

OKI NETWORK PRODUC ⁻	ΤS
---------------------------------	----

ML53301/ML53311 TC-622Pro/Pro+ ATM Framer

December 1999

Revision Information

December 1999 Stock No. 320120-002

Typographical errors corrected:

Signal symbol corrected to "tSTSC" in table 7 on page 73.

Signal symbol corrected to "tHTXD" in table 7 on page 73.

Extraneous parameter "Receive frame hold from RxCLK high" deleted from table 8 on page 74.

Signal symbol corrected to "tHTLD" in table 9 on page 75.

Signal symbol corrected to "tHRFRM" in table 10 on page 76.

Signal symbol corrected to "tPARHLD" in table 19 on page 88.

CONTENTS

1. Description	1
2. Features	1
3. KEY Features	3
3.1 Transmit Test Cell Generator	
3.2 Receive Test Cell Analyzer	3
3.3 Transmit Cell Processor	
3.4 Receive Cell Processor	3
3.5 STS-12/12c Line Interface	4
3.6 STS-12/12c Transmit Framer	4
3.7 STS-12/12c Receive Framer	
3.8 PCI Bus Interface (TC-622Pro)	5
3.9 MPI Bus Interface (TC-622Pro+)	5
3.10 Transmit and Receive UTOPIA	5
4. Functional Description	6
4.1 Architectural Overview	
Transmit Framer and Overhead Processor	
Transmit Cell Processors	
Transmit UTOPIA	
Test Cell Generator	
Receive Framer and Overhead Processor	
Receive Cell Processors	
Test Cell Analyzer	
Receive UTOPIA	
PCI Bus Interface (TC-622Pro)	
MPI Bus Interface (TC-622Pro+)	
4.2 Transmit Architecture	
Transmit Data Flow	9
Transmit UTOPIA PHY	10
Transmit Cell Processor	
Test Cell Generator	
Transmit Framer And Overhead Processor	13
4.3 Receive Architecture	14
Receive Data Flow	15
Receive Framer And Overhead Processor	
Receive Cell Processor	22
Test Cell Analyzer	23
Receive UTOPIA Phy	
4.4 PCI Bus Architecture (TC-622Pro)	
4.5 MPI Bus Architecture (TC-622Pro+)	
5. Signal Descriptions	

Registers	
5.2 Receive B1 Error Count (default = 0xFFFC) Read Only	
5.3 Receive B2 Error Count (default = 0xFFFC) Read Only	
6.4 Receive B2 Error Count 3 (default = 0xFFFC) Read Only	
6.5 Receive B3 Error Count 2 (default = 0xFFFC) Read Only	
6.6 Receive B3 Error Count 1 (default = 0xFFFC) Read Only	
5.7 Receive B3 Error Count 0 (default = 0xFFFC) Read Only	
b.8 Test Cell Analyzer 3 Error Count (default = 0xFFFC) Read Only	
5.9 Test Cell Analyzer 2 Error Count (default = 0xFFFC) Read Only	
5.10 Test Cell Analyzer 1 Error Count (default = 0xFFFC) Read Only	
5.11 Test Cell Analyzer 0 Error Count (default = 0xFFFC) Read Only	
0.12 Received Line FEBE Accumulator (default = 0xFFFC) Read Only	
.13 Received Path FEBE Accumulator 3 (default = 0xFFFC) Read Only	
5.14 Received Path FEBE Accumulator 2 (default = 0xFFFC) Read Only	
6.15 Received Path FEBE Accumulator 1 (default = 0xFFFC) Read Only	
5.16 Received Path FEBE Accumulator 1 (default = 0xFFFC) Read Only	
6.17 Test Cell Generator 3 Transmitted Cells Count (default = 0xFFFC) Read Only	
5.18 Test Cell Generator 2 Transmitted Cells Count (default = 0xFFFC) Read Only	
5.19 Test Cell Generator 1 Transmitted Cells Count (default = 0xFFFC) Read Only	
5.20 Test Cell Generator 0 Transmitted Cells Count (default = 0xFFFC) Read Only	
5.21 Test C ell Analyzer 3 Received Cells Count (default = 0xFFFC) Read Only	
5.22 Test Cell Analyzer 2 Received Cells Count (default = 0xFFFC) Read Only	
5.23 Test Cell Analyzer 1 Received Cells Count (default = 0xFFFC) Read Only	
5.24 Test Cell Analyzer 0 Received Cells Count (default = 0xFFFC) Read Only	
5.25 Assigned Cells Transmitted Count 3 (default = 0xFFFC) Read Only	
5.26 Assigned Cells Transmitted Count 2 (default = 0xFFFC) Read Only	
5.27 Assigned Cells Transmitted Count 1 (default = 0xFFFC) Read Only	
6.28 Assigned Cells Transmitted Count 0 (default = 0xFFFC) Read Only	
5.29 Idle Cells Transmitted Count 3 (default = 0xFFFC) Read Only	
5.30 Idle Cells Transmitted Count 2 (default = 0xFFFC) Read Only	
5.31 Idle Cells Transmitted Count 1 (default = 0xFFFC) Read Only	
5.32 Idle Cells Transmitted Count 0 (default = 0xFFFC) Read Only	
6.33 Assigned Cells Received Count 3 (default = 0xFFFC) Read Only	
6.34 Assigned Cells Received Count 2 (default = 0xFFFC) Read Only	
6.35 Assigned Cells Received Count 1 (default = 0xFFFC) Read Only	
5.36 Assigned Cells Received Count 0 (default = 0xFFFC) Read Only	
5.37 Idle Cells Received Count 3 (default = 0xFFFC) Read Only	
5.38 Idle Cells Received Count 2 (default = 0xFFFC) Read Only	
5.39 Idle Cells Received Count 1 (default = 0xFFFC) Read Only	
5.40 Idle Cells Received Count 0 (default = 0xFFFC) Read Only	
5.41 Cell Discard Count 3 (default = 0xFFFC) Read Only	
6.42 Cell Discard Count 2 (default = 0xFFFC) Read Only	
6.43 Cell Discard Count 1 (default = 0xFFFC) Read Only	
6.44 Cell Discard Count 0 (default = 0xFFFC) Read Only	

(450) (-100) (-100) (-100) (-100) (-100) (-100)	40
6.45 Signal Mismatch Count 3 (default = 0x0006) Read Only	
6.46 Signal Mismatch Count 2 (default = 0x0006) Read Only	
6.47 Signal Mismatch Count 1 (default = 0x0006) Read Only	
6.48 Signal Mismatch Count 0 (default = 0x0006) Read Only	
6.49 Received Pointer 3 (default = 0x0000) Read Only6.50 Received Pointer 2 (default = 0x0000) Read Only	
6.51 Received Pointer 1 (default = 0x0000) Read Only6.52 Received Pointer 0 (default = 0x0000) Read Only	
6.53 Received Fointer 0 (default = 0x0000) Read Only	
6.55 Received K1 and K2 Bytes (default = 0x0000) Read Only	
6.55 Receiver Alarms Register 2 (default = 0x0F00) Read Only	
6.56 Transmit Test Cell 3 Header Bytes 1 and 2 (default = 0x0000) Read/Write	
6.57 Transmit Test Cell 2 Header Bytes 1 and 2 (default = 0x0000) Read/Write	
6.58 Transmit Test Cell 1 Header Bytes 1 and 2 (default = 0x0000) Read/Write	
6.59 Transmit Test Cell 0 Header Bytes 1 and 2 (default = 0x0000) Read/Write	
6.60 Transmit Test Cell 3 Header Bytes 3 and 4 (default = 0x0000) Read/Write	
6.61 Transmit Test Cell 2 Header Bytes 3 and 4 (default = 0x0000) Read/Write	
6.62 Transmit Test Cell 1 Header Bytes 3 and 4 (default = 0x0000) Read/Write	
6.63 Transmit Test Cell 0 Header Bytes 3 and 4 (default = 0x0000) Read/Write	
6.64 Receive Test Cell 3 Header Bytes 1 and 2 (default = 0x0000) Read/Write	
6.65 Receive Test Cell 2 Header Bytes 1 and 2 (default = 0x0000) Read/Write	
6.66 Receive Test Cell 1 Header Bytes 1 and 2 (default = 0x0000) Read/Write	
6.67 Receive Test Cell 0 Header Bytes 1 and 2 (default = 0x0000) Read/Write	
6.68 Receive Test Cell 3 Header Bytes 3 and 4 (default = 0x0000) Read/Write	
6.69 Receive Test Cell 2 Header Bytes 3 and 4 (default = 0x0000) Read/Write	
6.70 Receive Test Cell 1 Header Bytes 3 and 4 (default = 0x0000) Read/Write	
6.71 Receive Test Cell 0 Header Bytes 3 and 4 (default = 0x0000) Read/Write	
6.72 User Commands To UTOPIA (default = 0x0000) Read/Write	
6.73 UTOPIA 3 Address Register (default = 0x0063) Read/Write	
6.74 UTOPIA 2 Address Register (default = 0x0042) Read/Write	
6.75 UTOPIA 1 Address Register (default = 0x0021) Read/Write	
6.76 UTOPIA 0 Address Register (default = 0x0000) Read/Write	
6.77 TxUTOPIA FIFO Status Register (default = 0x0000) Read Only	
6.78 TxUTOPIA Cell Drop Status Register (default = 0x0000) Read Only	
6.79 Receive Cell Processor User Commands (default = 0x000F) Read/Write	
6.80 Transmit Framer User Commands (default = 0x0000) Read/Write	
6.81 Transmit Cell Processor User Commands (default = 0x00F0) Read/Write	
6.82 Parity Error Roll-Over (default = 0x0000) Read/Write/Set	
6.83 Receiver Alarm Roll-Over (default = 0x0000) Read/Write/Set	
6.84 Test Cell Count Roll-over (default = 0x0000) Read/Write/Set	
6.85 Transmit/Receive Count Roll-over (default = 0x0000) Read/Write/Set	
6.86 Interrupt Mask Register (default = 0x0000) Read/Write	
6.87 Interrupt Status Register (default = 0x0000) Read/Write	68

7. TC-622Pro/Pro+ Specifications	71
7.1 Maximum Ratings and Operating Conditions	
7.2 DC Characteristics	
7.3 AC Specifications	
ATM Layer Transmit	
ATM Layer Receive	
Line-Side Transmit	
Line-Side Receive	
7.4 Mechanical Specifications	
8. ML53301 TC-622Pro PCI Bus interface and specifications	
8.1 PCI Bus Architectural Overview	77
Target Control	
Register Read/Write Control	
Interrupt Control	
Parity Control	
Byte Swap Control	
Register Types	
8.2 PCI Bus Transactions	
8.3 TC-622Pro Signal Descriptions	
8.4 PCI Bus AC Specifications	
PCI Bus Register Write	
PCI Bus Register Read	
PCI Bus Configuration Write	
PCI Bus Configuration Read	
9. ML53311 TC-622Pro+ MPI Bus interface and specifications	
9.1 MPI Bus Architectural Overview	
9.2 MPI Bus Transactions	
MPI Bus Register Read	
MPI Bus Register Write	
9.3 TC-622Pro+ Signal Descriptions	
9.4 MPI Bus AC Specifications	
MPI Bus Write Timing	
MPI Bus Read Timing	
10. SONET Frames and ATM Cell Structure	
10.1 SONET Frame Structure	
Section, Line, and Path Overheads	
Physical layer	
10.2 ATM Cell Structure	
11. Glossary	112

Oki Semiconductor ML53301/ML53311 TC-622Pro/Pro+

622 Mbps ATM Transmission Convergence Sublayer SONET Framer

1. DESCRIPTION

The ML53301 TC-622Pro and ML53311 TC-622Pro+ are single-chip integrated circuit devices that perform Asynchronous Transfer Mode (ATM) transmission convergence sub-layer functions for the public User Network Interface (UNI) using the Synchronous Optical Network (SONET) processing standard. The physical layer supports the STS-12/STS-12c 622 Mbps SONET/SDH format. The STS-12 mode of operation supports four separate STS-3c (155 Mbps) channels. STS-12c mode supports a single 622 Mbps channel. The TC-622Pro/Pro+ can be used to interface an ATM terminal to an ATM switching system via the SONET/SDH Interface.

The ML53301 TC-622Pro contains a full-featured 32-bit PCI Bus interface for accessing the register array. The ML53311 TC-622Pro+ contains a simplified 16-bit microprocessor interface (MPI) ideal for use in low-cost applications. *Figure 1* shows a typical STS-12/12c application using the TC-622Pro/Pro+. *Figure 2* shows a block diagram of the ML53301 TC-622Pro and ML53311 TC-622Pro+ devices.

2. FEATURES

- STS-12/12c modes under register control
- UTOPIA level 2 Multi-PHY (MPHY) interface
- Full-featured 32-bit PCI bus interface (TC-622Pro)
- Low cost 16-bit MPI bus interface (TC-622Pro+)
- Test cell insertion and extraction
- Four receive and four transmit cell processors
- Lower power mode reduces power consumption to 1.3 W maximum
- Four STS-3c frames multiplexed to construct one STS-12 frame.
- One STS-12 frame demultiplexed to construct four STS-3 frames

- Separate performance monitors for individual cell processors
- Line and Path alarm indication signal inserted into the transmit signal
- Loss of signal (LOS), loss of frame synchronization (LOF), loss of pointer (LOP), and loss of cell delineation (LCD) conditions detected in the incoming signal
- Transmit processor handles single or octet-wide cell streams
- 176-pin LQPF package for both devices

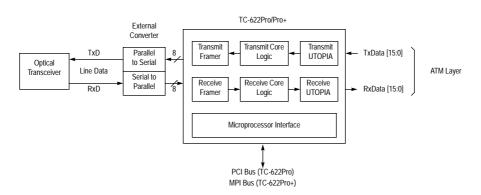


Figure 1. Typical STS12/12c Application

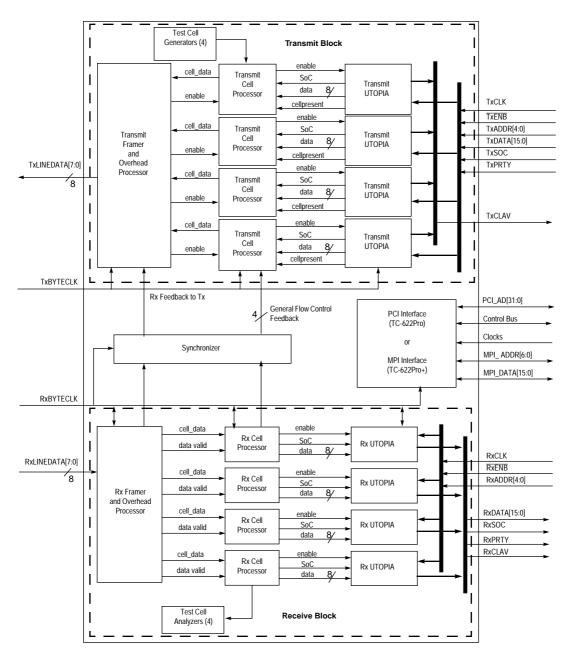


Figure 2. TC-622Pro/Pro+ Block Diagram

3. KEY FEATURES

This section describes some of the features of the block shown in the block diagram in Figure 2.

3.1 Transmit Test Cell Generator

- Four separate test cell generators, one for each of the four transmit cell processors
- Alternate source of idle cells for transmit cell processors
- Programmable cell header
- Random payload
- Counts number of test cells transmitted

3.2 Receive Test Cell Analyzer

- Four separate test cell analyzers
- Test cells filtered
- Programmable cell header
- Counts number of bit errors detected in payload
- Counts number of test cells received

3.3 Transmit Cell Processor

- Handles single or quad octet-wide cell streams
- Accepts both 52-byte cells, computes and inserts Header Error Check (HEC)
- Always adds coset polynomial $(X^6 + X^4 + X^2 + 1)$
- Cell rate adaptation—inserts idle cells when no cell is available from the UTOPIA or FIFO
- Optionally inserts cells from an internal test cell generator in the place of idle cells
- Flow control—halts valid cell transmission when Generic Flow Control (GFC) is enabled
- Scrambles cell payload using the X⁴³ + 1 polynomial. Contains a self-synchronizing scrambler
- Counts assigned and idle cells

3.4 Receive Cell Processor

- Handles single or quad octet-wide cell streams
- Cell delineation state machine
- Cell delineation using HEC
- Hunt, Pre-Sync, Sync, LCD defect, LCD Defect Pre-Sync, LCD Defect Verify, and LCD Failure Verify states
- Correction and Detection states within Sync state
- Single- and multiple-bit error detection
- Single-bit error correction if correction is enabled
- Cell payload de-scrambling
- Idle cells discarded
- Performance Monitors
 - Discarded cell (due to HEC violation, when in Sync state) counter
 - Assigned and Idle cell counters

3.5 STS-12/12c Line Interface

- 8-bit parallel input and output
- 77.76 MHz clock

3.6 STS-12/12c Transmit Framer

- Timing control
 - External timing reference—77.76 MHz clock
 - A pulse given out for every frame transmitted
 - STS-12/12c Pointer Insertion
 - Normal mode
 - No pointer increment
 - No pointer decrement
 - No NDF insertion
 - Pointer value-620A
- Path Alarm Indication Signal (P-AIS) insertion on user command
- Path Remote Defect Indication (P-RDI) insertion on user command and on receiver alarm conditions
- Line AIS (L-AIS) insertion on user command
- Line RDI (L-RDI) insertion on user command and on receiver alarm conditions
- Path overhead insertion
- Section overhead insertion
- Line overhead insertion
- Fixed Stuff insertion in the case of STS-12c
 - Fixed value inserted (00hh)
- Frame scrambling according to the ITU-T I.432 standard

3.7 STS-12/12c Receive Framer

- Framing
 - Loss of signal state machine (LOS)
 - Parallel Frame Search, Byte-alignment
 - Out of frame state machine (OOF)
 - Loss of frame state machine (LOF)
 - A pulse for every received frame given out
- Automatic Protection Switching (APS) bytes (K1, K2) written into registers
- Section Overhead Processing
 - B1 parity error counter
- Line Overhead Processing
 - B2 parity error frames counter
 - Line AIS state machine
 - Line RDI state machine
 - Line FEBE accumulator
- STS-12/12c Pointer Tracking
 - H1, H2 state machines

- NDF detection
- New pointer when three consecutive valid pointers are identical
- Pointer increment
- Pointer decrement
- Detection of invalid pointer (value > 782)
- Loss of Pointer (LOP) state machine
- Path AIS state machine
- Handles SONET/SDH modes as set by a register bit
- Fixed Stuff extraction
- 4 POH Processors
- Path overhead processing
 - C2 byte—number of mismatches counted
 - Path FEBE accumulated
 - Path RDI state machine
 - B3 parity error counter

3.8 PCI Bus Interface (TC-622Pro)

- Supports industry-standard 32-bit PCI data path at 33 MHz
- Provides even parity for data and address
- Multiplexed address/data architecture reduces pin count
- Supports multiple families of microprocessors

3.9 MPI Bus Interface (TC-622Pro+)

- Supports 16-bit MPI data path at 33 MHz
- Geared toward low cost applications
- Supports multiple families of microprocessors

3.10 Transmit and Receive UTOPIA

- Complete compliance with UTOPIA Level 2 Version 1.0 specifications for Multi-PHY (MPHY)
- Four UTOPIA ports with separate 4-cell rate matching buffers
- 50-MHz operation
- 16-bit wide data path
- MPHY operation with single TxCLAV and RxCLAV status signals
- Support of 52-byte and 53-byte cells
- Discarding of runt cells
- Optional discarding of cells with parity errors on transmit side
- Parity computation on receive side

4. FUNCTIONAL DESCRIPTION

This section is divided into the following subsections:

- Section 4.1, "Architectural Overview": Defines each block in *Figure 2*
- Section 4.2, "Transmit Architecture": Discusses the operation of the Transmit module
- Section 4.3, "Receive Architecture": Discusses the operation of the Receive module
- Section 4.4, "PCI Bus Architecture (TC-622Pro)": Provides a brief overview of the ML53301 TC-622Pro PCI Bus Interface
- Section 4.5, "MPI Bus Architecture (TC-622Pro+)": Provides a brief overview of the ML53311 TC-622Pro+ low-cost MPI Bus interface.

Throughout this data sheet there are references to SONET frames and ATM cells. For an overview on SONET frames and ATM cell structures, refer to Section 10.

4.1 Architectural Overview

This section defines the logic blocks shown in the block diagram in Figure 2.

4.1.1 Transmit Framer and Overhead Processor

The transmit framer contains a frame generator, transportation overhead generator, path overhead generator, and a frame scrambler. The transmit framer generates the actual STS-12 or STS-12c frame from ATM cells received from the transmit cell processors. In addition to the Synchronous Payload Envelope (SPE) which contains the actual data, each 9720-byte SONET frame consists of a 324-byte *Transportation Overhead* and 9-byte or 36-byte *Path Overhead*.

The *Transportation Overhead* (TOH) is 324 bytes in size and contains a 108 byte *Section overhead* and an 216 byte *Line overhead*. The *Section overhead* generator includes bytes for frame synchronization, error monitoring and voice communication. The *Line overhead* generator consists of 216 bytes that include pointers to the start of the synchronous payload envelope (SPE), SPE frequency adjustment, error monitoring and automatic protection switching.

The *Path overhead* (POH) generator contains 9 bytes that form the first column of the SPE. These bytes support path error monitoring, connection continuity verification, monitoring of the end-to-end path performance, and STS-1 frame status.

The Frame Scrambler scrambles the SONET frame using a frame synchronous scrambler implementing a specific polynomial. Frames are scrambled to minimize the possibility of payload data looking like a header pattern and simplifies the frame recovery process at the destination.

For more information on these overheads, refer to Section 10, "SONET Frames and ATM Cell Structure".

4.1.2 Transmit Cell Processors

The TC-622Pro/Pro+ consists of four transmit cell processors. All four processors are enabled in STS-12 mode. Only one processor is enabled in STS-12c mode. The two main functions of each transmit cell processor are cell rate adaptation and Header Error Check (HEC) byte insertion. If the UTOPIA FIFO does not contain one or more complete cells, the cell processor inserts idle cells to achieve the correct cell adaptation. The HEC computation block computes the HEC byte from the first four bytes of any cell using a special algorithm. The cell processor also counts the number of assigned cells transmitted as well as the number of idle cells inserted. For more information on the transmit cell processor, refer to Section 4.1.2, "Transmit Cell Processors".

4.1.3 Transmit UTOPIA

The Transmit UTOPIA consists of four identical ports, one for each transmit cell processor. Each UTOPIA has a unique programmable port address. The function of each port is to facilitate the transfer of data between the transmit cell processors and the ATM layer device.

4.1.4 Test Cell Generator

There are four test cell generators, one for each of the four transmit cell processors. The test cell generator provides a source for idle cells as well as test cells. Whenever a cell processor does not have an assigned cell to transmit, it reads an idle cell from the corresponding test cell generator. Test cells can also be inserted into the data stream without interrupting the normal flow of data and are used for monitoring purposes and to help maintain data integrity.

4.1.5 Receive Framer and Overhead Processor

The receive framer accepts non-aligned bytes from an external serial to parallel converter and extracts the frame payload. The receive framer performs frame synchronization, synchronous payload envelope extraction, overhead processing to detect alarm and error conditions, and performance monitoring.

4.1.6 Receive Cell Processors

The TC-622Pro/Pro+ contains four receive cell processors. All four processors are enabled in STS-12 mode. Only one processor is enabled in STS-12c mode. The processor delineates data received from the receive framer to form cells. It computes the Header Error Check (HEC) over the first four bytes, compares it with the received HEC byte, and discards idle cells. The receive cell processor also counts the number of assigned cells written to the UTOPIA FIFO and the number of idle cells dropped.

4.1.7 Test Cell Analyzer

There are four test cell analyzers, one for each of the four receive cell processors. Whenever a cell processor receives a cell with the header pattern matching one that is programmed for test cells, that cell is passed to the corresponding Test Cell Analyzer instead of the UTOPIA FIFO.

4.1.8 Receive UTOPIA

The Receive UTOPIA consists of four identical ports, one for each Receive Cell processor. Each UTOPIA has a unique port address. The function of each port is to facilitate the transfer of data between the Receive Cell processors and the ATM layer device.

4.1.9 PCI Bus Interface (TC-622Pro)

The TC-622Pro contains an industry-standard PCI interface that allows the host to read and write the TC-622Pro registers using a standard on-chip microprocessor. The PCI interface contains signal translation logic that interfaces to the PCI bus signals and generates TC-622Pro register control signals. A parity calculator calculates even parity over the address, data, and command busses, and the byte enables. The interrupt manager receives interrupts from the TC-622Pro and generates a corresponding interrupt on the PCI bus. The byte swap block swaps the address bytes depending on the Little Endian/Big Endian requirements of the host. Refer to Section 8 for more information on the PCI bus interface.

4.1.10 MPI Bus Interface (TC-622Pro+)

The TC-622Pro+ provides a generic microprocessor interface (MPI) intended for use in low-cost applications where a full PCI interface is not required. In the TC-622Pro+, registers are accessed directly by driving the required address onto the bus. No memory mapping of registers is required. In the TC-622Pro (PCI) the registers are memory-mapped to a specific 8-kbyte space. In the TC-622Pro+ (MPI) the registers are not memory mapped and are accessed directly using a separate 7-bit address bus.

Refer to Section 9 for more information on the MPI bus interface.

4.2 Transmit Architecture

The TC-622Pro/Pro+ block diagram in *Figure 2* is broken into three major interfaces; transmit interface, receive interface, and PCI/MPI interface. This section discusses the transmit interface. Refer to Section 4.3 for more information on the receive interface. Refer to Section 4.4 for more information on the PCI Bus interface. Refer to Section 4.5 for more information on the MPI Bus interface. *Figure 3* shows a block diagram of the transmit interface.

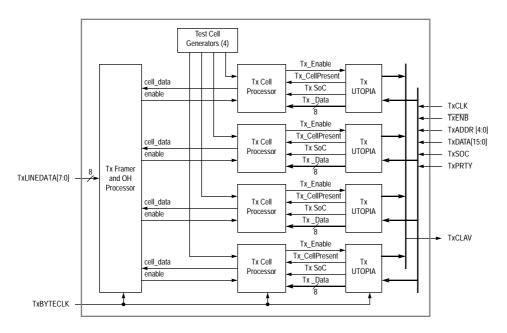


Figure 3. TC-622Pro/Pro+ Transmit Architecture Block Diagram

The transmit architecture in the TC-622Pro/Pro+ contains the following four modules below which are discussed, along with the transmit data flow, in the following sections:

- Four Transmit UTOPIA channels
- Four Transmit Cell Processors
- Four Transmit Test Cell Generators
- Transmit Framer

4.2.1 Transmit Data Flow

During a transmit operation, ATM cells are written into the transmit UTOPIA buffers by the ATM layer device. The transmit UTOPIA provides an industry standard ATM PHY interface. Four transmit UTO-PIA buffers are provided to serve four independent ATM sources.

Once the ATM cells have been written to the PHY and placed in the cell buffers, they are read out by the transmit cell processors. There are four processors, one for each transmit UTOPIA PHY. The transmit cell processor calculates the HEC byte and inserts this information into byte 5 of the ATM cell header. The cell payload is then scrambled to minimize the potential for false headers in the payload, and to avoid deliberate transmission of line alarm patterns.

Once the entire cell has been processed it is passed to the transmit framer where a SONET STS-12/12c frame, complete with section, line, and path overheads, is constructed from the stream of ATM cells. The cell processor then reads another ATM cell from the transmit UTOPIA. If the UTOPIA cell buffer is empty, the corresponding test cell generator inserts an idle cell into the transmit stream.

Figure 4 shows a flow diagram of a transmit operation for one transmit path. The other three paths are identical.

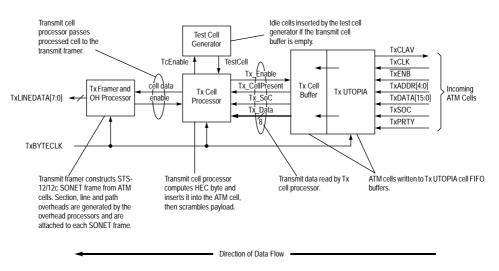


Figure 4. Data Flow During a Transmit Operation

Microprocessor Interface to Transmit Architecture

The TC-622Pro/Pro+ contains a number of registers that contain performance monitoring, status, and alarm indication information. These registers are accessed by the host through the PCI (TC-622Pro) or MPI (TC-622Pro+) bus interface. Refer to Section 4.4 for more information on the PCI interface. Refer to Section 4.5 for more information on the MPI Interface. Refer to Section 6 for a listing and description of TC-622Pro/Pro+ registers.

Performance Monitors

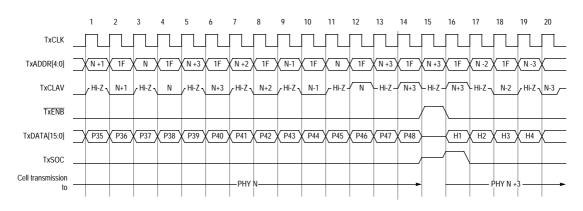
The TC-622Pro/Pro+ maintains running counters that monitor various error events as they occur. These counters are maintained within the transmit block and are not reset when read. Rather, a sticky bit is used to indicate count roll-over. Four roll-over registers, located at addresses 0x52 - 0x55, are used to store these sticky bit values. The user can read the appropriate roll-over register and reset the bit manually if desired.

The TC-622Pro/Pro+ transmit counters perform the following functions:

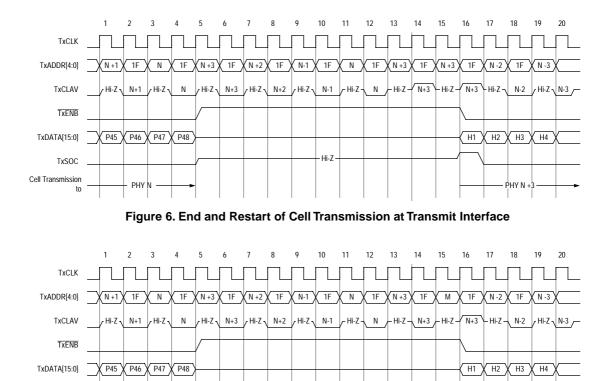
- Counts the number of cells and frames transmitted
- Counts the number of cells discarded because of multiple-bit errors
- Counts the number of idle cells inserted into the data stream to achieve cell rate adaptation

4.2.2 Transmit UTOPIA PHY

The TC-622Pro/Pro+ consists of four identical transmit UTOPIA PHY ports. Each port has a unique address and supports a different ATM stream. The function of each port is to facilitate the transfer of data between the transmit cell processors and the ATM physical layer. Each port conforms to the UTOPIA Level 2 Version 1.0 specification and supports Multi-PHY (MPHY) operation using a 16-bit data path.


Operation with an 8-bit ATM cell path is not supported. In STS-12c mode only port 0 is active. The ATM master device can transfer data by driving the address of that port on the *TxADDR[4:0]* lines such that the *TxCLAV* output is driven permanently by that port only.

ATM Layer Interface


The transmit interface is controlled by the ATM layer. This layer provides an interface clock to the UTO-PIA PHY for synchronizing all interface transfers. The transmit interface has data flowing in the same direction as the ATM enable. The following UTOPIA interface signals; TxENB, TxDATA[15:0], TxA-DDR[4:0], TxSOC, and TxPRTY, are all sampled on the rising edge of TxCLK.

