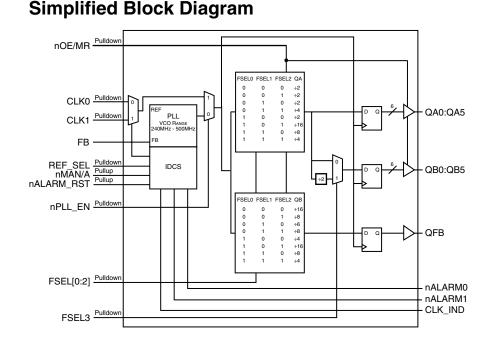


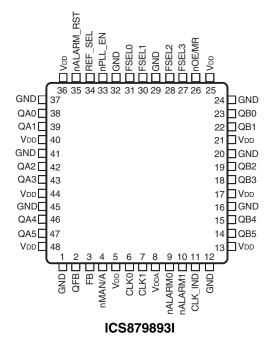
LOW SKEW, 1-TO-12 (IDCS) LVCMOS/LVTTL CLOCK GENERATOR

ICS879893I

General Description

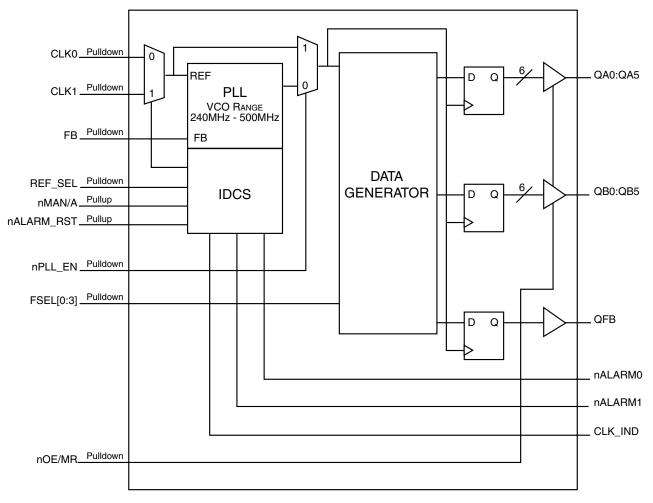

The ICS879893I is a PLL clock driver designed specifically for redundant clock tree designs. The device receives two LVCMOS/LVTTL clock signals from which it generates 12 new LVCMOS/LVTTL clock outputs. External PLL feedback is used to also pro-

vide zero delay buffer performance.


The ICS879893I Intelligent Dynamic Clock Switch (IDCS) circuit continuously monitors both input CLK signals. Upon detection of a failure (CLK stuck HIGH or LOW for at least 1 period), the nALARM for that CLK will be latched (LOW). If that CLK is the primary clock, the IDCS will switch to the good secondary clock and phase/frequency alignment will occur with minimal output phase disturbance.

Features

- Twelve LVCMOS/LVTTL outputs (two banks of six outputs); One QFB feedback clock output
- Selectable CLK0 or CLK1 LVCMOS/LVTTL clock inputs
- CLK0, CLK1 supports the following input types: LVCMOS, LVTTL
- Automatically detects clock failure
- · IDCS on-chip intelligent dynamic clock switch
- Maximum output frequency: 200MHz
- Output skew: 50ps (maximum), within bank
- Cycle-to-cycle (FSEL3=0, V_{DD}=3.3V±5%): 150ps (maximum)
- Smooth output phase transition during clock fail-over switch
- Full 3.3V or 2.5V supply modes
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages


