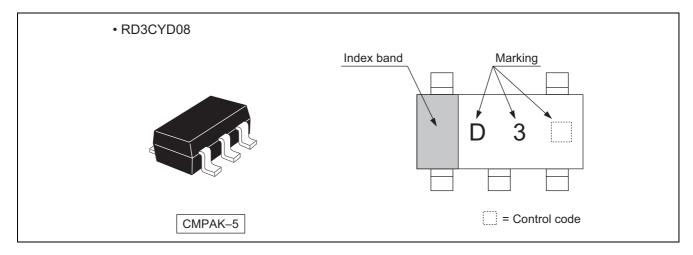


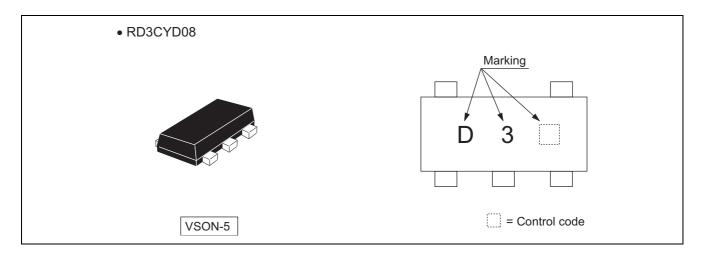
RD3CYD08

IGBT Driver

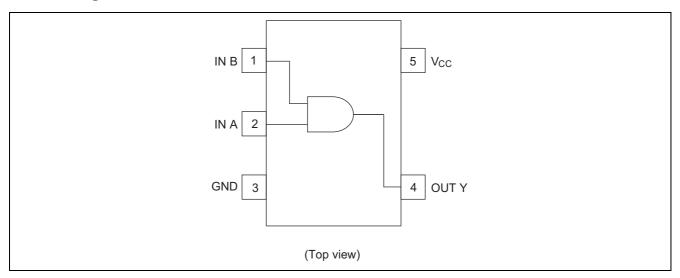
REJ03D0179-0500 Rev.5.00 Jan 10, 2008

Description

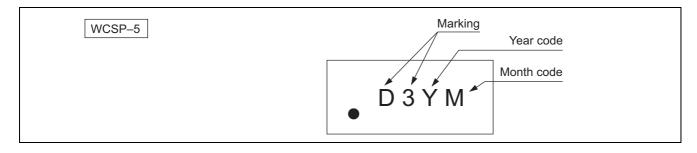

The RD3CYD08 has two-input AND gate in a 5 pin package. This product is suited as IGBT Driver IC for the strobe.

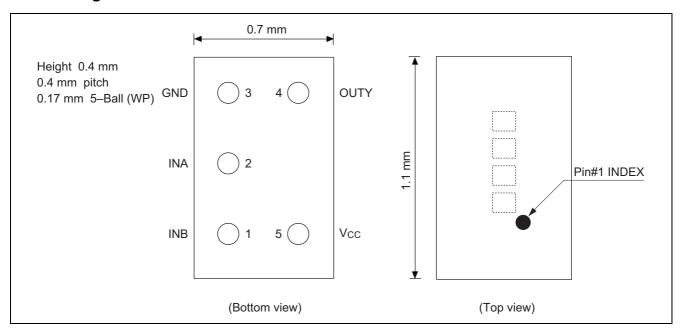

Features

- Supplied on emboss taping for high-speed automatic mounting.
- Supply voltage range: 2.0 to 3.6 V
- Operating temperature range : -40 to +85°C
- High drive current
 - I_{OH} short = -130 mA (typ) (@V_{CC} = 3.3 V)
- Low sink current
 - I_{OL} short = 45 mA (typ) (@ V_{CC} = 3.3 V)
- Ordering Information


Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
RD3CYD08CME	CMPAK-5 pin	PTSP0005ZC-A (CMPAK-5V)	СМ	E (3,000 pcs/reel)
RD3CYD08VSE	VSON-5pin	PUSN0005KA-A (TNP-5DV)	VS	E (3,000 pcs/reel)
RD3CYD08WPE	WCSP-5pin	SXBG0005LB-A (TBS-5CV)	WP	E (3,000 pcs/reel)

