TACT2150 512 × 8 CACHE ADDRESS COMPARATOR

D2993 JANUARY 1987-REVISED SEPTEMBER 1987

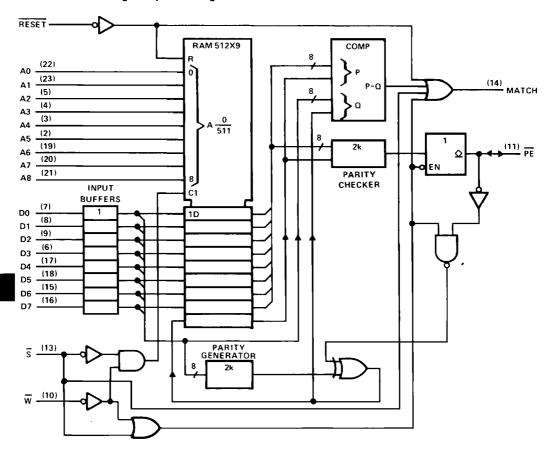
 Address to MATCH Valid Time TACT2150-20 20 ns max 	DW, JD, OR NT PACKAGE (TOP VIEW)
TACT2150-30 30 ns max	RESET 1 U24 VCC
 300-Mil 24-Pin Ceramic Side-Brazed or 	A5 2 23 A1
Plastic Dual-In-Line or Small Outline	A4 🔲 3 22 🗍 A0
Packages	A3 🛛 4 21 🗍 A8
• 53 mA Typical Supply Current	A2 🔲 5 20 🖸 A7
	D3 []6 19 [] A6
 On-Chip Parity Generation and Checking 	DO □ 7 18 □ D5
Parity Error Output/Force Parity Error Input	D1 [] 8 17 [] D4
, ,	<u>D2</u> □ 9 16 □ D7
On-Chip Address/Data Comparator	<u>W</u> ☐10 15 ☐ D6
Asynchronous, Single-Cycle Reset	PE ☐11 14☐ MATCH GND ☐12 13☐ S
Easily Expandable	GND [_12 13]_] S

description

Fully Static

Fully TTL Compatible

Reliable Advanced CMOS Technology


This 8-bit-slice cache address comparator consists of a high-speed 512 × 9 static RAM array, parity generator, parity checker, and 9-bit high-speed comparator. It is fabricated using Advanced CMOS technology for high-speed, low-power interface with bipolar TTL circuits. The cache address comparator is easily cascadable for wider tag addresses or deeper tag memories. Significant reductions in cache memory component count, board area, and power dissipation can be achieved with this device.

When \overline{S} is low and \overline{W} is high, the cache address comparator compares the contents of the memory location addressed by A0-A8 with the data on D0-D7 plus generated parity. An equality is indicated by the high level on the MATCH output. A low-level output from \overline{PE} signifies a parity error in the internal RAM data. \overline{PE} is an N-channel open-drain output for easy OR-tying. During a write cycle (\overline{S} and \overline{W} low), data on D0-D7 plus generated even parity are written in the 9-bit memory location addressed by A0-A8. Also during write, a parity error may be forced by holding \overline{PE} low.

A reset input is provided for initialization. When $\overline{\text{RESET}}$ is taken low, all 512 \times 9 RAM locations are cleared to zero (with valid parity) and the MATCH output is forced high. If an input data word of zero is compared to any memory location that has not been written into since reset, MATCH will be high indicating that input data, plus generated parity, is equal to the reset memory location. $\overline{\text{PE}}$ will be high for every addressed memory location after reset indicating no parity error in the RAM data. By tying a single data input pin high, this bit will function as a valid bit and a match will not occur unless data has been written into the addressed memory location. When cascading in the width direction, only one bit needs to be tied high regardless of the address width.

The TACT2150 operates from a single 5 V supply and is offered in a 24-pin 300-mil ceramic side-brazed or plastic dual-in-line packages and plastic "Small Outline" packages. The device is fully TTL compatible and is characterized for operation from 0 °C to 70 °C.

functional block diagram (positive logic)

MATCH OUTPUT DESCRIPTION

$$\begin{split} \text{MATCH} = \ V_{OH} \quad & \text{if:} \quad [\text{AO-A8}] = \text{DO-D7} + \text{parity.} \\ \text{or:} \quad & \overline{\text{RESET}} = V_{IL}, \\ \text{or:} \quad & \overline{\text{S}} = V_{IH}, \\ \text{or:} \quad & \overline{\text{W}} = V_{IL} \\ \end{split}$$

$$\text{MATCH} = \ V_{OL} \quad & \text{if:} \quad [\text{AO-A8}] \neq \text{DO-D7} + \text{parity,} \\ \text{with} \quad & \overline{\text{RESET}} = V_{IH}, \\ \overline{\text{S}} = \ V_{IL}, \text{ and } \overline{\text{W}} = V_{IH} \end{split}$$