Pin Assignment

48-Lead LQFP 7mm x 7mm x 1.4mm package body Y Package Top View

IDT™ / ICS™ (IDCS) LVCMOS CLOCK GENERATOR

Block Diagram

Table 1. Pin Descriptions

Number	Name	Г	уре	Description
1, 12, 16, 20, 29, 32, 37, 41, 45	GND	Power		Power supply ground.
2	QFB	Output		Clock feedback output. LVCMOS / LVTTL interface levels.
3	FB	Input	Pulldown	Feedback control input. LVCMOS / LVTTL interface levels.
4	nMAN/A	Input	Pullup	Manual alarm input. Selects automatic switch mode or manual reference clock. Clock failure detection, and nALARM_RST and CLK_IND output flags are enabled. When LOW, IDCS is disabled. When HIGH, IDCS is enabled. IDCS overrides REF_SEL on a clock failure. IDCS operation requires nPLL_EN = 0. LVCMOS / LVTTL interface levels.
5, 13, 17, 21, 25, 36, 40, 44, 48	V _{DD}	Power		Core supply pins.
6, 7	CLK0, CLK1	Input	Pulldown	Single-ended clock inputs. LVCMOS/LVTTL interface levels.
8	V _{DDA}	Power		Analog supply pin.
9	nALARM0	Output		When LOW, indicates clock failure on CLK0. LVCMOS / LVTTL interface levels.
10	nALARM1	Output		When LOW, indicates clock failure on CLK1. LVCMOS / LVTTL interface levels.
11	CLK_IND	Output		Indicates currently selected input reference clock. When LOW, CLK0 is the reference clock. When HIGH, CLK1 is the reference clock. LVCMOS / LVTTL interface levels.
14, 15, 18, 19, 22, 23	QB5, QB4, QB3, QB2, QB1, QB0	Output		Single-ended Bank B clock outputs. LVCMOS/LVTTL interface levels.
26	nOE/MR	Input	Pulldown	Active High Master Reset. Active Low Output Enable. When logic LOW, the internal dividers and the outputs are enabled. When logic HIGH, the internal dividers are reset and the outputs are in a high-impedance state. LVCMOS / LVTTL interface levels.
27, 28, 30, 31	FSEL3, FSEL2, FSEL1, FSEL0	Input	Pulldown	Clock frequency selection and configuration of clock divider modes. LVCMOS / LVTTL interface levels.
33	nPLL_EN	Input	Pulldown	Selects PLL or static test mode. When LOW, PLL is enabled. When HIGH, PLL is bypassed and IDCS is disabled. The VCO output is replaced by the reference clock signal fREF. LVCMOS / LVTTL interface levels.
34	REF_SEL	Input	Pulldown	Selects the primary reference clock. When LOW, selects CLK0 as the primary clock source. When HIGH, selects CLK1 as the primary clock source. LVCMOS / LVTTL interface levels.
35	nALARM_RST	Input	Pullup	Resets the alarm flags and selected reference clock. LVCMOS / LVTTL interface levels.
38, 39 42, 43, 46, 47	QA0, QA1, QA2, QA3, QA4, QA5	Output		Single-ended Bank A clock outputs. LVCMOS/LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
		V _{DD} = 3.465V		9		pF
C _{PD}	Power Dissipation Capacitance	V _{DD} = 2.625V		9		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{OUT}	Output Impedance			14		Ω