Outline and Article Indication

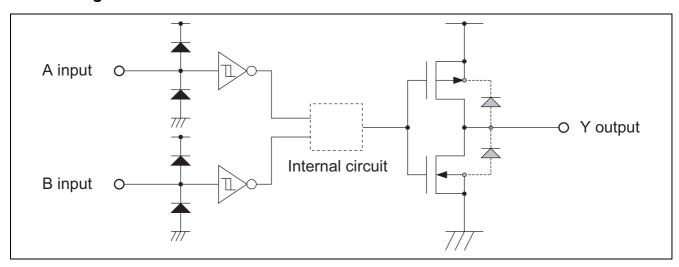



Pin Arrangement

Article Indication

Pin Arrangement

Logic Diagram



Function Table

Inp	Output Y	
Α	В	Output 1
L	L	L
Н	L	L
L	Н	L
Н	Н	Н

H : High level L : Low level

Block Diagram

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	V _{CC}	-0.5 to 4.6	V	
Input voltage range *1	VI	-0.5 to $V_{CC} + 0.5$	V	
Output voltage range *1, 2	Vo	-0.5 to $V_{CC} + 0.5$	V	
Input clamp current	I _{IK}	±50	mA	$V_I < 0$ or $V_I > V_{CC}$
Output clamp current	I _{OK}	±50	mA	$V_O < 0$ or $V_O > V_{CC}$
Continuous output current	I-	-200	mA	V _O = 0
Continuous output current	lo	100	IIIA	$V_O = V_{CC}$
Continuous current through V _{CC} or GND	I _{CC} or I _{GND}	±200	mA	
Maximum power dissipation at Ta = 25°C (in still air) *3	P _T	200	mW	
Storage temperature	Tstg	-65 to 150	°C	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

- 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. When Over shoot / Under shoot pulse width is under 10 ns, input and output voltage permit to -1.5 V or V_{CC}+1.5V.
- 2. This value is limited to 4.6 V maximum.
- 3. The maximum package power dissipation was calculated using a junction temperature of 150°C.

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V_{CC}	2.0	3.6	V	
Input voltage range	VI	0	V _{CC}	V	
Output voltage range	Vo	0	V _{CC}	V	
Operating free-air temperature	Та	-40	85	°C	

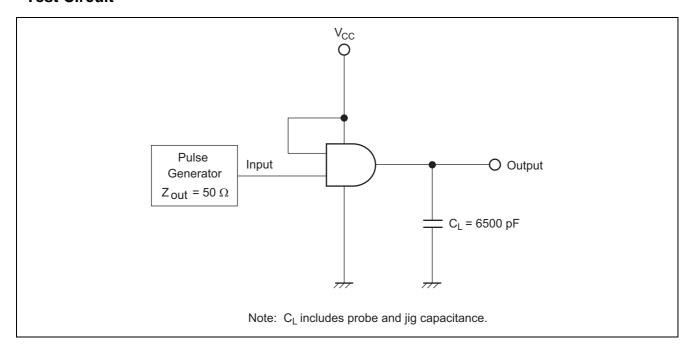
Note: Unused or floating inputs must be held high or low.

