Technical Data Datasheet 6132, Rev. -

SiC FET Full Bridge with Integrated Gate Drive

FEATURES:

- 1200VDC max voltage
- 60A max current
- Compact package
- Temperature range -55°C to +125°C
- Efficient conduction cooled design
- Total weight: 1.10 oz.

DESCRIPTION:

This SiC FET Full Bridge power module can be used in various applications including, but not limited to, power converters and motor drives. The integrated gate drive simplifies the system design and optimizes the dynamic performance of the bridge.

The small size of this complete module makes it ideal for high reliability industrial, aerospace, and military applications.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNIT
DC Bus Supply Voltage			1200	V
PWM Switching Frequency	Fsw	-	500	kHz
Continuous Drain Current, each Leg of Full Bridge	ID	-	60	А
Pulsed Drain Current, each Leg of Full Bridge Pulse Width limited by T _{jmax}	I _{D(pulse)}	-	120	A
Junction Temperature	T _{jmax}	-55	150	°C
Storage Temperature	T _{s max}	-55	150	°C
Operating Temperature on Cold Plate	T _{c max}	-55	125	°C

EMICONDUCTOR

SENSITRON

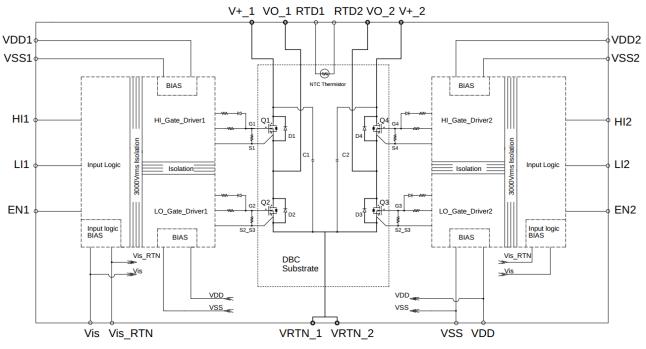


Figure 1 – Block Diagram

Connections for Full Bridge Application

V+_1, V+_2:	both pins must connect to DC Bus power supply's Positive, no internal connection between these two pins
VRTN_1,VRTN_2:	both pins must connect to DC Bus power supply's Return, VRTN_1 and VRTN_2 are internally tied together
VO_1, VO_2:	output connections
HI1, LI1, HI2, LI2:	gate control inputs; internally bypassed to V _{is_RTN} with 1.0kohm resistor and 22pF capacitor, external in-line resistors [330hm, 590hm] recommended
EN1, EN2:	enable driver outputs; internally bypassed to _{Vis_RTN} with 1.0kohm resistor and 1nF capacitor, external in-line resistors [33ohm, 59ohm] recommended
Vis /Vis, Vis_RTN:	power supply input to logic circuitry
VDD /VDD, VSS:	power supply input to LO_Gate_Driver1 and LO_Gate_Driver2 circuitry
VDD1 /VDD1, VSS1:	power supply input HI_Gate_Driver1 circuitry
VDD2 /VDD2, VSS2:	power supply input for HI_Gate_Driver2 circuitry
RTD1, RTD2	connection to internal thermistor

 Requirements to DC Bus power supply, |V_{is}|, |VDD|, |VDD1| and |VDD2|: Minimum 2000VDC isolation between |VDD|, |VDD1| and |VDD2| Minimum 2000VDC isolation between |VDD1|/|VDD2| power supplies and DC Bus power supply.
Power supply to |VDD| needs to be isolated to DC Bus power supply: VSS is internally clamped 3.6V below VRTN_1/VRTN_2, for negative gate drive 3000VRMS isolation between power supply to |V_{is}| and DC Bus/|VDD1|/|VDD2| power supplies

is recommended

^{©2022} Sensitron Semiconductor • Ph (631) 586 7600 • Fax (631) 242 9798 • www.sensitron.com • sales@sensitron.com

Technical Data Datasheet 6132, Rev. -

ELECTRICAL CHARACTERISTICS OF FULL BRIDGE, PER EACH LEG

TJ=25°C, UNLESS OTHERWISE SPECIFIED.

Production units are tested at room temperature. Low/High temperature operation is guaranteed by design.

SYMBOL	PARAMETER		MIN	TYP	MAX	UNIT
V+_1, V+_2	DC Bus Supply Voltage, to V_RTN1, V_RTN_2	Absolute Max Recommended		- 400	1200 600	VDC
MOSFET	(Q1, Q2, Q3, Q4) Characteristics			1	1	
BV _{DSS}	Drain to Source Breakdown Voltage $I_D = 100 \ \mu$ A, V _{GS} = 0V		1200			VDC
I _D	Continuous Drain Current	T _J = 25°C T _J = 125°C			60 30	A
I _{D(pulse)}	Pulsed Drain Current				120	Α
Vgs	Gate to Source Voltage			-4/+15 Static	-8/+19 Dynamic	VDC
lgss	Gate-Source Leakage Current $V_{GS} = +15V$, $V_{DS} = 0V$			10	250	nA
$V_{\text{GS(th)}}$	Gate Threshold Voltage $I_D = 17.7$ mA, $V_{DS} = V_{GS}$	T」= 25°C T」= 105°C	1.8 -	2.5 2.0	3.6 -	VDC
IDSS	Zero Gate Voltage Drain Current $V_{DS} = 1200 \text{ V}, V_{GS} = 0 \text{V}$		-	1	25	μA
R _{DS(on)}	Drain-Source On-State Resistance $I_D = 50A$, $V_{GS} = +15V$	T _J = 25°C T _J = 105°C	14 -	22 40	30 -	mΩ
Ciss	Input Capacitance			4820		
C_{oss}	Output Capacitance		_	300		pF
Crss	Reverse Transfer capacitance			18		P
	$V_{DS} = 200 \text{ V}, V_{GS} = 0 \text{ V}, f = 100 \text{ kHz}, V$	/ _{AC} = 25 mV				
Q_gs	Gate to Source Charge			49		
\mathbf{Q}_{gd}	Gate to Drain Charge		-	50	-	nC
Q_{g}	Total Gate Charge			162		
	$V_{DS} = 600 \text{ V}, I_D = 50\text{A}, V_{GS} = -4\text{V}/+15\text{V}$					
Anti-paral	llel Diode (D1, D2, D3, D4) Characteris	tics				
VF	Diode Forward Voltage I _F = 20A	T _J = 25°C T _J = 105°C	1.0	1.5 2.0	1.8 -	VDC
IR	Reverse Current	V _R = 1200V	-	35	200	μA
QC	Total Capacitive Charge IF = 20A, VR =400V, di/dt = 150 A/ μs		-	68	-	nC
Internal D	C Link - Snubber Capacitance betwee	en V+_1/V+_2 an	d VRTN_1/V	/RTN_2		
C1, C2	1.2 kV, NP0, ±5%, -55°C to 150°C		-	12	-	nF
Stray indu	lotance			1	1	1
Lstray	between pin 1 and 3 or pin 7 and 6			7.0		nH

Technical Data Datasheet 6132, Rev. -

ELECTRICAL CHARACTERISTICS OF LOGIC AND DRIVER INPUT

TJ=25°C, UNLESS OTHERWISE SPECIFIED.

Production units are tested at room temperature. Low/High temperature operation is guaranteed by design.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
Absolute Maxi	mum Ratings				
Vis	Logic supply voltage, Vis to Vis_RTN	-0.5		20.0	VDC
HI1, LI1, HI2, LI2	Input logic signals to V _{is_RTN} , TTL/CMOS compatible input threshold	-0.5		V _{Vis} +0.5	VDC
VDD, VSS VDD1, VSS1 VDD2, VSS2	Driver side supply voltage	-0.5		22.0	VDC
Recommend C	perating Conditions				
V _{is}	Logic supply voltage, V_{is} to $V_{is_{RTN}}$	3.0		15.0	VDC
VDD, VSS VDD1, VSS1 VDD2, VSS2	Driver side supply voltage	18.0		20.0	VDC
Vis to Vis_GND U	ndervoltage Thresholds				
Vis_ON	UVLO rising threshold	2.5	2.7	2.9	VDC
$V_{\text{is_OFF}}$	UVLO falling threshold	2.3	2.5	2.7	VDC
V _{is_HYS}	UVLO threshold hysteresis		0.2		VDC
VDD-VSS, VDD	01-VSS1, VDD2-VSS2 Undervoltage Thresholds	L	1	1	
	UVLO rising threshold	12.5	13.5	14.5	VDC
	UVLO falling threshold	11.5	12.5	13.5	VDC
	UVLO threshold hysteresis		1.0		VDC
EN1, EN2 Thre	sholds				
Venh	Enable high voltage	2.0			VDC
V _{ENH}	Enable low voltage			0.8	VDC
HI1, LI1, HI2 ar	nd LI2 Thresholds				
	Input logic high threshold voltage	1.6	1.8	2.0	VDC
	Input logic low threshold voltage	0.8	1.0	1.2	VDC
	Input logic threshold hysteresis		0.8		VDC
Switching Cha	racteristics (Vis = 5V, VDD/VDD1/VDD2 = 15V)				
trise	Output rise time, 20% to 80%, 1.8nF capacitor at gate drive output		6	16	ns