Function Tables

Table 3. Clock Frequency Function Table

	Inp	uts		f _{REF} Range			Outputs		
FSEL0	FSEL1	FSEL2	FSEL3	(MHz)	Ratio	fQAx (MHz)	Ratio	fQBx (MHz)	QFB
0	0	0	0	15 – 25	f * 0	120 – 200	f _{REF} * 8	120 – 200	f _{REF}
0	0	0	1	15 - 25	f _{REF} * 8	120 - 200	f _{REF} * 4	60 - 100	f _{REF}
0	0	1	0	30 – 50	f * 1	120 – 200	f _{REF} * 4	120 – 200	f _{REF}
0	0	1	1	30 - 30	f _{REF} * 4	120 - 200	f _{REF} * 2	60 - 100	f _{REF}
0	1	0	0	40 - 66.66	f * 2	120 – 200	f _{REF} * 3	120 – 200	f _{REF}
0	1	0	1	40 - 00.00	f _{REF} * 3	120 - 200	f _{REF} * 3 ÷ 2	60 - 100	f _{REF}
0	1	1	0	30 – 62.5	f * 0	60 – 125	f _{REF} * 2	60 – 125	f _{REF}
0	1	1	1	30 - 02.5	f _{REF} * 2	00 - 125	f _{REF} * 1	30 – 75	f _{REF}
1	0	0	0	60 – 100	f _{REF} * 2	120 – 200	f _{REF} * 2	120 – 200	f _{REF}
1	0	0	1	00 - 100	'REF 2	120 - 200	f _{REF}	60 – 100	f _{REF}
1	0	1	0	15 – 31.25	f	15 – 31.25	f _{REF}	15 – 31.25	f _{REF}
1	0	1	1	10 - 01.20	f _{REF}	15 - 51.25	f _{REF} ÷ 2	7.5 – 15.62	f _{REF}
1	1	0	0	30 – 62.5	f	30 - 62.5	f _{REF}	20 - 62.5	f _{REF}
1	1	0	1	30 - 02.3	f _{REF}	30 - 62.3	f _{REF} ÷ 2	15 – 31.25	f _{REF}
1	1	1	0	60 – 100	f	60 – 100	f _{REF}	60 - 100	f _{REF}
1	1	1	1	00 - 100	f _{REF}	00 - 100	f _{REF} ÷ 2	30 – 50	f _{REF}

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating	
Supply Voltage, V _{DD}	4.6V	
Inputs, V _I	-0.5V to V _{DD} + 0.5V	
Outputs, V _O	-0.5V to V _{DD} + 0.5V	
Package Thermal Impedance, θ_{JA}	47.9°C/W (0 lfpm)	
Storage Temperature, T _{STG}	-65°C to 150°C	

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, V_{DD} = 3.3V \pm 5%, T_{A} = -40°C to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				195	mA
I _{DDA}	Analog Supply Current				13	mA

Table 4B. Power Supply DC Characteristics, V_{DD} = 2.5V \pm 5%, T_{A} = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Positive Supply Voltage		2.375	2.5	2.625	V
V _{DDA}	Analog Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				173	mA
I _{DDA}	Analog Supply Current				13	

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
M	lass at Librits Mail		V _{DD} = 3.465V	2		V _{DD} + 0.3	V
V _{IH}	Input High Vol	lage	V _{DD} = 2.625V	1.7		V _{DD} + 0.3	V
		FSEL[0:3], FB, nOE/MR, nMAN/A, nALARM_RST[0:1], nPLL_EN, REF_SEL	V _{DD} = 3.465V	-0.3		0.8	V
V _{IL}	Input Low Voltage	FSEL[0:3], FB, nOE/MR, nMAN/A, nALARM_RST, nPLL_EN, REF_SEL	V _{DD} = 2.625V	-0.3		0.7	V
		CLK0, CLK1	V _{DD} = 3.465V or 2.625V	-0.3		1.3	V
		nMAN/A, nALARM_RST	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			5	μA
I _{IH}	Input High Current	CLK0, CLK1, FB, nOE/MR, FSEL[0:3], nPLL_EN, REF_SEL	$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			200	μΑ
	la a ut	nMAN/A, nALARM_RST	$V_{DD} = 3.465V \text{ or } 2.625V,$ $V_{IN} = 0V$	-200			μA
I _{IL}	Input Low Current	CLK0, CLK1, FB, nOE/MR, FSEL[0:3], nPLL_EN, REF_SEL	$V_{DD} = 3.465V \text{ or } 2.625V,$ $V_{IN} = 0V$	-5			μΑ
M		altaga	V _{DD} = 3.465V, I _{OH} = -24mA	2.4			V
V _{OH}	Output High V	onage	V _{DD} = 2.625V, I _{OH} = -15mA	1.8			V
			V _{DD} = 3.465V, I _{OL} = 24mA			0.55	V
V _{OL}	Output Low Vo	oltage	V _{DD} = 3.465V, I _{OL} = 12mA			0.30	V
			V _{DD} = 2.625V, I _{OL} = 15mA			0.6	V

Table 4C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_{\Delta} = -40^{\circ}$ C to 85° C

Unless otherwise noted, outputs terminated with 50 Ω to V_DD/2. See Parameter Measurement Information section. Load Test Circuit diagrams.