The UTOPIA slave controls the flow of data through the *TxCLAV* signal. Once this signal is asserted, the ATM layer responds by driving data onto *TxDATA*[15:0] and asserting \overline{TxENB} .

Figure 5, Figure 6, and Figure 7 show three different conditions under which data is transmitted.

Cell transmission to PHY M PHY

Hi-7

Transmit Cell Processor Interface

TxSOC

Each of the four transmit cell processors provides an interface clock to the UTOPIA slave block for synchronizing all interface transfers. The cell processor generates all signals on the rising edge of an internal *cell processor* signal clock.

Once at least one or more ATM cells have been received from the ATM layer and stored to the UTOPIA cell buffer, the UTOPIA indicates to the cell processor that cell data is ready for transfer. The cell processor uses internal handshake signals to control the flow of data between the UTOPIA and the cell processor.

4.2.3 Transmit Cell Processor

The TC-622Pro/Pro+ contains four transmit cell processors which operate independently of one another. Each transmit cell processor performs two primary functions; *Header Error Check (HEC)* insertion and *cell rate adaptation*.

The TC-622Pro/Pro+ supports two SONET frame modes which determine how many processors are enabled. In STS-12 mode, all four cell processors are enabled and one at a time is selected. The four pro-

ML53301/ML53311 TC-622Pro/Pro+

cessors are enabled in a fixed order. In STS-12c mode one processor is enabled and the other three are disabled. The UTOPIA PHY asserts the internal $Tx_CellPresent$ signal to inform the cell processor that an ATM cell is in the cell FIFO buffer and is ready for transmission. The cell processor asserts the internal $Tx_Cenable$ signal and reads the 52-byte ATM cell from the FIFO. These signals are provided for clarity and are not available externally.

Once the cell has been read, the HEC computation block computes the HEC based on the first four bytes read from the FIFO using the CRC-8 polynomial ($X^8 + X^2 + X + 1$) and always adds the coset polynomial ($X^6 + X^4 + X^2 + 1$). The coset is a derivative of the CRC-8 polynomial. In the TC-622Pro/Pro+ devices the coset polynomial is always enabled. The HEC computation is then inserted into the fifth byte position of the cell, during which time the cell processor stops reading from the FIFO for one clock cycle. Except for the first five header bytes, the 48-byte cell payload is scrambled using a self-synchronizing scrambler employing the polynomial ($X^{43} + 1$). Cell payloads are scrambled to minimize the possibility of payload data looking like a header pattern. Scrambling the data helps simplify the frame recovery process at the destination by increasing the level of differentiation between the header and the cell payload.

If the UTOPIA FIFO does not contain a complete cell, the cell processor inserts idle cells from the test cell generator to achieve the correct cell rate adaptation. The idle cells have a fixed header pattern of 0x(00, 00, 00, 01, 52), and a fixed payload of (0x6A).

The cell processor can also send test cells from the test cell generator instead of idle cells. The header for these test cells is programmed in registers. The processor computes the HEC of these test cells. When test cells are inserted, availability of a cell in the FIFO is checked at the end of every cell. Anytime a full cell is available in the FIFO, it is read by the cell processor and inserted into the data stream.

In addition to HEC computation and cell rate adaptation, the cell processor also counts the number of assigned cells transmitted and the number of idle cells inserted. These counters are free-running and indicate roll-over using a sticky-bit. Each counter register is 16-bits in size and uses a 17th bit to indicate the roll-over status for that register. The sticky bits from each counter register are concatenated into a series of 16-bit registers called 'roll-over' registers. These registers are located at addresses 0x52 - 0x55 in TC-622Pro/Pro+ register address space.

The transmit cell processor receives general flow control (GFC) feedback from the receive cell processor. When a GFC Halt is enabled by the user and the GFC feedback is received, the ATM cells are not accepted and transmitted from the FIFO, even if cells in the FIFO are available for transmission.

4.2.4 Test Cell Generator

The TC-622Pro/Pro+ contains four transmit test cell generators, one for each transmit cell processor. The test cell generators provide a source of idle cells for the corresponding cell processor. Whenever the cell processor does not have assigned cells to read from the UTOPIA buffer, it reads idle cells from the test cell generator in order to meet the correct cell rate adaptation.

When the internal *TcEnable* signal is asserted by the cell processor, the test cell generator places a test cell on cell data bus in the following clock. The cell data is generated by a Pseudo Random Sequence Generator (PRBS). The PRBS is a shift register that generates a random number and then repeats the sequence after some period of time. There are four different maximum-length polynomials used to ensure random data for all of the four cell streams independent of one another.

- Polynomial 1 $(x^{22} + X^{17} + 1)$
- Polynomial 2 $(x^{22} + X^{11} + 1)$
- Polynomial 3 $(x^{22} + X^{19} + 1)$
- Polynomial 4 $(x^{22} + X^{14} + 1)$

4.2.5 Transmit Framer And Overhead Processor

The transmit framer receives processed ATM cells from the cell processors and constructs an STS-12/12c frame depending on the mode. Each STS frame contains a 108-byte section overhead, an 216-byte line overhead, and a 9- or 36-byte path overhead, all of which contain information about the frame. This information is calculated by the overhead processor within the transmit framer. *Table 1* shows the values generated for each overhead field by the overhead processors. All fields in *Table 1* are 8-bits wide. Once the entire frame is assembled, all bytes of the frame except the framing bytes (A1, A2, C1) are scrambled using a frame synchronous scrambler that implements the polynomial ($X^7 + X^6 + 1$).

Refer to Section 10 for the definition and physical location of each field within the corresponding overhead.

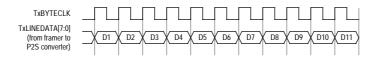
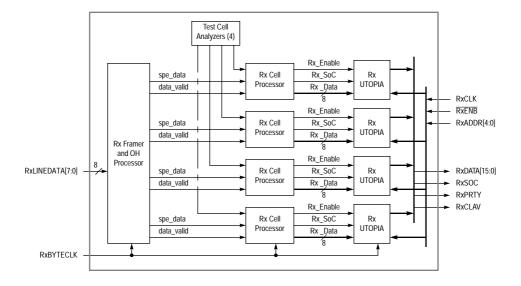

Field	Byte Type	Value
Section Overhead	d Processor (9 bytes)	
A1	Framing	0xF6
A2	Framing	0x28
C1	Identity	SONET mode: 0x01, 0x02, 0x0C SDH mode: 0x01, 0x02, 0x04. Remaining 8 bytes = 0xCC
B1	BIP-8	8-bit parity field. Value depends on data.
All others		Fixed at 0x00
Line Overhead Pr	rocessor (18 bytes)	
H1	Pointer	STS-12 mode: First four bytes are 0x62. Remaining 8 bytes = 0x93. STS-12c mode: First byte is 0x62. Remaining 11 bytes are 0x93.
H2	Pointer	STS-12 mode: First four bytes are 0x0A. Remaining 8 bytes = H2* STS-12c mode: First byte is 0x0A. Remaining 11 bytes are H2* *(H2 = 0xFF)
H3	Pointer Action	0x00
B2	Parity	Calculates 96-bit BIP parity over the line overhead and entire SPE before scrambling, then inserts the value into the current frame. The actual value is data-dependent
K1	APS	AIS insertion: User command AIS code 0x07is inserted into the K1 byte.
К2	APS	RDI insertion: User command RDI code 0x06is inserted into the K2 byte if one or more error conditions (LOS, LOF, LOC) are detected in the receiver.
D4 - D12	Datacomm	Fixed at 0x00
Z1 - Z2	Growth	Fixed at 0x00
Path Overhead Pr	rocessor (9 bytes)	
J1	Trace	Fixed at 0x00
B3	BIP - 8	8-bit parity value depends on data
C2	Signal label	Fixed at 0x13
G1	Path status	Path FEBE value is inserted in this byte

Table 1. Transmit Overhead Values

Table 1. Transmit Overhead Values

Field	Byte Type	Value
F2	User channel	Fixed at 0x00
H4	Multi-frame	Fixed at 0x00
Z3 - Z5	Growth	Fixed at 0x00

The transmit framer uses the *TxBYTECLK* Clock to transfer information to the external parallel-to-serial converter. Transmit line data is transferred in 8-bit quantities at the rising edge of each *TxBYTECLK*. *Figure 8* shows a timing diagram of a typical line data transfer. Note that the acronym P2S in the diagram below is for the 'Parallel-to-Serial' converter.


Figure 8. Transmit Line Interface Timings

4.3 Receive Architecture

The receive architecture in the TC-622Pro/Pro+ contains the following four modules below which are discussed, along with the receive data flow, in the following sections:

- Receive Framer and Overhead Processor
- Four Receive Test Cell Analyzers
- Four Receive Cell Processors
- Four Receive UTOPIA's

The TC-622Pro/Pro+ block diagram in *Figure 2* is broken into three major interfaces; transmit interface, receive interface, and PCI/MPI interface. This section discusses the architecture of the receive interface. Refer to Section 4.2 and Section 4.4 for more information on the transmit and PCI (TC-622Pro) interfaces. Refer to Section 4.5 for more information on the TC-622Pro+ MPI interface. *Figure 9* shows a block diagram of the receive architecture.

Figure 9. Receive Architecture Block Diagram

4.3.1 Receive Data Flow

During a receive operation, the incoming serial bit stream is converted into bytes by an external serial-toparallel converter and driven to the receive framer on RxLINEDATA[7:0]. This 8-bit value is not bytealigned when it enters the framer and the framer must search the byte stream for the framing pattern. Once the framing pattern is located, frame synchronization is declared and the byte boundaries of the received data are determined.

Each of the three overhead processors (section, line, and path) contained in the receive framer processes the corresponding overhead bytes. The Synchronous Payload Envelope (SPE) contained in the frame is extracted and passed to the receive cell processor. The receive framer detects various error conditions and alarm indications in the incoming signal.

The cell processor performs cell delineation using the Header Error Control (HEC) bytes and extracts the appropriate cells. All cells with multiple-bit errors are discarded along with all idle cells. The cell processor descrambles the cell payload and writes the cell into the receive UTOPIA cell buffer.

Once the cells have entered the buffer, the receive UTOPIA indicates the availability of these cells to the ATM layer, where they are subsequently read out by the ATM layer device.

Figure 10 shows a flow diagram of a receive operation.

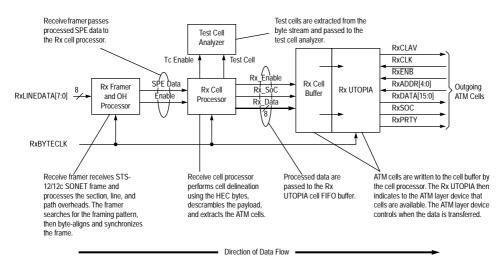


Figure 10. Data Flow During a Receive Operation

Microprocessor Interface to Receive Architecture

The TC-622Pro/Pro+ contains a number of registers containing performance monitoring, status, and alarm indication information. In the ML53301 TC-622-Pro device, these registers are accessed by the host through the PCI bus. In the ML53311 TC-622Pro+ device, these registers are accessed directly through the MPI Bus Interface. Refer to Section 4.4 for more information on the PCI interface. Refer to Section 4.5 for more information on the MPI Interface. Refer to Section 6 for a listing and description of TC-622Pro registers.

Performance Monitors

The TC-622Pro/Pro+ maintains running counters that monitor various error events as they occur during a receive operation. These counters are maintained within the receive block and are not reset when read. Rather, a sticky bit is used to indicate count roll-over. The sticky bits for all counter registers are concatenated together into four 16-bit registers that are located at addresses 0x52 - 0x55. The user can read the appropriate roll-over register and reset the bit manually if desired.

The TC-622Pro/Pro+ counters perform the following functions:

- Counts the number of cells and frames received
- Counts the number of cells discarded because of multiple-bit errors
- Counts the number of B1, B2, and B3 parity errors detected in the incoming signal. B1 corresponds to errors detected in the section overhead, B2 corresponds to errors detected in the line overhead, and B3 corresponds to errors detected in the path overhead.
- Counts the number of line and path Far End Block Error (FEBE) values received.

4.3.2 Receive Framer And Overhead Processor

The receive framer receives byte line data after the bit stream has been converted using an external serialto-parallel converter. The receive framer takes in non-aligned bytes and extracts the frame payload. In STS-12c mode only one of the four processor modules is active, hence there is only one payload (SPE) to extract. In STS-12 mode the framer extracts four independent payloads. The receive framer performs the following functions:

- STS-12/12c frame recovery and synchronization
- Pointer processing to extract the Synchronous Payload Envelope (SPE)
- Overhead processing to detect alarm conditions in the incoming signal
- Performance monitoring

Each of these functions is explained in the following sections.

Frame Recovery and Synchronization

Data entering the receive framer is stored in a 31-bit buffer where the framer searches for the framing patterns. During normal frame transmission the framer is in the 'sync' state and expects twelve 0xF6 values followed immediately by twelve 0x28 values at a fixed location within the buffer. Each of these values must be received exactly 125 μ s apart, the duration of a typical SONET frame. Once these patterns are found, that portion of the buffer is used to give out the byte-aligned data. When the framer detects an out-of-frame condition, it searches for a pattern equivalent to 0x6F6282. A change of byte alignment occurs only when the receive framer makes a transition from the Out-Of-Frame (OOF) state to the Sync state.

Out-Of-Frame State Machine

The OOF state machine is used to monitor the out-of-frame condition and is set whenever there are four consecutive incorrect framing patterns. The machine is reset once two consecutive correct patterns are observed. *Figure 11* shows a diagram of the OOF state machine.

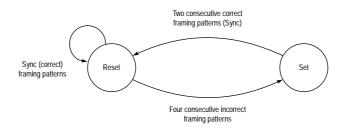
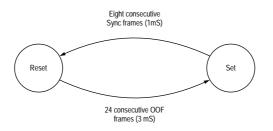



Figure 11. Out-Of-Frame State Machine

Loss-Of-Frame State Machine

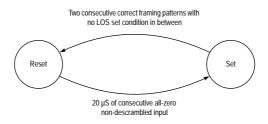
The OOF condition above is generated at $125 \,\mu$ S intervals. This is the rate at which the framing patterns are extracted by the receive framer. If 24 consecutive frames (3 mS) generate an OOF condition, the LOF state machine is set. The LOF state machine is reset after 8 frames (1 mS) of continuous Sync condition (no OOF condition). *Figure 12* shows a diagram of the LOF state machine.

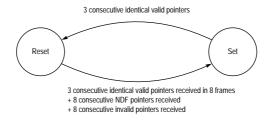
Figure 12. Loss-Of-Frame State Machine

Loss-of-Signal State Machine

The TC-622Pro/Pro+ implements a frame synchronous descrambler that implements the polynomial ($X^7 + X^6 + 1$) which is used to descramble the overheads and the cell payload. Note that framing bytes A1, A2, and A3 of the section overhead are not descrambled. The descrambler is initialized at the start of each frame.

The LOS state machine is set when the receive framer gets an external LOS indication. This external LOS indication is logically OR'ed with an internally detected LOS and then used throughout the device. The LOS state machine is set when at least 20 μ S of continuous all zero non-descrambled inputs are detected. The machine is reset when two correct framing patters are detected exactly 125 μ S apart with no LOS set condition in between. *Figure 13* shows a diagram of the LOS state machine.




Figure 13. Loss-Of-Signal State Machine

Loss-Of-Pointer State Machine

The LOP state machine is set when under any one of the following conditions:

- · Three consecutive valid identical pointers are received in eight frames
- Eight consecutive NDF pointers are received
- · Eight consecutive invalid pointers are received

The machine is reset when three consecutive identical valid pointers are received. *Figure 14* shows a diagram of the LOP state machine.

Figure 14. Loss-Of-Pointer State Machine

Path AIS State Machine

The P-AIS state machine is set when three consecutive H1 and H2 bytes are all ones (invalid pointers). The machine is reset when three consecutive identical valid pointers are received. *Figure 15* shows a diagram of the Path-AIS state machine.

Figure 15. Path-AIS State Machine

Synchronous Payload Envelope (SPE) Extraction

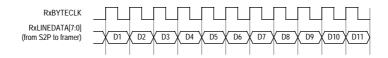
The line overhead processor examines the H1 and H2 bytes of the line overhead to locate the start of the SPE. In STS-12 mode four pointers are processed and maintained. In STS-12c mode only one pointer is processed. The following functions are performed to extract the SPE.

- **Invalid Pointer Detection:** An invalid pointer is declared when the received H1H2[9:0] decimal value is either greater than 782, not persistent for three frames, or the NDF flag is set. This value is comprised of all 8 bits of the H2 byte and the lower 2 bits of the H1 byte.
- NDF Detection: A New Data Flag (NDF) condition is declared when bits [7:4] of the H1 byte match one of the following patterns; 0001, 1000, 1001, 1011, or 1101. If an NDF condition is detected with a valid pointer, the current pointer is changed to the received pointer which has the highest priority. The NDF is a mechanism that provides for the sudden change in data alignment in a SONET frame.
- Three Consecutive Identical Pointers Detection: The occurrence of three consecutive identical valid pointers is used to change the current pointer. This has the second highest priority after NDF.
- **Justification Detection:** The TC-622Pro/Pro+ supports both positive and negative justification. Positive justification is declared if the received H1H2[9:0] value, after the inversion of all evennumbered bits, matches with the inverted current pointer in at least 8 or more bits. Negative justification is declared if the received H1H2[9:0] value, after inversion of all odd-numbered bits, matches with the inverted current pointer in at least 8 or more bits.

Overhead Processing

The TC-622Pro/Pro+ devices contain section, line, and path overhead processors for extraction and processing of the section and line overheads of the SONET frame, and the path overheads of each SPE. *Table 2* lists the various bytes of each overhead and how they are handled in the TC-622Pro and TC622-Pro+ devices.

Field	Byte Type	Value
Section Overhead	Processor (9 bytes)	
A1	Framing	Contains frame synchronization information.
A2	Framing	Contains frame synchronization information.
C1	Identity	Identifies each STS-1 within a SONET frame.
B1	BIP-8	8-bit parity field. Value depends on data. This 8-bit interleaved field is calculated over the com- plete frame before descrambling. The result is compared with the received B1 byte in the next frame. The number of bit errors are accumulated. The accumulation of B1 errors is stopped under OOF, LOF, LOS, and LOC conditions.
E1, F1, D1-D3		Ignored.
Line Overhead Pro	cessor (18 bytes)	
H1, H2	Pointers	The processing of these bytes is discussed in the above section on "SPE Extraction".
H3	Pointer Action	If negative justification is declared then the H3 byte contains valid SPE data. Otherwise it is ignored. Justification is discussed in the above section on "SPE Extraction".
B2 BIP-8		The 96-bit line bit-interleaved parity is calculated over the SPE and the line overhead bits. The result is compared with the received B2 byte in the next frame. The number of mismatches are accumulated. The accumulation of B2 errors and FEBE feedback are stopped under OOF, LOF, LOS, and LOC conditions.
K1, K2	Pointer Action	These bytes are written to a register for user purposes. Automatic Protection Switching (APS) is not supported in the TC-622Pro/Pro+.
Z2 Growth		If the value contained in the third received Z2 byte is less than 97 decimal it is accumulated in a counter. Overflow of the counter is indicated by a sticky bit. Accumulation of the received line FEBE is stopped under OOF, LOF, LOS, and LOC conditions.
Z1, E3, D4-D12		Ignored.
Path Overhead Pro	ocessor (9 bytes)	
J1	Trace	Ignored.
ti C		Used to calculate the 8-bit interleaved parity over the entire SPE. The result is compared with the B3 byte of the next SPE. The number of bit errors are accumulated using a counter. Counter overflow is indicated by a sticky bit. The accumulation of B3 errors and the FEBE feedback are stopped under OOF, LOF, LOS, LOC, LOP, and Path AIS conditions.
C2	Signal label	The received C2 byte is compared with a fixed value of 0x13. The number of mismatches is maintained in a 3-bit counter. Counter overflow is indicated by a sticky bit. The counting of C2 byte mismatches is stopped under OOF, LOF, LOS, LOC, LOP, and Path AIS conditions.
G1	Path status	If the received value of path FEBE contained in the G1 byte is less than 9, then it is accumu- lated using a counter. Counter overflow is indicated by a sticky bit. The counting of path FEBE is stopped under OOF, LOF, LOS, LOC, LOP, and Path AIS conditions.


Table 2. Receive Overhead Values

Ignored.

F2, H4, Z3-Z5

The receive framer uses the *RxBYTECLK* signal to transfer information between the receive framer and the external converter. Receive line data is transferred in 8-bit quantities at the rising edge of each *RxBYTECLK*. *Figure 16* shows a timing diagram of a typical receive line data transfer. Note that the acronym S2P stands for 'Serial-to-Parallel'.

Figure 16. Receive Line Interface Timing Example

Receive Overhead State Machines

There are three state machine associated with receive overhead processing. Two machines pertain to the K2 byte in the line overhead, and one machine pertains to the G1 byte in the path overhead. Each of these machines is explained below.

The *Line-AIS* state machine is used for detecting an alarm indication on the line side (remote end). The machine is set (Line-AIS condition declared) when a Line-AIS code (111 in the lower 3-bits of the K2 byte of the section overhead) is received for five consecutive frames. The machine is reset when a Line-AIS code other than '111' in the K2 byte is received for five consecutive frames. *Figure 17* shows a diagram of the Line-AIS state machine.

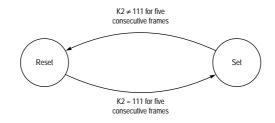


Figure 17. Line-AIS State Machine

The *Line-RDI* state machine is used to detect a remote defect indication on the line side. The machine is set (Line-RDI condition declared) when a Line-RDI code (110 in the lower 3-bits of the K2 byte in the section overhead) is received for five consecutive frames. The machine is reset when a Line-RDI code other than '110' in the K2 byte is received for five consecutive frames. *Figure 18* shows a diagram of the Line-RDI state machine.

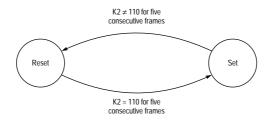


Figure 18. Line-RDI State Machine

The *Path-RDI* state machine is used for remote defect indication in the path overhead. The machine is set (Path-RDI condition declared) when a path RDI indication in the G1 byte (bit 5) of the path overhead is received for ten consecutive frames. The machine is reset when no path RDI indication in the G1 byte is received for ten consecutive frames. *Figure 19* shows a diagram of the Path-RDI state machine.

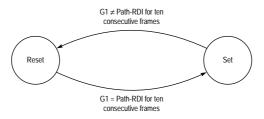


Figure 19. Path-RDI State Machine

4.3.3 Receive Cell Processor

The TC-622Pro/Pro+ contains four receive cell processors which operate independently of one another. In STS-12 mode all four processors are enabled. In STS-12c mode only one processor is enabled and it writes to only one UTOPIA channel. All receive cell processors operate in an identical manner.

The receive cell processor receives data from the receive framer and delineates the data to form ATM cells. The processor descrambles delineated cells using a self-synchronizing descrambler that uses the polynomial (X^{43} + 1). The cell delineation state machine computes the Header Error Control (HEC) over the first four bytes of each ATM cell and compares it with the received HEC byte. The processor is capable of correcting single-bit errors in a cell header and detecting multi-bit errors. Idle cells are discarded. The first four bits of each ATM cell header (in UNI mode) are the Generic Flow Control (GFC) bits.

Each cell processor counts the number of assigned cells written to the UTOPIA FIFO and the number of idle cells dropped. It also counts the number of cells with multiple-bit HEC errors and the number of transitions from the *Sync* state to the *Out-of-Cell-Delineation* state. The *Sync* state is declared when more than seven ATM cells have been transmitted successfully. In this state the received ATM cells are extracted and written to the FIFO. In the *Out-of-Cell-Delineation* state cells cannot be extracted. The state machine transitions from the *Sync* state to the *Out-of-Cell-Delineation* state when more than 8 consecutive ATM cells have an incorrect HEC value.

4.3.4 Test Cell Analyzer

The TC-622Pro/Pro+ contains four test cell analyzers, one for each receive cell processor. Whenever a cell processor receives a cell with a header pattern matching one that is programmed for test cells, that cell is passed to the corresponding test cell analyzer and is not written to the UTOPIA FIFO. The test cell analyzer uses the test cell to check the integrity of the payload and detect the number of bit errors present. It also counts the number of test cells received. The test cell analyzer uses a pseudo-random generator that has two phases of operation.

- Phase 1: The test cell analyzer is synchronized to the incoming data.
- Phase 2: Once synchronization is achieved, the test cell analyzer detects all bit errors present in the payload.

The PRBS polynomials used in the test cell analyzer give a maximum length random sequence. Four different polynomials are used to check data integrity for all four data streams from the four test cell analyzers.

- Polynomial 1 $(X^{22} + X^{17} + 1)$
- Polynomial 2 $(X^{22} + X^{11} + 1)$
- Polynomial 3 $(X^{22} + X^{19} + 1)$
- Polynomial 4 $(X^{22} + X^{14} + 1)$

The internal *TcEnable* signal from the cell processor qualifies the cell payload. Whenever *TcEnable* is asserted the PBRS starts functioning. Note that this signal is not available external to the device.

4.3.5 Receive UTOPIA Phy

The TC-622Pro/Pro+ consists of four identical receive UTOPIA PHY ports. Each port has a unique address and supports a different ATM stream. The function of each port is to facilitate the transfer of data between the TC-622Pro/Pro+ receive cell processors and the ATM physical layer. Each port conforms to the UTOPIA Level 2 Version 1.0 specification and supports Multi-PHY (MPHY) operation using a 16-bit data path. MPHY mode indicates that all four UTOPIA ports on the TC-622Pro/Pro+ are active.

Operation with an 8-bit ATM cell path is not supported. If the ATM master intends to transfer data in STS-12c mode where only port 0 is active, it can do so by driving the address of that port on the TxA-DDR[4:0] lines such that the TxCLAV output is driven permanently by that port only.

ATM Layer Receive Interface

The receive interface is controlled by the ATM layer. This layer provides an interface clock to the UTO-PIA PHY for synchronizing all interface transfers. The receive interface has data flowing in the opposite direction as the ATM enable. The receive UTOPIA interface signals; *RxENB*, *RxDATA*[15:0], *RxA-DDR*[4:0], *RxSOC*, and *RxPRTY*, are all sampled or driven on the rising edge of *RxCLK*. The UTOPIA slave controls the flow of data through the *RxCLAV* signal.

Figures 20 through 23 show three different conditions under which data is read from the receive UTOPIA by the ATM layer device.

ML53301/ML53311 TC-622Pro/Pro+

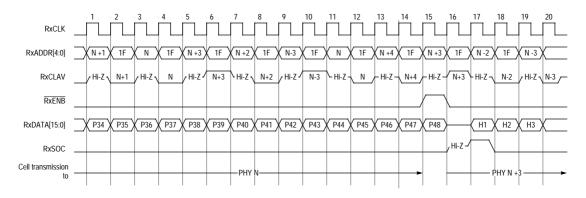


Figure 20. Polling Phase and Selection Phase at Receive Interface

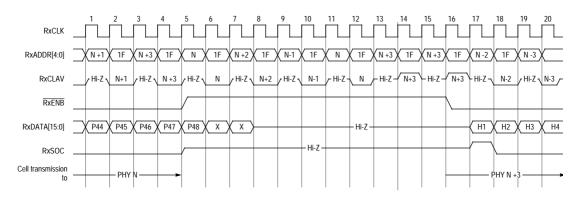
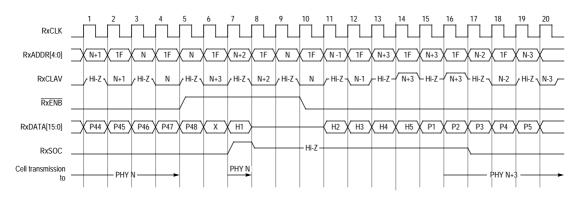



Figure 21. End and Restart of Cell Transmission at Receive Interface

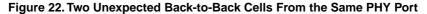


Figure 23. Two Subsequent Cells From the Same PHY Port

Receive Cell Processor Interface

Each of the four receive cell processors provides an interface clock to the UTOPIA slave block for synchronizing all interface transfers. The cell processor generates all signals on the rising edge of the internal *RxCellClk* signal.

Internal handshake signals are used to control the flow of data between the receive cell processor and the receive UTOPIA. At the beginning of each cell transfer the receive UTOPIA checks whether an entire cell can be written to the FIFO. If there is insufficient space in the FIFO to accommodate an entire cell the receive UTOPIA simply ignores the data and indicates an overrun condition by asserting an internal *Overrun* signal.

4.4 PCI Bus Architecture (TC-622Pro)

The ML53301 TC-622Pro incorporates a standard microprocessor with a PCI interface for accessing of onchip registers and control functions. Refer to Section 8 for more information on the ML53301 TC-622Pro PCI Bus Architecture.

4.5 MPI Bus Architecture (TC-622Pro+)

The ML53311 TC-622Pro+ incorporates a standard microprocessor with a low-cost MPI interface for accessing of on-chip registers and control functions. Refer to Section 9 for more information on the ML53311 TC-622Pro+ MPI Bus Architecture.

5. SIGNAL DESCRIPTIONS

The ML53301 TC-622Pro contains a 32-bit PCI interface. The ML53311 TC-622Pro+ contains a low cost 16-bit MPI interface. Refer to Section 8 for the TC-622Pro signal descriptions. Refer to Section 9 for the TC-622Pro+ signal descriptions.

6. REGISTERS

Table 3 shows a register map of the TC-622Pro and TC-622Pro+ devices. Each register is then described in the order that it appears in the table. Throughout the register descriptions in this section, the word 'set' means to set the register bit to a logic 1. The word 'clear' means to reset the bit to a logic 0.

Refer to Section 8 for more information on accessing these registers using the PCI interface in the TC-622Pro. Refer to Section 9 for more information on accessing these registers using the MPI interface in the TC-622Pro+.

