# RICOH |

# **RP124x Series**

### 100 mA Ultra-low Supply Current (0.3 µA) LDO Regulator with Battery Monitor

No. EA-503-190312

### **OVERVIEW**

The RP124x is an LDO regulator with a battery monitor (BM) featuring ultra-low supply current. The battery monitor has a function which divides the input voltage (V<sub>IN</sub>) into 1/3 or 1/4. The battery charge remaining can be monitored by MCU. The buffering output enables directly inputting a signal into the low voltage A/D converter (ADC) with built-in MCU.

### **KEY BENEFITS**

- Achieving Low Supply Current of 0.3 μA, Longer Battery Life and Downsizing
- Requiring Only Three External Capacitors and Suitable for Space-saving Mounting for the Smaller Packages

### KEY SPECIFICATIONS

### LDO Section

• Input Voltage Range: 1.7 V to 5.5 V

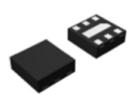
• Supply Current: Typ. 0.2 μA

• Output Voltage Accuracy: ±0.8%

• Output Current: 100 mA

Ceramic Capacitor Compatible: 1.0 μF or more

### **BM Section**


Output Voltage: V<sub>IN</sub>/3 (RP124xxx3x)

V<sub>IN</sub>/4 (RP124xxx4x)

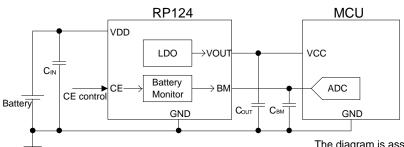
• Supply Current: Typ. 0.1 μA

Ceramic Capacitor Compatible: 0.1 μF to 0.22 μF

### **PACKAGES**






**DFN1212-6** 

SOT-23-5

1.2 mm x 1.2 mm x 0.4 mm

2.9 mm x 2.8 mm x 1.1 mm

### TYPICAL APPLICATIONS



The diagram is assumed to be used for RP124xxxxE.

### **APPLICATIONS**

- Battery powered IoT devices
- Energy harvesting devices
- Low power wireless communication modules including: Bluetooth® LE, Zigbee, and LPWA
- Low power consumption CPUs, memories, and sensors

No. EA-503-190312

### **SELECTION GUIDE**

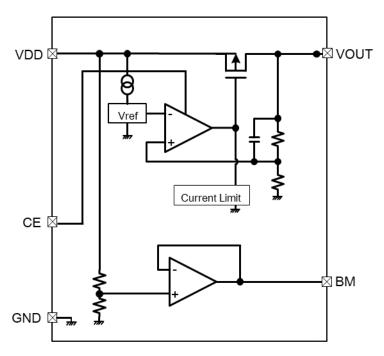
The LDO set output voltage, the divided ratio of BM output voltage, the CE pin function and the auto-discharge function are user-selectable options.

### **Selection Guide**

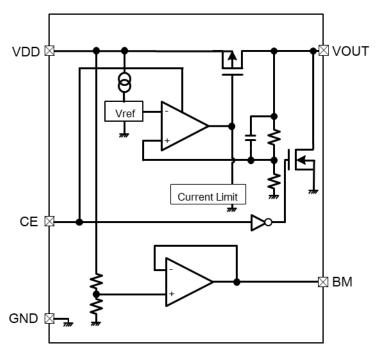
| Product Name     | Package   | Quantity per Reel | Pb Free | Halogen Free |  |
|------------------|-----------|-------------------|---------|--------------|--|
| RP124Lxx#*-TR    | DFN1212-6 | 5,000 pcs         | Yes     | Yes          |  |
| RP124Nxx#*-TR-FE | SOT-23-5  | 3,000 pcs         | Yes     | Yes          |  |

xx: Specify the LDO set output voltage (VSET).

