | Х | Most Significant Multiplier Device | | | | χ _ | Х | cs | Н | Х | Х | Х | Х | х | Devices Cascaded in Multiplier String | | | | L | Х | X | Х | OP | Х | L | L | L | Load New Multiplicand and Clear
Internal Sum and Carry Registers | | | | н | Х | х | Х | Х | Х | Х | Х | × | Device Enabled | | | | Н | 1 | × | Х | Х | L | L | Р | P±B | Shift Sum Register | | | | н | 1 | X | Х | Х | L | Н | Р | P±B | Add Multiplicand to Sum
Register and Shift | | | | н | 1 | Х | Х | Х | Н | L | Р | P±B | Subtract Multiplicand from Sum
Register and Shift | | | | Н | <u></u> ↑ | X | Х | X | I | Н | Р | P±B | Shift Sum Register | | | H = HIGH Voltage Level L = LOW Voltage Level ^{↑ =} LOW-to-HIGH Transition CS = Connected to SP output of high order device $OP = X_i$ latches open for new data (i = 0-7) P = Output as required per Booth's algorithm P±B = Product ± a constant (delayed one clock cycle) X = Immaterial # **Logic Diagram** TL/F/10230-4 Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. # **Timing Waveforms** TL/F/10230-5 ## Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Storage Temperature -65°C to $+150^{\circ}\text{C}$ Ambient Temperature under Bias -55°C to +125°C Junction Temperature under Bias -55°C to +175°C V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA Voltage Applied to Output in HIGH State (with V_{CC} = 0V) Standard Output TRI-STATE® Output -0.5V to V_{CC} -0.5V to +5.5V Current Applied to Output in LOW State (Max) twice the rated IOL (mA) Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs. # Recommended Operating Conditions Free Air Ambient Temperature Military $-55^{\circ}\text{C to} + 125^{\circ}\text{C}$ Commercial 0°C to +70°C Supply Voltage Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V ## **DC Electrical Characteristics** | Symbol | Parameter - | | | 54F/74 | = | Units | Vcc | Conditions | | |------------------|--------------------------------------|--|-------------------|--------|--------------|----------|----------------------------|--|--| | | | | Min | Тур | Max | Omis | ¥66 | | | | V _{IH} | Input HIGH Voltage | 2.0 | | · | ٧ | | Recognized as a HIGH Signa | | | | V _{IL} | Input LOW Voltage | Ī | | | 0.8 | ٧ | | Recognized as a LOW Signal | | | V _{CD} | Input Clamp Diode Vo | oltage | | | -1.2 | ٧ | Min | I _{IN} = -18 mA | | | V _{OH} | Output HIGH
Voltage | 54F 10% V _{CC}
74F 10% V _{CC}
74F 5% V _{CC} | 2.5
2.5
2.7 | | | ٧ | Min | $I_{OH} = -1 \text{ mA}$
$I_{OH} = -1 \text{ mA}$
$I_{OH} = -1 \text{ mA}$ | | | V _{OL} | Output LOW
Voltage | 54F 10% V _{CC}
74F 10% V _{CC} | | | 0.5
0.5 | ٧ | Min | I _{OL} = 20 mA
I _{OL} = 20 mA | | | l _{IH} | Input HIGH
Current | 54F
74F | | | 20.0
5.0 | μА | Max | V _{IN} = 2.7V | | | I _{BVI} | Input HIGH Current
Breakdown Test | 54F
74F | | | 100
7.0 | μА | Max | V _{IN} = 7.0V | | | ICEX | Output HIGH
Leakage Current | 54F
74F | | | 250
50 | μΑ | Max | V _{OUT} = V _{CC} | | | V _{ID} | Input Leakage
Test | 74F | 4.75 | | | ٧ | 0.0 | $I_{\text{ID}} = 1.9 \mu\text{A}$ All Other Pins Grounded | | | lod | Output Leakage
Circuit Current | 74F | , | | 3.75 | μΑ | 0.0 | V _{IOD} = 150 mV
All Other Pins Grounded | | | I _{IL} | Input LOW Current | - | | | -0.6
-1.2 | mA
mA | Max
Max | $V_{IN} = 0.5V \text{ (Except } \overline{PL}\text{)}$
$V_{IN} = 0.5V \text{ (}\overline{PL}\text{)}$ | | | los | Output Short-Circuit Current | | -60 | | - 150 | mA | Max | V _{OUT} = 0V | | | Icc | Power Supply Curren | t | | 70 | 100 | mA | Max | V _O = HIGH | | # AC Characteristics: See Section 2 for Waveforms and Load Configurations | Symbol | Parameter | 54F/74F
T _A = +25°C
V _{CC} = +5.0V
C _L = 50 pF | | | 54F T _A , V _{CC} = Mil C _L = 50 pF | | 74F T _A , V _{CC} = Com C _L = 50 pF | | Units | Fig.