Address	Width (bits)	Register Type [1]	Description
0x00	16	R/W	STS-12/12c and SONET/SDH mode selection
0x01	16	R/O	Receive B1 error count
0x02	16	R/O	Receive B2 error count
0x03	16	R/O	Receive B3 error count for SPE 3
0x04	16	R/O	Receive B3 error count for SPE 2
0x05	16	R/O	Receive B3 error count for SPE 1
0x06	16	R/O	Receive B3 error count for SPE 0
0x07	16	R/O	Test Cell Analyzer 3 error count
0x08	16	R/O	Test Cell Analyzer 2 error count
0x09	16	R/O	Test Cell Analyzer 1 error count
0x0A	16	R/O	Test Cell Analyzer 0 error count
0x0B	16	R/O	Received Line FEBE count
0x0C	16	R/O	Received Path FEBE count for SPE 3
0x0D	16	R/O	Received Path FEBE count for SPE 2
0x0E	16	R/O	Received Path FEBE count for SPE 1
0x0F	16	R/O	Received Path FEBE count for SPE 0
0x10	16	R/O	Test Cell Generator 3 transmitted cells count
0x11	16	R/O	Test Cell Generator 2 transmitted cells count
0x12	16	R/O	Test Cell Generator 1 transmitted cells count
0x13	16	R/O	Test Cell Generator 0 transmitted cells count
0x14	16	R/O	Test Cell Analyzer 3 received cells count
0x15	16	R/O	Test Cell Analyzer 2 received cells count
0x16	16	R/O	Test Cell Analyzer 1 received cells count
0x17	16	R/O	Test Cell Analyzer 0 received cells count
0x18	16	R/O	Transmit Cell Processor 3 assigned cells transmitted count

Table 3. Register Organization

Address	Width (bits)	Register Type [1]	Description
0x19	16	R/O	Transmit Cell Processor 2 assigned cells transmitted count
0x1A	16	R/O	Transmit Cell Processor 1 assigned cells transmitted count
0x1B	16	R/O	Transmit Cell Processor 0 assigned cells transmitted count
0x1C	16	R/O	Transmit Cell Processor 3 idle cells transmitted count
0x1D	16	R/O	Transmit Cell Processor 2 idle cells transmitted count
0x1E	16	R/O	Transmit Cell Processor 1 idle cells transmitted count
0x1F	16	R/O	Transmit Cell Processor 0 idle cells transmitted count
0x20	16	R/O	Receive Cell Processor 3 assigned cells received count
0x21	16	R/O	Receive Cell Processor 2 assigned cells received count
0x22	16	R/O	Receive Cell Processor 1 assigned cells received count
0x23	16	R/O	Receive Cell Processor 0 assigned cells received count
0x24	16	R/O	Receive Cell Processor 3 idle cells received count
0x25	16	R/O	Receive Cell Processor 2 idle cells received count
0x26	16	R/O	Receive Cell Processor 1 idle cells received count
0x27	16	R/O	Receive Cell Processor 0 idle cells received count
0x28	16	R/O	Receive Cell Processor 3 discarded cells count
0x29	16	R/O	Receive Cell Processor 2 discarded cells count
0x2A	16	R/O	Receive Cell Processor 1 discarded cells count
0x2B	16	R/O	Receive Cell Processor 0 discarded cells count
0x2C	16	R/O	Receive SPE 3 Signal Mismatch count
0x2D	16	R/O	Receive SPE 2 Signal Mismatch count
0x2E	16	R/O	Receive SPE 1 Signal Mismatch count
0x2F	16	R/O	Receive SPE 0 Signal Mismatch count
0x30	16	R/O	Receive SPE 3 Pointer
0x31	16	R/O	Receive SPE 2 Pointer
0x32	16	R/O	Receive SPE 1 Pointer
0x33	16	R/O	Receive SPE 0 Pointer
0x34	16	R/O	Receive K1 and K2 bytes
0x35	16	R/O	Receive alarms register 1
0x36	16	R/O	Receive alarms register 2
0x37	16	R/W	Test Cell Generator 3 cell header bytes 1 and 2
0x38	16	R/W	Test Cell Generator 2 cell header bytes 1 and 2
0x39	16	R/W	Test Cell Generator 1 cell header bytes 1 and 2
0x3A	16	R/W	Test Cell Generator 0 cell header bytes 1 and 2
0x3B	16	R/W	Test Cell Generator 3 cell header bytes 3 and 4
0x3C	16	R/W	Test Cell Generator 2 cell header bytes 3 and 4
0x3D	16	R/W	Test Cell Generator 1 cell header bytes 3 and 4
0x3E	16	R/W	Test Cell Generator 0 cell header bytes 3 and 4
x03F	16	R/W	Test Cell Analyzer 3 cell header bytes 1 and 2

Table 3. Register Organization

Table 3. Register Organization

Address	Width (bits)	Register Type [1]	Description
0x40	16	R/W	Test Cell Analyzer 2 cell header bytes 1 and 2
0x41	16	R/W	Test Cell Analyzer 1 cell header bytes 1 and 2
0x42	16	R/W	Test Cell Analyzer 0 cell header bytes 1 and 2
0x43	16	R/W	Test Cell Analyzer 3 cell header bytes 3 and 4
0x44	16	R/W	Test Cell Analyzer 2 cell header bytes 3 and 4
0x45	16	R/W	Test Cell Analyzer 1 cell header bytes 3 and 4
0x46	16	R/W	Test Cell Analyzer 0 cell header bytes 3 and 4
0x47	16	R/W	User commands to UTOPIA
0x48	16	R/W	UTOPIA 3 Address register
0x49	16	R/W	UTOPIA 2 Address register
0x4A	16	R/W	UTOPIA 1 Address register
0x4B	16	R/W	UTOPIA 0 Address register
0x4C	16	RO	Transmit UTOPIA FIFO Status register
0x4D	16	RO	Transmit UTOPIA Cell Drop Status register
0x4E	16	RO	Reserved
0x4F	16	R/W	User commands to Receive Cell Processors
0x50	16	R/W	User commands to Transmit Framer
0x51	16	R/W	User commands to Transmit Cell Processors
0x52	16	R/W/S	Roll-over indications of parity/bit errors
0x53	16	R/W/S	Roll-over indications of receiver alarms
0x54	16	R/W/S	Roll-over indications of test cell counts
0x55	16	R/W/S	Roll-over indications of transmit and receive cell counts
0x56	32	R/W	Interrupt Mask register
0x57	32	RO	Interrupt Status register

1. R/O = Read Only. R/W = Read/Write. R/W/S = Read/Write/Set

Address	15	3	2	1	0	
0x00	Unused		SR	SMT	FM	
SR	Soft Reset				Bit 2	
	The soft reset bit is provided to reset the device logic while figuration information. A soft reset may be required after Soft reset resets all device blocks except the microprocess bank and PCI/MPI Target block). Soft reset is an active low clearing this bit. This SR bit is set by default as indicated in	ch or re	anging interfa set and	device ce (i.e. is activ	modes. register ated by	
SMT	SONET/SDH Mode				Bit 1	
	When the SMT bit is cleared the TC-622Pro/Pro+ operates in SDH mode. When bit is set the device operates in SONET mode. In SDH mode the C1 and H1 overhe bytes are slightly different from the SONET overhead bytes.					
FM	Framing Mode				Bit 0	
	The TC-622Pro/Pro+ devices can be operated in two modes; STS-12 and STS-12 Clearing the bit sets the device to STS-12 mode, while setting the bit indicates STS 12c mode. In STS-12 mode four independent ATM sources are byte multiplexed in the transmit direction, and four independent ATM streams are de-multiplexed from the incoming signal in the receive direction. In STS-12c mode there is only one ATM stream involved. The other three streams are disabled.					

6.1 Frame Mode Selection (default = 0004) Read/Write

6.2 Receive B1 Error Count (default = 0xFFFC) Read Only

Address	15 0
0x01	Receive B1 Error Count

Receive B1 Error Count

This register contains the number of B1 (8 bit, BIP, section) parity errors detected in the received frame. The counter stops counting upon detection of a LOS, LOF, LOC, or OOF error condition in the incoming signal. When the extraction of the B1 byte and computation of B1 parity are not reliable (due to any of the error conditions mentioned above), the accumulation is halted. When the counter reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 0 of a separate roll-over register located at address 0x52.

6.3 Receive B2 Error Count (default = 0xFFFC) Read Only

....

Address	15 0	
0x02	Receive B2 Error Count	

Receive B2 Error Count

This register contains the number of B2 (96 bit, BIP, line) parity errors detected in the received frame. The counter stops counting upon detection of a LOF, LOC, or OOF error condition in the incoming signal. When the extraction of the B2 byte and computation of B2 parity are not reliable (due to any of the error conditions mentioned above), the accumulation is halted. When the counter reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 1 of a separate roll-over register located at address 0x52.

Bits 15:0

Bits 15:0

Oki Semiconductor

30

6.4 Receive B3 Error Count 3 (default = 0xFFFC) Read Only

Address	15 0
0x03	Receive B3 Error Count 3

Receive B3 Error Count 3

This register contains the number of B3 (8 bit, BIP, path) parity errors detected in the received SPE-3. The counter stops counting upon detection of LOS, LOF, LOC, LOP-3, Path-AIS-3 or OOF in the incoming signal. When the extraction of the B3 byte and computation of B3 parity are not reliable (under the error conditions mentioned above), the accumulation is not done. When the count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 5 of a separate roll-over register located at address 0x52.

The contents of this register are only valid in STS-12 mode and not in STS-12c mode.

6.5 Receive B3 Error Count 2 (default = 0xFFFC) Read Only

Address	15 0
0x04	Receive B3 Error Count 2

Receive B3 Error Count 2

This register contains the number of B3 (8 bit, BIP, path) parity errors detected in the received SPE-2. The counter stops counting upon detection of a LOS, LOF, LOC, LOP-2, Path-AIS-2 or OOF error condition in the incoming signal. When the extraction of the B3 byte and computation of B3 parity are not reliable (due to any of the error conditions mentioned above), the accumulation is halted. When the count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 4 of a separate roll-over register located at address 0x52.

The contents of this register are only valid in STS-12 mode and not in STS-12c mode.

Bits 15:0

Bits 15:0

6.6 Receive B3 Error Count 1 (default = 0xFFFC) Read Only

Address	15 0
0x05	Receive B3 Error Count 1

Receive B3 Error Count 1

This register contains the number of B3 (8 bit, BIP, path) parity errors detected in the received SPE-1. The counter stops counting upon detection of a LOS, LOF, LOC, LOP-1, Path-AIS-1 or OOF error condition in the incoming signal. When the extraction of the B3 byte and computation of B3 parity are not reliable (due to any of the error conditions mentioned above), the accumulation is halted. When the count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 3 of a separate roll-over register located at address 0x52.

The contents of this register are only valid in STS-12 mode and not in STS-12c mode.

6.7 Receive B3 Error Count 0 (default = 0xFFFC) Read Only

Address	15 0
0x06	Receive B3 Error Count 0

Receive B3 Error Count 0

This register contains the number of B3 (8 bit, BIP, path) parity errors detected in the received SPE-0. The counter stops counting upon detection of a LOS, LOF, LOC, LOP-0, Path-AIS-0 or OOF error condition in the incoming signal. When the extraction of the B3 byte and computation of B3 parity are not reliable (due to any of the error conditions mentioned above), the accumulation is halted. When the count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 2 of a separate roll-over register located at address 0x52.

The contents of this register are valid in both STS-12 mode and STS-12c mode.

6.8 Test Cell Analyzer 3 Error Count (default = 0xFFFC) Read Only

Address	15 0
0x07	Test Cell Analyzer 3 Error Count

Test Cell Analyzer 3 Error Count

This register contains the number of bit errors detected in the test cell payload by the test cell analyzer 3. Whenever receive cell processor 3 detects and gives a test cell, test cell analyzer 3 detects the number of bit errors present in the payload and accumulates that number in this register. When the count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 9 of a separate roll-over register located at address 0x52.

The contents of this register are only valid in STS-12 mode and not in STS-12c mode.

Bits 15:0

31

Bits 15:0

6.9 Test Cell Analyzer 2 Error Count (default = 0xFFFC) Read Only

Address	15 0
0x08	Test Cell Analyzer 2 Error Count

Test Cell Analyzer 2 Error Count

Bits 15:0

Bits 15:0

This register contains the number of bit errors detected in the test cell payload by the test cell analyzer 2. Whenever receive cell processor 2 detects and gives a test cell, test cell analyzer 2 detects the number of bit errors present in the payload and accumulates that number in this register. When the count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 8 of a separate roll-over register located at address 0x52.

The contents of this register are only valid in STS-12 mode and not in STS-12c mode.

6.10 Test Cell Analyzer 1 Error Count (default = 0xFFFC) Read Only

Address	15 0
0x09	Test Cell Analyzer 1 Error Count

Test Cell Analyzer 1 Error Count

This register contains the number of bit errors detected in the test cell payload by the test cell analyzer 1. Whenever receive cell processor 1 detects and gives a test cell, test cell analyzer 1 detects the number of bit errors present in the payload and accumulates that number in this register. When the count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 7 of a separate roll-over register located at address 0x52.

The contents of this register are only valid in STS-12 mode and not in STS-12c mode.

6.11 Test Cell Analyzer 0 Error Count (default = 0xFFFC) Read Only

Address	15 0
0x0A	Test Cell Analyzer 0 Error Count

Test Cell Analyzer 0 Error Count

This register contains the number of bit errors detected in the test cell payload by the test cell analyzer 0. Whenever receive cell processor 0 detects and gives a test cell, test cell analyzer 0 detects the number of bit errors present in the payload and accumulates that number in this register. When the count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 6 of a separate roll-over register located at address 0x52.

The contents of this register are valid in both STS-12 mode and STS-12c mode.

Bits 15:0

Address	15 0	
0x0B	Received Line FEBE accumulator	

6.12 Received Line FEBE Accumulator (default = 0xFFFC) Read Only

Received Line FEBE Accumulator

Bits 15:0

Bits 15:0

The received line Far End Block Error (FEBE) value (contained in the third Z2 byte) is accumulated in this register. The counter stops accumulating upon detection of a LOS, LOF, LOC, or OOF error condition in the incoming signal. If the value is greater than 96 then it is considered as zero value and nothing is added to the register. When the extraction of the Z2 byte is not reliable due to any of the error conditions mentioned above, the accumulation is halted. When the count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 0 of a separate roll-over register located at address 0x53.

6.13 Received Path FEBE Accumulator 3 (default = 0xFFFC) Read Only

Address	15 0
0x0C	Received Path FEBE accumulator 3

Received Path FEBE Accumulator 3

The path FEBE value contained in the G1 byte of the POH (of SPE-3) is accumulated in this register. If the value is greater than 8, or if any of the following error conditions; LOS, LOF, LOC, LOP-3, P-AIS-3 or OOF, occur in the incoming signal, the accumulation is stopped. When the count reaches a maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 0 of a separate roll-over register located at address 0x53. This roll-over is indicated in bit 8 of a separate roll-over register located at address 0x53.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.14 Received Path FEBE Accumulator 2 (default = 0xFFFC) Read Only

Address	15 0
0x0D	Received Path FEBE accumulator 2

Received Path FEBE Accumulator 2

Bits 15:0

The path FEBE value contained in the G1 byte of the POH (of SPE-2), is accumulated in this register. If the value is greater than 8, or if any of the following error conditions; LOS, LOF, LOC, LOP-2, P-AIS-2 or OOF, occur in the incoming signal, the accumulation is stopped. When the count reaches a maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 7 of a separate roll-over register located at address 0x53.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.15 Received Path FEBE Accumulator 1 (default = 0xFFFC) Read Only

Address	15 0
0x0E	Received Path FEBE accumulator 1

Received Path FEBE Accumulator 1

The path FEBE value contained in the G1 byte of the POH (of SPE-1), is accumulated in this register. If the value is greater than 8, or if any of the following error conditions; LOS, LOF, LOC, LOP-1, P-AIS-1 or OOF, occur in the incoming signal, the accumulation is stopped. When the count reaches a maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 6 of a separate roll-over register located at address 0x53.

Bits 15:0

Bits 15:0

Bits 15:0

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.16 Received Path FEBE Accumulator 0 (default = 0xFFFC) Read Only

Address	15 0
0x0F	Received Path FEBE accumulator 0

Received Path FEBE Accumulator 0

The path FEBE value contained in the G1 byte of the POH (of SPE-0), is accumulated in this register. If the value is greater than 8, or if any of the following error conditions; LOS, LOF, LOC, LOP-0, P-AIS-0 or OOF, occur in the incoming signal, the accumulation is stopped. When the count reaches a maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 5 of a separate roll-over register located at address 0x53.

The contents of this register are valid in both STS-12 mode and STS-12c mode.

6.17 Test Cell Generator 3 Transmitted Cells Count (default = 0xFFFC) Read Only

Address	15 0
0x10	Test Cell Generator 3 Transmitted Cells Count

Test Cell Generator 3 Transmitted Cells Count

This register contains the number of test cells inserted by Test Cell Generator 3. When the test cell transmission is enabled for transmit cell processor 3 and idle cells are required to meet the correct cell rate adaptation, these cells are generated by the test cell generator. When this count reaches the maximum value (65,535) it rolls over

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

to zero. This roll-over is indicated in bit 7 of a separate roll-over register located at

address 0x54.

Address	15 0
0x11	Test Cell Generator 2 Transmitted Cells Count

6.18 Test Cell Generator 2 Transmitted Cells Count (default = 0xFFFC) Read Only

Test Cell Generator 2 Transmitted Cells Count

Bits 15:0

This register contains the number of test cells inserted by Test Cell Generator 2. When the test cell transmission is enabled for transmit cell processor 2 and idle cells are required to meet the correct cell rate adaptation, these cells are generated by the test cell generator. When this count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 6 of a separate roll-over register located at address 0x54.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.19 Test Cell Generator 1 Transmitted Cells Count (default = 0xFFFC) Read Only

Address	15 0
0x12	Test Cell Generator 1 Transmitted Cells Count

Test Cell Generator 1 Transmitted Cells Count

Bits 15:0

This register contains the number of test cells inserted by Test Cell Generator 1. When the test cell transmission is enabled for transmit cell processor 1 and idle cells are required to meet the correct cell rate adaptation, these cells are generated by the test cell generator. When this count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 5 of a separate roll-over register located at address 0x54.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.20 Test Cell Generator 0 Transmitted Cells Count (default = 0xFFFC) Read Only

Address	15 0	
0x13	Test Cell Generator 0 Transmitted Cells Count	

Test Cell Generator 0 Transmitted Cells Count

Bits 15:0

This register contains the number of test cells inserted by Test Cell Generator 0. When the test cell transmission is enabled for transmit cell processor 0 and idle cells are required to meet the correct cell rate adaptation, these cells are generated by the test cell generator. When this count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 4 of a separate roll-over register located at address 0x54.

The contents of this register are valid in both STS-12 mode and STS-12c mode.

Address	15 0
0x14	Test Cell Analyzer 3 Received Cells Count

6.21 Test C ell Analyzer 3 Received Cells Count (default = 0xFFFC) Read Only

Test Cell Analyzer 3 Received Cells Count

Bits 15:0

This register contains the number of test cells received by Test Cell Analyzer 3. Whenever receive cell processor 3 receives a cell with the header matching the test cell pattern programmed by the user, it passes that cell to the test cell analyzer. When this count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 3 of a separate roll-over register located at address 0x54.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.22 Test Cell Analyzer 2 Received Cells Count (default = 0xFFFC) Read Only

Address	15 0
0x15	Test Cell Analyzer 2 Received Cells Count

Test Cell Analyzer 2 Received Cells Count

Bits 15:0

Bits 15:0

This register contains the number of test cells received by Test Cell Analyzer 2. Whenever receive cell processor 2 receives a cell with the header matching the test cell pattern programmed by the user, it passes that cell to the test cell analyzer. When this count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 2 of a separate roll-over register located at address 0x54.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.23 Test Cell Analyzer 1 Received Cells Count (default = 0xFFFC) Read Only

Address	15 0	L
0x16	Test Cell Analyzer 1 Received Cells Count	

Test Cell Analyzer 1 Received Cells Count

This register contains the number of test cells received by Test Cell Analyzer 1. Whenever receive cell processor 1 receives a cell with the header matching the test cell pattern programmed by the user, it passes that cell to the test cell analyzer. When this count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 1 of a separate roll-over register located at address 0x54.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.24 Test Cell Analyzer 0 Received Cells Count (default = 0xFFFC) Read Only

Ad	dress	15 0
0)x17	Test Cell Analyzer 0 Received Cells Count

Test Cell Analyzer 0 Received Cells Count

Bits 15:0

This register contains the number of test cells received by Test Cell Analyzer 0. Whenever receive cell processor 0 receives a cell with the header matching the test cell pattern programmed by the user, it passes that cell to the test cell analyzer. When this count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 0 of a separate roll-over register located at address 0x54. The contents of this register are valid in both STS-12 mode and STS-12c mode.

Address	15 0
0x18	Assigned Cells Transmitted Count 3

6.25 Assigned Cells Transmitted Count 3 (default = 0xFFFC) Read Only

Assigned Cells Transmitted Count 3

Bits 15:0

This register contains the number of assigned cells transmitted by transmit cell processor 3. These cells are read by the cell processor from the transmit UTOPIA buffer 3. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 15 of a separate roll-over register located at address 0x55. The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.26 Assigned Cells Transmitted Count 2 (default = 0xFFFC) Read Only

Address	15 0
0x19	Assigned Cells Transmitted Count 2

Assigned Cells Transmitted Count 2

This register contains the number of assigned cells transmitted by transmit cell processor 2. These cells are read by the cell processor from the transmit UTOPIA buffer 2. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 14 of a separate roll-over register located at address 0x55.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.27 Assigned Cells Transmitted Count 1 (default = 0xFFFC) Read Only

Address	15 0
0x1A	Assigned Cells Transmitted Count 1

Assigned Cells Transmitted Count 1

This register contains the number of assigned cells transmitted by transmit cell processor 1. These cells are read by the cell processor from the transmit UTOPIA buffer 1. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 13 of a separate roll-over register located at address 0x55. The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.28 Assigned Cells Transmitted Count 0 (default = 0xFFFC) Read Only

Address	15 0
0x1B	Assigned Cells Transmitted Count 0

Assigned Cells Transmitted Count 0

This register contains the number of assigned cells transmitted by transmit cell processor 0. These cells are read by the cell processor from the transmit UTOPIA buffer 0. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 12 of a separate roll-over register located at address 0x55. The contents of this register are valid in both STS-12 mode and STS-12c mode.

Bits 15:0

Bits 15:0

6.29 Idle Cells Transmitted Count 3 (default = 0xFFFC) Read Only

Ac	ddress	15 0
(0x1C	Idle Cells Transmitted Count 3

Idle Cells Transmitted Count 3

This register contains the number of idle cells transmitted by the transmit cell processor 3. When no assigned cells are available in the transmit UTOPIA 3 buffer, and if the test cell generator is not enabled for this processor, an idle cell is transmitted. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 11 of a separate roll-over register located at address 0x55.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.30 Idle Cells Transmitted Count 2 (default = 0xFFFC) Read Only

Address	15 0
0x1D	Idle Cells Transmitted Count 2

Idle Cells Transmitted Count 2

This register contains the number of idle cells transmitted by the transmit cell processor 2. When no assigned cells are available in the transmit UTOPIA 2 buffer, and if the test cell generator is not enabled for this processor, an idle cell is transmitted. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 10 of a separate roll-over register located at address 0x55. The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.31 Idle Cells Transmitted Count 1 (default = 0xFFFC) Read Only

Address	15 0
0x1E	Idle Cells Transmitted Count 1

Idle Cells Transmitted Count 1

This register contains the number of idle cells transmitted by the transmit cell processor 1. When no assigned cells are available in the transmit UTOPIA 1 buffer, and if the test cell generator is not enabled for this processor, an idle cell is transmitted. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 9 of a separate roll-over register located at address 0x55.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

Bits 15:0

Bits 15:0

Address	15 0	
0x1F	Idle Cells Transmitted Count 0	

6.32 Idle Cells Transmitted Count 0 (default = 0xFFFC) Read Only

Idle Cells Transmitted Count 0

This register contains the number of idle cells transmitted by the transmit cell processor 0. When no assigned cells are available in the transmit UTOPIA 0 buffer, and if the test cell generator is not enabled for this processor, an idle cell is transmitted. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 8 of a separate roll-over register located at address 0x55. The contents of this register are valid in both STS-12 mode and STS-12c mode.

6.33 Assigned Cells Received Count 3 (default = 0xFFFC) Read Only

Address	15 0
0x20	Assigned Cells Received Count 3

Assigned Cells Received Count 3

This register contains the number of assigned cells received by receive cell processor 3. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 7 of a separate roll-over register located at address 0x55. The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.34 Assigned Cells Received Count 2 (default = 0xFFFC) Read Only

Address	15 0
0x21	Assigned Cells Received Count 2

Assigned Cells Received Count 2

This register contains the number of assigned cells received by receive cell processor 2. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 6 of a separate roll-over register located at address 0x55. The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.35 Assigned Cells Received Count 1 (default = 0xFFFC) Read Only

Address	15 0
0x22	Assigned Cells Received Count 1

Assigned Cells Received Count 1

This register contains the number of assigned cells received by receive cell processor 1. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 5 of a separate roll-over register located at address 0x55.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

Bits 15:0

Bits 15:0

Bits 15:0

6.36 Assigned Cells Received Count 0	(default = 0xFFFC) Read Only
--------------------------------------	------------------------------

Address	15 0
0x23	Assigned Cells Received Count 0

Assigned Cells Received Count 0

This register contains the number of assigned cells received by receive cell processor 0. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 4 of a separate roll-over register located at address 0x55. The contents of this register are valid in both STS-12 mode and STS-12c mode.

6.37 Idle Cells Received Count 3 (default = 0xFFFC) Read Only

Address	15 0
0x24	Idle Cells Received Count 3

Idle Cells Received Count 3

This register contains the number of idle cells received by receive cell processor 3. When this count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 3 of a separate roll-over register located at address 0x55.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.38 Idle Cells Received Count 2 (default = 0xFFFC) Read Only

Address	15 0
0x25	Idle Cells Received Count 2

Idle Cells Received Count 2

This register contains the number of idle cells received by receive cell processor 2. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 2 of a separate roll-over register located at address 0x55. The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.39 Idle Cells Received Count 1 (default = 0xFFFC) Read Only

Address	15 0
0x26	Idle Cells Received Count 1

Idle Cells Received Count 1

This register contains the number of idle cells received by receive cell processor 1. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 1 of a separate roll-over register located at address 0x55. The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

Bits 15:0

Bits 15:0

Bits 15:0

Address	15 0
0x27	Idle Cells Received Count 0

6.40 Idle Cells Received Count 0 (default = 0xFFFC) Read Only

Idle Cells Received Count 0

This register contains the number of idle cells received by receive cell processor 0. When this count reaches the maximum value (65,535) it rolls over to zero. This rollover is indicated in bit 0 of a separate roll-over register located at address 0x55. The contents of this register are valid in both STS-12 mode and STS-12c mode.

6.41 Cell Discard Count 3 (default = 0xFFFC) Read Only

Address	15 0	
0x28	Cell Discard Count 3	1

Cell Discard Count 3

This register contains the number of assigned cells discarded by receive cell processor 3. Assigned cells are discarded when the cell processor is in the Sync state and there are multiple bit errors in the header. This register stops counting when cell delineation is lost. When this count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 4 of a separate roll-over register located at address 0x53.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.42 Cell Discard Count 2 (default = 0xFFFC) Read Only

Address	15 0
0x29	Cell Discard Count 2

Cell Discard Count 2

This register contains the number of assigned cells discarded by receive cell processor 2. Assigned cells are discarded when the cell processor is in the Sync state and there are multiple bit errors in the header. This register stops counting when cell delineation is lost. When this count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 3 of a separate roll-over register located at address 0x53.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

Bits 15:0

Bits 15:0

15:0

6.43 Cell Discard Count 1 (default = 0xFFFC) Read Only

Address	15 0
0x2A	Cell Discard Count 1

Cell Discard Count 1

Bits 15:0

Bits 15:0

This register contains the number of assigned cells discarded by receive cell processor 1. Assigned cells are discarded when the cell processor is in the Sync state and there are multiple bit errors in the header. This register stops counting when cell delineation is lost. When this count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 2 of a separate roll-over register located at address 0x53.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.44 Cell Discard Count 0 (default = 0xFFFC) Read Only

Address	15 0
0x2B	Cell Discard Count 0

Cell Discard Count 0

This register contains the number of assigned cells discarded by receive cell processor 0. Assigned cells are discarded when the cell processor is in the Sync state and there are multiple bit errors in the header. This register stops counting when cell delineation is lost. When this count reaches the maximum value (65,535) it rolls over to zero. This roll-over is indicated in bit 1 of a separate roll-over register located at address 0x53.

The contents of this register are valid in both STS-12 mode and STS-12c mode.

6.45 Signal Mismatch Count 3 (default = 0x0006) Read Only

Address	15 3	2		0
0x2C	Unused		SMC3	

SMC3 Signal Mismatch Count 3

Bits 2:0

This field contains the number of ATM signal label mismatches detected in the received SPE-3. The ATM label is contained in the C2 overhead byte. When the extraction of the C2 byte is not reliable, as indicated by the detection of a LOS, LOF, LOC, LOP-3, P_AIS-3, or OOF error condition, the accumulation is stopped. When this count reaches its maximum value of 0x0007 it rolls over to zero. This roll-over is indicated in bit 12 of a separate roll-over register located at address 0x53.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

Address	15 3	2	0
0x2D	Unused		SMC2

6.46 Signal Mismatch Count 2 (default = 0x0006) Read Only

SMC2 Signal Mismatch Count 2

This field contains the number of ATM signal label mismatches in the received SPE-2. The ATM label is contained in the C2 overhead byte. When the extraction of the C2 byte is not reliable, as indicated by the detection of a LOS, LOF, LOC, LOP-2, P_AIS-2, or OOF error condition, the accumulation is stopped. When this count reaches its maximum value of 0x0007 it rolls over to zero. This roll-over is indicated in bit 11 of a separate roll-over register located at address 0x53.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.47 Signal Mismatch Count 1 (default = 0x0006) Read Only

Add		15 3	2	0	
0x	2E	Unused		SMC1	

SMC1 Signal Mismatch Count 1

This field contains the number of ATM signal label mismatches in the received SPE-1. The ATM label is contained in the C2 overhead byte. When the extraction of the C2 byte is not reliable, as indicated by the detection of a LOS, LOF, LOC, LOP-1, P_AIS-1, or OOF error condition, the accumulation is stopped. When this count reaches its maximum value of 0x0007 it rolls over to zero. This roll-over is indicated in bit 10 of a separate roll-over register located at address 0x53.

The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.48 Signal Mismatch Count 0 (default = 0x0006) Read Only

Address	15 3	2	0
0x2F	Unused		SMC0

SMC0

Signal Mismatch Count 0

This field contains the number of ATM signal label mismatches in the received SPE-0. The ATM label is contained in the C2 overhead byte. When the extraction of the C2 byte is not reliable, as indicated by the detection of a LOS, LOF, LOC, LOP-0, P_AIS-0, or OOF error condition, the accumulation is stopped. When this count reaches its maximum value of 0x0007 it rolls over to zero. This roll-over is indicated in bit 9 of a separate roll-over register located at address 0x53.

The contents of this register are valid in both STS-12 mode and STS-12c mode.

Bits 2:0

Bits 2:0

Bits 2:0

6.49 Received Pointer 3 (default = 0x0000) Read Only

Address	15	12	11	10	9		0
0x30	Unused		SS			Received SPE Pointer 3	

SSStream 3 PointerBits 11:10Stream 3 pointer bits. This field stores bits 3:2 of the H1 byte of the path overhead.PointerSPE Pointer 3Bits 9:0This field contains the current pointer value used to extract the SPE-3 payload from
the received frames. A decimal value greater than 782 indicates an invalid pointer.
The contents of this register are valid only in STS-12 mode and not in STS-12c mode.

6.50 Received Pointer 2 (default = 0x0000) Read Only

Address	15	12	11	10	9	0		
0x31	Unused		SS			Received SPE Pointer 2		
SS		n 2 Po			hia fial	Bits 11:10		
Pointer	SPE F	Stream 2 pointer bits. This field stores bits 3:2 of the H1 byte of the path overhead. SPE Pointer 2 Bits 9:						
	the re-	ceived i	frame	s. A c	decima	pointer value used to extract the SPE-2 payload from l value greater than 782 indicates an invalid pointer. e valid only in STS-12 mode and not in STS-12c mode.		