AC Electrical Characteristics

Table 5A. AC Characteristics, V_{DD} = 3.3V \pm 5%, T_{A} = -40°C to 85°C

Parameter	Symbol		Test Conditions	Minimum	Typical	Maximum	Units
fout	Output Frequency			7.5		200	MHz
f _{REF}	Input Frequency			15		100	MHz
BW	PLL Closed Loop	Bandwidth			0.8 to 4		MHz
t(Ø)	Propagation Delay, (Static Phase		V _{DD} = 3.3V±5%; FSEL = 111x	-35		120	ps
(0)	Offset, CLKx to F	B); NOTE 1, 2, 3	V _{DD} = 3.3V±5%	-35		130	ps
		within bank				50	ps
<i>t</i> sk(o)	Output Skew; NOTE 1, 2, 3, 4	bank-to-bank				135	ps
NOTE 1, 2, 3, 4	any output to QFB				315	ps	
		-	f _{REF} = 62.5MHz, FSEL = 1000			160	ps/ cycle
Δt	Rate of Period Ch	nange; NOTE 2	FSEL = XXX0		100	280	ps/ cycle
			FSEL = XXX1		200	425	ps/ cycle
<i>t</i> jit(cc)	Cycle-to-Cycle Jitter; NOTE 2, 3		FSEL3 = 0			150	ps
in(cc)			FSEL3 = 1			190	ps
	Output Clock Period Deviation when		f _{REF} = 62.5MHz, FSEL = 1000	-600		700	ps
∆t _{CYCLE}	switching from pri secondary; NOTE			-800		800	ps
<i>t</i> jit(per)	Period Jitter; NOT	F 2 3	FSEL3 = 0			150	ps
git(per)		122,0	FSEL3 = 1, measured on QBx			150	ps
			FB = 4; FSEL [0:2] = 100 or 111 (1σ)			25	ps
<i>t</i> jit(Ø)	I/O Phase Jitter, (FB = 6; FSEL [0:2] = 010 (1σ)			25	ps
git(Ø)	no i nase sitter, (10), NOTE 2, 0	FB = 8; FSEL [0:2] = 001, 011 or 110 (1σ)			35	ps
			FB = 16; FSEL [0:2] = 000 or 101 (1σ)			25	ps
t _R / t _F	Output Rise/Fall	Гime	20% to 80%	250		600	ps
t _{PZL} , t _{PZH}	Output Enable Tir	me; NOTE 2				10	ns
t _{PLZ} , t _{PHZ}	Output Disable Ti	me; NOTE 2				10	ns
tL	PLL Lock Time; N	IOTE 2				10	ms
odc	Output Duty Cycle	9		45	50	55	%

All parameters measured at $\ensuremath{f_{\text{MAX}}}$ unless noted otherwise.

NOTE 1: Defined as the time difference between the input reference clock and the average feedback input signal, when the PLL is locked and the input reference frequency is stable.

NOTE 2: These parameters are guaranteed by characterization. Not tested in production.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DD}/2.