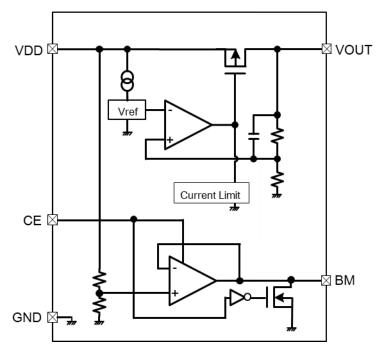
1.2 V (12) / 1.5 V (15) / 1.8 V (18) / 2.1 V (21) / 2.3 V (23) / 2.4 V (24) / 2.5 V (25) / 2.7 V (27) /


2.8 V (28) / 3.0 V (30) /3.1 V (31) / 3.3 V (33) / 3.6 V (36)

Contact Ricoh sales representatives for other voltages.

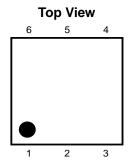

- #: Specify the divided ratio of BM output voltage.
  - 3: V<sub>IN</sub>/3
  - 4: V<sub>IN</sub>/4
- \*: Specify the CE pin and the auto-discharge option.

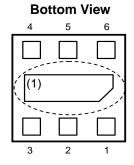
| * | CE pin                                         | Auto-discharge |     |  |
|---|------------------------------------------------|----------------|-----|--|
|   | Controlling I DO with the CE nin (Active high) | LDO            | No  |  |
| В | Controlling LDO with the CE pin (Active-high)  | ВМ             | No  |  |
|   | Occupation I DO THE HEAD From A Charles I Head | LDO            | Yes |  |
| D | Controlling LDO with the CE pin (Active-high)  | ВМ             | No  |  |
| _ | Occidential DM (that of all a final hall)      | LDO            | No  |  |
| E | Controlling BM with the CE pin (Active-high)   | ВМ             | Yes |  |


### **BLOCK DIAGRAMS**



RP124xxxxB Block Diagram





RP124xxxxD Block Diagram




RP124xxxxE Block Diagram

### **PIN DESCRIPTIONS**







RP124L (DFN1212-6) Pin Configuration

RP124N (SOT-23-5) Pin Configuration

RP124L (DFN1212-6) Pin Description

| Pin No. | Symbol | Description                   |
|---------|--------|-------------------------------|
| 1       | VOUT   | Output Pin                    |
| 2       | GND    | Ground Pin                    |
| 3       | ВМ     | Battery Monitoring Output Pin |
| 4       | CE     | Chip Enable Pin, Active-high  |
| 5       | NC     | No Connection                 |
| 6       | VDD    | Input Pin                     |

RP124N (SOT-23-5) Pin Description

| Pin No. | Symbol | Description                   |
|---------|--------|-------------------------------|
| 1       | VDD    | Input Pin                     |
| 2       | GND    | Ground Pin                    |
| 3       | CE     | Chip Enable Pin, Active-high  |
| 4       | ВМ     | Battery Monitoring Output Pin |
| 5       | VOUT   | Output Pin                    |

<sup>(1)</sup> The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

No. EA-503-190312

### **ABSOLUTE MAXIMUM RATINGS**

**Absolute Maximum Ratings** 

| Symbol          |                                                                         | Item                                          | Rating                        | Unit |
|-----------------|-------------------------------------------------------------------------|-----------------------------------------------|-------------------------------|------|
| V <sub>IN</sub> | Input Voltage                                                           |                                               | -0.3 to 6.5                   | V    |
| Vce             | CE Pin Voltage                                                          | 9                                             | -0.3 to 6.5                   | V    |
| Vouт            | VOUT Pin Volt                                                           | age                                           | -0.3 to V <sub>IN</sub> + 0.3 | V    |
| V <sub>BM</sub> | BM Pin Voltag                                                           | e                                             | -0.3 to V <sub>IN</sub> + 0.3 | V    |
| Іоит            | Output Curren                                                           | t                                             | 130                           | mA   |
| D-              | Power                                                                   | DFN1212-6 (JEDEC STD. 51-7 Test Land Pattern) | 850                           | mW   |
| $P_D$           | Dissipation <sup>(1)</sup> SOT-23-5 (JEDEC STD. 51-7 Test Land Pattern) |                                               | 660                           | mW   |
| Tj              | Junction Temp                                                           | perature Range                                | -40 to 125                    | °C   |
| Tstg            | Storage Temp                                                            | erature Range                                 | −55 to 125                    | °C   |