6.51 Received Pointer 1 (default = 0x0000) Read Only

Address	15		12	11	10	9		0
0x32	Unused SS			Received SPE Pointer 1				
SS		Stream Stream 1			ts. Tl	nis f	Bits 1 ield stores bits 3:2 of the H1 byte of the path overhe	-
Pointer		the recei	d con ived f	tains rame	s. A c	lecir	Bits ont pointer value used to extract the SPE-1 payload nal value greater than 782 indicates an invalid poin are valid only in STS-12 mode and not in STS-12c m	ter.

Address	15	12	11	10	9	0			
0x33	Unused		S	S	Received SPE Pointer 0				
SS Stream 0 Pointer Stream 0 pointer bits. This field stores bits 3:2 of the H1 byte of the path									
Pointer	SPE P	ointer	0			Bits 9:			
	ceived	frame	s. A d	ecim	al value g	ointer value used to extract the SPE-0 from the re greater than 782 indicates an invalid pointer. valid in both STS-12 mode and STS-12c mode.			

6.52 Received Pointer 0 (default = 0x0000) Read Only

6.53 Received K1 and K2 Bytes (default = 0x0000) Read Only

Address	15 8	7 0
0x34	Received K1 Byte	Received K2 Byte

Received K1 Byte

This field contains the K1 byte of the received frame.

Received K2 Byte

This field contains the K2 byte of the received frame.

6.54 Receiver Alarms Register 1 (default = 0x0F00) Read Only

Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x35	LCD3	LCD2	LCD1	LCD0	OCD3	OCD2	OCD1	OCD0	P-RDI3	P-RDI2	P-RDI1	P-RDI0	P-AIS3	P-AIS2	P-AIS1	P-AIS0
LCD3		I	Loss	of Ce	ell Del	ineati	on_3								l	Bit 15
			3. An The u vided Cell P	LCD ser ca for th roces	defect in mor lat pur sor se	is dee nitor t rpose. ction.	clared his bit The d	after 4 and o etaileo	4 mS c can de d set a	of persi clare a nd res	istent (in LCI et defin	Out of D failur nitions	Cell D re by s are gi	elinea etting	tion ((the bi	it pro-
LCD2		This bit is valid only in STS-12 mode and not in STS-12c mode. Loss of Cell Delineation_2 Bit 14 Loss of Cell Delineation defect indication by cell processor 2 for the incoming stream 2. An LCD defect is declared after 4 mS of persistent Out of Cell Delineation (OCD). The user can monitor this bit and can declare an LCD failure by setting the bit pro- vided for that purpose. The detailed set and reset definitions are given in the Receive Cell Processor section.							tream OCD). it pro-							
							STS-1	2 mod	de and	not ir	STS-1	2c mo	de.			
LCD1			Loss o 1. An The u vided Cell P	of Cell LCD ser ca for th roces	Delir defect in mor at pur sor se	is dee nitor t rpose. ction.	n defeo clared his bit The d	after 4 and o etaileo	4 mS c can de d set a	of persi clare a nd res	istent (in LCI et defin		Cell D re by s are gi	elinea etting	ning s tion ((the bi	

Oki Semiconductor

45

Bits 7:0

Bits 15:8

LCD0	Loss of Cell Delineation_0 Bit	12
	Loss of Cell Delineation defect indication by cell processor 0 for the incoming stree 0. An LCD defect is declared after 4 mS of persistent Out of Cell Delineation (OC The user can monitor this bit and can declare an LCD failure by setting the bit p vided for that purpose. The detailed set and reset definitions are given in the Rece Cell Processor section.	D). ro-
	This bit is valid in both STS-12 mode and STS-12c mode.	
OCD3	Out of Cell Delineation_3 Bit	11
	Out of Cell Delineation defect indication by cell processor 3 for the incoming streat 3. An OCD error is declared when the cell processor is unable to obtain the corr HEC bytes of the incoming cells. The detailed set and reset definitions are given the Receive Cell Processor section.	rect
	This bit is valid only in STS-12 mode and not in STS-12c mode.	
OCD2	Out of Cell Delineation_2 Bit	10
	Out of Cell Delineation defect indication by cell processor 2 for the incoming streat 2. An OCD error is declared when the cell processor is unable to obtain the corr HEC bytes of the incoming cells. The detailed set and reset definitions are given the Receive Cell Processor section.	rect
	This bit is valid only in STS-12 mode and not in STS-12c mode.	
OCD1	Out of Cell Delineation_1 Bi	it 9
	Out of Cell Delineation defect indication by cell processor 1 for the incoming streat. 1. An OCD error is declared when the cell processor is unable to obtain the corr HEC bytes of the incoming cells. The detailed set and reset definitions are given the Receive Cell Processor section.	rect
	This bit is valid only in STS-12 mode and not in STS-12c mode.	
OCD0	Out of Cell Delineation_0 Bi	it 8
	Out of Cell Delineation defect indication by cell processor 0 for the incoming streat 0. An OCD error is declared when the cell processor is unable to obtain the corr HEC bytes of the incoming cells. The detailed set and reset definitions are given the Receive Cell Processor section.	rect
	This bit is valid in both STS-12 mode and STS-12c mode.	
P-RDI3	Path Remote Defect Indication_3 Bi	it 7
	Path Remote Defect Indication bit. The POH processor 3 extracts the G1 byte wh contains a one bit indication of RDI. If it receives continuous P-RDI indications, t bit is set. The detailed set and reset definitions are given in the Receive Framer s tion.	his
	This bit is valid only in STS-12 mode and not in STS-12c mode.	
P-RDI2	Path Remote Defect Indication_2 Bi	it 6
	Path Remote Defect Indication bit. The POH processor 2 extracts the G1 byte wh contains a one bit indication of RDI. If it receives continuous P-RDI indications, t bit is set. The detailed set and reset definitions are given in the Receive Framer s tion.	his
	This bit is valid only in STS-12 mode and not in STS-12c mode.	
P-RDI1	Path Remote Defect Indication_1 Bi	it 5
	Path Remote Defect Indication bit. The POH processor 1 extracts the G1 byte wh contains a one bit indication of RDI. If it receives continuous P-RDI indications, t bit is set. The detailed set and reset definitions are given in the Receive Framer s	his
	tion. This bit is valid only in STS-12 mode and not in STS-12c mode.	

ML53301/ML53311 TC-622Pro/Pro+

P-RDI0	Path Remote Defect Indication_0 Bit	4
	Path Remote Defect Indication bit. The POH processor 0 extracts the G1 byte which contains a one bit indication of RDI. If it receives continuous P-RDI indications, this bit is set. The detailed set and reset definitions are given in the Receive Framer section.	s
	This bit is valid in both STS-12 mode and STS-12c mode.	
P-AIS3	Path Alarm Indication Signal_3 Bit 3	3
	Path Alarm Indication Signal bit. The pointer processor detects the P-AIS error in the incoming SPE-3 payload and sets this bit. A P-AIS error is indicated by an all 1s pattern in the SPE and pointer bytes. The detailed set and reset definitions are given in the Receive Framer section.	-
	This bit is valid only in STS-12 mode and not in STS-12c mode.	
P-AIS2	Path Alarm Indication Signal_2 Bit 2	2
	Path Alarm Indication Signal bit. The pointer processor detects the P-AIS error in the incoming SPE-2 payload and sets this bit. A P-AIS error is indicated by an all 1s pattern in the SPE and pointer bytes. The detailed set and reset definitions are given in the Receive Framer section.	-
	This bit is valid only in STS-12 mode and not in STS-12c mode.	
P-AIS1	Path Alarm Indication Signal_1 Bit	1
	Path Alarm Indication Signal bit. The pointer processor detects the P-AIS error in the incoming SPE-1 payload and sets this bit. A P-AIS error is indicated by an all 1s pattern in the SPE and pointer bytes. The detailed set and reset definitions are given in the Receive Framer section.	-
	This bit is valid only in STS-12 mode and not in STS-12c mode.	
P-AIS0	Path Alarm Indication Signal_0 Bit (D
	Path Alarm Indication Signal bit. The pointer processor detects the P-AIS error in the incoming SPE-0 payload and sets this bit. A P-AIS error is indicated by an all 1s pattern in the SPE and pointer bytes. The detailed set and reset definitions are given in the Receive Framer section.	-
	This bit is valid in both STS-12 mode and STS-12c mode.	

6.55 Receiver Alarms Register 2 (default = 0x0F00) Read Only

10

9

8

7

6

5

4

3 2

1

0

Address

15

0x36	Unused	LOP3	LOP2	LOP1	LOP0	L-RDI	L-AIS	LOF	OOF	LOS	LOC
LOP3	Loss of Pointer_3										Bit 9
	Stream 3 Loss Of Pointer indication bit. The pointer processor detects the LOP er condition in the incoming stream 3 and sets this bit. The detailed set and reset de nitions are given in the Receive Framer section.										
	This bit is valid only in S	TS-12	mode	and n	ot in S	STS-12	c mod	le.			
LOP2	Loss of Pointer_2										Bit 8
Stream 2 Loss Of Pointer indication bit. The pointer processor detects the LOP condition in the incoming stream 2 and sets this bit. The detailed set and reset nitions are given in the Receive Framer section.											
	This bit is valid only in S	TS-12	mode	and n	ot in S	STS-12	c mod	le.			

LOP1	Loss of Pointer_1 Bit 7
	Stream 1 Loss Of Pointer indication bit. The pointer processor detects the LOP error condition in the incoming stream 1 and sets this bit. The detailed set and reset definitions are given in the Receive Framer section.
	This bit is valid only in STS-12 mode and not in STS-12c mode.
LOP0	Loss of Pointer_0 Bit 6
	Loss Of Pointer indication bit. The pointer processor detects the LOP error condition in the incoming stream 0 and sets this bit. The detailed set and reset definitions are given in the Receive Framer section.
	This bit is valid in both STS-12 mode and STS-12c mode.
L-RDI	Line Remote Defect Indication Bit 5
	Line Remote Defect Indication bit. The LOH processor detects the L-RDI error con- dition in the incoming signal and sets this bit. The K2 byte contains the Line RDI in- dication. The detailed set and reset definitions are given in the Receive Framer section.
	This bit is valid in both STS-12 mode and STS-12c mode.
L-AIS	Line Alarm Indication Signal Bit 4
	Line Alarm Indication Signal bit. The LOH processor detects the L-AIS error condi- tion in the incoming signal and sets this bit. The K2 byte contains the Line AIS indi- cation. The detailed set and reset definitions are given in the Receive Framer section.
	This bit is valid in both STS-12 mode and STS-12c mode.
LOF	Loss of Frame Bit 3
	Loss Of Frame indication bit. The Frame Synchronizer block detects the LOF error condition and sets this bit. Persistent OOF results in the LOF condition. The detailed set and reset definitions are given in the Receive Framer section.
	This bit is valid in both STS-12 mode and STS-12c mode.
OOF	Out of Frame Bit 2
	Out Of Frame indication bit. The Frame Synchronizer block detects the OOF error condition when it is not able to detect the framing patterns in the incoming signal. Data flow is not affected by the OOF condition. The detailed set and reset definitions are given in the Receive Framer section.
	This bit is valid in both STS-12 mode and STS-12c mode.
LOS	Loss of Signal Bit 1
	Loss Of Signal indication bit. The Frame Synchronizer block detects the LOS error condition when it gets continuous all-zero data. The TC-622Pro/Pro+ has an external LOS input. These two LOS indications are logically OR'ed and used for internal purposes, as well as to set and reset this bit. The detailed set and reset definitions are given in the Receive Framer section.
	This bit is valid in both STS-12 mode and STS-12c mode.
LOC	Loss of Clock Bit 0
	Loss Of Clock indication bit. An LOC error is not detected internally but it is an ex- ternal input to the TC-622Pro. This input is directly used to set and reset this bit. This bit is valid in both STS-12 mode and STS-12c mode.

6.56 Transmit Test Cell 3 Header Bytes 1 and 2 (default = 0x0000) Read/Write

Address	15 8	7 0
0x37	Transmit Test Cell 3 Header Byte 1	Transmit Test Cell 3 Header Byte 2

Transmit Test Cell 3 Header byte 1

Contains header byte 1 of Test Cell Generator 3. Transmit cell processor 3 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are userprogrammable.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Transmit Test Cell 3 Header byte 2

Contains header byte 2 of Test Cell Generator 3. Transmit cell processor 3 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are userprogrammable.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

6.57 Transmit Test Cell 2 Header Bytes 1 and 2 (default = 0x0000) Read/Write

Address	15 8	7 0
0x38	Transmit Test Cell 2 Header Byte 1	Transmit Test Cell 2 Header Byte 2

Transmit Test Cell 2 Header byte 1

Contains header byte 1 of Test Cell Generator 2. Transmit cell processor 2 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are userprogrammable.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Transmit Test Cell 2 Header byte 2

Contains header byte 2 of Test Cell Generator 2. Transmit cell processor 2 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are userprogrammable.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

6.58 Transmit Test Cell 1 Header Bytes 1 and 2 (default = 0x0000) Read/Write

Address	15 8	7 0	
0x39	Transmit Test Cell 1 Header Byte 1	Transmit Test Cell 1 Header Byte 2	

Transmit Test Cell 1 Header byte 1

Contains header byte 1 of Test Cell Generator 1. Transmit cell processor 1 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are userprogrammable.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Transmit Test Cell 1 Header byte 2

Contains header byte 2 of Test Cell Generator 1. Transmit cell processor 1 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are userprogrammable.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Oki Semiconductor 49

Bits 15:8

Bits 7:0

Bits 15:8

Bits 7:0

Bits 15:8

6.59 Transmit Test Cell 0 Header Bytes 1 and 2 (default = 0x0000) Read/Write

Address	15 8	7 0	
0x3A	Transmit Test Cell 0 Header Byte 1	Transmit Test Cell 0 Header Byte 2	

Transmit Test Cell 0 Header byte 1

Contains header byte 1 of Test Cell Generator 0. Transmit cell processor 0 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are user-programmable.

The contents of this field are valid in both STS-12 mode and STS-12c mode.

Transmit Test Cell 0 Header byte 2

Contains header byte 2 of Test Cell Generator 0. Transmit cell processor 0 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are user-programmable.

The contents of this field are valid in both STS-12 mode and STS-12c mode.

6.60 Transmit Test Cell 3 Header Bytes 3 and 4 (default = 0x0000) Read/Write

Address	15 8	7 0
0x3B	Transmit Test Cell 3 Header Byte 3	Transmit Test Cell 3 Header Byte 4

Transmit Test Cell 3 Header byte 3

Contains header byte 3 of Test Cell Generator 3. Transmit cell processor 3 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are user-programmable.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Transmit Test Cell 3 Header byte 4

Contains header byte 4 of Test Cell Generator 3. Transmit cell processor 3 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are user-programmable.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

6.61 Transmit Test Cell 2 Header Bytes 3 and 4 (default = 0x0000) Read/Write

Address	15 8	8 7	0
0x3C	Transmit Test Cell 2 Header Byte 3	st Cell 2 Header Byte 3 Transmit Test Cell 2 Header Byte 4	

Transmit Test Cell 2 Header byte 3

Contains header byte 3 of Test Cell Generator 2. Transmit cell processor 2 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are user-programmable.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Transmit Test Cell 2 Header byte 4

Contains header byte 4 of Test Cell Generator 2. Transmit cell processor 2 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are user-programmable.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

50 Oki Semiconductor

Bits 15:8

Bits 7:0

Bits 7:0

Bits 15:8

Bits 15:8

8 Transmit Test Cell 1 Header Byte 3 Transmit Test Cell 1 Header Byte 4

Transmit Test Cell 1 Header byte 3

Address

0x3D

15

6.62 Transmit Test Cell 1 Header Bytes 3 and 4 (default = 0x0000) Read/Write

Contains header byte 3 of Test Cell Generator 1. Transmit cell processor 1 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are userprogrammable.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

7

Transmit Test Cell 1 Header byte 4

Contains header byte 4 of Test Cell Generator 1. Transmit cell processor 1 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are userprogrammable.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

6.63 Transmit Test Cell 0 Header Bytes 3 and 4 (default = 0x0000) Read/Write

Address	15 8	7 0
0x3E	Transmit Test Cell 0 Header Byte 3	Transmit Test Cell 0 Header Byte 4

Transmit Test Cell 0 Header byte 3

Contains header byte 3 of Test Cell Generator 0. Transmit cell processor 0 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are userprogrammable.

The contents of this field are valid in both STS-12 mode and STS-12c mode.

Transmit Test Cell 0 Header byte 4

Contains header byte 4 of Test Cell Generator 0. Transmit cell processor 0 transmits a test cell in place of an idle cell if this register is enabled. Test cell headers are userprogrammable.

The contents of this field are valid in both STS-12 mode and STS-12c mode.

6.64 Receive Test Cell 3 Header Bytes 1 and 2 (default = 0x0000) Read/Write

Address	15 8	7	0
0x3F	Receive Test Cell 3 Header Byte 1	Receive Test Cell 3 Header Byte 2	

Receive Test Cell 3 Header byte 1

Contains header byte 1 of Test Cell Analyzer 3. The receive cell processor 3 detects a test cell when it receives a cell with the user programmed header pattern.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Receive Test Cell 3 Header byte 2

Contains header byte 2 of Test Cell Analyzer 3. The receive cell processor 3 detects a test cell when it receives a cell with the user programmed header pattern. The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Bits 15:8

Bits 7:0

Oki Semiconductor 51

Bits 15:8

Bits 15:8

0

Bits 7:0

6.65 Receive Test Cell 2 Header Bytes 1 and 2 (default = 0x0000) Read/Write

Address	15 8	7 0
0x40	Receive Test Cell 2 Header Byte 1	Receive Test Cell 2 Header Byte 2

Receive Test Cell 2 Header byte 1

Contains header byte 1 of Test Cell Analyzer 2. The receive cell processor 2 detects a test cell when it receives a cell with the user programmed header pattern. The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Receive Test Cell 2 Header byte 2 Bits 7:0

Contains header byte 2 of Test Cell Analyzer 2. The receive cell processor 2 detects a test cell when it receives a cell with the user programmed header pattern. The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

6.66 Receive Test Cell 1 Header Bytes 1 and 2 (default = 0x0000) Read/Write

Address	15 8	7		0	
0x41	Receive Test Cell 1 Header Byte 1	F	Receive Test Cell 1 Header Byte 2		

Receive Test Cell 1 Header byte 1

Contains header byte 1 of Test Cell Analyzer 1. The receive cell processor 1 detects a test cell when it receives a cell with the user programmed header pattern.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Receive Test Cell 1 Header byte 2

Contains header byte 2 of Test Cell Analyzer 1. The receive cell processor 1 detects a test cell when it receives a cell with the user programmed header pattern. The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

6.67 Receive Test Cell 0 Header Bytes 1 and 2 (default = 0x0000) Read/Write

Address	15 8	7 0
0x42	Receive Test Cell 0 Header Byte 1	Receive Test Cell 0 Header Byte 2

Receive Test Cell 1 Header byte 1

Contains header byte 1 of Test Cell Analyzer 0. The receive cell processor 0 detects a test cell when it receives a cell with the user programmed header pattern. The contents of this field are valid in both STS-12 mode and STS-12c mode.

Receive Test Cell 1 Header byte 2

Contains header byte 2 of Test Cell Analyzer 0. The receive cell processor 0 detects a test cell when it receives a cell with the user programmed header pattern. The contents of this field are valid in both STS-12 mode and STS-12c mode.

Bits 15:8

Bits 7:0

Bits 15:8

Bits 15:8

6.68 Receive Test Cell 3 Header Bytes 3 and 4 (default = 0x0000) Read/Write

Address	15 8	7 0
0x43	Receive Test Cell 3 Header Byte 3	Receive Test Cell 3 Header Byte 4

Receive Test Cell 3 Header byte 3

Contains header byte 3 of Test Cell Analyzer 3. The receive cell processor 3 detects a test cell when it receives a cell with the user programmed header pattern. The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Receive Test Cell 3 Header byte 4

Contains header byte 4 of Test Cell Analyzer 3. The receive cell processor 3 detects a test cell when it receives a cell with the user programmed header pattern.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

6.69 Receive Test Cell 2 Header Bytes 3 and 4 (default = 0x0000) Read/Write

Address	15 8	 7	0
0x44	Receive Test Cell 2 Header Byte 3	Receive Test Cell 2 Header Byte 4	

Receive Test Cell 2 Header byte 3

Contains header byte 3 of Test Cell Analyzer 2. The receive cell processor 2 detects a test cell when it receives a cell with the user programmed header pattern.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Receive Test Cell 2 Header byte 4

Contains header byte 4 of Test Cell Analyzer 2. The receive cell processor 2 detects a test cell when it receives a cell with the user programmed header pattern. The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

6.70 Receive Test Cell 1 Header Bytes 3 and 4 (default = 0x0000) Read/Write

Address	15 8	7 0
0x45	Receive Test Cell 1 Header Byte 3	Receive Test Cell 1 Header Byte 4

Receive Test Cell 1 Header byte 3

Contains header byte 3 of Test Cell Analyzer 1. The receive cell processor 1 detects a test cell when it receives a cell with the user programmed header pattern.

The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Receive Test Cell 1 Header byte 4

Contains header byte 4 of Test Cell Analyzer 1. The receive cell processor 1 detects a test cell when it receives a cell with the user programmed header pattern. The contents of this field are valid only in STS-12 mode and not in STS-12c mode.

Bits 15:8

Bits 7:0

Oki Semiconductor 53

Bits 7:0

Bits 7:0

Bits 15:8

6.71 Receive Test Cell 0 Header Bytes 3 and 4 (default = 0x0000) Read/Write

Address	15 8	7 0
0x46	Receive Test Cell 0 Header Byte 3	Receive Test Cell 0 Header Byte 4

Receive Test Cell 0 Header byte 3

Contains header byte 3 of Test Cell Analyzer 0. The receive cell processor 0 detects a test cell when it receives a cell with the user programmed header pattern. The contents of this field are valid in both STS-12 mode and STS-12c mode.

Receive Test Cell 0 Header byte 4

Bits 7:0

Bits 15:8

Contains header byte 4 of Test Cell Analyzer 0. The receive cell processor 0 detects a test cell when it receives a cell with the user programmed header pattern. The contents of this field are valid in both STS-12 mode and STS-12c mode.

6.72 User Commands To UTOPIA (default = 0x0000) Read/Write

	Address	15	8	7	6	5	4	3	2	1	0
	0x47	Unused		C3	C2	C1	C0	E3	E2	E1	E0
C3	C3 UTOPIA 3 Cell Bit Setting this bit places UTOPIA 3 in 52-byte mode. Clearing the bit places the UTOPI								Bit 7		
	3 in 54-byte mode. This bit is valid only in STS12 mode and not in STS12c mode.							101 111			
C2		UTOPIA 2 Cell	III 5151.	2 mode	e and no	n m 51	1512C II	lioue.			Bit 6
02		Setting this bit places	UTOPL	4 2 in 5	2-byte r	node	Clearin	o the hi	it place	s the U	
		2 in 54-byte mode.	01011	12110	2 Dyte I	noue.	Cicarin	ig the bi	ii place	s the o	101 111
		This bit is valid only	in STS12	2 mode	e and no	ot in ST	ſS12c n	node.			
C1		UTOPIA 1 Cell									Bit 5
		Setting this bit places 1 in 54-byte mode.	UTOPL	A 1 in 5	2-byte r	node.	Clearin	ig the bi	it place	s the Ư	TOPIA
		This bit is valid only	in STS12	2 mode	e and no	ot in ST	ſS12c n	node.			
C0	1	UTOPIA 0 Cell									Bit 4
		Setting this bit places 0 in 54-byte mode.	UTOPL	A 0 in 5	2-byte r	node.	Clearin	ig the bi	it place	s the U	ΓΟΡΙΑ
		This bit is valid in bo		2 mode	e and ST	S12c 1	node.				
E3		UTOPIA Error 3 Cel	-								Bit 3
		If this bit is set, trans from the master UTC		OPIA 3	drops a	cell o	n parity	y error i	in incoi	ning ce	ell data
		This bit is valid only	in STS12	2 mode	e and no	ot in ST	ſS12c n	node.			
E2		UTOPIA Error 2 Cel	-								Bit 2
	If this bit is set, transmit UTOPIA 2 drops a cell on parity error in incoming cell d from the master UTOPIA.						ell data				
		This bit is valid only	in STS12	2 mode	e and no	ot in ST	rS12c n	node.			
E1		UTOPIA Error 1 Cel	-								Bit 1
		If this bit is set, trans from the master UTC		OPIA 1	drops a	cell o	n parity	y error i	in incoi	ning ce	ell data
		This bit is valid only	in STS12	2 mode	e and no	ot in ST	FS12c n	node.			

E0 **UTOPIA Error 0 Cell**

Bit 0 If this bit is set, transmit UTOPIA 0 drops a cell on parity error in incoming cell data from the master UTOPIA.

This bit is valid in both STS12 mode and STS12c mode.

6.73 UTOPIA 3 Address Register (default = 0x0063) Read/Write

Address	15 10	9	5	4	0
0x48	Unused	TxAddr3			RxAddr3
TxAddr3	UTOPIA 3 Transmit Address [9:5] Contains the 5 bit UTOPIA 3 Transmit Address. Default for this field (Bits 9:5 this field 0x03.	
RxAddr3	UTOPIA 3 Receive Address [4:0] Contains the 5 bit UTOPIA 3 Receive Address. Default for this field 0x03. The contents of this register are valid only in STS12 mode and not in STS12c				

6.74 UTOPIA 2 Address Register (default = 0x0042) Read/Write

Address	15 10	9 5	4 0
0x49	Unused	TxAddr2	RxAddr2

TxAddr2	UTOPIA 2 Transmit Address [9:5]	Bits 9:5				
	Contains the 5 bit UTOPIA 2 Transmit Address. Default for this field 0x02.					
RxAddr2	UTOPIA 2 Receive Address [4:0]	Bits 4:0				
	Contains the 5 bit UTOPIA 2 Receive Address. Default for this field 0x02.					
	The contents of this register are valid only in STS12 mode and not in STS12c mode.					

6.75 UTOPIA 1 Address Register (default = 0x0021) Read/Write

Ado	dress	15 10	9	5	4		0
0:	x4A	Unused	TxAddr1			RxAddr1	

TxAddr1	UTOPIA 1 Transmit Address [9:5]	Bits 9:5				
	Contains the 5 bit UTOPIA 1 Transmit Address. Default for this field 0x01.					
RxAddr1	UTOPIA 1 Receive Address [4:0]	Bits 4:0				
	Contains the 5 bit UTOPIA 1 Receive Address. Default for this field 0x01.					
	The contents of this register are valid only in STS12 mode and not in STS12c mode.					

6.76 UTOPIA 0 Address Register (default = 0x0000) Read/Write

Address	15 10	9	5	4	0
0x4B	Unused	TxAddr0	Addr0		
TxAddr0	UTOPIA 0 Transn Contains the 5 bit	n it Address [9:5] UTOPIA 0 Transmit 4	Address. I	Default for this fi	Bits 9:5 eld 0x00.

RxAddr0UTOPIA 0 Receive Address [4:0]Bits 4:0Contains the 5 bit UTOPIA 0 Receive Address. Default for this field 0x00.
The contents of this register are valid in both STS12 mode and STS12c mode.

6.77 TxUTOPIA FIFO Status Register (default = 0x0000) Read Only

Address	15	4	3	2	1	0			
0x4C	Unused		U3TE	U2TE	U1TE	UOTE			
U3TE									
	This bit is set to indicate that a parity error has been detected on the incoming cel data for UTOPIA 3.								
This bit is valid only in STS12 mode and not in STS12c mode.U2TEUTOPIA 2 Transmit Error									
U2TE	This bit is set to indicate that a parity error has been detected on the incoming cel data for UTOPIA 2.								
U1TE	This bit is valid only in STS12 mode and not in STS12c mode. UTOPIA 1 Transmit Error This bit is set to indicate that a parity error has been detected on the inco data for UTOPIA 1.								
UOTE	JOTEUTOPIA 0 Transmit ErrorJoteThis bit is set to indicate that a parity error has been detected on the inc data for UTOPIA 0. This bit is valid in both STS12 mode and STS12c mode.								

6.78 TxUTOPIA Cell Drop Status Register (default = 0x0000) Read Only

Address	15	8	7	6	5	4	3	2	1	0
0x4D	Unused		U3CA	U2CA	U1CA	U0CA	U3PE	U2PE	U1PE	UOPE
U3CA UTOPIA 3 Change of Cell Alignment IT is bit is set when the UTOPIA 3 port has a change of cell alignment. This bit is valid only in STS12 mode and not in STS12c mode.										Bit 7
U2CA	UTOPIA 2 Change of C This bit is set when the U This bit is valid only in S	JTO	PIA 2 p	ort has		0		nment.		Bit 6

U1CA	UTOPIA 1 Change of Cell Alignment I This bit is set when the UTOPIA 1 port has a change of cell alignment. This bit is valid only in STS12 mode and not in STS12c mode.	Bit 5
UOCA		Bit 4
U3PE	UTOPIA 3 Transmit Parity Error Cell Dropped E This bit is set when the UTOPIA 3 port has dropped a transmit parity error cell. This bit is valid only in STS12 mode and not in STS12c mode.	Bit 3
U2PE	-	Bit 2
U1PE	-	Bit 1
UOPE	UTOPIA 0 Transmit Parity Error Cell Dropped E This bit is set when the UTOPIA 0 port has dropped a transmit parity error cell. This bit is valid in both STS12 mode and STS12c mode.	Bit O

Reserved For Future Use (default = 0x0000) Read Only

Address	15 0
0x4E	Unused

6.79 Receive Cell Processor User Commands (default = 0x000F) Read/Write

Address	15 8	7	6	5	4	3	2	1	0
0x4F	Unused	LCD3	LCD2	LCD1	LCD0	HEC3	HEC2	HEC1	HEC0

Loss of Cell Delineation_3 B	Bit 7
This bit is checked by receive cell processor 3 in the <i>LCD_Defect_Verify</i> state. The u should monitor the LCD defect period and set this bit at the appropriate time if r essary. If an LCD failure is declared, the cell processor does not come out of <i>LCD_Defect_Verify</i> state, even if it is receiving proper HEC bytes, unless the LCD further ure is reset.	nec- the
This bit is only valid in STS-12 mode and not in STS-12c mode.	
Loss of Cell Delineation_2 B	Bit 6
This bit is checked by receive cell processor 2 in the <i>LCD_Defect_Verify</i> state. The u should monitor the LCD defect period and set this bit at the appropriate time if r essary. If an LCD failure is declared, the cell processor does not come out of <i>LCD_Defect_Verify</i> state, even if it is receiving proper HEC bytes, unless the LCD fure is reset. This bit is only valid in STS-12 mode and not in STS-12c mode.	nec- the
	This bit is checked by receive cell processor 3 in the <i>LCD_Defect_Verify</i> state. The ushould monitor the LCD defect period and set this bit at the appropriate time if a essary. If an LCD failure is declared, the cell processor does not come out of <i>LCD_Defect_Verify</i> state, even if it is receiving proper HEC bytes, unless the LCD are is reset. This bit is only valid in STS-12 mode and not in STS-12c mode. Loss of Cell Delineation_2

LCD1	Loss of Cell Delineation_1 Bit 5
	This bit is checked by receive cell processor 1 in the <i>LCD_Defect_Verify</i> state. The user should monitor the LCD defect period and set this bit at the appropriate time if necessary. If an LCD failure is declared, the cell processor does not come out of the <i>LCD_Defect_Verify</i> state, even if it is receiving proper HEC bytes, unless the LCD failure is reset.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
LCD0	Loss of Cell Delineation_0 Bit 4
	This bit is checked by receive cell processor 0 in the <i>LCD_Defect_Verify</i> state. The user should monitor the LCD defect period and set this bit at the appropriate time if necessary. If an LCD failure is declared, the cell processor does not come out of the <i>LCD_Defect_Verify</i> state, even if it is receiving proper HEC bytes, unless the LCD failure is reset.
	This bit is valid in both STS-12 mode and STS-12c mode.
HEC3	Header Error Correction Enable_3 Bit 3
	This bit is checked by receive cell processor 3 in the <i>Sync_Correction</i> state. If this bit is set, single-bit header errors are corrected and given out. If the HEC3 bit is cleared, cells with single-bit errors are discarded.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
HEC2	Header Error Correction Enable_2 Bit 2
	This bit is checked by receive cell processor 2 in the <i>Sync_Correction</i> state. If this bit is set, single-bit header errors are corrected and given out. If the HEC2 bit is cleared, cells with single-bit errors are discarded.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
HEC1	Header Error Correction Enable_1 Bit 1
	This bit is checked by receive cell processor 1 in the <i>Sync_Correction</i> state. If this bit is set, single-bit header errors are corrected and given out. If the HEC1 bit is cleared, cells with single-bit errors are discarded.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
HEC0	Header Error Correction Enable_0 Bit 0
	This bit is checked by receive cell processor 0 in the <i>Sync_Correction</i> state. If this bit is set, single-bit header errors are corrected and given out. If the HEC0 bit is cleared, cells with single-bit errors are discarded.
	This bit is valid in both STS-12 mode and STS-12c mode.