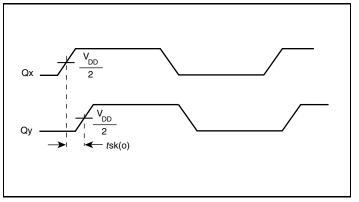
Parameter	Symbol		Test Conditions	Minimum	Typical	Maximum	Units
fouт	Output Frequency	/		7.5		200	MHz
f _{REF}	Input Frequency			15		100	MHz
BW	PLL Closed Loop	Bandwidth			0.8 to 4		MHz
+(0)	Propagation Delay, (Static Phase V		V _{DD} = 3.3V±5%; FSEL = 111x	-55		120	ps
t(Ø)	Offset, CLKx to F	B); NOTE 1, 2, 3	V _{DD} = 3.3V±5%	-55		130	ps
		within bank				50	ps
<i>t</i> sk(o)	Output Skew; NOTE 1, 2, 3, 4	bank-to-bank				135	ps
	NOTE 1, 2, 3, 4	any output to QFB				280	ps
			f _{REF} = 62.5MHz, FSEL = 1000			175	ps/ cycle
Δt	Rate of Period Ch	nange; NOTE 2	FSEL = XXX0			260	ps/ cycle
			FSEL = XXX1			350	ps/ cycle
fit(aa)	Cycle-to-Cycle Jitter; NOTE 2, 3		FSEL3 = 0			180	ps
<i>t</i> jit(cc)	Cycle-IO-Cycle Jil	ler, NOTE 2, 3	FSEL3 = 1			245	ps
	Output Clock Period Deviation when		f _{REF} = 62.5MHz, FSEL = 1000	-600		700	ps
∆t _{CYCLE}	switching from pri secondary; NOTE			-800		850	ps
<i>t</i> jit(per)	Period Jitter; NOT	F 2 3	FSEL3 = 0			150	ps
git(per)		122,0	FSEL3 = 1, measured on QBx			150	ps
			FB = 4; FSEL [0:2] = 100 or 111 (1σ)			30	ps
<i>t</i> jit(Ø)	I/O Phase Jitter, (FB = 6; FSEL [0:2] = 010 (1σ)			40	ps
ųn(Φ)	1/O T Hase Siller, (10), NOTE 2, 3	FB = 8; FSEL [0:2] = 001, 011 or 110 (1σ)			25	ps
			FB = 16; FSEL [0:2] = 000 or 101 (1σ)			30	ps
t _R / t _F	Output Rise/Fall	Гime	20% to 80%	250		600	ps
t _{PZL} , t _{PZH}	Output Enable Tir	me; NOTE 2				10	ns
t _{PLZ} , t _{PHZ}	Output Disable Ti	me; NOTE 2				10	ns
tL	PLL Lock Time; N	IOTE 2				10	ms
odc	Output Duty Cycle	9		45	50	55	%

Table 5B. AC Characteristics, V_{DD} = 2.5V ± 5%, T_A = -40°C to 85°C

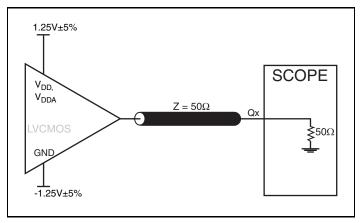
All parameters measured at f_{MAX} unless noted otherwise.


NOTE 1: Defined as the time difference between the input reference clock and the average feedback input signal, when the PLL is locked and the input reference frequency is stable.

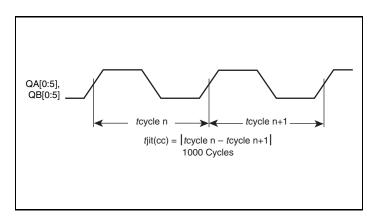
NOTE 2: These parameters are guaranteed by characterization. Not tested in production.


NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

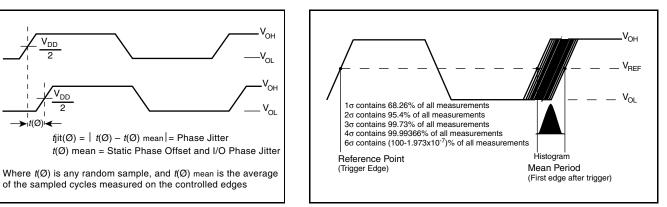
NOTE 4: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DD}/2.



