

www.ti.com

HD3SS0001 SLAS827 -FEBRUARY 2012

10.3Gbps Thunderbolt[™] and DisplayPort[™] Switch

Check for Samples: HD3SS0001

•

FEATURES

HOST APPLICATIONS

Thunderbolt[™] Applications

- Compatible with DisplayPort[™] 1.2 and Thunderbolt[™]
 - Supports DP and DP++ Configurations
 - Handles HPD (5V tolerant) and CA_DET
 - Supports AUX and DDC MUX
- Wide -3dB Differential BW of over 10GHz for 10G Link
- Excellent Dynamic Characteristics (at 5GHz)
 - Crosstalk = -30dB
 - Isolation = -20dB
 - Insertion Loss = -1.5dB
 - Return Loss = –16dB
 - Max Bit-Bit Skew = 4 ps
- VDD Operating Range 3.3 V ±10%
- Small 3.5 mm x 5.5 mm, 28-Pin TQFN Package
- **Reduced Power Consumption in Detect and Sleep Power Modes**

DESCRIPTION

HD3SS0001 is a high-speed passive switch designed to support low speed and high speed signals required for Thunderbolt[™](TBT) applications using the mDP connector. The HD3SS0001 switches between DDC, AUX, and the 10Gbps TBT signal in order to support DisplayPort, Dual Mode DisplayPort, and ThunderboltTM. The HD3SS0001 also switches between the ThunderboltTM Low Speed UART transmit/receive pair and DisplayPort Main Link 1 (ML1) pair. The device supports 5.4Gbps for DisplayPort and 10.3Gbps for Thunderbolt. Switch control is determined by three control pins and the mDP connector pin used for cable detect.

The HD3SS0001 is offered in a 28-pin QFN package and specified to operate from a single supply voltage of 3.3V over the full industrial temperature range of -40°C to 85°C.

ORDERING INFORMATION⁽¹⁾

PART NUMBER	PART MARKING	PACKAGE
HD3SS0001RLFR	HD3SS0001	28-pin RLF Reel (Large)

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of ÆÀ Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Thunderbolt is a trademark of Intel Corporation in the U.S. and/or other countries.

DisplayPort is a trademark of VESA Standards Association.

HD3SS0001

SLAS827 -FEBRUARY 2012

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

FUNCTIONAL DIAGRAM

TRUTH TABLE

www.ti.com

		Control L	ines		Device & PU/PD Configurations			
Device Mode States	60		10G_EN	TBC-4 (CA_Detect)	MUX	Outputs		
	SU (System Power State)	DP_EN			2:1 Mux (DP ML)	3:1 Mux (TB 10Gbps)	Integrated PU/PD State	
Thunderbolt 10G Mode	1 (System Active)	1	1	X - Don't Care	LSTx & LSRx	TB Rx_1	Off	
Thunderbolt Too Mode	0 (System Sleep)	1	1	X - Don't Care	LSTx & LSRx	3-stated	Off	
Disales Dest Made	1 (System Active)	0	0	0	DP ML1	AUX	On	
Display Fort Mode	0 (System Sleep)	0	0	0	3-stated	3-stated	On	
TMDS Mode	1 (System Active)	0	0	1	DP ML1	DDC	Off	
TMDS Mode	0 (System Sleep)	0	0	1	3-stated	3-stated	Off	
Datast Made	1 (System Active)	1	0	X - Don't Care	LSTx & LSRx	3-stated	On	
Detect Mode	0 (System Sleep)	1	0	X - Don't Care	LSTx & LSRx	3-stated	On	
Sleep Power Mode/ Invalid State Modes	X - Don't Care	0	1	X - Don't Care	3-stated	3-stated	Off	

MUX PIN CONNECTION TABLE⁽¹⁾

CONNECTOR SIDE PIN	CONTROLLER SIDE PIN
TBC-16	DDC_SCL or AUX(p) or TB Rx_1(p)
TBC-18	DDC_SDA or AUX(n) or TB Rx_1(n)
TBC-9	ML1(p) or LSTx
TBC-11	ML1(n) or LSRx
TBC-4	CA_DET
TBC-2	HPD

(1) The HD3SS0001 can tolerate polarity inversions for the differential signals denoted by the (p) and (n) terminology to ease potential board routing issues. The LSTx/LSRx cannot be swapped since they are buffered and therefore uni-directional. Also, note the integrated pullup on TBC-18 and the integrated pulldown on TBC-16 cannot be swapped.