Technical Data Datasheet 6132, Rev. -

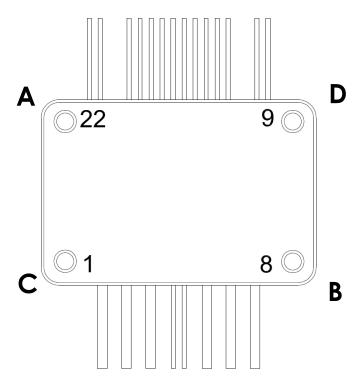
ELECTRICAL CHARACTERISTICS OF LOGIC AND DRIVER INPUT

TJ=25°C, UNLESS OTHERWISE SPECIFIED.

Production units are tested at room temperature. Low/High temperature operation is guaranteed by design.

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
t _{FALL}	Output fall time, 90% to 10%, 1.8nF capacitor at gate drive output		7	12	ns
t PDHL	Propagation delay from logic input to gate drive signal falling edges	14	19	30	ns
t pdlh	Propagation delay from logic input to gate drive signal rising edges	14	19	30	ns
t PWD	Pulse width distortion tpdlh - tpdhl			5	ns
t _{DM}	Propagation delays matching between $V_{\rm G1}$ and $V_{\rm G2},V_{\rm G3}$ and $V_{\rm G4}$			5	ns
NTC Thermisto	r Characteristics (Heraeus Nexensos's M Sens	or)			
R ₀	Resistance @ T _c = 0 °C		1		K Ohm
R _{TOL}	Resistance Tolerance			±0.12	%
	Measuring Current	0.1		0.3	mA
TCR	$TCR = \frac{R_{100} - R_0}{R_0 * 100^{\circ}C}$ R_{100} is resistance at 100°C, R_0 is resistance at 0°C		3850		ppm/K
	Temperature Range	-70		500	°C
Resistance vs Temperature	$ \begin{split} t &>= 0 \ ^{\circ} \\ R(t) &= R_0 * (1 + A * t + B * t^2) \\ t &< 0 \ ^{\circ}\text{C} \\ R(t) &= R_0 * (1 + A * t + B * t^2 + C * \\ & (t - 100 \ ^{\circ}\text{C}) * t^3); \end{split} $	A = 3.9083 B = -5.77 C = -4.18	$5 * 10^{-7}$	°C-1 °C-2 °C-4	
Internal Config	urations				
VSS-VRTN_1 VSS-VRTN_2	VSS is internally clamped below VRTN_1/VTRN_2 for negative gate drive		-3.6		VDC
DT	Internal dead time setting		No		