FUNCTION TABLE

OUTPUT		FUNCTION
MATCH	PE	DESCRIPTION
L	L	Parity Error
L	н	Not Equal
н	L	Undefined Error
н	Н	Equal

PIN FUNCTIONAL DESCRIPTION

PIN		DESCRIPTION				
NAME	NÓ.	DESCRIPTION				
AO	22					
A1	23					
A2	5					
A3	4	Address from the Address Addre				
A4	3	Address inputs. Address 1 of 512-by-9-bit random-access memory locations. Must be stable for the duration				
A5	2	the write cycle.				
A6	19					
Α7	20					
A8	21					
D0	7					
D1	8					
D2	9					
D3	6	Data inputs. Compared with memory location addressed by AO-A8 when \overline{W} is at V_{IH} and \overline{S} is at V_{IL} . Provide				
D4	17	imput data to RAM when Wis at V _{IL} and Sis at V _{IL} .				
D5	18	· -				
D6	15					
D7	16					
GND	12	Ground				
MATCH	14	When MATCH output is at VOH during a compare cycle, D0 through D7 plus parity equal the contents of the				
		9-bit memory location addressed by A0 through A8.				
PE	11	Parity error input/output. During write cycles, PE can force a parity error into the 9-bit location specified by				
		A0 through A8 when PE is at V _{IL} . For compare cycles, PE at V _{OL} indicates a parity error in the stored data.				
		PE is an open-drain output so an external pull-up resistor is required.				
RESET	1	RESET input. Asynchronously clears entire RAM array and forces MATCH high when RESET is at VII and W				
		is at V _{IH} .				
ই	13	Chip select input. Enables device when \$\overline{S}\$ is at \$V_{IL}\$. Deselects device and forces MATCH high when \$\overline{S}\$ is at \$V_{IH}\$.				
Vcc	24	5-V supply voltage				
₩	10	Write control input, Writes D0 through D7 and generated parity into RAM and forces MATCH high when \overline{W} is				
		at V _{IL} and \overline{S} is at V _{IL} . Places selected device in compare mode if \overline{W} is at V _{IH} .				

application

Due to the high-performance switching characteristics of the TACT2150, it is necessary that the address inputs not be allowed to float. Proper termination techniques should be employed. It is recommended that the RC time constant associated with the address inputs (63.2% of rise time on AO-A8) not exceed 60 ns.

absolute maximum ratings over operating free-air temperature range (unless otherwise specified)

Supply voltage range, VCC (see Note 1)
Input voltage range, any input
Continuous power dissipation
Operating free-air temperature range
Storage temperature range65 °C to 150 °C

NOTE 1: All voltage values are with respect to GND.

recommended operating conditions

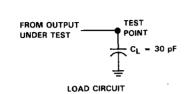
		PARAMETER		MIN	NOM	MAX	UNIT
Vcc	Supply voltage			4.5	5	5.5	V
VIH	High-level input voltage			2	,	/ _{CC} +0.5	V
VIL	Low-level input voltage (See No	ote 21		-0.5		0.8	V
Voн	High-level output voltage	PE				5.5	٧
ЮН	High-level output current	MATCH			•	-8	mA
la.	Law lavel cutout aureast	MATCH				8	mA
lor	Low-level output current	PE				16	mA
TA	Operating free-air temperature			0		70	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		TACT2150-20			TACT2150-30		
				TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
MATCH high found output unlesses	IOH = -8 mA, VCC = 4.5 V	2.4			2.4			v	
VOH(M)	VOH(M) MATCH high-level output voltage	$I_{OH} = -20 \mu A, V_{CC} = 4.5 V$	3.5			3.5			i ' I
VOL(M)	MATCH low-level output voltage	$I_{OL} = 8 \text{ mA}, V_{CC} = 4.5 \text{ V}$			0.4			0.4	V
VOL(PE)	PE low-level output voltage	$I_{OL} = 16 \text{ mA}, V_{CC} = 4.5 \text{ V},$			0.4			0.4	V
lį	Input current	$V_1 = 0 \ V \ to \ 5.5 \ V$			10			10	μА
los	Short-circuit MATCH output current	$V_0 = GND$, $V_{CC} = 5.5 V$			- 150			- 150	mA
lcc1	Supply current (operative)	RESET = VIH		53	95		53	95	mA
ICC2	Supply current (reset)	RESET = VL		2.75	6		2.75	6	mA
Ci	Input capacitance	f = 1 MHz			5			5	рF
Co	Output capacitance	f = 1 MHz	L.		6			6	pF