6.80 Transmit Framer User Commands (default = 0x0000) Read/Write

Address	15 1	09	8	7	6	5	4	3	2	1	0
0x50	Unused	PAIS3	PAIS2	PAIS1	PAIS0	PRDI3	PRDI2	PRDI1	PRDI0	LAIS	LRDI

PAIS3 Path Alarm Indication Signal_3

When the PAIS3 bit is set, a pattern of all ones is transmitted over Synchronous Payload Envelope 3 (SPE3) and its corresponding pointer bytes. The transmission of all ones occurs as soon as the transmit framer receives the command.

This bit is only valid in STS-12 mode and not in STS-12c mode.

Bi	t	5
-	•	•

D

Bit 9

PAIS2	Path Alarm Indication Signal_2 Bit 8
	When the PAIS2 bit is set, a pattern of all ones is transmitted over Synchronous Pay- load Envelope 2 (SPE2) and its corresponding pointer bytes. The transmission of all ones occurs as soon as the transmit framer receives the command.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
PAIS1	Path Alarm Indication Signal_1 Bit 7
	When the PAIS1 bit is set, a pattern of all ones is transmitted over Synchronous Pay- load Envelope 1 (SPE1) and its corresponding pointer bytes. The transmission of all ones occurs as soon as the transmit framer receives the command.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
PAIS0	Path Alarm Indication Signal_0 Bit 6
	When the PAIS0 bit is set, a pattern of all ones is transmitted over Synchronous Pay- load Envelope 0 (SPE0) and its corresponding pointer bytes. The transmission of all ones occurs as soon as the transmit framer receives the command.
	This bit is valid in both STS-12 mode and STS-12c mode.
PRDI3	Path Remote Defect Indication_3 Bit 5
	When the PRDI3 bit is set, a Path Remote Defect Indication is transmitted in Synchro- nous Payload Envelope 3 (SPE3). The G1 byte in the path overhead (POH) has one bit reserved for P-RDI transmission. The P-RDI indication is transmitted once per frame. The transmit framer checks this bit just before the G1 location.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
PRDI2	Path Remote Defect Indication_2 Bit 4
	When the PRDI2 bit is set, a Path Remote Defect Indication is transmitted in Synchro- nous Payload Envelope 2 (SPE2). The G1 byte in the path overhead (POH) has one bit reserved for P-RDI transmission. The P-RDI indication is transmitted once per frame. The transmit framer checks this bit just before the G1 location.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
PRDI1	Path Remote Defect Indication_1 Bit 3
	When the PRDI1 bit is set, a Path Remote Defect Indication is transmitted in Synchro- nous Payload Envelope 1 (SPE1). The G1 byte in the path overhead (POH) has one bit reserved for P-RDI transmission. The P-RDI indication is transmitted once per frame. The transmit framer checks this bit just before the G1 location.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
PRDI0	Path Remote Defect Indication_0 Bit 2
	When the PRDI0 bit is set, a Path Remote Defect Indication is transmitted in Synchro- nous Payload Envelope 0 (SPE3). The G1 byte in the path overhead (POH) has one bit reserved for P-RDI transmission. The P-RDI indication is transmitted once per frame. The transmit framer checks this bit just before the G1 location.
	This bit is valid in both STS-12 mode and STS-12c mode.
LAIS	Line Alarm Indication Signal Bit 1
	The K2 byte in the line overhead (LOH) of each frame has three bits reserved for line AIS transmission. When this bit is set, a value of 111b is transmitted on these bits in the K2 byte. This indication is transmitted once per frame. The transmit framer checks this bit just before the K2 location.
	This bit is valid in both STS-12 mode and STS-12c mode.
LRDI	Line Remote Defect Indication Bit 0
	The K2 byte in the line overhead (LOH) of each frame has three bits reserved for line RDI transmission. When this bit is set, a value of 110b is transmitted on these bits in

the K2 byte. This indication is transmitted once per frame. The transmit framer checks this bit just before the K2 location.

This bit is valid in both STS-12 mode and STS-12c mode.

6.81 Transmit Cell Processor User Commands (default = 0x00F0) Read/Write

Address	15	8	7	6	5	4	3	2	1	0	
0x51	Unused		GFC3	GFC2	GFC1	GFC0	TCE3	TCE2	TCE1	TCE0	
GFC3	This bit is us there is GFC	v Control Enat ed for flow con feedback from r DPIA buffer 3, e	trol by eceive	cell pro	cessor	3, an a	ssigned	l cell is	not rea	d from	
	from receive	tinues sending idle cells (or test cells if they are enabled) if there is GFC feedbac from receive cell processor 3. If this bit is cleared, receive flow control is disabled. This bit is only valid in STS-12 mode and not in STS-12c mode.									
GFC2	Generic Flov	v Control Enat	ole_2							Bit 6	
	there is GFC transmit UTC tinues sendir from receive abled.	ed for flow con feedback from r DPIA buffer 2, e g idle cells (or cell processor 2 y valid in STS-1	eceive even if a test ce 2. If thi	cell pro a cell is lls if the s bit is	cessor availa ey are cleareo	2, an as ble. Tr enable d, then	ssigned ansmit d) if th receive	l cell is cell pro ere is (not rea ocessor GFC fee	d from 2 con- edback	
GFC1					01 11 3	10 120	moue.			Bit 5	
	there is GFC transmit UTC tinues sendir	This bit is used for flow control by transmit cell processor 1. If this bit is set, and there is GFC feedback from receive cell processor 1, an assigned cell is not read from transmit UTOPIA buffer 1, even if a cell is available. Transmit cell processor 1 continues sending idle cells (or test cells if they are enabled) if there is GFC feedback from receive cell processor 1. If this bit is cleared, then receive flow control is di							d from 1 con- edback		
	This bit is on	y valid in STS-	12 mod	e and n	ot in S	TS-12c	mode.				
GFC0	Generic Flow	v Control Enat	ole_0							Bit 4	
	there is GFC transmit UTC tinues sendir from receive	ed for flow con feedback from r DPIA buffer 0, e ig idle cells (or cell processor 0	eceive even if a test ce	cell pro a cell is lls if the	cessor availa ey are	0, an a ble. Tr enable	ssigned ansmit d) if th	l cell is cell pro	not rea ocessor	d from 0 con-	
		id in both STS-	12 mod	e and S	TS-120	mode.				-	
TCE3	Test Cell En	–	oll pro		to da	tormin	unhich		tost or i	Bit 3	
	use for cell ra generated by the bit is clea	ed by transmit of te adaptation. I test cell genera red, normal idle y valid in STS-	f this b tor 3 wl e cells a	it is set, henever re used	the ce there for ce	ell proc are no ll rate a	essor tr assigne adaptat	ansmit ed cells	s the te	st cells	
TCE2	Test Cell En	—								Bit 2	
		ed by transmit o te adaptation. I									

generated by test cell generator 2 whenever there are no assigned cells to transmit. If the bit is cleared, normal idle cells are used for cell rate adaptation.

This bit is only valid in STS-12 mode and not in STS-12c mode.

TCE1 Test Cell Enable 1

. . .

Т

This bit is used by transmit cell processor 1 to determine which cells (test or idle) to use for cell rate adaptation. If this bit is set, the cell processor transmits the test cells generated by test cell generator 1 whenever there are no assigned cells to transmit. If the bit is cleared, normal idle cells are used for cell rate adaptation.

This bit is only valid in STS-12 mode and not in STS-12c mode.

TCE0 Test Cell Enable 0 Bit 0 This bit is used by transmit cell processor 0 to determine which cells (test or idle) to use for cell rate adaptation. If this bit is set, the cell processor transmits the test cells generated by test cell generator 0 whenever there are no assigned cells to transmit. If the bit is cleared, normal idle cells are used for cell rate adaptation. This bit is valid in both STS-12 mode and STS-12c mode.

6.82 Parity Error Roll-Over (default = 0x0000) Read/Write/Set

Address	15	10	9	8	1	6	5	4	3	2	1	0
0x52	Un	used	TC3ER	TC2ER	TC1ER	TC0ER	SPE3	SPE2	SPE1	SPE0	B2ERR	B1ERR
TC3ER		Test Cell	Analyz	er 3 Err	or Cou	Int						Bit 9
		This bit pr located at plicitly res	address et it aft	s 0x07. V er readi	Nhen a ng it.	roll-ove	er occu	rs this ł	oit is set	and th		
TC2ER		This bit is only valid in STS-12 mode and not in STS-12c mode.Test Cell Analyzer 2 Error CountBit 8										Bit 8
		This bit provides a roll-over indication for the test cell analyzer 2 error count register located at address 0x08. When a roll-over occurs this bit is set and the user must explicitly reset it after reading it. This bit is only valid in STS-12 mode and not in STS-12c mode.								register		
TC1ER		Test Cell	Analyz	er 1 Err	or Cou	Int						Bit 7
		Test Cell Analyzer 1 Error CountBitThis bit provides a roll-over indication for the test cell analyzer 1 error count registerlocated at address 0x09. When a roll-over occurs this bit is set and the user must explicitly reset it after reading it.This bit is only valid in STS-12 mode and not in STS-12c mode.										
TC0ER		Test Cell	-									Bit 6
		This bit pr located at plicitly res	ovides address set it aft	a roll-ov s 0x0A. er readi	ver indi When a ng it.	cation fo roll-ov	er occu	irs this l	bit is set			
		This bit is	valid ir	h both S	TS-12 n	node an	d STS-1	12c mod	de.			
SPE3		B3 Parity This bit pr This regist user must This bit is	ovides er is loc explicit	a roll-ov cated at tly reset	ver indi address it after	cation o s 0x03. V reading	Vhen a g it.	roll-ov	er occu	rs this ł		

Bit 1

SPE2	B3 Parity Error Count for SPE2 E	3it 4
	This bit provides a roll-over indication of the receive B3 parity error count for SI This register is located at address 0x04. When a roll-over occurs this bit is set and user must explicitly reset it after reading it.	
	This bit is only valid in STS-12 mode and not in STS-12c mode.	
SPE1	B3 Parity Error Count for SPE1 E	3it 3
	This bit provides a roll-over indication of the receive B3 parity error count for SI This register is located at address 0x05. When a roll-over occurs this bit is set and user must explicitly reset it after reading it.	
	This bit is only valid in STS-12 mode and not in STS-12c mode.	
SPE0	B3 Parity Error Count for SPE0 E	3it 2
	This bit provides a roll-over indication of the receive B3 parity error count for SI This register is located at address 0x06. When a roll-over occurs this bit is set and user must explicitly reset it after reading it.	
	This bit is valid in both STS-12 mode and STS-12c mode.	
B2ERR	B2 Parity Error Count E	3it 1
	This bit provides a roll-over indication of the receive B2 parity error count regi located at address 0x02. When a roll-over occurs this bit is set and the user must plicitly reset it after reading it.	
	This bit is valid in both STS-12 mode and STS-12c mode.	
B1ERR	B1 Parity Error Count E	3it O
	This bit provides a roll-over indication of the receive B2 parity error count regi located at address 0x01. When a roll-over occurs this bit is set and the user must plicitly reset it after reading it.	
	This bit is valid in both STS-12 mode and STS-12c mode.	

6.83 Receiver Alarm Roll-Over (default = 0x0000) Read/Write/Set

													_	
0x53	Unused	SLM3	SLM2	SLM1	SLM0	PA3	PA2	PA1	PA0	CD3	CD2	CD1	CD0	LRO
SLM3	;	Signal	Label	Mism	atch_	3								Bit 12
	ć	SPE3. 7 and the	This reg e user 1	gister nust e	is loca xplicit	ted at ly rese	addres et it aft	of the s s 0x2C er read	. Whe ing it.	n a rol	l-over o			
		This bi	t is onl	y valio	d in ST	'S-12 n	node a	nd not	in STS	5-12c m	node.			
SLM2	:	Signal	Label	Mism	atch_	2								Bit 11
	ć	SPE2. 7 and the	This reg e user 1	gister : nust e	is loca xplicit	ted at ly rese	addres et it aft	of the s 0x2D er read	. Whe ing it.	n a rol	l-over (
	-	This bi	t is onl	y valio	d in ST	'S-12 n	node a	nd not	in STS	5-12c m	node.			
SLM1	;	Signal	Label	Mism	atch_	1								Bit 10
	9	SPE1. 7	「ĥis reg	gister	is loca	ted at	addres	of the ss 0x2E er read	. Whe	n a rol				
	-	This bi	t is onl	y valio	d in ST	'S-12 n	node a	nd not	in STS	5-12c m	node.			

4 3 2 1 0

Address 15 13 12

 ML53301/ML53311	TC-622Pro/Pro+

SLM0	Signal Label Mismatch_0 Bit
	This bit provides a roll-over indication of the receive signal label mismatch count fo SPE0. This register is located at address 0x2F. When a roll-over occurs this bit is se and the user must explicitly reset it after reading it.
	This bit is valid in both STS-12 mode and STS-12c mode.
PA3	Path-FEBE Accumulator_3 Bit a
	This bit provides a roll-over indication of the receive path-FEBE (Far End Block Er ror) accumulator for SPE3. This register is located at address 0x0C. When a roll-ove occurs this bit is set and the user must explicitly reset it after reading it.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
PA2	Path-FEBE Accumulator_2 Bit
	This bit provides a roll-over indication of the receive path-FEBE (Far End Block Er ror) accumulator for SPE2. This register is located at address 0x0D. When a roll-ove occurs this bit is set and the user must explicitly reset it after reading it.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
PA1	Path-FEBE Accumulator_1 Bit
	This bit provides a roll-over indication of the receive path-FEBE (Far End Block Er ror) accumulator for SPE1. This register is located at address 0x0E. When a roll-ove occurs this bit is set and the user must explicitly reset it after reading it.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
PA0	Path-FEBE Accumulator_0 Bit
	This bit provides a roll-over indication of the receive path-FEBE (Far End Block Er ror) accumulator for SPE0. This register is located at address 0x0F. When a roll-ove occurs this bit is set and the user must explicitly reset it after reading it.
	This bit is valid in both STS-12 mode and STS-12c mode.
CD3	Cell Discard Count_3 Bit
	This bit provides a roll-over indication of the receive cell processor 3 discard coun register located at address 0x28. When a roll-over occurs this bit is set and the use must explicitly reset it after reading it.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
CD2	Cell Discard Count_2 Bit 3
	This bit provides a roll-over indication of the receive cell processor 2 discard coun register located at address 0x29. When a roll-over occurs this bit is set and the use must explicitly reset it after reading it.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
CD1	Cell Discard Count_1 Bit 2
	This bit provides a roll-over indication of the receive cell processor 1 discard coun register located at address 0x2A. When a roll-over occurs this bit is set and the use must explicitly reset it after reading it.
	This bit is only valid in STS-12 mode and not in STS-12c mode.
CD0	Cell Discard Count_0 Bit
	This bit provides a roll-over indication of the receive cell processor 0 discard coun register located at address 0x2B. When a roll-over occurs this bit is set and the use must explicitly reset it after reading it.
	This bit is valid in both STS-12 mode and STS-12c mode.

Line-FEBE Roll-Over LRO

This bit provides a roll-over indication of the receive line-FEBE count register located at address 0x0B. When a roll-over occurs this bit is set and the user must explicitly reset it after reading it.

This bit is valid in both STS-12 mode and STS-12c mode.

6.84 Test Cell Count Roll-over (default = 0x0000) Read/Write/Set

Address	15 8	7	6	5	4	3	2	1	0		
0x54	Unused	TCG3	TCG2	TCG1	TCG0	TCA3	TCA2	TCA1	TCA0		
TCG3	Test Cell Generator_3 Roll-	over							Bit 7		
	register located at address 0 must explicitly reset it after r	This bit provides a roll-over indication of the test cell generator 3 transmitted count register located at address 0x10. When a roll-over occurs this bit is set and the user must explicitly reset it after reading it. This bit is only valid in STS-12 mode and not in STS-12c mode.									
TCG2	Test Cell Generator_2 Roll-		and no	ot in 51	5-12C	mode.			Bit 6		
1002	This bit provides a roll-over register located at address 0> must explicitly reset it after r	This bit provides a roll-over indication of the test cell generator 2 transmitted coun register located at address 0x11. When a roll-over occurs this bit is set and the use must explicitly reset it after reading it. This bit is only valid in STS-12 mode and not in STS-12c mode.									
TCG1	Test Cell Generator_1 Roll-								Bit 5		
	This bit provides a roll-over register located at address 0 must explicitly reset it after r	ndicatio	en a ro								
	This bit is only valid in STS-1	2 mode	and no	ot in ST	S-12c 1	mode.					
TCG0	Test Cell Generator_0 Roll-								Bit 4		
	register located at address 0x	This bit provides a roll-over indication of the test cell generator 0 transmitted count register located at address 0x13. When a roll-over occurs this bit is set and the user must explicitly reset it after reading it.							count ie user		
	This bit is valid in both STS-1	2 mode	and ST	S-12c	mode.						
TCA3	Test Cell Analyzer_3 Roll-o								Bit 3		
	This bit provides a roll-over ister located at address 0x14. explicitly reset it after readin	When a									
	This bit is only valid in STS-1	2 mode	and no	ot in ST	S-12c 1	mode.					
TCA2	Test Cell Analyzer_2 Roll-o								Bit 2		
	This bit provides a roll-over i ister located at address 0x15. explicitly reset it after readin	When a g it.	roll-ov	er occu	ırs this	bit is s					
	This bit is only valid in STS-1		and no	ot in ST	S-12c 1	mode.					
TCA1	Test Cell Analyzer_1 Roll-o				11	1 1			Bit 1		
	This bit provides a roll-over ister located at address 0x16. explicitly reset it after readin	When a									
	This bit is only valid in STS-1	2 mode	and no	ot in ST	S-12c 1	mode.					

Bit 0

TCA0 Test Cell Analyzer_0 Roll-over

This bit provides a roll-over indication of the test cell analyzer 0 received count register located at address 0x17. When a roll-over occurs this bit is set and the user must explicitly reset it after reading it.

This bit is valid in both STS-12 mode and STS-12c mode.

6.85 Transmit/Receive Count Roll-over (default = 0x0000) Read/Write/Set

Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x55	TA3	TA2	TA1	TA0	TU3	TU2	TU1	TU0	RA3	RA2	RA1	RA0	RU3	RU2	RU1	RU0
TA3								•	ned Ce			. 11		2		Bit 15
													proces: oll-ove			
		se	et and	the u	ser mı	ıst ex	plicit	ly rese	et it aft	er rea	ding i	t.				
					•				le and			2c mo	de.			
TA2									ned Ce			. 11		•		Bit 14
													process oll-ove			
		se	et and	the u	ser mı	ıst ex	plicit	ly rese	et it aft	er rea	ding i	t.				
									le and			2c mo	de.			
TA1									ned Ce			. 11				Bit 13
													proces: roll-o			
									eset it a						curo e	
		T	his bit	is on	ly vali	d in S	STS-12	2 mod	le and	not in	STS-1	2c mo	de.			
TA0		T	ransn	nit Ce	ll Pro	cess	or 0 A	ssig	ned Ce	ell Co	unt					Bit 12
		tr	ansm	itted c	ount r	egist	er loca	ated a		ess 0x1	B. Wł	nen a r	process coll-ove			
		T	his bit	is va	lid in l	ooth S	STS-12	2 mod	le and	STS-12	2c mo	de.				
TU3									ell Cou							Bit 11
		m	itted	count	regist	er loo	cated	at ado		x1C. V	Vhen a		rocess over o			
		T	his bit	is on	ly vali	d in S	STS-12	2 mod	le and	not in	STS-1	2c mo	de.			
TU2		Т	ransn	nit Ce	ll Pro	cess	or 2 l	dle Co	ell Cou	unt						Bit 10
		m	itted	count	regist	er loo	cated	at add		x1D. V	Vhen a		rocess over o			
		T	his bit	is on	ly vali	d in S	STS-12	2 mod	le and	not in	STS-1	2c mo	de.			
TU1									ell Cou							Bit 9
		m	itted	count	regist	er loo	cated	at ado		x1E. V	Vhen a		rocess over o			
		T	his bit	is on	ly vali	d in S	STS-12	2 mod	le and	not in	STS-1	2c mo	de.			

	ansmit Cell Processor 0 Idle Cell Count Bit 8
m	his bit provides a roll-over indication of the transmit cell processor 0 idle cell trans- itted count register located at address $0x1F$. When a roll-over occurs this bit is set ad the user must explicitly reset it after reading it.
	nis bit is valid in both STS-12 mode and STS-12c mode.
RA3 Re	eceive Cell Processor 3 Assigned Cell Count Bit 7
ce	his bit provides a roll-over indication of the receive cell processor 3 assigned cell re- ived count register located at address 0x20. When a roll-over occurs this bit is set ad the user must explicitly reset it after reading it.
Th	nis bit is only valid in STS-12 mode and not in STS-12c mode.
RA2 Re	eceive Cell Processor 2 Assigned Cell Count Bit 6
cean	his bit provides a roll-over indication of the receive cell processor 2 assigned cell re- ived count register located at address 0x21. When a roll-over occurs this bit is set ad the user must explicitly reset it after reading it.
	nis bit is only valid in STS-12 mode and not in STS-12c mode.
RA1 Re	eceive Cell Processor 1 Assigned Cell Count Bit 5
ce an	his bit provides a roll-over indication of the receive cell processor 1 assigned cell re- ived count register located at address 0x22. When a roll-over occurs this bit is set ad the user must explicitly reset it after reading it.
	nis bit is only valid in STS-12 mode and not in STS-12c mode.
	eceive Cell Processor 0 Assigned Cell Count Bit 4
ce	nis bit provides a roll-over indication of the receive cell processor 0 assigned cell re- ived count register located at address 0x23. When a roll-over occurs this bit is set ad the user must explicitly reset it after reading it.
Th	nis bit is valid in both STS-12 mode and STS-12c mode.
RU3 Re	eceive Cell Processor 3 Idle Cell Count Bit 3
ce	his bit provides a roll-over indication of the receive cell processor 3 idle cell re- ived count register located at address 0x24. When a roll-over occurs this bit is set ad the user must explicitly reset it after reading it.
Th	nis bit is only valid in STS-12 mode and not in STS-12c mode.
RU2 Re	eceive Cell Processor 2 Idle Cell Count Bit 2
cean	his bit provides a roll-over indication of the receive cell processor 2 idle cell re- ived count register located at address 0x25. When a roll-over occurs this bit is set ad the user must explicitly reset it after reading it.
	nis bit is only valid in STS-12 mode and not in STS-12c mode.
	eceive Cell Processor 1 Idle Cell Count Bit 1
ce	nis bit provides a roll-over indication of the receive cell processor 1 idle cell re- ived count register located at address 0x26. When a roll-over occurs this bit is set ad the user must explicitly reset it after reading it.
Th	nis bit is only valid in STS-12 mode and not in STS-12c mode.
RU0 Re	eceive Cell Processor 0 Idle Cell Count Bit 0
ce	his bit provides a roll-over indication of the receive cell processor 0 idle cell re- ived count register located at address 0x27. When a roll-over occurs this bit is set ad the user must explicitly reset it after reading it. his bit is valid in both STS-12 mode and STS-12c mode.

6.86 Interrupt Mask Register (default = 0x0000) Read/Write

Address	31 1	6 15	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x56	Unused	AP	E DPE	R30	R20	R10	R00	LRIE	LSIE	L3RI	L2RI	L1RI	LORI	L3SI	L2SI	L1SI	LOSI
APE	Address Parity Error EnableBit 15Setting this bit enables interrupts on address parity errors. Clearing the bit masks this interrupt. Note that APE is a PCI bit specific to the ML53301 TC-622Pro. This bit is valid in both STS12 mode and STS12c mode.																
	_			_	_		512 m	ode a	ind S	TS12	: mod	le.				_	
DPE	i	Data P etting nterru This bi	this b pt. No	oit en ote th	ables at Dl	s inte PE is	a PĈ	I bit s	specif	ic to	the M	L533				_	Bit 14 s this
R30		Receiv		-					bo go	noral	od u	hon t	horo				Bit 13
	I	etting TFO is 'his bi	overi	run. (Clear	ing t	he bi	t mas	ks th	is inte	errup	t.		ceive	010	PIA 3	port
R2O		Receiv														E	Bit 12
	Η	etting IFO is	overi	un. (Clear	ing t	he bi	t mas	ks th	is inte	errup	t.		ceive	UTO	PIA 2	. port
R10		'his bi [.] R eceiv		5					ind n	ot in s	51512	c mo	ode.			E	Bit 11
RIO	S I	etting TFO is This bi	this b overi	oit allo run. C	ows a Clear	an in ing t	terru he bit	pt to t mas	ks th	is inte	errup	t.		ceive	UTO	_	
R00	F	Receiv	e UT	OPIA	0 0	verru	ın Er	able								E	Bit 10
	I	etting TFO is This bi	overi	run. (Clear	ing t	he bi	t mas	ks th	is inte	errup	t.	he reo	ceive	UTO	PIA (port
LRIE	_	.oss o		_				_		1012							Bit 9
	9	etting tate m	this k	oit all	ows	an ii	nterru		be g							ame (LOF)
]	'his bi	t is va	lid in	botł	n STS	512 m	ode a	ind S	TS12	c mod	le.					
LSIE	9	.oss o etting tate m	this k	oit all	ows	an ii	nterru	apt to	be g								Bit 8 LOF)
		'his bi															
L3RI	L	.oss o	of Cell	Deli	neat	ion 3	8 Res	et In	terru	pt Er	able						Bit 7
	(etting LCD) s his int	state r	nachi													
]	'his bi	t is on	ly va	lid ir	n STS	12 m	ode a	nd n	ot in S	STS12	2c mo	ode.				
L2RI	_	.oss o								-			-			.	Bit 6
		etting LCD) :															

	this interrupt. This bit is only valid in STS12 mode and not in STS12c mode.
L1RI	Loss of Cell Delineation 1 Reset Interrupt Enable Bit 5
LIN	Setting this bit allows an interrupt to be generated when the Loss of Cell Delineation (LCD) state machine for cell processor 1 enters the reset state. Clearing the bit masks this interrupt.
	This bit is only valid in STS12 mode and not in STS12c mode.
LORI	Loss of Cell Delineation 0 Reset Interrupt Enable Bit 4
	Setting this bit allows an interrupt to be generated when the Loss of Cell Delineation (LCD) state machine for cell processor 0 enters the reset state. Clearing the bit masks this interrupt.
	This bit is valid in both STS12 mode and STS12c mode.
L3SI	Loss of Cell Delineation 3 Set Interrupt Enable Bit 3
	Setting this bit allows an interrupt to be generated when the Loss of Cell Delineation (LCD) state machine for cell processor 3 enters the set state. Clearing the bit masks this interrupt.
	This bit is only valid in STS12 mode and not in STS12c mode.
L2SI	Loss of Cell Delineation 2 Set Interrupt Enable Bit 2
	Setting this bit allows an interrupt to be generated when the Loss of Cell Delineation (LCD) state machine for cell processor 2 enters the set state. Clearing the bit masks this interrupt.
	This bit is only valid in STS12 mode and not in STS12c mode.
L1SI	Loss of Cell Delineation 1 Set Interrupt Enable Bit 1
	Setting this bit allows an interrupt to be generated when the Loss of Cell Delineation (LCD) state machine for cell processor 1 enters the set state. Clearing the bit masks this interrupt.
	This bit is only valid in STS12 mode and not in STS12c mode.
LOSI	Loss of Cell Delineation 0 Set Interrupt Enable Bit 0
	Setting this bit allows an interrupt to be generated when the Loss of Cell Delineation (LCD) state machine for cell processor 0 enters the set state. Clearing the bit masks this interrupt.
	This bit is valid in both STS12 mode and STS12c mode.

6.87 Interrupt Status Register (default = 0x0000) Read/Write

Address	31	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0x57	Unu	sed	APE	DPE	R30	R20	R10	R00	LRIE	LSIE	L3RI	L2RI	L1RI	LORI	L3SI	L2SI	L1SI	LOSI
APE Address Parity Error Bit 15 This bit is get on a PCI address parity error if bit 15 of the Interrupt Mark Register is																		
	This bit is set on a PCI address parity error if bit 15 of the Interrupt Mask Register is set.											ter is						
		This	s bit i	s val	id in	both	n STS	12 m	ode a	nd S	TS12c	mod	e.					
DPE		Data	a Pai	rity E	rror												В	8it 14
								1	5			of the mod		rrupt	Mask	k Regi	ister i	s set.