SENSITRON
SEMICONDUCTOR

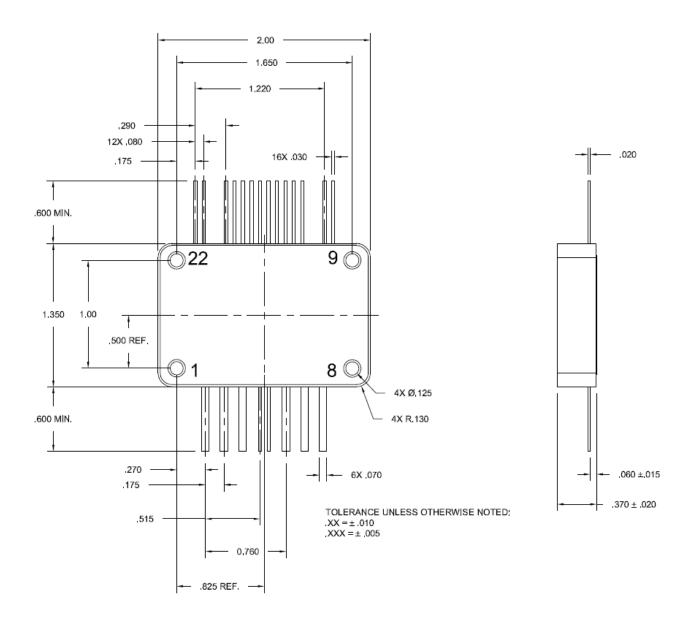

THERMAL AND MECHANICAL CHARACTERISTICS

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
R₀јв_м	MOSFET Junction-to- Base Plate Thermal Resistance Per Leg	-	.339	.390	°C/W
R _{0JB_D}	Diode Junction-to-Base Plate Thermal Resistance Per Leg	-	.884	1.017	°C/W
	All pins to Base Plate/Screw mounting pads	-	-	2500	VDC
Isolations	Logic signals to driver signals V _{is} -VDD V _{is} -VDD1 V _{is} -VDD2	-	-	2500	Vrms
Mounting Torque	see installation instructions #4 Size Screw	3	-	4	in-Ibs.
	Weight Module	-	32	40	g

INSTALLATION INSTRUCTIONS:

Recommended thermal interface material = Laird Tgon 805 (5 mil thick graphite pad)

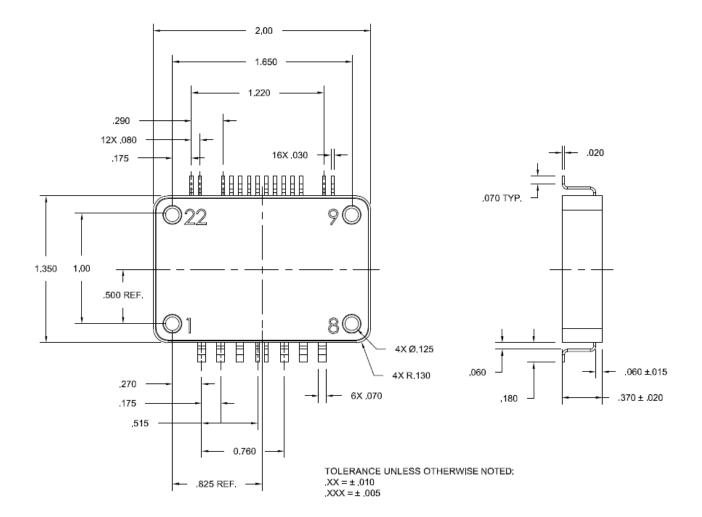
- 1. Fasten screws to 1 to 2 in-lb. of torque in the following sequence: A, B, C, D.
- 2. Fasten screws to final torque in the same sequence: A, B, C, D



Technical Data Datasheet 6132, Rev. -

PART NUMBER DESCRIPTION:

- "SPG060C120P2" Straight Leads
- "SPG060C120P2A" Surface Mount Lead Formation


MECHANICAL OUTLINES (inches)

SPG060C120P2

SPG060C120P2A

PINOUTS

Pin 1: V+_1
Pin 2: VO_1
Pin 3: VRTN_1
Pin 4: VDD
Pin 5: VSS
Pin 6: VRTN_2
Pin 7: VO_2
Pin 8: V+_2

Pin 9: VSS2 Pin 10: VDD2 Pin 11: HI2 Pin 12: LI2 Pin 13: EN2 Pin 14: Vis Pin 15: RTD1 Pin 16: RTD2 Pin 17: Vis_RTN Pin 18: LI1 Pin 19: HI1 Pin 20: EN1 Pin 21: VSS1 Pin 22: VDD1

DISCLAIMER:

1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).

2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.

3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.

4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.

5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.

6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.

7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.