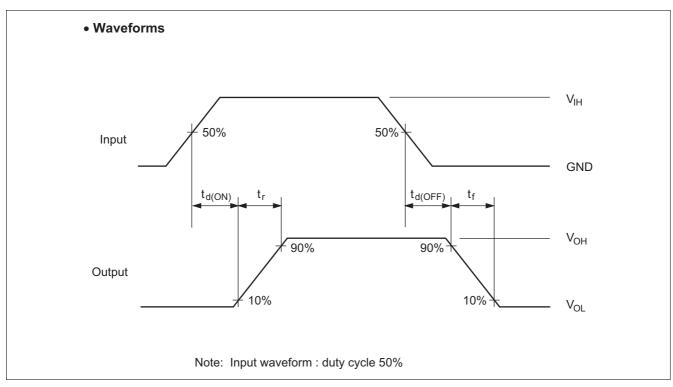
Electrical Characteristic

Ta = -40 to $85^{\circ}C$

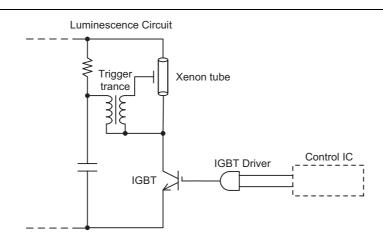
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	Test condition
	V _{IH}	2.5	1.7	_	_		
	VIH	3.0 to 3.6	2.0	_	_		
Input voltage	V _{IL}	2.5	_	_	0.7	V	
input voitage	V IL	3.0 to 3.6	_	_	0.8	\ \	
	V	2.5	_	0.35	_		
	V _H	3.3	_	0.40	_		
	I _{OH} short	2.5	- 55	-75	-95		V _O = 0 V
Output current		3.3	-100	-130	-160	mA	v _O = 0 v
Output current	I _{OL} short	2.5	20	30	40	IIIA	$V_O = V_{CC}$
		3.3	30	45	60		AO = ACC
Input current	I _{IN}	3.6	_	_	±5	μΑ	$V_{IN} = 3.6 \text{ V or GND}$
Quiescent	laa	3.6			10	μА	$V_{IN} = V_{CC}$ or GND,
supply current	I _{CC}	5.0			10	μΑ	I _O = 0
Input capacitance	C_{IN}	3.3	_	2.5	_	pF	$V_{IN} = V_{CC}$ or GND

Switching Characteristics


 $V_{\rm CC} = 2.5 \ V$


Item	Symbol	Ta:	= -40 to 8	5°C	Unit	Test	FROM	ТО
item	Symbol	Min	Тур	Max	Oilit	Conditions	(Input)	(Output)
Propagation delay time	t _{d(ON)}		_	65				
Fropagation delay time	t _{d(OFF)}			200	ne	$C_L = 6500 \text{ pF}$	A or B	V
Output rise time	t _r	_	_	700	ns	CL = 6300 pr	AUID	ī
Output fall time	t _f	_	_	2000				

 $V_{CC}=3.3\pm0.3\ V$

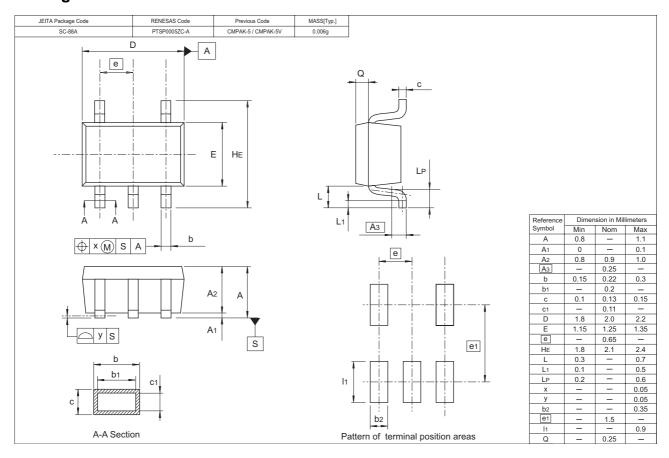

ltem	Symbol	Ta = -40 to 85°C		Unit	Test	FROM	ТО	
item	Syllibol	Min	Тур	Max	Oilit	Conditions	(Input)	(Output)
Propagation dolay time	t _{d(ON)}		_	50				
Propagation delay time	$t_{\text{d(OFF)}}$			160	ne	$C_L = 6500 \text{ pF}$	A or B	Y
Output rise time	t _r		_	500	ns	CL = 0300 pi		
Output fall time	t _f	_	_	1500				