#### **ABSOLUTE MAXIMUM RATINGS**

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

### RECOMMENDED OPERATING CONDITIONS

**Recommended Operating Conditions** 

| Symbol | Item                  | Rating     | Unit       |   |
|--------|-----------------------|------------|------------|---|
|        | Input Voltage         | RP124xxx3x | 1.7 to 5.5 | W |
| VIN    | Input Voltage         | RP124xxx4x | 2.4 to 5.5 | V |
| Та     | Operating Temperature | -40 to 85  | °C         |   |

### RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

<sup>(1)</sup> Refer to POWEWR DISSIPATION for detailed information.

### **ELECTRICAL CHARACTERISTICS**

 $V_{IN} = V_{SET} + 1.0 \text{ V}$ ,  $I_{OUT} = 1.5 \text{ mA}$ ,  $C_{IN} = C_{OUT} = 1.0 \mu\text{F}$ , unless otherwise noted. The specifications surrounded by \_\_\_\_\_ are guaranteed by design engineering at  $-40^{\circ}\text{C} \le \text{Ta} \le 85^{\circ}\text{C}$ .

### **RP124x Electrical Characteristics: LDO Section**

 $(Ta = 25^{\circ}C)$ 

| Symbol                                  | Parameters                          | Test Cond                                                                    | ditions                                                                      | Min.                                               | Тур. | Max.   | Unit |
|-----------------------------------------|-------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|------|--------|------|
|                                         |                                     | V <sub>SET</sub> > 2.0 V                                                     |                                                                              | x0.992                                             |      | x1.008 | V    |
| Vоит                                    | Output Voltage                      | VSET > 2.0 V                                                                 |                                                                              | x0.987                                             |      | x1.013 | V    |
| VOUI                                    | Output Voltage                      |                                                                              |                                                                              | -16                                                |      | 16     | \ /  |
|                                         |                                     | $V_{SET} \le 2.0 \text{ V}$                                                  |                                                                              | -26                                                |      | 26     | mV   |
| Іоит                                    | Output Current                      |                                                                              |                                                                              | 100                                                |      |        | mA   |
|                                         | Output Voltage                      |                                                                              | V <sub>SET</sub> > 2.0 V                                                     | -1                                                 |      | 1      | %    |
| $\Delta V$ оυт                          | Deviation When Switching Mode       | 1 μA ≤ Ιουτ ≤ Ιουτн                                                          | V <sub>SET</sub> ≤ 2.0 V                                                     | -20                                                |      | 20     | mV   |
| ΔV <sub>OUT</sub><br>/ΔI <sub>OUT</sub> | Load Regulation                     | 1.5 mA ≤ l <sub>OUT</sub> ≤ 100 r                                            | 1.5 mA ≤ I <sub>OUT</sub> ≤ 100 mA                                           |                                                    | 2    | 40     | mV   |
| V <sub>DIF</sub>                        | Dropout Voltage                     | Iоит = 100 mA                                                                |                                                                              | Refer to Product-speci<br>Electrical Characteristi |      |        |      |
| Iss                                     | Supply Current                      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                       |                                                                              |                                                    | 0.2  | 0.42   | μΑ   |
| 155                                     | Supply Culterit                     | VCE - VIN, IOUI - O IIIA                                                     | Vce = Vin, Iout = 0 mA                                                       |                                                    |      | 0.5    | μA   |
| Іоитн                                   | Fast Mode<br>Switching Current      | I <sub>OUT</sub> = From Light Load to Heavy Load,<br>V <sub>IN</sub> = 5.0 V |                                                                              |                                                    | 0.5  |        | mA   |
| loutl                                   | Low Power Mode<br>Switching Current | I <sub>OUT</sub> = From Heavy Lo<br>V <sub>IN</sub> = 5.0 V                  | I <sub>OUT</sub> = From Heavy Load to Light Load,<br>V <sub>IN</sub> = 5.0 V |                                                    |      |        | mA   |
| ΔV <sub>OUT</sub><br>/ΔV <sub>IN</sub>  | Line Regulation                     | V <sub>SET</sub> + 0.5 V ≤ V <sub>IN</sub> ≤ 5.5 V                           |                                                                              |                                                    | 0.02 | 0.2    | %/V  |
| Isc                                     | Short Current Limit                 | V <sub>OUT</sub> = 0 V                                                       |                                                                              |                                                    | 65   |        | mA   |
| Vсен                                    | CE Pin Input Voltage, high          | RP124xxxxB/D                                                                 |                                                                              | 1.0                                                |      |        | V    |
| Vcel                                    | CE Pin Input Voltage, low           | RP124xxxxB/D                                                                 |                                                                              |                                                    |      | 0.4    | V    |
| RDISN                                   | Auto-discharge NMOS On-resistance   | V <sub>IN</sub> = 4.0 V, V <sub>CE</sub> = 0 \                               | /, RP124xxxxD                                                                |                                                    | 50   |        | Ω    |