3.3V Output Load AC Test Circuit

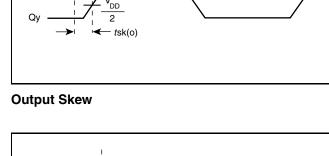


 $t_{jit}(\emptyset) = |t(\emptyset) - t(\emptyset) \text{ mean}| = \text{Phase Jitter}$


of the sampled cycles measured on the controlled edges

2.5V Output Load AC Test Circuit

Cycle-to-Cycle Jitter



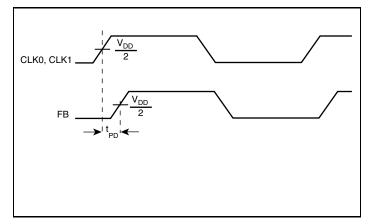
Input/Output Phase Jitter

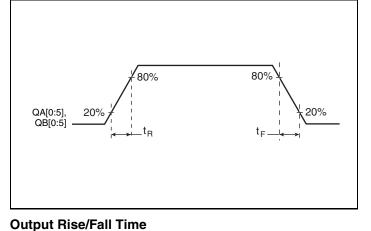
CLK0, CLK1

FΒ

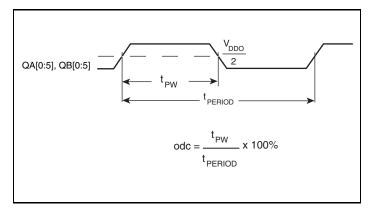
Period Jitter

V_{DD}


→ t(Ø)


DD

V_{OH}


V{OL}

Parameter Measurement Information, continued

Propagation Delay

Output Duty Cycle/Pulse Width/Period

Application Information

CLOCK REDUNDANCY AND REFERENCE SELECTION

The ICS879893I accepts two LVCMOS/LVTTL single ended input clocks, CLK0 and CLK1, for the purpose of redundancy. Only one of these clocks can be selected at any given time for use as the reference. The clock that is used by default as the reference is referred to as the primary clock, while the remaining clock is the redundant or secondary clock. Input signal REF_SEL determines which input is to be used as the primary and which is to be used as the secondary. When REF_SEL is driven HIGH, the primary clock input is CLK1, otherwise an internal pull down pulls this input LOW so that the primary clock input is CLK0. The output signal CLK_IND indicates which clock input is being used as the reference (LOW = CLK0, HIGH = CLK1), and will initially be at the same level as REF_SEL.

FAILURE DETECTION AND ALARM SIGNALING

Within the ICS879893I device, CLK0 and CLK are continuously monitored for failures. A failure on either of these clocks is detected when one of the clock signals is stuck HIGH or LOW for at least 1 period. Upon detection of a failure, the corresponding alarm signal, nALARM0 or nALARM1, is latched LOW. A HIGH-to-LOW transition on input signal nALARM_RST causes the alarm outputs to be reset HIGH, and the primary clock input is selected as the reference clock. Otherwise, an internal pull-up holds nALARM_RST HIGH, and the IDCS flags remain unchanged. If n_ALARM_RST is asserted when both of the alarm flag outputs are LOW, CLK0 is selected as the reference input. The device's internal PLL is able to maintain phase/frequency alignment, and lock with the input as long as the input used as the reference clock does not fail.

MANUAL CLOCK SWITCHING

When input signal nMAN/A is driven LOW, the primary clock, as selected by REF_SEL, is always used as the reference, even when a clock failure is detected at the reference. In order switch between CLK0 and CLK1 as the primary clock, the level on REF_SEL must be driven to the appropriate level. When the level on REF_SEL is changed, the selection of the new primary clock will take place, and CLK_IND will be updated to indicate which clock is now supplying reference. This process serves as a manual safety mechanism to protect the stability of the PLL when a failure occurs on the reference.

DYNAMIC CLOCK SWITCHING

When input signal nMAN/A is not driven LOW, an internal pull-up pulls it HIGH so that Intelligent Dynamic Clock Switching (IDCS) is enabled. If IDCS is enabled, once a failure occurs on the primary clock, the ICS879893I device will automatically deselect the primary clock as the reference and multiplex in the secondary clock, but only if it is valid and has no failures. When a successful switch from primary to secondary has been accomplished, CLK_IND will be updated to indicate the new reference. This process serves as an automatic safety mechanism to protect the stability of the PLL when a failure occurs on the reference.