[†]All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25 \text{ °C}$.


switching characteristics over recommended ranges of supply voltage and operating free-air temperature

PARAMETER	TACT2	TACT2150-20		TACT2150-30		
FANAMEICN		MIN	MAX	MIN	MAX	UNIT
ta(A-M)	Access time from address to MATCH		20		. 30	ns
ta(A-PL)	Access time from address to PE low		22		30	ns
ta(A-PH)	Access time from address to PE high		30		35	ns
ta(S-M)	Access time from \$\overline{S}\$ to MATCH		10		15	ns
tp(D)	Propagation time, data inputs to MATCH		15		20	ns
t _{p(R-MH)}	Propagation time, RESET low to MATCH high		10		15	пŝ
tp(S-MH)	Propagation time, \$\overline{S}\$ high to MATCH high		10		12	ns
tp(W-MH)	Propagation time, W low to MATCH high		10		12	ns
t _p (W-PH)	Propagation time, W low to PE high		15		20	ns
t _{v(A-M)}	MATCH valid time after change of address	3		3		ns
t _V (A-P)	PE valid time after change of address	5	-	5		ns

timing requirements over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	TACT2	TACT2150-20		TACT2150-30	
	PANAMETER		MAX	MIN	MAX	UNIT
tw(RL)	Pulse duration, RESET low	35		40		ns
tw(WL)	Pulse duration, W low, without writing PE	20		25		ns
twPE(WL)	Pulse duration, W low, writing PE (see Note 3)	20		25		ns
t _{su(A)}	Address setup time before ₩ low	0		0		ns
t _{su(D)}	Data setup time before W high	20		25		ns
t _{su(P)}	PE setup time before W high (see Note 3)	20		25		ns
t _{su(S)}	Chip select setup time before W high	20		25		ns
t _{su(RH)}	RESET inactive setup time before first tag cycle	0		0		ns
th(A)	Address hold time after W high	0		0		ns
th(D)	Data hold time after W high	0		0		ns
th(P)	PE hold time after W high	0		0		ns
th(S)	Chip select hold time after W high	0		0		ns
tAVWH	Address valid to write enable high	20		25		ns

NOTE 3: Parameters twPE(WL) and tsu(P) apply only during the write cycle time when writing a parity error, tcPE(W).

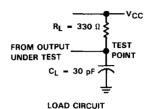
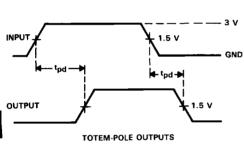



FIGURE 1. TOTEM-POLE OUTPUTS

FIGURE 2. OPEN-DRAIN OUTPUTS

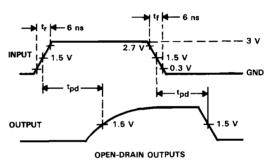


FIGURE 3. TIMING REFERENCE LEVELS

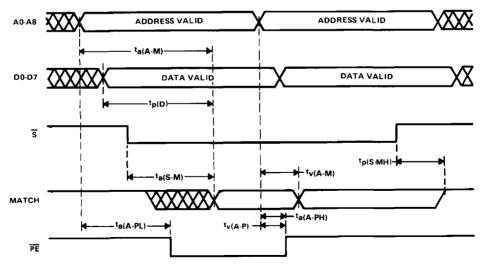
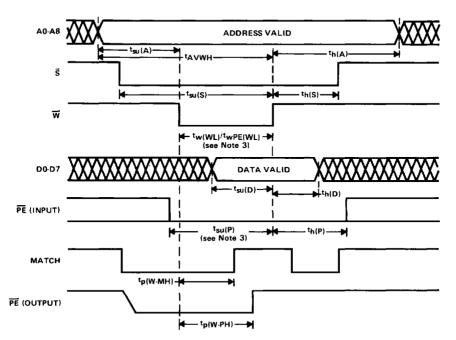



FIGURE 4. COMPARE CYCLE TIMING

PARAMETER MEASUREMENT INFORMATION

NOTE 3: Parameters $t_{WPE(WL)}$ and $t_{Su(P)}$ apply only during the write cycle time when writing a parity error, $t_{CPE(Wl-VL)}$

FIGURE 5. WRITE CYCLE TIMING

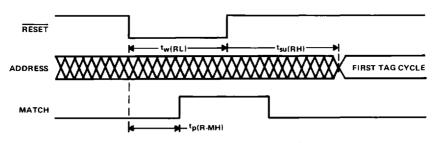


FIGURE 6. RESET CYCLE TIMING