All test items listed under Electrical Characteristics are done under the pulse load condition Tj  $\approx$  Ta = 25°C.

| R | Р1 | 12 | 4 | X |
|---|----|----|---|---|
|   |    |    |   |   |

# **ELECTRICAL CHARACTERISTICS (continued)**

The specifications surrounded by  $\square$  are guaranteed by design engineering at  $-40^{\circ}$ C  $\leq$  Ta  $\leq$  85 $^{\circ}$ C.

RP124x Product-specific Electrical Characteristics: LDO Section

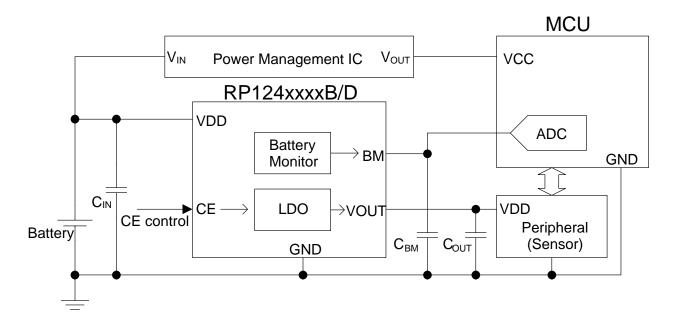
| <b>5</b>        |       |           | Vou       | т <b>[V]</b> |                |       | V                    | <b>Г\/1</b> |
|-----------------|-------|-----------|-----------|--------------|----------------|-------|----------------------|-------------|
| Product Ta = 25 |       | Ta = 25°C | 25°C -40° |              | °C ≤ Ta ≤ 85°C |       | V <sub>DIF</sub> [V] |             |
| Name            | Min.  | Тур.      | Max.      | Min.         | Тур.           | Max.  | Тур.                 | Max.        |
| RP124x12xx      | 1.184 | 1.200     | 1.216     | 1.174        | 1.200          | 1.226 | 0.640                | 0.975       |
| RP124x15xx      | 1.484 | 1.500     | 1.516     | 1.474        | 1.500          | 1.526 | 0.410                | 0.660       |
| RP124x18xx      | 1.784 | 1.800     | 1.816     | 1.774        | 1.800          | 1.826 | 0.230                | 0.380       |
| RP124x21xx      | 2.084 | 2.100     | 2.116     | 2.073        | 2.100          | 2.127 | 0.150                | 0.285       |
| RP124x23xx      | 2.282 | 2.300     | 2.318     | 2.271        | 2.300          | 2.329 | 0.130                | 0.230       |
| RP124x24xx      | 2.381 | 2.400     | 2.419     | 2.369        | 2.400          | 2.431 | 0.130                | 0.230       |
| RP124x25xx      | 2.480 | 2.500     | 2.520     | 2.468        | 2.500          | 2.532 | 0.110                | 0.180       |
| RP124x27xx      | 2.679 | 2.700     | 2.721     | 2.665        | 2.700          | 2.735 | 0.110                | 0.160       |
| RP124x28xx      | 2.778 | 2.800     | 2.822     | 2.764        | 2.800          | 2.836 |                      |             |
| RP124x30xx      | 2.976 | 3.000     | 3.024     | 2.961        | 3.000          | 3.039 | 0.100                | 0.160       |
| RP124x31xx      | 3.076 | 3.100     | 3.124     | 3.060        | 3.100          | 3.140 |                      |             |
| RP124x33xx      | 3.274 | 3.300     | 3.326     | 3.258        | 3.300          | 3.342 | 0.000                | 0.145       |
| RP124x36xx      | 3.572 | 3.600     | 3.628     | 3.554        | 3.600          | 3.646 | 0.090                | 0.145       |