OUTPUT TRANSITIONING

After a successful manual or IDCS initiated clock switch, the ICS879893I's internal PLL will begin slewing to phase/frequency alignment, and will eventually achieve lock with the new input with minimal phase disturbance at the outputs.

MASTER RESET OPERATION

Applying logic HIGH to the nOE/MR input resets the internal dividers of the ICS879893I and disables the outputs QA0:QA5 and QB0:QB5 in high-impedance state. Logic LOW state at the nOE/MR input enables the outputs and internal dividers.

RECOMMENDED POWER-UP SEQUENCE

- Hold nOE/MR HIGH, drive nMAN/A LOW, and drive REF_SEL to the desired value during power up in order to reset internal dividers, disable the outputs in high-impedance state (nOE/MR = HIGH), select manual switching mode, and select the primary input clock.
- 2. Once powered up, assuming a stable clock free of failures is present at the primary input, the PLL will begin phase/frequency slewing as it attempts to achieve lock with the input reference clock.
- 3. Transition nALARM_RST HIGH-to-LOW to reset nALARM0 and nALARM1 alarm flag outputs.
- 4. (Optional) Drive nMAN/A HIGH to enable IDCS mode.

ALTERNATE POWER-UP SEQUENCE

If both input clocks are valid before power up, the device may be powered up in IDCS mode.

- During power up, select the desired primary clock input by REF_SEL and hold nOE/MR at logic HIGH level to reset the internal dividers and to disable the outputs QA0:QA5 and QB0:QB5 in high-impedance state. Logic high level at the nMAN/A input enables the IDCS mode. An internal bias resistor will pull the nMAN/A input to logic high level if nMAN/A is left open.
- 2. Once powered up, the PLL will begin phase/frequency slewing as it attempts to achieve lock with the input reference clock.
- 3. Transition nALARM_RST HIGH-to-LOW to reset nALARM0 and nALARM1 alarm flag outputs.

Recommendations for Unused Input and Output Pins

Inputs:

CLK Inputs

For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground.

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The ICS879893I provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and V_{DDA} should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. *Figure 1* illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10Ω resistor along with a 10µF bypass capacitor be connected to the V_{DDA} pin.

Outputs:

LVCMOS Outputs

All unused LVCMOS output can be left floating. There should be no trace attached.

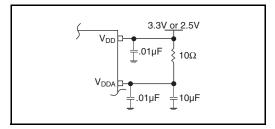


Figure 1. Power Supply Filtering

Schematic Example

Figure 2 shows a schematic example of the ICS879893I. In this example, the CLK1 input is selected as primary. Both CLK0 and CLK1 inputs are driven by LVCMOS drivers. For the LVCMOS outputs, series termination is shown in this example. Additional LVCMOS termination approached are shown in the LVCMOS Termination Application Note. In this example, feedback trace is assumed to be a long trace. The series termination near the QFB

pin is required. If the feedback trace is short, series termination is not required. If this device is also used as a zero delay buffer, the application note ZDB Delay Affected by Feedback Trace provides additional information. For the power pins, it is recommended to have at least one decoupling capacitor per power pin. The decoupling capacitors should be physically located near the power pins.