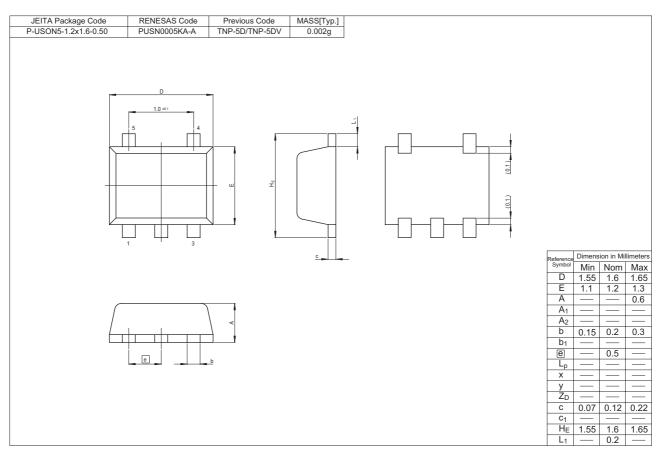
Test Circuit

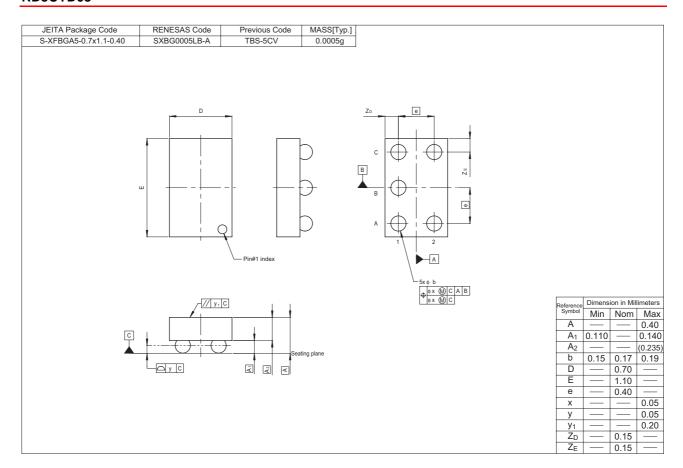
Application Note (Strobe circuit)

Combination example

SYSTEM	IGBT	IGBT Driver	Control IC
3.3 V	RJP4002ANS RJP4002ASA	RD3CYD08 RD3CYDT08	3.3 V signal
5.0 V	RJP4003ANS RJP4003ASA	RD5CYD08 ← RD5CYDT08 ←	5.0 V signal 3.3 V signal


IGBT Driver Lineup


TYPE No.	Specification	Package
RD3CYD08	V_{CC} = 2.0 to 3.6V CMOS lever input $I_{OH}(short)$ = -130mA(typ) @ V_{CC} = 3.3V $I_{OL}(short)$ = 45mA(typ) @ V_{CC} = 3.3V	CMPAK-5 VSON-5 WCSP-5
RD3CYDT08	V_{CC} = 2.0 to 3.6V CMOS lever input $I_{OH}(short)$ = -130mA(typ) @ V_{CC} = 3.3V $I_{OL}(short)$ = 45mA(typ) @ V_{CC} = 3.3V	CMPAK-5
RD5CYD08	V_{CC} = 4.0 to 6.0V CMOS lever input $I_{OH}(short)$ = -130mA(typ) @ V_{CC} = 5.0V $I_{OL}(short)$ = 40mA(typ) @ V_{CC} = 5.0V	CMPAK-5
RD5CYDT08	V_{CC} = 4.0 to 6.0V TTL lever input $I_{OH}(short)$ = -130mA(typ) @ V_{CC} = 5.0V $I_{OL}(short)$ = 40mA(typ) @ V_{CC} = 5.0V	GWII AR-3


IGBT Lineup

TYPE No.	Specification	Package
RJP4002ANS	V _{CES} = 400V(max), I _{CP} = 150A(max), 2.5V drive	VSON-8
RJP4002ASA	V _{CES} = 400V(max), I _{CP} = 150A(max), 2.5V drive	TSSOP-8
RJP4003ANS	V _{CES} = 400V(max), I _{CP} = 150A(max), 4V drive	VSON-8
RJP4003ASA	V _{CES} = 400V(max), I _{CP} = 150A(max), 4V drive	TSSOP-8

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510