R30	Receive UTOPIA 3 Overrun Bit 13
	This bit is set when the receive UTOPIA 3 port FIFO is overrun. Bit 13 of the Interrupt
	Mask register must be set for this bit to generate an interrupt.
	This bit is only valid in STS12 mode and not in STS12c mode.
R2O	Receive UTOPIA 2 Overrun Bit 12
	This bit is set when the receive UTOPIA 2 port FIFO is overrun. Bit 12 of the Interrupt Mask register must be set for this bit to generate an interrupt.
	This bit is only valid in STS12 mode and not in STS12c mode.
R10	Receive UTOPIA 1 Overrun Bit 11
	This bit is set when the receive UTOPIA 1 port FIFO is overrun. Bit 11 of the Interrupt Mask register must be set for this bit to generate an interrupt.
	This bit is only valid in STS12 mode and not in STS12c mode.
R00	Receive UTOPIA 0 Overrun Bit 10
	This bit is set when the receive UTOPIA 0 port FIFO is overrun. Bit 10 of the Interrupt Mask register must be set for this bit to generate an interrupt.
	This bit is valid in both STS12 mode and STS12c mode.
LRIE	Loss of Frame Reset Interrupt Bit 9
	This bit is set when the Loss of Frame (LOF) state machine enters the reset state. Bit 9 of the Interrupt Mask register must be set for this bit to generate an interrupt. This bit is valid in both STS12 mode and STS12c mode.
LSIE	Loss of Frame Set Interrupt Bit 8
LOIL	This bit is set when the Loss of Frame (LOF) state machine enters the set state. Bit 8
	of the Interrupt Mask register must be set for this bit to generate an interrupt. This bit is valid in both STS12 mode and STS12c mode.
L3RI	Loss of Cell Delineation 3 Reset Interrupt Bit 7
Lord	This bit is set when the Loss of Cell Delineation (LCD) state machine for cell proces-
	sor 3 enters the reset state. Bit 7 of the Interrupt Mask register must be set for this bit to generate an interrupt.
	This bit is only valid in STS12 mode and not in STS12c mode.
L2RI	Loss of Cell Delineation 2 Reset Interrupt Bit 6
	This bit is set when the Loss of Cell Delineation (LCD) state machine for cell processor 2 enters the reset state. Bit 6 of the Interrupt Mask register must be set for this bit to generate an interrupt.
	This bit is only valid in STS12 mode and not in STS12c mode.
L1RI	Loss of Cell Delineation 1 Reset Interrupt Bit 5
	This bit is set when the Loss of Cell Delineation (LCD) state machine for cell proces- sor 1 enters the reset state. Bit 5 of the Interrupt Mask register must be set for this bit to generate an interrupt.
	This bit is only valid in STS12 mode and not in STS12c mode.
LORI	Loss of Cell Delineation 0 Reset Interrupt Bit 4
-	This bit is set when the Loss of Cell Delineation (LCD) state machine for cell processor 0 enters the reset state. Bit 4 of the Interrupt Mask register must be set for this bit
	to generate an interrupt.
	This bit is valid in both STS12 mode and STS12c mode.
L3SI	Loss of Cell Delineation 3 Set Interrupt Bit 3
	This bit is set when the Loss of Cell Delineation (LCD) state machine for cell proces-

sor 3 enters the set state. Bit 3 of the Interrupt Mask register must be set for this bit to be recognized.

This bit is only valid in STS12 mode and not in STS12c mode.

L2SI	Loss of Cell Delineation 2 Set Interrupt Bit	2
	This bit is set when the Loss of Cell Delineation (LCD) state machine for cell proces sor 2 enters the set state. Bit 2 of the Interrupt Mask register must be set for this bit t generate an interrupt.	
	This bit is only valid in STS12 mode and not in STS12c mode.	
L1SI	Loss of Cell Delineation 1 Set Interrupt Bit	1
	This bit is set when the Loss of Cell Delineation (LCD) state machine for cell proces sor 1 enters the set state. Bit 1 of the Interrupt Mask register must be set for this bit t generate an interrupt.	
	This bit is only valid in STS12 mode and not in STS12c mode.	
LOSI	Loss of Cell Delineation 0 Set Interrupt Bit	0
	This bit is set when the Loss of Cell Delineation (LCD) state machine for cell proces sor 0 enters the set state. Bit 0 of the Interrupt Mask register must be set for this bit t generate an interrupt.	

This bit is valid in both STS12 mode and STS12c mode.

7. TC-622PRO/PRO+ SPECIFICATIONS

This section contains electrical and mechanical specifications common to both the ML53301 TC-622Pro and ML53311 TC-622Pro+ devices and is divided into the following categories:

- Section 7.1, "Maximum Ratings and Operating Conditions"
- Section 7.2, "DC Characteristics"
- Section 7.3, "AC Specifications"
- Section 7.4, "Mechanical Specifications"

7.1 Maximum Ratings and Operating Conditions

Table 4. Absolute Maximum Ratings^[1]

Parameter	Symbol	Value	Unit
Power supply range	V _{CC}	-0.5 to +4.0	V
Short circuit output current	I _{OS}	TBD	mA
Power dissipation	PD	TBD	W
Storage temperature	T _{STG}	-55 to+155	°C

1. Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 5. Recommended Operating Conditions

Parameter	Symbol	Min.	Тур ^{[1], [2]}	Max.	Units
Recommended Supply Voltage	V _{CC}	3.14	3.3	3.46	V
Recommended operating temperature	T _{OP}	0	-	+70	°C
Supply Current	I _{CC}	—	—	500	mA

1. Voltage with respect to ground unless otherwise specified.

2. Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

7.2 DC Characteristics

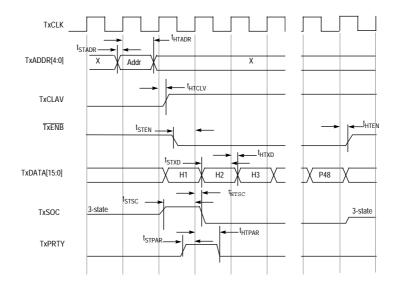
Table 6. DC Electrical Characteristics ($T_A = 0^\circ$ to 70°C, $V_{CC} = 3.3 \text{ V} \pm 5\%$)

Parameter	Symbol	Conditions	Min	Тур ^[1]	Max	Units
Input low voltage [2]	V _{IL}	_	_	_	0.8	V
Input high voltage [2]	V _{IH}	_	2.0	_	_	V
Output low voltage	V _{OL}	I _{OL} = 1.6 mA	_	_	0.4	V
Output low voltage	V _{OL}	I _{OL} < 10 mA	_	_	10	%V _{CC}
Output high voltage	V _{OH}	I _{OH} = 40 mA	2.4	_	_	V
Output high voltage	V _{OH}	I _{OH} < 10 mA	90	_	_	%V _{CC}
Output rise Time (CMOS)	_	C _{LOAD} = 50 pF	_	3	8	ns
Output rise time (TTL)	_	_	_	2	8	ns
Output fall Time (CMOS)	-	C _{LOAD} = 50 pF	-	3	8	ns
Output fall time (TTL)	_	_	_	2	8	ns

1. Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

2. Limited functional test patterns are performed at these input levels. The majority of functional tests are performed at levels of 0 V and 3.3 V.

7.3 AC Specifications


This section defines the AC timing parameters for the following operations:


- ATM Layer Transmit
- ATM Layer Receive
- Line-Side Transmit
- Line-Side Receive

7.3.1 ATM Layer Transmit

Table 7. ATM Layer Transmit Timing

Parameter	Symbol	Min	Max	Units (ns)
TxCLK General Information	frequency		50	MHz
	duty cycle	40	60	%
	peak-to-peak jitter		.5	%
	rise/fall time		2	nS
Transmit address setup to TxCLK high	t _{STADR}	1.5		nS
Transmit address hold from TxCLK high	t _{HTADR}	3.0		nS
TxCLAV output delay from TxCLK high	t _{HTCLV}		9.0	nS
Transmit enable setup to TxCLK high	t _{sten}	1.0		nS
Transmit enable hold from TxCLK high	t _{HTEN}	3.0		nS
Transmit data setup to TxCLK high	t _{STXD}	1.0		nS
Transmit data hold from TxCLK high	t _{htxd}	1.5		nS
Transmit start of cell setup to TxCLK high	t _{STSC}	1.0		nS
Transmit start of cell hold from TxCLK high	t _{HTXD}	1.0		nS
Transmit parity setup to TxCLK high	t _{STPAR}	1.0		nS
Transmit parity hold from TxCLK high	t _{HTPAR}	1.0		nS

7.3.2 ATM Layer Receive

Table 8. ATM Layer Receive Timing

Parameter	Symbol	Min	Мах	Units (ns)
RxCLK General Information	frequency		50	MHz
	duty cycle	40	60	%
	peak-to-peak jitter		.5	%
	rise/fall time		2	nS
Receive address setup to RxCLK high	t _{SRADR}	0.5		nS
Receive address hold from RxCLK high	t _{HRADR}	2.0		nS
Receive Clav hold from RxCLK high	t _{HRCLV}	8.0		nS
Receive enable setup to RxCLK high	t _{SREN}	1.0		nS
Receive enable hold from RxCLK high	t _{HREN}	3.0		nS
Receive data hold from RxCLK high	t _{SRXD}	5.0		nS
Receive start of cell hold from RxCLK high	t _{HRSC}	6.0		nS
Receive parity hold from RxCLK high	t _{HRPAR}	7.0		nS

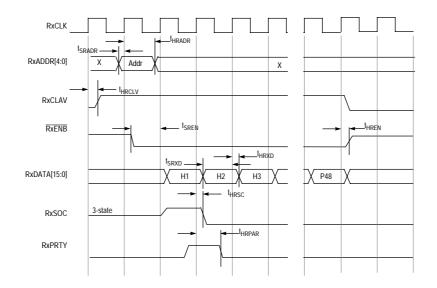
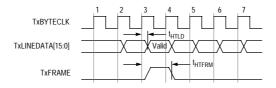



Figure 25. ATM Layer Receive Timing

7.3.3 Line-Side Transmit

Table 9. Line-Side Transmit Timing

Parameter	Symbol	Min	Max	Units (ns)
TxBYTECLK General Information	frequency		77.76	MHz
	frequency tolerance	-100	+100	ppm
	duty cycle	40	60	%
Transmit line data hold from TxBYTECLK high	t _{HTLD}	3.6	4.0	nS
Transmit frame hold from TxBYTECLK high	t _{HTFRM}	14		nS

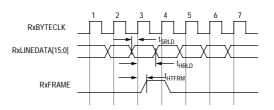
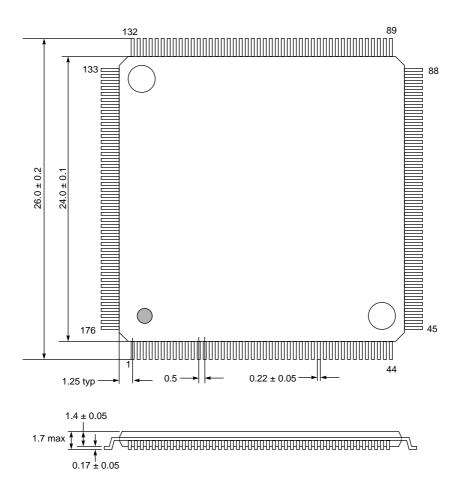


Figure 26. Line-Side Transmit Timing

7.3.4 Line-Side Receive

Table 10. Line-Side Receive Timing


Parameter	Symbol	Min	Max	Units (ns)
RxBYTECLK General Information	frequency		77.76	MHz
	frequency tolerance	-100	+100	ppm
	duty cycle	40	60	%
Receive line data setup to RxBYTECLK high	t _{SRLD}	1.5		nS
Receive line data hold from RxBYTECLK high	t _{HRLD}	4.0		nS
Receive frame hold from RxBYTECLK high	t _{HRFRM}	14		nS

7.4 Mechanical Specifications

Figure 28 shows a package drawing of the 176 pin Plastic LQFP package used in both the ML53301 TC-622Pro and ML53311 TC-622Pro+ devices.

*All measurements are in millimeters.

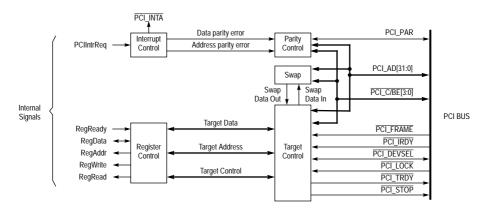
Figure 28. TC-622Pro/Pro+ Package Drawing

8. ML53301 TC-622PRO PCI BUS INTERFACE AND SPECIFICATIONS

This section contains material specific to the ML53301 TC-622Pro and includes the following subsections:

- Section 8.1, "PCI Bus Architectural Overview"
- Section 8.2, "PCI Bus Transactions"
- Section 8.3, "TC-622Pro Signal Descriptions"
- Section 8.4, "PCI Bus AC Specifications"

For MPI bus interface and specification information specific to the ML53311 TC-622Pro+ device, refer to Section 9.


8.1 PCI Bus Architectural Overview

The TC-622Pro provides a PCI interface for accessing the register array. Registers are mapped to PCI memory space and can reside within an 8-kbyte space anywhere in memory. Each register requires 4 bytes of address space. Bits [31:9] contain the base address. Bits [8:2] form the register offset. Bit [31] and bits [1:0] are always zero. Refer to Section 6 for a listing of registers and corresponding offset address values. *Figure 29* shows how the PCI bus is partitioned during a register access.

31	30	9	8		2	1	0
0	Base A	ddress		Offset Address		00	0

Figure 30 shows a block diagram of the PCI module. Refer to the main block diagram in *Figure 2* for the relative location of the PCI module in the TC-622Pro.

Figure 30. TC-622Pro PCI Architecture Block Diagram

The PCI architecture in *Figure 30* contains the following blocks:

- Target Control
- Register Read/Write Control
- Interrupt Control

- Parity Control
- Byte Swap Control

8.1.1 Target Control

The *Target* block in *Figure 30* interfaces with the PCI bus and generates the register control signals. To access a register, the host drives the PCI_FRAME signal along with PCI_AD[31:0] and PCI_C/BE[3:0]. The target block decodes the address and command signals to determine the location of the register and the type of operation. This information is passed to the *Register Control* block. The *Target* then waits for the Register Control block to assert its ready signal. The *Target* then asserts PCI_TRDY to inform the host that it is ready for the requested information.

8.1.2 Register Read/Write Control

The *Register Control* block provides the interface between the Target Control block and the TC-622Pro registers. *The Register Control* block accepts the decoded PCI address and command signals from the *Target Control* block, then waits for the assertion of an internal *RegReady* signal. The assertion of this signal indicates that the requested internal register has been enabled and that the transaction can occur.

8.1.3 Interrupt Control

The *Interrupt Control* block receives the interrupts from the TC-622Pro and the *Parity Control* block. Bits of a register inside the *Interrupt Control* block are set as interrupts are generated from the various modules in the TC-622Pro. When a bit is set the *Interrupt Control* block issues a general interrupt by asserting the PCI_INTA signal on the PCI bus. The host responds by reading the interrupt register and then resets the appropriate bits.

8.1.4 Parity Control

The *Parity Control* block calculates even parity over the address, data, command, and byte enable busses for transactions on the PCI bus. Parity generation is required by all PCI agents. In the case of an address or data parity error, an address or data parity interrupt is generated and passed to the *Interrupt Control* block.

The PCI master drives the PCI_PAR signal for address and data write cycles and the Target drives the PAR signal during read cycles. When address is driven the PCI_PAR signal is valid one clock after address is driven. When data is driven the PCI_PAR signal is valid one clock after either PCI_IRDY is asserted on write transactions, or PCI_TRDY is asserted on read transactions.

8.1.5 Byte Swap Control

The *Byte Swap Control* block receives an address from the PCI bus and swaps the address bytes depending on the requirements of the target.

8.1.6 Register Types

Each internal register is 16-bits wide and is connected to the Register Control block data bus. Seven bits of address are used to select a particular register. An address decoder generates the register enable signals. There are five register types in the TC-622Pro:

- Read-only
- Read/Write

- Read/Write/Set
- Interrupt
- Interrupt Mask

Table 11 shows how the registers are accessed in the TC-622Pro.

Table 11. Accessing the TC-622Pro Registers

Register Type	TC-622Pro Access	Host Access
Read-only	Write-only	Read-only
Read/Write	Read-only	Read/Write
Read/Write/Set	Write-only	Read/Write
Interrupt	Read/Write	
Interrupt Mask Read/Write		

Read-only Registers

These registers contain status information for the TC-622Pro. The host can only read these registers and the TC-622Pro can only write them. When a register has been selected by the address decoder and the internal *RegRead* signal is active, the register drives data onto the bus.

Read/Write Registers

These registers contain configuration information for the TC-622Pro. The host can read or write these registers. The TC-622Pro can only read them. The falling edge of an internal *RegWrite* signal is used to latch data into the register selected by the address decoder. When a register is selected and the internal *RegRead* signal is active, the register drives data onto the bus.

Read/Write/Set Registers

These registers monitor the performance of the TC-622Pro and contain counters, timers, and accumulator functions. Register bits are set by signals from the various TC-622Pro modules and are read by the host. After reading the bits, the host must reset them by writing to that register.

Interrupt Register

The interrupt register contains interrupt status information for the TC-622Pro. The OCD, Loss of Cell Delineation (LCD), Loss of Frame (LOF), and Out of Frame (OOF) lines are used to generate the interrupt. The register bits are set when these signals are asserted by the corresponding state machines. The interrupt register bits are used to assert the PCI_INTA signal on the PCI bus. Whenever the interrupt is generated the corresponding bit in the register is reset by the *Interrupt Control* block.

Interrupt Mask Register

The interrupt mask register contains the interrupt mask status bits of the TC-622Pro. If an interrupt mask bit is set, the corresponding interrupt is masked from generating an interrupt. This register is controlled by the *Interrupt Control* block.

8.2 PCI Bus Transactions

Figure 31 and *Figure 32* show the basic read and write transactions on the PCI bus.

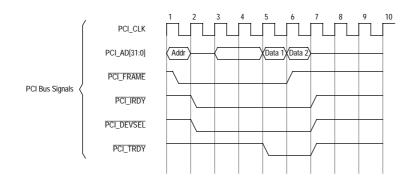


Figure 31. PCI Read Transaction

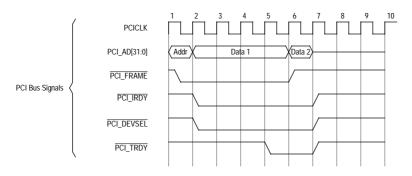


Figure 32. PCI Write Transaction

8.3 TC-622Pro Signal Descriptions

This section provides the pin descriptions for the ML53301 TC-622Pro device. The pin descriptions are divided into four tables for the transmit interface, receive interface, PCI interface, and general signals. Alphabetical and numerical pin listings are also provided.

Figure 33 shows a diagram of the TC-622Pro signal groupings.

Figure 33. ML53301 TC-622PRO Logic Symbol

Pin Name	Pin Type	Description
Transmit UTOPIA Interface		
TxADDR[4:0]	I	5-bit transmit UTOPIA port address. These pins are used to address up to a maximum of 32 transmit ports. The TC-622Pro contains 4 transmit ports.
TxCLAV	0	This signal is driven by the UTOPIA to the ATM layer device and indicates that one or more buffer spaces are available.
TxCLK	I	50 MHz clock for the transmit UTOPIA. This clock is used to transfer data between the UTOPIA and the ATM layer device.
TxDATA[15:0]	I	16-bit transmit UTOPIA data bus. This unidirectional bus is driven by the ATM layer device to the TC-622Pro during a transmit operation.
TxENB	I	Transmit UTOPIA enable. TXENB is asserted by the ATM layer device whenever valid data is on the bus. When TXENB is deasserted the data bus is tri-stated.
TxPRTY	I	Parity for the incoming data from the ATM layer device.
TxSOC	I	During a transmit operation, this signal is asserted for one clock by the ATM layer device at the start of a cell transmission.
Transmit Line Interface		
TxBYTECLK	I	Transmit byte clock. This signal is used to transfer data between the transmit framer and the external parallel-to-serial converter. The clock operates at 77.76 MHz (622.08/8)
TxFRAME	0	A one transmit byte pulse for every frame transmitted to the external parallel-to-serial converter.
TxLINEDATA[7:0]	0	This 8-bit data value is driven by the transmit framer and connects to an external parallel-to-serial converter.

Table 12. TC-622PRO Transmit Interface Signals

Pin Name	Pin Type	Description
Receive UTOPIA Interface		
RxADDR[4:0]	I	5-bit transmit receive UTOPIA port address. These pins are used to address up to a maximum of 32 receive ports. The TC-622Pro contains 4 receive ports.
RxCLAV	0	This signal is driven by the receive UTOPIA to the ATM layer device and indicates that one or more buffer spaces are available.
RxCLK	I	50 MHz clock for the receive UTOPIA. This clock is used to transfer data between the receive UTOPIA and the ATM layer device.
RxDATA[15:0]	0	16-bit receive UTOPIA data bus. This unidirectional bus is used by the TC-622Pro to drive data to the ATM layer device during a receive operation.
RXENB	I	Receive UTOPIA enable. REAL is asserted by the ATM layer device whenever valid data is on the bus. When REAL is deasserted the data bus is tri-stated.
RxPRTY	0	This signal is driven by the TC-622Pro and is the parity for the outgoing data to the ATM layer device.
RxSOC	0	During a receive operation this signal is asserted by the TC-622Pro for one clock to indicate the start of a cell transmission.
Receive Line Interface		
RxBYTECLK	I	Receive byte clock. This signal is used to transfer data between the external parallel-to-serial converter and the receive framer. The clock operates at 77.76 MHz (622.08/8)
RxFRAME	0	A one receive byte pulse for every frame received from the serial-to-parallel converter.
RxLCD[3:0]	0	Indicates a loss of cell delineation. This signal is asserted when cell delineation has not been achieved for more than 4 mS. In the presence of an LOS, LOF, or LOC alarm this signal is not asserted.
RxLINEDATA[7:0]	I	This 8-bit data value is driven by the external parallel-to-serial converter and connects to the receive framer.
RxLINELOC	I	Assertion of this signal indicates a loss of clock from the external recovery module.
RxLINELOS	I	Assertion of this signal indicates a loss of signal from the external recovery module.
RxLOF	0	Indicates a loss of framing. This alarm signal is asserted when the receive framer is not able to transition to the SYNC state for more than 3 mS. The signal is deasserted 1 mS after the receive framer enters the SYNC state.

Table 13. TC-622PRO Receive Interface Signals

Pin Name	Pin Type	Description
PCI_AD[31:0]	I/O	Multiplexed PCI address and data bus. During a bus operation, address is driven for one clock, followed by data. On a read operation data is driven by the TC-622Pro. On a write operation data is driven by the host. This bus can be tri-stated.
PCI_C/BE[3]/TEST_SI6 PCI_C/BE[2]/TEST_SI7 PCI_C/BE[1]/TEST_SI8 PCI_C/BE[0]/TEST_SI9	1	This 4-bit bus multiplexes the PCI bus commands and byte enables. Command information is driven by the host at the same time as address is driven on PCI_AD[31:0]. Byte enable information is driven along with data. The PCI_C/BE[3] signal is shared with test scan input 6. The PCI_C/BE[2] signal is shared with test scan input 7. The PCI_C/BE[1] signal is shared with test scan input 8. The PCI_C/BE[0] signal is shared with test scan input 8. The PCI_C/BE[0] signal is shared with test scan input 9. The test scan signals are used during manufacturing test and do not effect the normal operation of the byte enables.
PCI_CLK	I	33 MHz PCI clock. All PCI bus signals except PCI_RST and PCI_INTA are driven or sampled on the rising edge of this clock.
PCI_DEVSEL/TEST_SO12	I/O	Device select. When an address is driven by the host, this signal is driven by the TC-622Pro to indicate that the address has been decoded. As an input, this signal indicates whether the device has been selected. This signal is shared with test scan output 12.
PCI_FRAME	I	The cycle frame is driven by the host to indicate the beginning and duration of an operation. This signal is asserted while data is being transferred and deasserted when the data transfer has been completed.
PCI_IDSEL/TEST_SI12	I	Initialization device select. This signal functions as an initialization select signal for the PCI device configuration registers. PCI_IDSEL is an input to the TC-622Pro and can be used as a chip select during a PCI register access. This signal is shared with test scan input 12.
PCI_INTA/TEST_SO10	0	TC-622Pro interrupt. This signal is asserted by the TC-622Pro to request an interrupt from the host. PCI_INTA is level-sensitive and is tri-stated when PCI_RST is asserted. This signal is shared with test scan output 10.
PCI_IRDY/TEST_SI11	I	Initiator ready signal. This signal is asserted by the current master to indicate its ability to complete the current data phase of a transaction. This signal is shared with test scan input 11.
PCI_LOCK/TEST_SI10	I	This signal is asserted by the host to indicate an atomic transfer operation between the host and the TC-622Pro is in progress. This signal is shared with test scan input 10.
PCI_PAR/TEST_SO11	I/O	This signal is driven by the host during a write operation and by the TC-622Pro during a read operation. PCI_PAR represents even parity across the PCI_AD[31:0] and PCI_C/BE[3:0] signals. This signal has the same timing as PCI_AD[31:0] but is delayed by one clock. PCI_PAR can be tristated. This signal is shared with test scan output 11.
PCI_PERR/TEST_SO7	0	Parity error indication. This signal is asserted by the TC-622Pro to indicate a data parity error during the data transfer. Parity error are reported on all PCI transactions except special cycles. This signal is shared with test scan output 7.
PCI_RST	I	PCI Reset. PCI_RST is driven by the host and is used to initialize PCI-specific registers, sequencers, and signals.
PCI_SERR/TEST_SO8	0	System error indication. PCI_SERR is asserted by the TC-622Pro to indicate that an address parity error has been detected. This signal is shared with test scan output 8.
PCI_STOP/TEST_SO6	0	Transaction Stop Request. PCL_STOP is asserted by the TC-622Pro to request the host to stop the current transaction. This signal is shared with test scan output 6.
PCI_TRDY/TEST_SO9	0	Target ready indication. <u>PCL_TRDY</u> is asserted by the TC-622Pro to indicate its ability to complete the current data phase of a transaction. This signal is shared with test scan output 9.

Pin Name	Pin Type	Description
RESET	I	Asynchronous reset signal for the TC-622Pro. Assertion of this signal resets all internal flip-flops.

Table 15. TC-622PRO Configuration Interface Signals

Table 16. TC-622PRO Test interface Signals

Pin Name	Pin Type	Description		
TEST_HOLD	I	Used for test scan purposes during manufacturing. This pin should be tied to ground.		
TEST_SE I		Used for test scan purposes during manufacturing. This pin should be tied to ground.		
TEST_SI[12:1]	I	Used for test scan purposes during manufacturing. These pins should be tied to ground.		
TEST_SO[12:1] 0		Used for test scan purposes during manufacturing. These pins should be left unconnected.		

Table 17. TC-622PRO Alphabetical Pin List

Pin Name	Pin	Pin Name	Pin	Pin Name	Pin	Pin Name	Pin	Pin Name	Pin
PCI_CLK	31	PCI_C/BE[2]/TEST_SI7	42	RxDATA[13]	128	TxADDR[2]	86	VDD	51
NC	37	PCI_C/BE[3]/TEST_SI6	44	RxDATA[14]	129	TxADDR[3]	85	VDD	60
PCI_AD[0]	46	PCI_DEVSEL/TEST_SO12	76	RxDATA[15]	130	TxADDR[4]	84	VDD	69
PCI_AD[1]	47	PCI_FRAME	36	RxENB	29	TxBYTECLK	150	VDD	90
PCI_AD[2]	49	PCI_IDSEL/TEST_SI12	33	RxFRAME	3	TxCLAV	83	VDD	99
PCI_AD[3]	50	PCI_INTA/TEST_SO10	173	RxLCD[0]	6	TxCLK	82	VDD	104
PCI_AD[4]	52	PCI_IRDY/TEST_SI11	35	RxLCD[1]	7	TxDATA[0]	134	VDD	152
PCI_AD[5]	53	PCI_LOCK/TEST_SI10	174	RxLCD[2]	8	TxDATA[1]	135	VDDC	2
PCI_AD[6]	55	PCI_PAR/TEST_SO11	38	RxLCD[3]	9	TxDATA[2]	136	VDDC	73
PCI_AD[7]	56	PCI_PERR/TEST_S07	74	RxLINEDATA[0]	11	TxDATA[3]	137	VDDC	109
PCI_AD[8]	58	PCI_SERR/TEST_SO8	75	RxLINEDATA[1]	12	TxDATA[4]	138	VDDC	133
PCI_AD[9]	59	PCI_STOP/TEST_SO6	175	RxLINEDATA[2]	13	TxDATA[5]	139	VDDC	172
PCI_AD[10]	61	PCI_TRDY/TEST_SO9	40	RxLINEDATA[3]	14	TxDATA[6]	140	VSS	10
PCI_AD[11]	62	RESET	1	RxLINEDATA[4]	15	TxDATA[7]	141	VSS	32
PCI_AD[12]	64	PCI_RST	30	RxLINEDATA[5]	16	TxDATA[8]	142	VSS	45
PCI_AD[13]	65	RxADDR[0]	21	RxLINEDATA[6]	17	TxDATA[9]	143	VSS	48
PCI_AD[14]	66	RxADDR[1]	22	RxLINEDATA[7]	18	TxDATA[10]	144	VSS	54
PCI_AD[15]	68	RxADDR[2]	23	RxLINELOC	19	TxDATA[11]	145	VSS	57
PCI_AD[16]	70	RxADDR[3]	24	RxLINELOS	20	TxDATA[12]	146	VSS	63
PCI_AD[17]	89	RxADDR[4]	25	RxLOF	5	TxDATA[13]	147	VSS	67
PCI_AD[18]	91	RxBYTECLK	153	RxPRTY	27	TxDATA[14]	148	VSS	72
PCI_AD[19]	92	RxCLAV	28	RxSOC	26	TxDATA[15]	149	VSS	77
PCI_AD[20]	94	RxCLK	117	TEST_HOLD	71	Tx_ENB	80	VSS	93
PCI_AD[21]	95	RxDATA[0]	112	TEST_SE	157	TxFRAME	4	VSS	101
PCI_AD[22]	97	RxDATA[1]	113	TEST_SI1	132	TxLINEDATA[0]	164	VSS	106
PCI_AD[23]	98	RxDATA[2]	114	TEST_SI2	131	TxLINEDATA[1]	165	VSS	116
PCI_AD[24]	100	RxDATA[3]	115	TEST_SI3	156	TxLINEDATA[2]	166	VSS	124
PCI_AD[25]	102	RxDATA[4]	118	TEST_SI4	155	TxLINEDATA[3]	167	VSS	151
PCI_AD[26]	103	RxDATA[5]	119	TEST_SI5	154	TxLINEDATA[4]	168	VSSC	81
PCI_AD[27]	105	RxDATA[6]	120	TEST_SO1	163	TxLINEDATA[5]	169	VSSC	96
PCI_AD[28]	107	RxDATA[7]	121	TEST_SO2	162	TxLINEDATA[6]	170	VSSC	158
PCI_AD[29]	108	RxDATA[8]	122	TEST_SO3	161	TxLINEDATA[7]	171	VSSC	176
PCI_AD[30]	110	RxDATA[9]	123	TEST_SO4	160	TxPRTY	78		
PCI_AD[31]	111	RxDATA[10]	125	TEST_S05	159	TxSOC	79		
PCI_C/BE[0]/TEST_SI9	39	RxDATA[11]	126	TxADDR[0]	88	VDD	34		
PCI_C/BE[1]/TEST_SI8	41	RxDATA[12]	127	TxADDR[1]	87	VDD	43		