PIN FUNCTIONS

PIN			DESCRIPTION				
NUMBER	NAME	1/0	DESCRIPTION				
27 28	AUX(p) AUX(n)	I/O	Controller Side AUX Positive Signal Controller Side AUX Negative Signal				
5 6	TB Rx_1(p) TB Rx_1(n)	Ο	Controller Side 10Gbps Positive Signal Controller Side 10Gbps Negative Signal				
8 9	ML1(p) ML1(n)	I	Controller Side Channel 1, DisplayPort Main Link 1 Positive Signal Controller Side Channel 1, DisplayPort Main Link 1 Negative Signal				
20 19	TBC-16 TBC-18	I/O	Connector Side 10G or AUX Positive Signal or DDC CLK with integrated pulldown Connector Side 10G or AUX Negative Signal or DDC Data with integrated pullup				
17 16	TBC-9 TBC-11	I/O	Connector Side DP Main Link 1 Positive Signal or UART TX Connector Side DP Main Link 1 Negative Signal or UART RX				
25 26	DDC_SCL DDC_SDA	I/O	Controller Side DDC ClockController Side DDC Data				
2	CA_DET	0	Controller Side Cable Detect				
23	TBC-4	I	Connector Side Cable Detect with integrated pulldown				
3	HPD	0	Controller Side Hot Plug Detect				
22	TBC-2	I	Connector Side Hot Plug Detect				

www.ti.com

ISTRUMENTS

EXAS

PIN FUNCTIONS (continued)

PIN		1/0	DESCRIPTION				
NUMBER	NAME	1/0	DESCRIPTION				
11 12	LSTx LSRx	I/O	Controller Side UART TX SignalController Side UART RX Signal				
10 13 14	S0 DP_EN 10G_EN	I	Control Lines for configuring device. S0 and 10G_EN incorporate integrated pulldowns and DP_EN incorporates a pullup. Therefore, the default device state will be "Detect Mode" per the Truth Table provided these lines are not driven.				
1, 15, 24	VDD	Supply	Positive power supply voltage				
4, 7, 18, 21, Center Pad	GND	Supply	Negative power supply voltage				

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾

Over operating free-air temperature range (unless otherwise noted)

		VAL	VALUE	
		MIN	MAX	
Supply voltage range ⁽²⁾	V _{DD}	-0.5	4	V
Voltage range	Differential I/O	-0.5	4	v
	Control pin/buffers	-0.5	VDD+0.5	V
Electrostatic	Human body model ⁽³⁾		±1,500	v
discharge	Charged-device model ⁽⁴⁾		±500	V
Continuous power	dissipation		See Therma	I Table

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values, except differential voltages, are with respect to network ground terminal. (2)

Tested in accordance with JEDEC/ESDA JS-001-2011 (3) (4)

Tested in accordance with JEDEC JESD22 C101-E

THERMAL INFORMATION

		HD3SS0001	
		28-PIN TQFN (RLF)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	37.9	
θ _{JCtop}	Junction-to-case (top) thermal resistance	34.4	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	1.4	°C ///
θ_{JB}	Junction-to-board thermal resistance	8.7	C/VV
Ψ _{JT}	Junction-to-top characterization parameter	0.6	
Ψ_{JB}	Junction-to-board characterization parameter	8.5	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. THERMAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

PARAME	TER	TEST CONDITIONS	MIN	TYP	MAX ⁽¹⁾	UNIT
PD	Device power dissipation			4.6	7.6	mW
P _(Detect)	Device power dissipation in detect mode				5	mW
P _{Sleep}	Device power dissipation in sleep mode				15	μW

(1) The maximum rating is simulated under 3.6V VDD.

MECHANICAL DATA

- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. JEDEC MO-241 package registration pending.

THERMAL PAD MECHANICAL DATA

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
HD3SS0001RLFR	PREVIEW	VQFN	RLF	28	3000	TBD	Call TI	Call TI	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated