74ABT162245 16-Bit Transceiver with TRI-STATE® Outputs

General Description

The 'ABT162245 contains sixteen non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus oriented applications. The device is byte controlled. Each byte has separate control inputs which can be shorted together for full 16-bit operation. The T/Ā inputs determine the direction of data flow through the device. The OE inputs disable both the A and B ports by placing them in a high impedance state.

The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors.

Features

- Bidirectional non-inverting buffers
- Separate control logic for each byte
- 16-bit version of the 'ABT2245
- A and B output sink capability of 64 mA, source capability of 32 mA
- Guaranteed output skew
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability

Logic Symbol

Pin Description

Pin Names	Description
ŌĒn	Output Enable Input (Active Low)
T/Rn	Transmit/Receive Input
A ₀ -A ₁₅	Side A Inputs/Outputs
B ₀ -B ₁₅	Side B Inputs/Outputs

Schematic of Each Output

Connection Diagram

Pin Assignment for SSOP

TL/F/12110-2

Functional Description

The 'ABT162245 contains sixteen non-inverting bidirectional buffers with TRI-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

Truth Tables

Inputs		Outputs
ŌĒ ₁	T/R ₁	Outputs
L	L	Bus B ₀ -B ₇ Data to Bus A ₀ -A ₇
L	Н	Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇
Н	Х	HIGH-Z State on A ₀ -A ₇ , B ₀ -B ₇

Inputs		Outputs
ŌĒ ₂	T/R2	
L	L	Bus B ₈ -B ₁₅ Data to Bus A ₈ -A ₁₅
L	Н	Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅
Н	Χ	HIGH-Z State on A ₈ -A ₁₅ , B ₈ -B ₁₅

H = High Voltage Level

- L = Low Voltage Level
- X Immaterial
- Z = High Impedance

Logic Diagrams