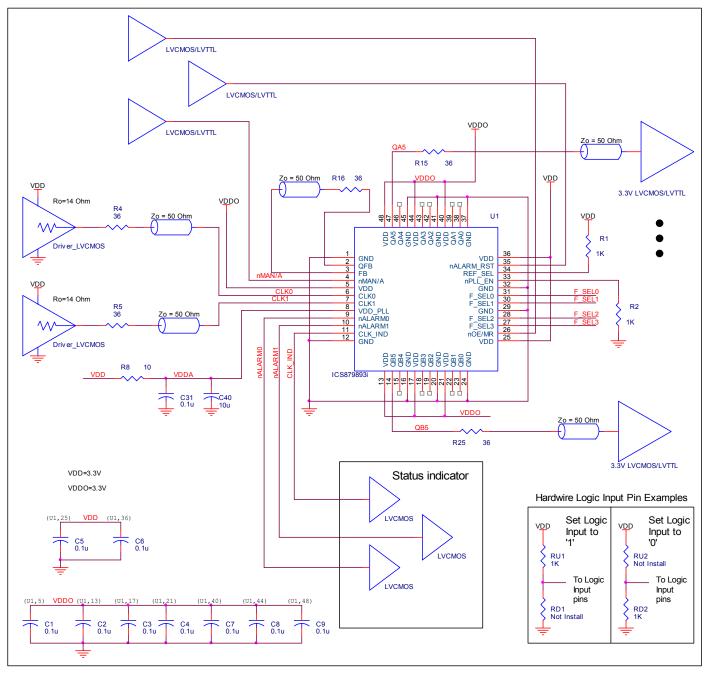
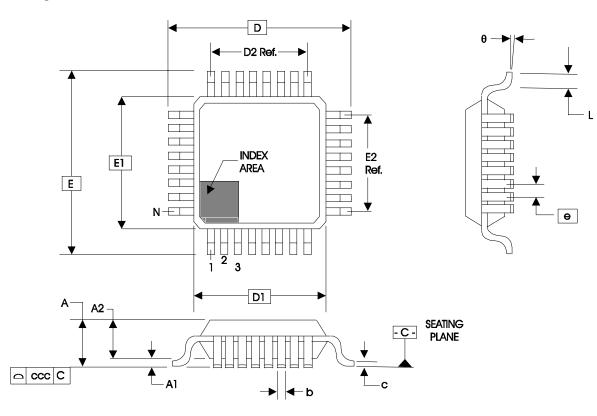


Figure 2. ICS879893I Schematic Example

Reliability Information

Table 6. θ_{JA} vs. Air Flow Table for a 48 Lead LQFP

	θ_{JA} vs. Air Flow		
Linear Feet per Minute	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W


NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.

Transistor Count

The transistor count for ICS879893I is: 4615 Pin compatible with MPC9893

Package Outline and Package Dimensions

Package Outline - Y Suffix for 48 Lead LQFP

Table 7. Package Dimensions for 48 Lead LQFP

	JEDEC Variation: ABC - HD All Dimensions in Millimeters						
Symbol	Minimum	Nominal	Maximum				
N		48					
Α			1.60				
A1	0.05	0.10	0.15				
A2	1.35	1.4	1.45				
b	0.17	0.22	0.27				
С	0.09	0.15	0.20				
D&E		9.00 Basic					
D1 & E1		7.00 Basic					
D2 & E2		5.50 Ref.					
е		0.50 Basic					
L	0.45	0.60	0.75				
θ	0°		7 °				
CCC			0.08				

Reference Document: JEDEC Publication 95, MS-026

Ordering Information

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
879893AYI	ICS879893AYI	48 Lead LQFP	Tray	-40°C to 85°C
879893AYIT	ICS879893AYI	48 Lead LQFP	1000 Tape & Reel	-40°C to 85°C
879893AYILF	ICS879893AIL	"Lead-Free" 48 Lead LQFP	Tray	-40°C to 85°C
879893AYILFT	ICS879893AIL	"Lead-Free" 48 Lead LQFP	1000 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
А		12	Updated Schematic Example text and diagram.	2/10/05
A	Т8	1 11 15	 Features Section - added lead-free bullet. Added Recommendations for Unused Input and Output Pins and Power Supply Filtering Techniques Sections. Ordering Information Table - added lead-free Part/Order Number, Marking and Note. Updated datasheet format. 	7/8/08

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT

Technical Support

netcom@idt.com +480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800-345-7015 (inside USA) +408-284-8200 (outside USA)

© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA