74ABT162245 16-Bit Transceiver with TRI-STATE® Outputs ## **General Description** The 'ABT162245 contains sixteen non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus oriented applications. The device is byte controlled. Each byte has separate control inputs which can be shorted together for full 16-bit operation. The T/Ā inputs determine the direction of data flow through the device. The OE inputs disable both the A and B ports by placing them in a high impedance state. The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors. #### **Features** - Bidirectional non-inverting buffers - Separate control logic for each byte - 16-bit version of the 'ABT2245 - A and B output sink capability of 64 mA, source capability of 32 mA - Guaranteed output skew - Guaranteed latchup protection - High impedance glitch free bus loading during entire power up and power down cycle - Non-destructive hot insertion capability ## **Logic Symbol** ## **Pin Description** | Pin Names | Description | |---------------------------------|----------------------------------| | ŌĒn | Output Enable Input (Active Low) | | T/Rn | Transmit/Receive Input | | A ₀ -A ₁₅ | Side A Inputs/Outputs | | B ₀ -B ₁₅ | Side B Inputs/Outputs | #### **Schematic of Each Output** #### **Connection Diagram** #### Pin Assignment for SSOP TL/F/12110-2 # **Functional Description** The 'ABT162245 contains sixteen non-inverting bidirectional buffers with TRI-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. ## **Truth Tables** | Inputs | | Outputs | |-----------------|------------------|---| | ŌĒ ₁ | T/R ₁ | Outputs | | L | L | Bus B ₀ -B ₇ Data to Bus A ₀ -A ₇ | | L | Н | Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇ | | Н | Х | HIGH-Z State on A ₀ -A ₇ , B ₀ -B ₇ | | Inputs | | Outputs | |-----------------|------|---| | ŌĒ ₂ | T/R2 | | | L | L | Bus B ₈ -B ₁₅ Data to Bus A ₈ -A ₁₅ | | L | Н | Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅ | | Н | Χ | HIGH-Z State on A ₈ -A ₁₅ , B ₈ -B ₁₅ | H = High Voltage Level - L = Low Voltage Level - X Immaterial - Z = High Impedance # **Logic Diagrams**