No. | |------------------|--------------------------------|--|------------|-------------|--|-----|--|--------------|-------|-------------| | | | Min | Тур | Max | Min | Max | Min | Max |] | | | f _{max} | Maximum Clock Frequency | 50 | 65 | | | | 50 | | MHz | 2-1 | | t _{PHL} | Propagation Delay PL to SP | 6.0 | 10.0 | 13.0 | | | 5.0 | 14.5 | ns | 2-3 | | t _{PHL} | Propagation Delay PL to S ± B | 5.5 | 9.5 | 12.0 | | · | 4.5 | 13.5 | ns | 2-3 | | t _{PLH} | Propagation Delay
CP to SP | 4.0
4.5 | 6.5
8.0 | 9.0
10.5 | | | 3.5
4.0 | 10.0
12.0 | ns | 2-3 | | t _{PLH} | Propagation Delay
CP to S±B | 4.0
4.0 | 7.0
7.0 | 9.0
9.0 | | | 3.5
3.5 | 10.0
10.0 | ns | 2-3 | # AC Operating Requirements: See Section 2 for Waveforms | Symbol | | 54F/74F | | | 5 | 4F | 7 | 4F | | | |--|---|--------------|------------------------------|-----|-----|---------------|---|-----|-------|-------------| | | Parameter | | $A = +25^{\circ}$ $CC = +5.$ | | | /cc =
/iii | T _A , V _{CC} =
Com | | Units | Fig.
No. | | | | Min | Тур | Max | Min | Max | Min | Max | | | | t _s (H)
t _s (L) | Setup Time, HIGH or LOW
K to CP | 9.0
9.0 | | | | | 10.0
10.0 | | ns | 2-6 | | t _h (H)
t _h (L) | Hold Time, HIGH or LOW
K to CP | 2.0
2.0 | | | | | 2.0
2.0 | | | | | t _s (H)
t _s (L) | Setup Time, HIGH or LOW
Y to CP | 15.0
15.0 | | | | | 15.0
15.0 | | _ ns | 2-6 | | t _h (H)
t _h (L) | Hold Time, HIGH or LOW
Y to CP | 2.0
2.0 | | | | | 2.0
2.0 | | | | | t _s (H)
t _s (L) | Setup Time, HIGH or LOW
X to PL | 3.0
6.0 | | | | | 4.0
7.0 | | _ ns | 2-6 | | t _h (H)
t _h (L) | Hold Time, HIGH or LOW
X to PL | 2.0
4.0 | | | | | 2.0
4.0 | | | | | t _s (H)
t _s (L) | Setup Time, HIGH or LOW
B _n to CP | 7.0
7.0 | | | | | 8.0
8.0 | | ns | 2-6 | | t _h (H)
t _h (L) | Hold Time, HIGH or LOW
B _n to CP | 0
0 | | | | | 0
0 | | . 115 | | | t _s (H)
t _s (L) | Setup Time, HIGH or LOW
A/\$ to CP | 12.0
12.0 | | | | | 13.0
13.0 | | ns | 2-6 | | t _h (H)
t _h (L) | Hold Time, HIGH or LOW
A/S to CP | 0
0 | | | | | 0
0 | | | | | t _s (H)
t _s (L) | Setup Time, HIGH or LOW B_{n-1} to CP | 5.0
5.0 | | | | | 5.0
5.0 | | ns | 2-6 | | t _h (H)
t _h (L) | Hold Time, HIGH or LOW B_{n-1} to CP | 1.0
1.0 | | | | | 2.0
2.0 | | | | | t _W (L) | PL Pulse Width, LOW | 6.5 | | | | | 7.0 | | ns | 2-4 | | t _W (H)
t _W (L) | CP Pulse Width
HIGH or LOW | 7.0
7.0 | | | | | 7.0
7.0 | | ns | 2-4 | | t _{rec} | Recovery Time PL to CP | 6.0 | | | | | 10.0 | | ns | 2-6 |