Pin	Pin Name	Pin	Pin Name	Pin	Pin Name	Pin	Pin Name	Pin	Pin Name
1	RESET	37	NC	73	VDDC	109	VDDC	145	TxDATA[11]
2	VDDC	38	PCI_PAR/TEST_SO11	74	PCI_PERR/TEST_S07	110	PCI_AD[30]	146	TxDATA[12]
3	RxFRAME	39	PCI_C/BE[0]/TEST_SI9	75	PCI_SERR/TEST_SO8	111	PCI_AD[31]	147	TxDATA[13]
4	TxFRAME	40	PCI_TRDY/TEST_SO9	76	PCI_DEVSEL/TEST_SO12	112	RxDATA[0]	148	TxDATA[14]
5	RxLOF	41	PCI_C/BE[1]/TEST_SI8	77	VSS	113	RxDATA[1]	149	TxDATA[15]
6	RxLCD[0]	42	PCI_C/BE[2]/TEST_SI7	78	TxPRTY	114	RxDATA[2]	150	TxBYTECLK
7	RxLCD[1]	43	VDD	79	TxSOC	115	RxDATA[3]	151	VSS
8	RxLCD[2]	44	PCI_C/BE[3]/TEST_SI6	80	Tx_ENB	116	VSS	152	VDD
9	RxLCD[3]	45	VSS	81	VSSC	117	RxCLK	153	RxBYTECLK
10	VSS	46	PCI_AD[0]	82	TxCLK	118	RxDATA[4]	154	TEST_SI5
11	RxLINEDATA[0]	47	PCI_AD[1]	83	TxCLAV	119	RxDATA[5]	155	TEST_SI4
12	RxLINEDATA[1]	48	VSS	84	TxADDR[4]	120	RxDATA[6]	156	TEST_SI3
13	RxLINEDATA[2]	49	PCI_AD[2]	85	TxADDR[3]	121	RxDATA[7]	157	TEST_SE
14	RxLINEDATA[3]	50	PCI_AD[3]	86	TxADDR[2]	122	RxDATA[8]	158	VSSC
15	RxLINEDATA[4]	51	VDD	87	TxADDR[1]	123	RxDATA[9]	159	TEST_S05
16	RxLINEDATA[5]	52	PCI_AD[4]	88	TxADDR[0]	124	VSS	160	TEST_SO4
17	RxLINEDATA[6]	53	PCI_AD[5]	89	PCI_AD[17]	125	RxDATA[10]	161	TEST_SO3
18	RxLINEDATA[7]	54	VSS	90	VDD	126	RxDATA[11]	162	TEST_SO2
19	RxLINELOC	55	PCI_AD[6]	91	PCI_AD[18]	127	RxDATA[12]	163	TEST_S01
20	RxLINELOS	56	PCI_AD[7]	92	PCI_AD[19]	128	RxDATA[13]	164	TxLINEDATA[0]
21	RxADDR[0]	57	VSS	93	VSS	129	RxDATA[14]	165	TxLINEDATA[1]
22	RxADDR[1]	58	PCI_AD[8]	94	PCI_AD[20]	130	RxDATA[15]	166	TxLINEDATA[2]
23	RxADDR[2]	59	PCI_AD[9]	95	PCI_AD[21]	131	TEST_SI2	167	TxLINEDATA[3]
24	RxADDR[3]	60	VDD	96	VSSC	132	TEST_SI1	168	TxLINEDATA[4]
25	RxADDR[4]	61	PCI_AD[10]	97	PCI_AD[22]	133	VDDC	169	TxLINEDATA[5]
26	RxSOC	62	PCI_AD[11]	98	PCI_AD[23]	134	TxDATA[0]	170	TxLINEDATA[6]
27	RxPRTY	63	VSS	99	VDD	135	TxDATA[1]	171	TxLINEDATA[7]
28	RxCLAV	64	PCI_AD[12]	100	PCI_AD[24]	136	TxDATA[2]	172	VDDC
29	RxENB	65	PCI_AD[13]	101	VSS	137	TxDATA[3]	173	PCI_INTA/TEST_SO10
30	PCI_RST	66	PCI_AD[14]	102	PCI_AD[25]	138	TxDATA[4]	174	PCI_LOCK/TEST_SI10
31	PCI_CLK	67	VSS	103	PCI_AD[26]	139	TxDATA[5]	175	PCI_STOP/TEST_SO6
32	VSS	68	PCI_AD[15]	104	VDD	140	TxDATA[6]	176	VSSC
33	PCI_IDSEL/TEST_SI12	69	VDD	105	PCI_AD[27]	141	TxDATA[7]		
34	VDD	70	PCI_AD[16]	106	VSS	142	TxDATA[8]		
35	PCI_IRDY/TEST_SI11	71	TEST_HOLD	107	PCI_AD[28]	143	TxDATA[9]		
36	PCI_FRAME	72	VSS	108	PCI_AD[29]	144	TxDATA[10]		

Table 18. TC-622PRO Numerical Pin List

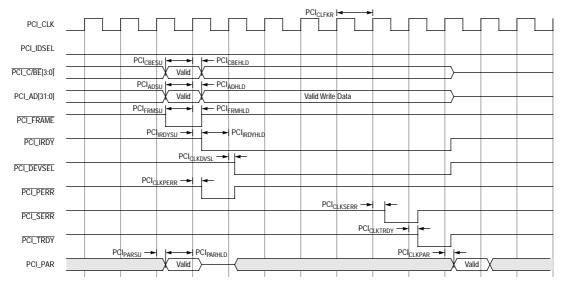
8.4 PCI Bus AC Specifications

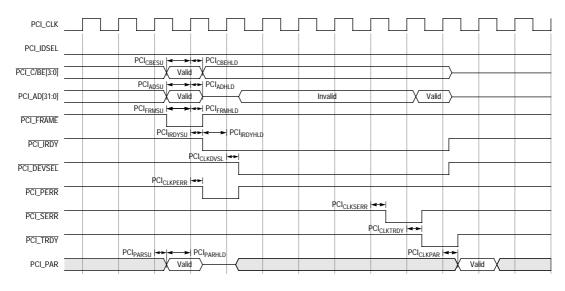
8.4.1 PCI Bus Register Write

Table 19. PCI Bus Register Write Timing ^[1]

Parameter	Symbol	Min	Мах	Units (ns)
PCI_CLK clock frequency	PCI _{CLKFR}	0 MHz	33 MHz	nS
PCI_IDSEL to PCI clock setup time	PCI _{IDSU}	1.0	1.9	nS
PCI clock to PCI_IDSEL hold time	PCI _{IDHLD}	4.1	5.1	nS
PCI_C/BE[3:0] to PCI clock setup time	PCI _{CBESU}	0.3	1.5	nS
PCI clock to PCI_C/BE[3:0] hold time	PCI _{CBEHLD}	1.3	3.6	nS
PCI_AD[31:0] to PCI clock setup time	PCI _{ADSU}	1.5	6.5	nS
PCI clock to PCI_AD[31:0] hold time (input)	PCI _{ADHLDI}	3.7	8.8	nS
PCI_FRAME to PCI clock setup time	PCI _{FRMSU}	2.3	8.7	nS
PCI clock to PCI_FRAME hold time	PCI _{FRMHLD}	4.5	10.8	nS
PCI_IRDY to PCI clock setup time	PCI _{IRDYSU}	2.3	8.7	nS
PCI clock to PCI_IRDY hold time	PCI _{IRDYHLD}	4.4	11	nS
PCI clock to PCI_DEVSEL output delay	PCI _{CLKDVSL}	5.2	15.7	nS
PCI clock to PCI_PERR output delay	PCI _{CLKPERR}	3.98	7.75	nS
PCI clock to PCI_SERR output delay	PCI _{CLKSERR}			nS
PCI clock to PCI_TRDY output delay	PCI _{CLKTRDY}	5.0	10.9	nS
PCI_PAR (input) to PCI clock setup time	PCI _{PARSU}	0.8	3.9	nS
PCI clock to PCI_PAR (input) hold time	PCI _{PARHLD}	2.6	2.4	nS
PCI clock to PCI_PAR output delay	PCI _{CLKPAR}	4.3	8.2	nS

1. All output delays assume loading of 50 pF.




Figure 34. PCI Bus Register Write Timing Diagram

8.4.2 PCI Bus Register Read

Table 20. PCI Bus Register Read Timing^[1]

Parameter	Symbol	Min	Max	Units
PCI_CLK clock frequency	PCI _{CLKFR}	0 MHz	33 MHz	nS
PCI_IDSEL to PCI clock setup time	PCI _{IDSU}	1.0	1.9	nS
PCI clock to PCI_IDSEL hold time	PCI _{IDHLD}	4.1	5.1	nS
PCI_C/BE[3:0] to PCI clock setup time	PCI _{CBESU}	0.3	1.5	nS
PCI clock to PCI_C/BE[3:0] hold time	PCI _{CBEHLD}	1.3	3.6	nS
PCI_AD[31:0] to PCI clock setup time	PCI _{ADSU}	1.5	6.5	nS
PCI clock to PCI_AD[31:0] hold time	PCI _{ADHLD}	1.3	3.6	nS
PCI clock to read data valid delay	PCI _{DTOUT}	4 PCI_CLK + 4 ns	8 PCI_CLK + 13 ns	nS
PCI_FRAME to PCI clock setup time	PCI _{FRMSU}	2.3	8.7	nS
PCI clock to PCI_FRAME hold time	PCI _{FRMHLD}	4.5	10.8	nS
PCI_IRDY to PCI clock setup time	PCI _{IRDYSU}	2.3	8.7	nS
PCI clock to PCI_IRDY hold time	PCI _{IRDYHLD}	4.4	11.0	nS
PCI clock to PCI_DEVSEL output delay	PCI _{CLKDVSL}	5.2	15.7	nS
PCI clock to PCI_TRDY output delay	PCI _{CLKTRDY}	5.0	10.9	nS
PCI_PAR to PCI clock input setup time	PCI _{PARSU}	0.8	3.9	nS
PCI clock to PCI_PAR input hold time	PCI _{PARHLD}	2.6	2.4	nS
PCI clock to PCI_PAR output delay	PCI _{CLKPAR}	4.3	8.2	nS
PCI clock to PCI_STOP output delay	PCI _{STOP}	5.4	10.9	nS
PCI clock to PCI_INTA output delay	PCI _{INTA}	23.8	27.5	nS

1. All output delays assume loading of 50 pF.

Figure 35. PCI Bus Register Read Timing Diagram

8.4.3 PCI Bus Configuration Write

The timing parameters in *Figure 36* are the same as for the PCI Bus Register Write. Refer to *Table 19* for timing information.

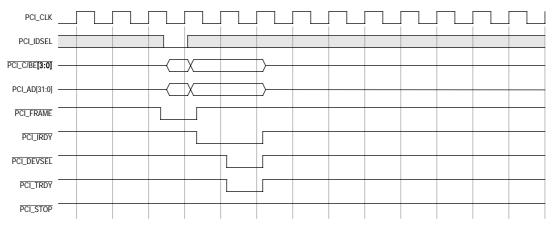


Figure 36. PCI Configuration Write Timing Diagram

8.4.4 PCI Bus Configuration Read

The timing parameters in *Figure 37* are the same as for the PCI Bus Register Read. Refer to *Table 20* for timing information.

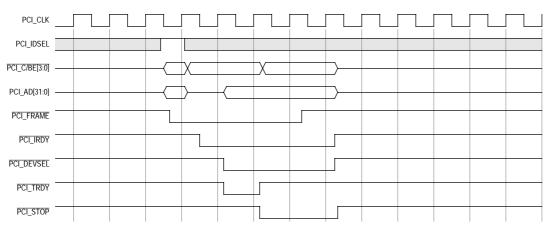


Figure 37. PCI Configuration Read Timing Diagram

9. ML53311 TC-622PRO+ MPI BUS INTERFACE AND SPECIFICATIONS

This section contains material specific to the ML53311 TC-622Pro+ and includes the following subsections:

- Section 9.1, "MPI Bus Architectural Overview"
- Section 9.2, "MPI Bus Transactions"
- Section 9.3, "TC-622Pro+ Signal Descriptions"
- Section 9.4, "MPI Bus AC Specifications"

For PCI bus interface and specification information specific to the ML53301 TC-622Pro device, refer to Section 8.

9.1 MPI Bus Architectural Overview

The TC-622Pro+ provides a microprocessor interface (MPI) bus for accessing the register array. The MPI bus is intended for use in low-cost applications where a full PCI interface is not required. In the TC-622Pro+ registers are accessed directly by driving the required address onto the bus. No memory mapping of registers is required. This differs from the TC-622Pro where all registers are memory-mapped to a specific 8-kbyte space and accessed through the PCI bus. In MPI mode the registers are not memory mapped and are accessed directly using a separate 7-bit address bus.

In the TC-622Pro+ an MPI bus memory access is initiated by driving the address onto MPI_ADDR[6:0]. The host drives data to the TC-622Pro+ on a write operation. The TC-622Pro+ drives data to the host during a read operation. The host asserts the MPI_R/ \overline{W} signal to indicate a read or write operation. Once these signals are in their proper state, the host asserts \overline{MPI}_CS to initiate the TC-622Pro+ register access. All 16-bit MPI interface signals are asynchronous to the CPU clock.

Figure 38 shows the TC-622Pro+ bus format during a register access. Note that the address bus is physically separate from the data bus, rather than multiplexed as in the TC-622Pro. Each address on MPI_ADDR[6:0] corresponds to a 16-bit value. All TC-622Pro+ registers are 16-bits wide except for the 32-bit *Interrupt* and *Interrupt Mask* registers whose upper 16 bits are unused.

	15		0
MPI_DATA[15:0]			Register Data
	7	0	
MPI_ADDR[6:0]	R	egister Address	

9.2 MPI Bus Transactions

This section discusses the MPI bus transaction timings during a register read and a register write.

9.2.1 MPI Bus Register Read

When the host requests a 16-bit read, the TC-622Pro+ fetches all 16 bits of register data, latches the data into the MPI Data Path block, and drives it onto the bus. The MPI_RDY signal is driven by the TC-622Pro+ to indicate when valid register data is available on MPI_DATA[15:0]. The TC-622Pro+ deasserts MPI_RDY by default at the start of the transaction to indicate that data is not yet available. The TC-622Pro+ asserts MPI_RDY whenever valid data is driven onto the bus.

Although externally the $\overline{\text{MPI}_CS}$ signal is asserted asynchronous to the CPU clock, it is synchronized with the CPU clock internally. The setup and hold times for MPI_DATA[15:0] and MPI_R/W are relative to the falling edge of $\overline{\text{MPI}_CS}$.

Figure 39 shows a timing diagram of a 16-bit register read operation. A numbered sequence following the diagram describes the transaction flow on a clock-by-clock basis. The numbers reference each clock in the diagram.

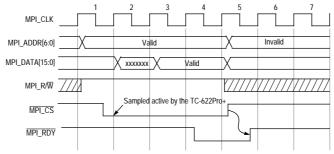


Figure 39. TC-622Pro+ 16-Bit Register Read

- 1. In clock 1 the host drives address onto MPI_ADDR[6:0] and the MPI_R/W signal high to indicate a read operation. The host then asserts the MPI_CS signal to enable the TC-622Pro+ register array.
- 2. In clock 2 the host continues to drive MPI_CS. The TC-622Pro+ samples MPI_CS active at the rising edge of clock 2 and latches the address and control information into the MPI data path block. Note that a minimum of two clocks is required between the time that MPI_CS is sampled active by the TC-622Pro+ and the time that data is valid on the bus. The host can continue to drive the MPI_R/W signal throughout the read transaction, although they are only required to be driven for one clock. Once a cycle has completed, the TC-622Pro+ always reverts the data bus to input mode (default for write cycles). Therefore, when the TC-622Pro+ samples MPI_CS asserted at the rising edge of clock 2, the remainder of clock 2 is used for bus turnaround.
- 3. In clock 3 the host continues to drive the MPI_CS, MPI_ADDR[6:0], and MPI_R/W signals. The TC-622Pro+ drives valid data onto the bus in clock 3.
- 4. In clock 4 the TC-622Pro+ asserts the MPI_RDY signal to indicate that valid data is on the bus. The host continues to drive the MPI_ADDR[6:0], MPI_CS and MPI_R/W signals until MPI_RDY is sampled asserted at the rising edge of clock 5.
- 5. Once the host has sampled <u>MPI_RDY</u> asserted, the host latches data and stops driving the MPI_ADDR[6:0] and MPI_R/W signals and deasserts <u>MPI_CS</u>, indicating the end of the cycle. In response to the deassertion of <u>MPI_CS</u> by the host, the TC-622Pro+ asynchronously deasserts <u>MPI_RDY</u>.

9.2.2 MPI Bus Register Write

When the host requests a 16-bit write, the TC-622Pro+ latches the address, control, and incoming data into the MPI Data Path block. By default the TC-622Pro+ deasserts MPI_RDY at the start of any transaction to indicate that data is not yet available. The TC-622Pro+ asserts MPI_RDY during a write operation to indicate that it has accepted the data on MPI_DATA[15:0].

Although externally the $\overline{\text{MPI}_{CS}}$ signal can be asserted asynchronous to the CPU clock, it is synchronized with the CPU clock internally. The setup and hold times for MPI_DATA[15:0] and MPI_R/ \overline{W} are relative to the falling edge of $\overline{\text{MPI}_{CS}}$.

Figure 40 shows a timing diagram of a 16-bit register write operation. A numbered sequence following the diagram describes the transaction flow on a clock-by-clock basis. The numbers reference each clock in the diagram.

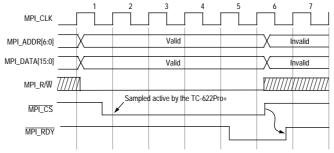


Figure 40. TC-622Pro+ 16-Bit Register Write

- 1. In clock 1 the host drives address onto MPI_ADDR[6:0], data onto MPI_DATA[15:0], and the MPI_R/W signal low to indicate a write operation. The host then asserts the MPI_CS signal to enable the TC-622Pro+ register array.
- 2. In clock 2 the host continues to drive MPI_CS. Note that a minimum of three clocks is required between the time that MPI_CS is sampled active by the TC-622Pro+ and the time that MPI_RDY is asserted by the TC-622Pro+. The host can continue to drive the MPI_R/W signal throughout the write transaction, although it is only required to be driven for one clock.
- 3. In clock 3 all signals maintain their current state.
- 4. In clock 4 all signals maintain their current state.
- 5. In clock 5 the TC-622Pro+ asserts the MPI_RDY signal to indicate that is has accepted the data on the bus. The host continues to drive the address, MPI_CS and MPI_R/W signals until MPI_RDY is sampled asserted at the rising edge of clock 6.
- 6. Once the host samples MPI_RDY asserted, it stops driving the address and MPI_R/W signals and deasserts MPI_CS, indicating the end of the cycle. In response to the deassertion of MPI_CS by the host, the TC-622Pro+ asynchronously deasserts MPI_RDY.

Back-to-Back Cycle Timing

The TC-622Pro+ requires a minimum high time of 2 clocks for the $\overline{\text{MPI}_{CS}}$ signal between transactions, independent of the type of transaction. This includes a read followed by a write, a write followed by a read, a back-to-back read, or a back-to-back write.

MPI Interrupt Control

The MPI Interrupt control block receives interrupts from the TC-622Pro+. Bits in the *Interrupt Status* register are set as interrupts are generated from the various modules in the TC-622Pro+. When a bit is set, the MPI Interrupt Control block issues a general interrupt by asserting the $\overline{MPI_INTA}$ signal on the MPI bus. The host responds by reading the *Interrupt Status* register and then resets the appropriate bits.

9.3 TC-622Pro+ Signal Descriptions

This section gives the pin descriptions for the ML53311 TC-622Pro+ device. The pin descriptions are divided into four tables for the transmit interface, receive interface, MPI interface, and general signals. Alphabetical and numerical pin listings are also provided.

Figure 41 shows a diagram of the ML53311 TC-622Pro+ signal groupings.

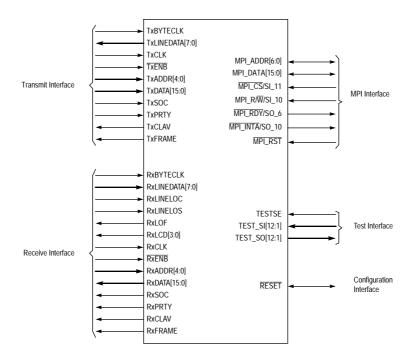


Figure 41. TC-622Pro+ Logic Symbol

Pin Name	Pin Type	Description
Transmit UTOPIA Interface		
TxADDR[4:0]	I	5-bit transmit UTOPIA port address. These pins are used to address up to a maximum of 32 transmit ports. The TC-622Pro+ contains 4 transmit ports.
TxCLAV	0	This signal is driven by the UTOPIA to the ATM layer device and indicates that one or more buffer spaces are available.
TxCLK	I	50 MHz clock for the transmit UTOPIA. This clock is used to transfer data between the UTOPIA and the ATM layer device.
TxDATA[15:0]	I	16-bit transmit UTOPIA data bus. This unidirectional bus is driven by the ATM layer device to the TC-622Pro+ during a transmit operation.
TxENB	I	Transmit UTOPIA enable. TXENB is asserted by the ATM layer device whenever valid data is on the bus. When TXENB is deasserted the data bus is tri-stated.
TxPRTY	I	Parity for the incoming data from the ATM layer device.
TxSOC	I	During a transmit operation, this signal is asserted for one clock by the ATM layer device at the start of a cell transmission.
Fransmit Line Interface	L. C.	
TxBYTECLK	I	Transmit byte clock. This signal is used to transfer data between the transmit framer and the external parallel-to-serial converter. The clock operates at 77.76 MHz (622.08/8)
TxFRAME	0	A one transmit byte pulse for every frame transmitted to the external parallel-to-serial converter.
TxLINEDATA[7:0]	0	This 8-bit data value is driven by the transmit framer and connects to an external parallel-to-serial converter.

Table 21. TC-622PRO+ Transmit Interface Signals

Table 22. TC-622PRO+ Re	ceive Interface Signals
-------------------------	-------------------------

Pin Name	Pin Type	Description					
Receive UTOPIA Interface							
RxADDR[4:0]	I	5-bit transmit receive UTOPIA port address. These pins are used to address up to a maximum of 32 receive ports. The TC-622Pro+ contains 4 receive ports.					
RxCLAV	0	This signal is driven by the receive UTOPIA to the ATM layer device and indicates that one or more buffer spaces are available.					
RxCLK	I	50 MHz clock for the receive UTOPIA. This clock is used to transfer data between the receive UTOPIA and the ATM layer device.					
RxDATA[15:0]	0	16-bit receive UTOPIA data bus. This unidirectional bus is used by the TC-622Pro+ to drive data to the ATM layer device during a receive operation.					
RXENB	I	Receive UTOPIA enable. RXENB is asserted by the ATM layer device whenever valid data is on the bus. When RXENB is deasserted the data bus is tri-stated.					
RxPRTY	0	This signal is driven by the TC-622Pro+ and is the parity for the outgoing data to the ATM layer device.					
RxSOC	0	During a receive operation this signal is asserted by the TC-622Pro+ for one clock to indicate the start of a cell transmission.					
Receive Line Interface							
RxBYTECLK	I	Receive byte clock. This signal is used to transfer data between the external parallel-to-serial converter and the receive framer. The clock operates at 77.76 MHz (622.08/8)					
RxFRAME	0	A one receive byte pulse for every frame received from the serial-to-parallel converter.					
RxLCD[3:0]	0	Indicates a loss of cell delineation. This signal is asserted when cell delineation has not been achieved for more than 4 mS. In the presence of an LOS, LOF, or LOC alarm this signal is not asserted.					
RxLINEDATA[7:0]	I	This 8-bit data value is driven by the external parallel-to-serial converter and connects to the receive framer.					
RxLINELOC	I	Assertion of this signal indicates a loss of clock from the external recovery module.					
RxLINELOS	I	Assertion of this signal indicates a loss of signal from the external recovery module.					
RxLOF	0	Indicates a loss of framing. This alarm signal is asserted when the receive framer is not able to transition to the SYNC state for more than 3 mS. The signal is deasserted 1 mS after the receive framer enters the SYNC state.					

Pin Name	Pin Type	Description
MPI_ADDR[5]	I	Microprocessor Interface Address. Used to access the registers and counters.
MPI_ADDR[6]/TEST_SO11	I/O	The MPI_ADDR[6] signal is shared with the test scan output 11.
MPI_ADDR[4]/TEST_SI12	1	The MPI_ADDR[4] signal is shared with the test scan input 12.
MPI_ADDR[3]/TEST_SI6		The MPI_ADDR[3] signal is shared with the test scan input 6.
MPI_ADDR[2]/TEST_SI7		The MPI_ADDR[2] signal is shared with the test scan input 7.
MPI_ADDR[1]/TEST_SI8		The MPI_ADDR[1] signal is shared with the test scan input 8.
MPI_ADDR[0]/TEST_SI9	I	The MPI_ADDR[0] signal is shared with the test scan input 9.
MPI_CLK	I	This signal provides timing for all transactions for the MPI bus interface.
MPI_CS/TEST_SI11	I	Assertion of this signal by external logic allows the TC-622Pro+ device to be read or written via the MPI bus. This pin is shared with test scan input 11.
MPI_DATA[15:0]	I/O	MPI data bus for transferring data to and from the registers and counters.
MPI_INTA/TEST_SO10	0	TC-622Pro+ Interrupt. This signal is asserted by the TC-622Pro+ to request an interrupt from the Host. It is a level sensitive and is tri-stated when MPI_RST is asserted. This pin is shared with test scan output 10.
MPI_RDY/SO6	0	This signal is used as the ready acknowledge output for read and write accesses. On a read, the TC-622Pro+ asserts MPI_RDY to indicate that valid data is on the bus. On a write the TC-622Pro+ asserts MPI_RDY to indicate to the host that it has accepted the data on the bus. This pin is shared with test scan output 6.
MPI_RST	I	This reset signal is driven by the host and is used to initialize MPI-specific registers, sequencers, and signals.
MPI_R/W/TEST_SI10	I	Register access read/write indication. The host asserts this signal to indicate a register read operation. A low on this signal indicates a write operation. This pin is shared test scan input 10.

Table 23. TC-622PRO+ MPI Interface Signals

Table 24. TC-622PRO+ Configuration Interface Signals

Pin Name	Pin Type	Description				
RESET	I	Asynchronous reset signal for the TC-622Pro. Assertion of this signal resets all internal flip-flops.				

Table 25. TC-622PRO+ Test interface Signals

Pin Name	Pin Type	Description			
TEST_HOLD I		Used for test scan purposes during manufacturing. This pin should be tied to ground.			
TEST_SE I		Used for test scan purposes during manufacturing. This pin should be tied to ground.			
TEST_SI[12:1]	I	Used for test scan purposes during manufacturing. These pins should be tied to ground.			
TEST_SO[12:1]	0	Used for test scan purposes during manufacturing. These pins should be left unconnected.			

Table 26. TC-622PRO+ Alphabetical Pin List

Pin Name	Pin	Pin Name	Pin	Pin Name	Pin	Pin Name	Pin	Pin Name	Pin
MPI_CLK	31	RxCLAV	28	RxSOC	26	TxDATA[11]	145	VDD	60
MPI_ADDR[0]TEST_/SI9	39	RxCLK	117	TEST_HOLD	71	TxDATA[12]	146	VDD	69
MPI_ADDR[1]/TEST_SI8	41	RxDATA[0]	112	TEST_SE	157	TxDATA[13]	147	VDD	90
MPI_ADDR[2]/TEST_SI7	42	RxDATA[1]	113	TEST_SI1	132	TxDATA[14]	148	VDD	99
MPI_ADDR[3]/TEST_SI6	44	RxDATA[2]	114	TEST_SI2	131	TxDATA[15]	149	VDD	104
MPI_ADDR[4]/TEST_SI12	33	RxDATA[3]	115	TEST_SI3	156	Tx_ENB	80	VDD	152
MPI_ADDR[5]	36	RxDATA[4]	118	TEST_SI4	155	TxFRAME	4	VDDC	2
MPI_ADDR[6]/TEST_SO11	38	RxDATA[5]	119	TEST_SI5	154	TxLINEDATA[0]	164	VDDC	73
MPI_CS/TEST_SI11	35	RxDATA[6]	120	TEST_SO1	163	TxLINEDATA[1]	165	VDDC	109
MPI_DATA[0]	47	RxDATA[7]	121	TEST_SO2	162	TxLINEDATA[2]	166	VDDC	133
MPI_DATA[1]	50	RxDATA[8]	122	TEST_SO3	161	TxLINEDATA[3]	167	VDDC	172
MPI_DATA[2]	53	RxDATA[9]	123	TEST_SO4	160	TxLINEDATA[4]	168	VSS	10
MPI_DATA[3]	56	RxDATA[10]	125	TEST_SO5	159	TxLINEDATA[5]	169	VSS	32
MPI_DATA[4]	59	RxDATA[11]	126	TEST_S07	74	TxLINEDATA[6]	170	VSS	37
MPI_DATA[5]	62	RxDATA[12]	127	TEST_SO8	75	TxLINEDATA[7]	171	VSS	45
MPI_DATA[6]	65	RxDATA[13]	128	TEST_SO9	40	TxPRTY	78	VSS	48
MPI_DATA[7]	68	RxDATA[14]	129	TEST_SO12	76	TxSOC	79	VSS	54
MPI_DATA[8]	89	RxDATA[15]	130	TxADDR[0]	88	NC	46	VSS	57
MPI_DATA[9]	92	RxENB	29	TxADDR[1]	87	NC	49	VSS	63
MPI_DATA[10]	95	RxFRAME	3	TxADDR[2]	86	NC	52	VSS	67
MPI_DATA[11]	98	RxLCD[0]	6	TxADDR[3]	85	NC	55	VSS	72
MPI_DATA[12]	102	RxLCD[1]	7	TxADDR[4]	84	NC	58	VSS	77
MPI_DATA[13]	105	RxLCD[2]	8	TxBYTECLK	150	NC	61	VSS	93
MPI_DATA[14]	108	RxLCD[3]	9	TxCLAV	83	NC	64	VSS	101
MPI_DATA[15]	111	RxLINEDATA[0]	11	TxCLK	82	NC	66	VSS	106
MPI_INTA/TEST_SO10	173	RxLINEDATA[1]	12	TxDATA[0]	134	NC	70	VSS	116
MPI_RDY/TEST_SO6	175	RxLINEDATA[2]	13	TxDATA[1]	135	NC	91	VSS	124
MPI_R/W/TEST_SI10	174	RxLINEDATA[3]	14	TxDATA[2]	136	NC	94	VSS	151
MPI_RST	30	RxLINEDATA[4]	15	TxDATA[3]	137	NC	97	VSSC	81
RESET	1	RxLINEDATA[5]	16	TxDATA[4]	138	NC	100	VSSC	96
RxADDR[0]	21	RxLINEDATA[6]	17	TxDATA[5]	139	NC	103	VSSC	158
RxADDR[1]	22	RxLINEDATA[7]	18	TxDATA[6]	140	NC	107	VSSC	176
RxADDR[2]	23	RxLINELOC	19	TxDATA[7]	141	NC	110		
RxADDR[3]	24	RxLINELOS	20	TxDATA[8]	142	VDD	34		
RxADDR[4]	25	RxLOF	5	TxDATA[9]	143	VDD	43		
RxBYTECLK	153	RxPRTY	27	TxDATA[10]	144	VDD	51		

			-						
Pin	Pin Name	Pin	Pin Name	Pin	Pin Name	Pin	Pin Name	Pin	Pin Name
1	RESET	37	VSS	73	VDDC	109	VDDC	145	TxDATA[11]
2	VDDC	38	MPI_ADDR[6]/TEST_SO11	74	TEST_S07	110	NC	146	TxDATA[12]
3	RxFRAME	39	MPI_ADDR[0]/TEST_SI9	75	TEST_SO8	111	MPI_DATA[15]	147	TxDATA[13]
4	TxFRAME	40	TEST_SO[9]	76	TEST_S012	112	RxDATA[0]	148	TxDATA[14]
5	RxLOF	41	MPI_ADDR[1]/TEST_SI8	77	VSS	113	RxDATA[1]	149	TxDATA[15]
6	RxLCD[0]	42	MPI_ADDR[2]/TEST_SI7	78	TxPRTY	114	RxDATA[2]	150	TxBYTECLK
7	RxLCD[1]	43	VDD	79	TxSOC	115	RxDATA[3]	151	VSS
8	RxLCD[2]	44	MPI_ADDR[3]/TEST_SI6	80	Tx_ENB	116	VSS	152	VDD
9	RxLCD[3]	45	VSS	81	VSSC	117	RxCLK	153	RxBYTECLK
10	VSS	46	NC	82	TxCLK	118	RxDATA[4]	154	TEST_SI[5]
11	RxLINEDATA[0]	47	MPI_DATA[0]	83	TxCLAV	119	RxDATA[5]	155	TEST_SI[4]
12	RxLINEDATA[1]	48	VSS	84	TxADDR[4]	120	RxDATA[6]	156	TEST_SI[3]
13	RxLINEDATA[2]	49	NC	85	TxADDR[3]	121	RxDATA[7]	157	TEST_SE
14	RxLINEDATA[3]	50	MPI_DATA[1]	86	TxADDR[2]	122	RxDATA[8]	158	VSSC
15	RxLINEDATA[4]	51	VDD	87	TxADDR[1]	123	RxDATA[9]	159	TEST_SO[5]
16	RxLINEDATA[5]	52	NC	88	TxADDR[0]	124	VSS	160	TEST_SO[4]
17	RxLINEDATA[6]	53	MPI_DATA[2]	89	MPI_DATA[8]	125	RxDATA[10]	161	TEST_SO[3]
18	RxLINEDATA[7]	54	VSS	90	VDD	126	RxDATA[11]	162	TEST_SO[2]
19	RxLINELOC	55	NC	91	NC	127	RxDATA[12]	163	TEST_SO[1]
20	RxLINELOS	56	MPI_DATA[3]	92	MPI_DATA[9]	128	RxDATA[13]	164	TxLINEDATA[0]
21	RxADDR[0]	57	VSS	93	VSS	129	RxDATA[14]	165	TxLINEDATA[1]
22	RxADDR[1]	58	NC	94	NC	130	RxDATA[15]	166	TxLINEDATA[2]
23	RxADDR[2]	59	MPI_DATA[4]	95	MPI_DATA[10]	131	TEST_SI[2]	167	TxLINEDATA[3]
24	RxADDR[3]	60	VDD	96	VSSC	132	TEST_SI[1]	168	TxLINEDATA[4]
25	RxADDR[4]	61	NC	97	NC	133	VDDC	169	TxLINEDATA[5]
26	RxSOC	62	MPI_DATA[5]	98	MPI_DATA[11]	134	TxDATA[0]	170	TxLINEDATA[6]
27	RxPRTY	63	VSS	99	VDD	135	TxDATA[1]	171	TxLINEDATA[7]
28	RxCLAV	64	NC	100	NC	136	TxDATA[2]	172	VDDC
29	RxENB	65	MPI_DATA[6]	101	VSS	137	TxDATA[3]	173	MPI_INTA/TEST_SO10
30	MPI_RST	66	NC	102	MPI_DATA[12]	138	TxDATA[4]	174	MPI_R/W/TEST_SI10
31	MPI_CLK	67	VSS	103	NC	139	TxDATA[5]	175	MPI_RDY/TEST_SO6
32	VSS	68	MPI_DATA[7]	104	VDD	140	TxDATA[6]	176	VSSC
33	MPI_ADDR[4]/TEST_SI12	69	VDD	105	MPI_DATA[13]	141	TxDATA[7]		
34	VDD	70	NC	106	VSS	142	TxDATA[8]		
35	MPI_CS/TEST_SI11	71	TEST_HOLD	107	NC	143	TxDATA[9]		
36	MPI_ADDR[5]	72	VSS	108	MPI_DATA[14]	144	TxDATA[10]		

Table 27. TC-622PRO+ Numerical Pin List

9.4 MPI Bus AC Specifications

9.4.1 MPI Bus Write Timing

Parameter	Symbol	Min	Мах	Units
MPI_CLK clock frequency		0	33	MHz
MPI_CS asserted setup time	MPI _{CSASU}	5		nS
MPI_CS deasserted setup time	MPI _{CSDSU}	5		nS
MPI_R/W hold time from MPI_CS deasserted	MPI _{RWHLD}	0		nS
MPI_RDY valid delay	MPI _{RDYVD}		10	nS
MPI_RDY pulse width	MPI _{RDYPW}	15		nS

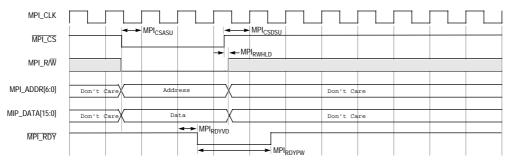
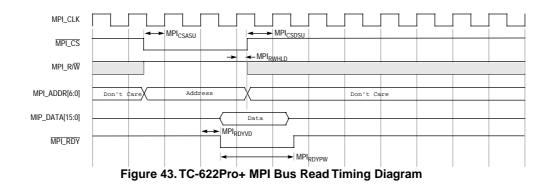



Figure 42. TC-622 Pro+ MPI Bus Write Timing Diagram

9.4.2 MPI Bus Read Timing

Parameter	Symbol	Min	Мах	Units
MPI_CLK clock frequency		0	33	MHz
MPI_CS asserted setup time	MPI _{CSASU}	5		nS
MPI_CS deasserted setup time	MPICSDSU	5		nS
MPI_R/W hold time from MPI_CS deasserted	MPI _{RWHLD}	0		nS
MPI_RDY valid delay	MPI _{RDYVD}		10	nS
MPI_RDY pulse width	MPI _{RDYPW}	15		nS

10. SONET FRAMES AND ATM CELL STRUCTURE

The Synchronous Optical Network (SONET) standard is the protocol used by the TC-622Pro/Pro+ to transmit ATM cells between points in a network. The SONET standard defines the electrical and optical interfaces for the network and the protocols that are used. SONET integrates these point-to-point fiber links into a network, enabling them to route information without the need for multiple stages of multiplexing and demultiplexing.

Multiple ATM cells are embedded within each SONET frame. Each ATM cell is 53 bytes in size and consists of a 5-byte header and a 48-byte payload. This chapter defines the structure of SONET frames and ATM cells.

10.1 SONET Frame Structure

All SONET frames use a basic building block called the synchronous transport signal level-1 (STS-1). This basic level incorporates a line rate of 51.840 Mbps for SONET. Multiple STS-1 frames are concatenated or byte-interleaved together to obtain the 622 Mbps frame rate supported by the TC-622Pro/Pro+, called STS-12/STS-12c. The STS-12c frame differs from the STS-12 frame in that STS-12c frames carry not only the normal pointers, but also the concatenation indicators. These indicators help to construct constituent STS-1 frames together for multiplexing, switching, and transporting as a single entity. The concatenation indicator indicates that these frames are joined together and must remain together until terminated. This feature eliminates unnecessary multiplexing and demultiplexing of frames and allows for very high data rates to support services such as BISDN.

The overhead of a SONET frame consists of three layers; *section*, *line*, and *path*. These paths govern the transport of the ATM cell payload across the network. The *section layer* transports the STS-12/STS-12c frame across the physical medium using the physical layer for actual transport. The *section layer* uses the *section overhead* to define functions such as framing, scrambling, overhead processing, and error monitoring. The *line layer* is responsible for transporting the *cell payload* and the *line overhead* across the network. The *line layer* maps the cell payload and the *line overhead* into STS-1 frames. The *line overhead* defines the functions of the *line layer*. The *path layer* transports the network services between two SONET multiplexing nodes.

Figure 44 shows the relationship between the various layers.

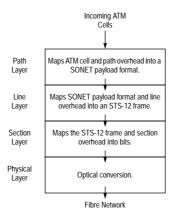


Figure 44. SONET Layered Structure

Each SONET frame contains a *section overhead*, a *line overhead* (collectively known as the *transport overhead*), and a *path overhead*, as well as the *cell payload*. Each STS-1 frame consists of a 9-row by 90-column byte matrix totalling 810 bytes (6480 bits). Because the TC-622Pro/Pro+ concatenates twelve STS-1 units together, this yields a frame size of 1080 columns by 9 rows (each 8-bits wide) for a total of 9720 bytes (77760 bits). In addition, the 622 Mbps transfer rate is obtained by multiplying the 51.840 Mbps STS-1 line rate by 12.

A standard STS-1 frame transmission requires 125 microseconds, or 8000 frames per second (fps). The first three columns of the frame are assigned to the *transport overhead*, which consists of a *section overhead* (9 bytes) and a *line overhead* (18 bytes). The remaining 9-rows by 87-columns constitute the *synchronous payload envelope* (SPE). Within this SPE, 9 bytes are assigned to the *path overhead*. The *path overhead* is floating and can reside anywhere within the SPE.

Figure 45 shows the format of an STS-1 frame. STS-1 is the simplest type of frame format and is shown only for clarity. The TC-622Pro/Pro+ does not support STS-1 frames. Only STS-3 and STS-12/12c frame types are supported.

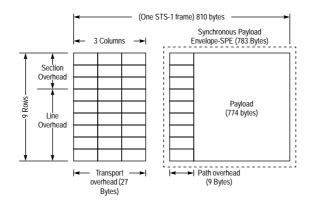
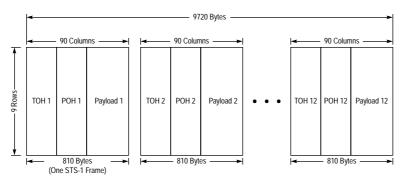
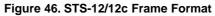




Figure 45. STS-1 Frame Format

The TC-622Pro/Pro+ concatenates 12 of these STS-1 frames to form one STS-12/12c frame. The STS-12/12c frame format is shown in *Figure 46*. Note that 'TOH' represents the *transport overhead*, and 'POH' represents the *path overhead*. When an STS-12/12c frame is transmitted, the order of transmission is row-by-row, from left to right.

10.1.1 Section, Line, and Path Overheads

In *Figure 45*, the *transport overhead* consists of a 9-byte *section overhead* and an 18-byte *line overhead*. These bytes occupy the first three columns of each STS-1 frame. The *transport overhead* resides in a fixed location within the SONET frame. However, the *path overhead*, which is part of the Synchronous Payload Envelope (SPE), is not anchored to a fixed location and instead may 'float' anywhere within the corresponding SPE.

Section and Line Overheads

The *section overhead* occupies the first 9 bytes of the STS-1 frame and the *line overhead* occupies the next 18 bytes. *Figure* 47 shows the location of the section and line overhead functions.

	1	4	— 3 Columns —	
1	Section	Framing A1	Framing A2	STS-1 ID C1
	Overhead (9 bytes)	BIP-8 B1	Orderwire E1	User-channel F-1
		Datacomm D1	Datacomm D2	Datacomm D3
 9 Rows 	Line Overhead (18 bytes)	Pointer H1	Pointer H2	Pointer action H3
		BIP-8 B2	APS K1	APS K2
		Datacomm D4	Datacomm D5	Datacomm D6
		Datacomm D7	Datacomm D8	Datacomm D9
		Datacomm D10	Datacomm 11	Datacomm 12
		Growth Z1	Growth Z2	Orderwire E2
		Transp	ort Overhead (27	bytes)

Figure 47. Section and Line Overhead Layout

The section overhead is created or modified within each section segment. The line overhead is created or modified within each line segment. Each field in the section and line overheads is 8-bits wide. *Table 28* lists the definitions of each field. Note that not all of these bytes are supported by the TC-622Pro/Pro+.

Table 28. Section and Line Overhead F	Fields
---------------------------------------	--------

Field	Description		
Section Overhe	ad the second seco		
A1	The A1 byte (framing) provides information about STS-1 framing synchronization and contains a fixed value of 0xF6. The 16-bit frame alignment word formed by the last A1 byte and the adjacent first A2 byte in the transmitted sequence uniquely defines the frame reference for each of the signal rates.		
A2	The A2 byte (framing) provides information about STS-1 framing synchronization and contains a fixed value of 0x28. The 16-bit frame alignment word formed by the last A1 byte and the adjacent first A2 byte in the transmitted sequence uniquely defines the frame reference for each of the signal rates.		
C1	The C1 byte (STS-1 ID) identifies each STS-1 frame within the STS-12/STS-12c frame. It takes the binary value equivalent to the position in the interleave. The STS Identification can be used in the framing and de-interleaving process to determine the position of the other signals.		
B1	The B1 byte (BIP-8) contains the section bit interleaved parity and is used for section error monitoring. The number of ones in bit "n" position of each byte is counted in modulo 2 over the whole frame after scrambling. The result is placed in the bit "n" position of the B1 byte in the next frame before scrambling. Thus 8 independent parity calculations are made in 8 adjacent bit positions. Parity is recalculated at the receiver, and any discrepancy between the calculated and the received value is interpreted as evidence of an error block. This byte is defined only for the first STS-1 of an STS-12/12c signal.		
E1	The E1 byte is allocated as a local section ordenvire channel used for voice communications. It is reserved for communication between section terminating equipment (STE), hubs, and remote terminal locations. The section ordenvire function is optional and the E1 byte is defined only for the first STS-1 of the STS-12/12c signal.		
F1	The F1 byte contains section user channel information and is reserved for use by the network provider. The F1 byte is typically used by operators for reporting various physical alarms but could also be used for other purposes. The use of the F1 byte is optional and is defined only for the first STS-1 of the STS-12/12c signal.		

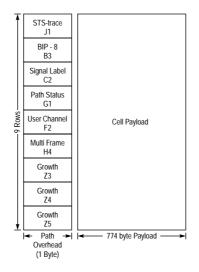

Field	Description		
D1 - D3	These three bytes provide a 192 kbps data communications channel (DCC) for alarms, maintenance, control, monitoring, administration, and other communication needs between section terminating equipment (STE). This channel is available for internal generated, externally generated, and manufacturer specific messages. The D1, D2, and D3 bytes are defined only for the first STS- of the STS-12/12c signal.		
	Line Overhead		
H1, H2	The H1 and H2 bytes form a pointer that indicates the offset in bytes between the pointer and the first byte of the STS Synchronous Payload Envelope (SPE). The bytes are used to align the STS-1 Path Overheads in an STS-12/12c signal and also perform frequency justification (see H3 entry below). The pointer may have a decimal value from 0 to 782.		
Н3	The H3 byte provides for SPE frequency adjustment in conjunction with the H1 and H2 bytes. Depending on the pointer value, the H3 byte is used to adjust the fill of input buffers. In the event of negative justification, it carries valid information. In the case of no justification or positive justification it contains a fixed value of 0x00. Justification is used to make the input and output data rates the same without having to stretch of shrink the frame period (125 uS). When the input rate is higher than the output rate, the H3 byte is used to send extra data, thereby increasing the output rate. This is referred to as 'Negative' justification. 'Positive' justification occurs when the output rate is higher than the input rate.		
B2	The B2 byte (BIP-8) contains the section bit interleaved parity and is used for line error monitoring. The number of ones in bit "n" position of each byte is counted modulo 2 over the whole frame after scrambling. The result is placed in the bit "n" position of the B2 byte in the next frame before scrambling. Thus 8 independent parity calculations are made in 8 adjacent bit positions. Parity is recalculated at the receiver, and any discrepancy between the calculated and the received value is interpreted as evidence of an error block. This byte is defined only for the first STS-1 of an STS-12/12c signal.		
K1, K2	The K1 and K2 bytes are used for Automatic Protection Switching (APS) signaling between line level entities (multiplex sections organized as a protection group). The bytes are defined only for the first STS-1 of an STS-12/12c signal.		
D4 - D12	The D4 to D12 bytes are allocated for line data communication purposes and are treated as one 576 Kbps messaging channel for alarm detection, maintenance, control, monitoring, administration, and other communication needs between line terminating entities. This channel is available for internally generated, externally generated, and manufacturer specific messages. The bytes are defined only for the first STS-1 of an STS-12/12c signal.		
Z1, Z2	The Z1 and Z2 bytes are reserved for future growth. The Z1 and Z2 bytes are only partially defined. For an STS-12/12c signal used in B-ISDN UNI applications, the Z2 byte of STS-1 number 3 shall be used for a line layered Far End Block Error (FEBE) function. Bits 2 through 8 of the Z2 byte are used to convey the error count of the interleaved bit blocks that have been detected to be in error by Line BIP-8 (B2) bytes. This count has [(8 * N) + 1] legal values, namely 0 to 8*N errors. The remaining possible values [127 - (8 * N)], represented by bits 2 to 8 of Z2, are interpreted as zero errors.		
E2	The E2 byte provides an express orderwire channel between line entities. The E2 byte is allocated in STS-1 number 1 of an STS-12/12c signal for an Express Orderwire (EOW) channel between line entities. All other E1 byte locations are currently undefined. The E2 byte is defined only for the first STS-1 of the STS-12/12c signal and its use is optional.		

Table 28. Section and Line Overhead Fields

Path Overhead

The path overhead contains information relative to each SPE in the STS-12/STS-12c frame. There is one 9-byte path overhead for each STS-1 frame. The path overhead does not have a fixed location and can reside anywhere within each STS-1 frame. It is assigned to and remains within the payload until the payload is demultiplexed. In the case of a Super Rate service such as in STS-12c mode where the entire 622 MHz/second bandwidth is allocated to a single channel, only a subset of the path overhead is defined and is contained in the first STS-1 of the STS-12c frame.

Figure 48 shows the path overhead layout.

Figure 48. Path Overhead Layout

The fields of the path overhead are defined in *Table 29*.

Field	Description
Path Overhead	
J1	The J1 byte is used to repetitively transmit a 64-byte, fixed length string so that a Path receiving terminal can verify its continued connection to the intended transmitter. The content of the trace string is user programmable. When no message has been loaded for path trace, 64 NULL characters are transmitted.
B3	The B3 byte is used for error monitoring. The Path Bit Interleaved Parity (BIP-8) is calculated over all bits of the STS-1 SPE and placed in the B3 byte of the current STS-1 SPE before scrambling occurs.
C2	The C2 byte is used to indicate the construction and contents of the STS-1 SPE. Of the possible binary values (0x00 - 0xFF), only some are used. The remaining codes are reserved to be assigned as required for future STS payload mappings. The C2 byte is assigned a value of 13h to indicate an ATM mapping.
G1	The G1 byte is used to convey to the originating STS Path Terminating Equipment (PTE) the path terminating status and performance. This feature permits the status and performance of the complete duplex path to be monitored at either end or at any point along that path. Bits 1 through 4 of the G1 byte carry an Far End Block Error (FEBE) code to convey the count of interleaved bit blocks that have been detected to be in error by the Path BIP-8 code. The count has nine legal values, ranging from 0 to 8. The remaining seven possible values represented by these four bits result from conditions unrelated to the forward path and shall be interpreted as zero errors. Bit 5 of G1 byte is used to indicate STS Path Remote Detection Indication (P-RDI).
F2	The F2 byte is reserved for use by the network provider for communication purposes between path elements.
H4	The H4 byte is a multipurpose indicator used by certain ATM mappings.
Z3	This byte is currently undefined.
Z4, Z5	The Z4 and Z5 bytes are currently undefined.

Table 29. Path Overhead Fields

10.1.2 Physical layer

The physical layer transports bits as optical pulses through the fibre medium. The main function of the physical layer is to receive the incoming stream, convert each bit into an optical pulse, and transmit that optical pulse across the fibre medium to the destination.

The physical layer consists of two sublayers; the Physical Medium Dependent (PMD) sublayer and the Transmission Convergence (TC) sublayer. The PMD layer defines the physical medium dependent signal conditioning and line coding functions such as bit timing, clock recovery and synthesis, connectors, fibre specifications, line coding, transmitter characteristics, and receiver characteristics. As the name implies, the PMD is media-specific and the requirements vary depending on the type of media used. Transport mediums include twisted-pair, coaxial, and fibre optics. The PMD sublayer is implemented by transceiver devices such as line drivers and line terminators.

The TC sublayer performs cell rate decoupling, cell delineation, transmission frame adaptation, and transmission frame generation and recovery. In the transmit direction the TC sublayer inserts ATM cells into the transmission frame and then serially passes that frame to the PMD device. In the receive direction, it uses the serial bit stream coming from the PMD device to extract the physical frame. It then extracts ATM cells from the physical frame. The TC-622Pro/Pro+ implements this Transmission Convergence sublayer for the 622 Mbps data rate.

10.2 ATM Cell Structure

An ATM cell is 53 bytes in size and consists of a 5-byte header that contains virtual circuit identifier and virtual path identifier information, and a 48-byte cell payload. The header is transmitted first and does not carry any service-specific data. Each ATM cell defines the user/network interface by means of the header.

Figure 49 shows the structure of a User-Network Interface (UNI) ATM cell.

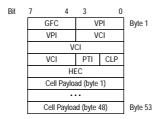


Figure 49. ATM Cell Structure

Table 30 defines the fields of the ATM cell.

Field	Location	Description
GFC	Byte 1, bits 7:4	Generic flow control field (4-bits). This field is used for end-to-end flow control.
VPI	Byte 1, bits 3:0 Byte 2, bits 7:4	Virtual Path Indicator (8-bits). This field is an aggregate of VCI's.
VCI	Byte 2, bits 3:0 Byte 3, bits 7:0 Byte 4, bits 7:4	This 16-bit field defines the logical connection between two ATM nodes across a User-to-Network Interface (UNI) or a Network-to-Network Interface (NNI). Some VCI values are reserved for purposes such as broadcasting and signalling. The network assigns VPI/VCI values across links, except at the ends. Typically, VPI/VCI values are assigned symmetrically. The same values are reserved in both directions across a link.
PTI	Byte 4, bits 3:1	This 3-bit field is used to distinguish whether the cell payload contains user of network management information.
CLP	Byte 4, bit 0	The 1-bit Cell Loss Priority field indicates whether a cell can be discarded if the network becomes congested. If CLP is set the cell is discarded.
HEC	Byte 5, bits 7:0	This 8-bit field contains the Cyclic Redundancy Check (CRC) value that is calculated over all 5-bytes of the ATM cell header. The HEC can correct all single-bit errors and detect certain multi-bit errors. The HEC is computed and used by the physical layer.
ATM Cell Payload (bytes 1-48)	Bytes 6-53	Contains the 48-byte ATM cell payload.

Table 30. ATM Cell Structure Fields

11. GLOSSARY

Term	Definition
APS	Automatic Protection Switching. The automatic protection switching mechanism is defined by the ATM forum and supports signaling between line level entities (multiplex sections organized as a protection group). The APS function is contained in the K1 and K2 bytes of the Line Overhead. The bytes are defined only for the first STS-1 of an STS-12/12c signal.
ATM	Asynchronous Transfer Mode. Asynchronous information transfer protocol in which information is organized into cells. The B-ISDN protocol is commonly referred to as ATM.
CLP	Cell Loss Priority. The CLP is a bit in the ATM cell header that is used to identify low priority cells that may be discarded depending on network traffic conditions.
CRC	Cyclic Redundancy Check. A mathematical algorithm that computes a numerical value based the bits in a block of data. This number is computed by the sender and transmitted along with the data. The receiver at the other end uses the CRC value and the same algorithm to insure the accurate delivery of data by comparing the results of the algorithm and the CRC number received. If a mismatch occurs, an error in transmission is presumed.
FEBE	Far End Block Error. A maintenance bit transmitted in the Z2 byte of the Line Overhead which indicates that a bit error has been detected at the PHY layer at the far end of the link. This bit is used to monitor bit error performance in the link.
FIFO	First In First Out. A common memory architecture used in temporary storage applications. FIFOs are used in both the transmit and receive UTOPIA PHY interfaces of the TC-622Pro and temporarily store both incoming and outgoing data.
HEC	Header Error Check. This 8-bit field contains is located in byte 5 of the ATM cell header and contains the Cyclic Redundancy Check (CRC) value that is calculated over all 5-bytes of the ATM cell header. The HEC can correct all single-bit errors and detect certain multi-bit errors. The HEC is computed and used by the physical layer.
L-AIS	Line Alarm Indication Signal. The L-AIS signal is used for detecting an alarm indication on the line side (remote end). The L-AIS indication is contained in the lower three bits in the K2 byte of the Section Overhead. A line alarm indication is declared when this 3-bit field is equal to 111b for more than 5 consecutive frames.
LCD	Loss of Cell Delineation. Indicates a loss of cell delineation. The RxLCD signal is asserted when cell delineation has not been achieved for more than 4 mS. In the presence of an LOS, LOF, or LOC alarm this signal is not asserted.
LOF	Loss of Frame. Indicates loss of frame. The RxLOF alarm signal is asserted when the receive framer is not able to synchronize for more than 3 mS.
LOP	Loss of Pointer. Indicates loss of pointer. An invalid pointer is declared when the received H1H2[9:0] decimal value is greater than 782. This value is comprised of all 8 bits of the H2 byte and the lower 2 bits of the H1 byte. This condition is indicated by a change of state in the LOP state machine. The machine is set when eight consecutive invalid pointers are received and reset when three consecutive identical valid pointers are received.
LOS	Loss of Signal. Indicates loss of the received signal. The external RxLINELOS signal is asserted by an external agent when the signal on the wire is lost. In the TC-622Pro, an LOS state machine is set when at least 20 mS of continuous all zero non-descrambled inputs are detected. The machine is reset when two correct framing patters are detected exactly 125 mS apart with no LOS set condition in between.
L-RDI	Line Remote Defect Indication. The L-RDI signal is used for detecting an alarm indication on the line side (remote end). The L-RDI indication is contained in the lower three bits in the K2 byte of the Section Overhead. A line alarm indication is declared when this 3-bit field is equal to 110b for more than 5 consecutive frames.
MPI	Microprocessor Interface. Term used to identify the low-cost bus interface used in the ML53311 TC-622Pro+.
P-AIS	Path Alarm Indication Signal. The P-AIS condition is indicated when three consecutive H1 and H2 bytes are all ones (invalid pointers). The machine is reset when three consecutive identical valid pointers are received.
PBRS	Pseudo Random Sequence Generator. When requested by the cell processor, the test cell generator places a test cell on cell data bus in the following clock. The cell data is generated by a Pseudo Random Sequence Generator (PRBS). The PRBS is a shift register that generates a random number and then repeats the sequence after some period of time.
PCI	Peripheral Connect Interface. Bus specification developed by Intel Corporation as a successor to the IBM Industry Standard Architecture (ISA) bus. The PCI bus is used in the ML53301 TC-622Pro device.
РНҮ	PHYsical layer device. A PHY usually consists of the analog and supporting components of a transmission scheme associated with a particular medium.
PMA	Physical Medium Attachment. A sublayer of the PHY responsible for analog functions, such as transmit wave shaping (the T4 standard).
PMD	Physical Medium Dependent. The Physical Medium Dependent (PMD) sublayer is part of the PHY and provides the interface between the UTP wire and the rest of the PHY. The PMD is comprised of an electrical or optical connector and interfaces to the wire through magnetics.

Term	Definition
РОН	Path Overhead. The path overhead contains information relative to each SPE in the STS-12/STS-12c frame. There is one 9-byte path overhead for each STS-1 frame. The path overhead does not have a fixed location and can reside anywhere within each STS-1 frame. It is assigned to and remains within the payload until the payload is demultiplexed.
P-RDI	Path Remote Defect Indication. Indicates a remote defect in the path overhead. The condition is declared when a path RDI indication in the G1 byte (bit 5) of the path overhead is received for ten consecutive frames. The condition is removed when no path RDI indication in the G1 byte is received for ten consecutive frames.
SDH	Synchronous Digital Hierarchy. European equivalent of the synchronous optical network (SONET) standard.
SONET	Synchronous Optical Network. The Synchronous Optical Network (SONET) standard defines the electrical and optical interfaces for the network and the protocols that are used. SONET is the protocol used by the TC-622Pro/Pro+ to transmit ATM cells between points in a network.
SPE	Synchronous Payload Envelope. Data portion of a SONET frame. The size of the SPE depends on the type or SONET frame being used.
STS-x	Synchronous Transport Signal Level. All SONET frames use a basic building block called the synchronous transport signal level-1 (STS-1). This basic level incorporates a line rate of 51.840 Mbps for SONET (a slightly different line rate is used for SDH, the European equivalent to SONET). In the TC-622Pro, multiple STS-1 frames are concatenated or byte-interleaved together to obtain the 622 Mbps frame rate, called STS-12/STS-12c.
ТОН	Transportation Overhead. A 27 byte value consisting of a 9-byte section overhead and an 18-byte section overhead. There is one 27-byte TOH for each STS-1 frame.
UTOPIA	Universal Test and Operations Interface for ATM. The UTOPIA standard defines the electrical interface between the Physical Medium Dependent (PMD) and Physical Medium Attachment (PMA) layers of the PHY and the actual physical interface.

The information contained herein can change without notice owing to product and/or technical improvements.

Please make sure before using the product that the information you are referring to is up-to-date.

The outline of action and examples of application circuits described herein have been chosen as an explanation of the standard action and performance of the product. When you actually plan to use the product, please ensure that the outside conditions are reflected in the actual circuit and assembly designs.

Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters outside the specified maximum ratings or operation outside the specified operating range.

Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.

When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges, including but not limited to operating voltage, power dissipation, and operating temperature.

The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g.,office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property or death or injury to humans. Such applications include, but are not limited to: traffic control, automotive, safety, aerospace, nuclear power control, and medical, including life support and maintenance.

Certain parts in this document may need governmental approval before they can be exported to certain countries. The purchaser assumes the responsibility of determining the legality of export of these parts and will take appropriate and necessary steps, at their own expense, for export to another country.

Copyright 1999 Oki Semiconductor

Oki Semiconductor reserves the right to make changes in specifications at anytime and without notice. This information furnished by Oki Semiconductor in this publication is believed to be accurate and reliable. However, no responsibility is assumed by Oki Semiconductor for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license is granted under any patents or patent rights of Oki.

Northwest Area

Southwest Area

785 N. Mary Avenue Sunnyvale, CA 94086 Tel: 408/720-8940 Fax: 408/720-8965

North Central Area

300 Park Blvd. Suite 365 Itasca, IL 60143 Tel: 630/250-1313 Fax: 630/250-1414

Northeast Area

138 River Road Shattuck Office Center Andover, MA 01810 Tel: 978/688-8687 Fax: 978/688-8896 2302 Martin Street Suite 250 Irvine, CA 92715 Tel: 949/752-1843 Fax: 949/752-2423

Southeast Area

1590 Adamson Parkway Suite 220 Morrow, GA 30260 Tel: 770/960-9660 Fax: 770/960-9682

> Oki Web Site: http://www.okisemi.com

For Oki Literature:

Call toll free 1-800-OKI-6388 (6 a.m. to 5 p.m. Pacific Time)

Oki Stock No: 320120-003

Corporate Headquarters

785 N. Mary Avenue Sunnyvale, CA 94086-2909 Tel: 408/720-1900 Fax: 408/720-1918