## **ELECTRICAL CHARACTERISTICS (continued)**

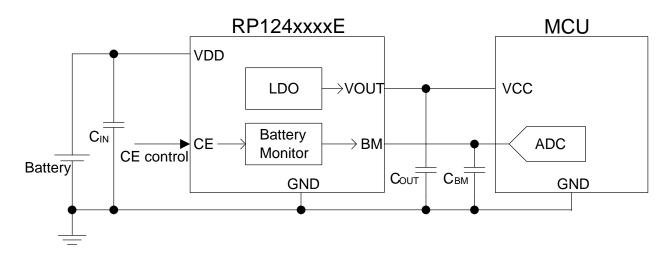
 $C_{\text{IN}}$  = 1.0  $\mu\text{F},\,C_{\text{BM}}$  = 0.22  $\mu\text{F},\,\text{unless otherwise}$  noted.

The specifications surrounded by  $\square$  are guaranteed by design engineering at  $-40^{\circ}$ C  $\leq$  Ta  $\leq$  85 $^{\circ}$ C.

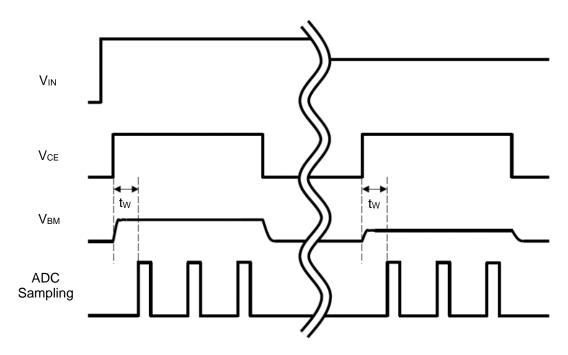
### RP124x Electrical Characteristics: Battery Monitor Section


 $(Ta = 25^{\circ}C)$ 

| Symbol              | Parameters                               | Test Con                                                              | Test Conditions                                             |                       |                    | Max.                  | Unit |
|---------------------|------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------|--------------------|-----------------------|------|
|                     |                                          |                                                                       | $1.7 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V},$ | V <sub>IN</sub> /3-20 | V <sub>IN</sub> /3 | V <sub>IN</sub> /3+20 |      |
| \/-··               | V <sub>BM</sub> Output Voltage           | 10 110 110 110                                                        | RP124xxx3x                                                  | V <sub>IN</sub> /3-25 | V <sub>IN</sub> /3 | V <sub>IN</sub> /3+25 | m\/  |
| <b>V</b> BM         |                                          | -10 μA ≤ I <sub>BM</sub> ≤ 10 μA                                      | $2.4 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V},$ | V <sub>IN</sub> /4-20 | V <sub>IN</sub> /4 | V <sub>IN</sub> /4+20 | mV   |
|                     |                                          |                                                                       |                                                             | V <sub>IN</sub> /4-25 | V <sub>IN</sub> /4 | V <sub>IN</sub> /4+25 |      |
| la                  | Output Current                           | 1.7 V ≤ V <sub>IN</sub> ≤ 5.5 V, R                                    | _10                                                         |                       | 10                 |                       |      |
| Івм                 | Output Current                           | $2.4 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V}, \text{ R}$ | -10                                                         |                       | 10                 | μΑ                    |      |
| IssbM               | Supply Current                           | $V_{IN} = V_{CE} = 3.6 \text{ V}$ , $I_{BN}$                          |                                                             | 0.1                   | 0.2                | μA                    |      |
| \/                  | CE Pin Input                             | 1.7 V ≤ V <sub>IN</sub> ≤ 5.5 V, R                                    | 1.7 V ≤ V <sub>IN</sub> ≤ 5.5 V, RP124xxx3E                 |                       |                    |                       | V    |
| Vсенвм              | Voltage, high                            | 2.4 V ≤ V <sub>IN</sub> ≤ 5.5 V, R                                    | P124xxx4E                                                   | 1.0                   |                    |                       | V    |
|                     | CE Pin Input                             | 1.7 V ≤ V <sub>IN</sub> ≤ 5.5 V, R                                    | P124xxx3E                                                   |                       |                    | 0.4                   | V    |
| $V_{CELBM}$         | Voltage, low                             | 2.4 V ≤ V <sub>IN</sub> ≤ 5.5 V, RP124xxx4E                           |                                                             |                       |                    | 0.4                   | V    |
| R <sub>DISNBM</sub> | Auto-discharge<br>NMOS On-<br>resistance | V <sub>IN</sub> = 4.0 V, V <sub>CE</sub> = 0 V                        |                                                             | 50                    |                    | Ω                     |      |


All test items listed under Electrical Characteristics are done under the pulse load condition Tj ≈ Ta = 25°C.

### **APPLICATION INFORMATION**


### **TYPICAL APPLICATION**



RP124xxxxB/D Typical Application Circuit



**RP124xxxxE Typical Application Circuit** 



Timing Chart Example of RP124xxxxE Circuit

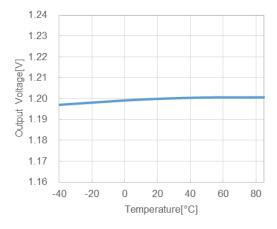
The above diagram shows the example of using the RP124xxxxE typical application circuit and its timing chart. Connecting BM pin and ADC input pin of MCU enables monitoring the battery voltage. Controlling the start-up and stop of Battery Monitor with CE pin by the timing based on the ADC sampling reduces power consumption of the entire system. When monitoring the battery voltage, set the waiting time ( $t_W$ ) in order to stabilize waveform after the CE input voltage is set to "H". It is recommended to set  $t_W \ge 10$  ms for this product.

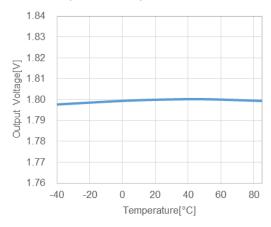
### **Notes on External Components**

- Phase compensation is provided to secure stable operation even when the load current is varied. For this purpose, use a 1.0-μF or more output capacitor (C<sub>OUT</sub>) between the VOUT and GND pins, and a 0.1-μF to 0.22-μF capacitor (C<sub>BM</sub>) between the BM and GND pins with shortest-distance wiring. In case of using a tantalum type capacitor with a large ESR (Equivalent Series Resistance), the output might become unstable. Evaluate your circuit including consideration of frequency characteristics.
- Connect a 1.0-µF or more input capacitor (C<sub>IN</sub>) between the VDD and GND pins with shortest-distance wiring.

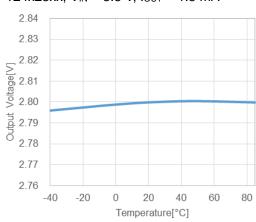
No. EA-503-190312

### **TECHNICAL NOTES**

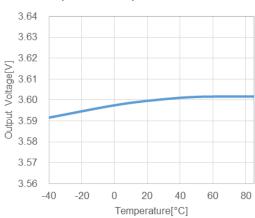

The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A peripheral component or the device mounted on PCB should not exceed its rated voltage, rated current or rated power. When designing a peripheral circuit, please be fully aware of the following points.


- The high impedance of the wirings may result in noise pickup and unstable operation of the device. Reduce the impedance of the VDD and GND wirings.
- When an intermediate voltage other than V<sub>IN</sub> or GND is input to the CE pin, a supply current may be increased with a through current of a logic circuit in the IC. The CE pin is neither pulled up nor pulled down, therefore an operation is not stable at open.

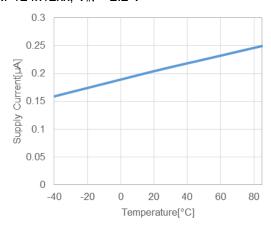
### **TYPICAL CHARACTERISTICS**

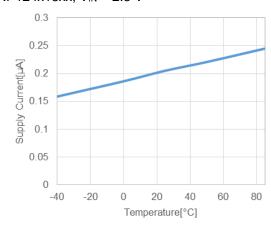

Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) LDO Output Voltage vs. Temperature ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F) RP124x12xx,  $V_{IN}$  = 2.2 V,  $I_{OUT}$  = 1.5 mA RP124x18xx,  $V_{IN}$  = 2.8 V,  $I_{OUT}$  = 1.5 mA



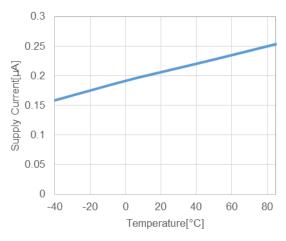




RP124x28xx,  $V_{IN} = 3.8 V$ ,  $I_{OUT} = 1.5 mA$ 

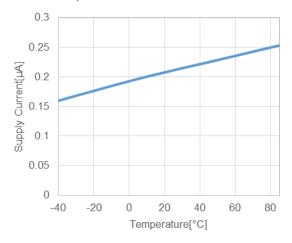



RP124x36xx,  $V_{IN} = 4.6 \text{ V}$ ,  $I_{OUT} = 1.5 \text{ mA}$ 

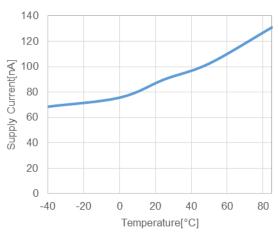


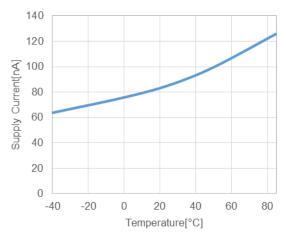

2) LDO Supply Current vs. Temperature ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F) RP124x12xx,  $V_{IN}$  = 2.2 V RP124x18xx,  $V_{IN}$  = 2.8 V



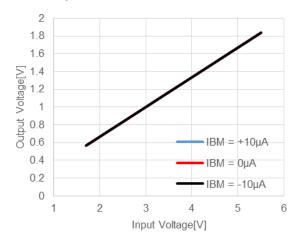


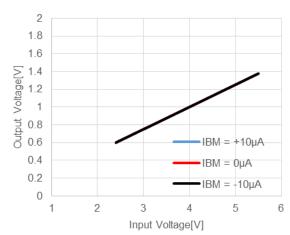

### No. EA-503-190312


RP124x28xx,  $V_{IN} = 3.8 V$ 

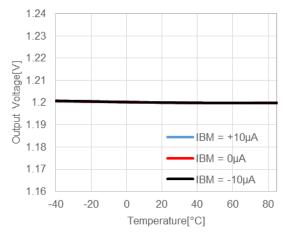


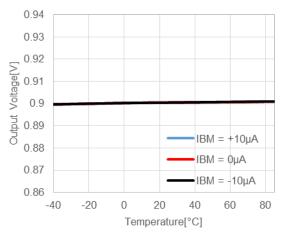

RP124x36xx,  $V_{IN} = 4.6 V$ 



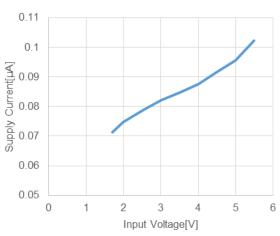


3) BM Supply Current vs. Temperature ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{BM}$  = Ceramic 0.1  $\mu$ F) RP124xxx3x,  $V_{IN}$  = 3.6 V

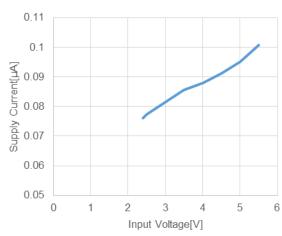




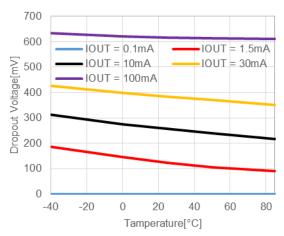


4) BM Output Voltage vs. Input Voltage ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{BM}$  = Ceramic 0.1  $\mu$ F, Ta = 25°C) RP124xxx3x RP124xxx4x

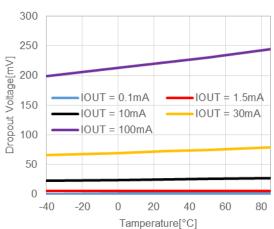






5) BM Output Voltage vs. Temperature ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{BM}$  = Ceramic 0.1  $\mu$ F) RP124xxx3x,  $V_{IN}$  = 3.6 V

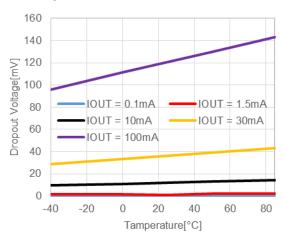






6) BM Supply Current vs. Input Voltage ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{BM}$  = Ceramic 0.1  $\mu$ F, Ta = 25°C) RP124xxx3x RP124xxx4x



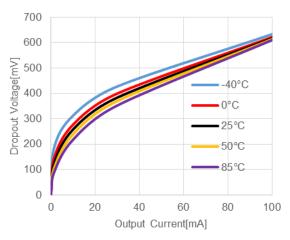


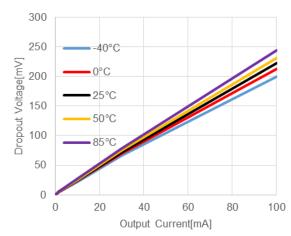

7) LDO Dropout Voltage vs. Temperature ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F) RP124x12xx RP124x18xx



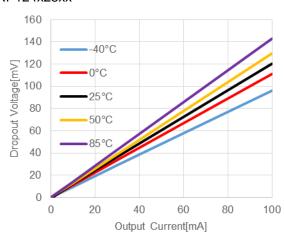


### No. EA-503-190312

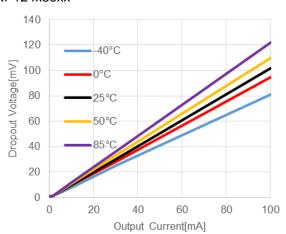


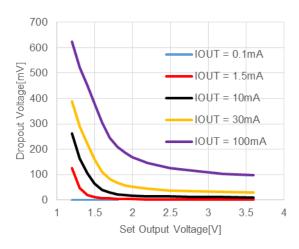

### RP124x36xx



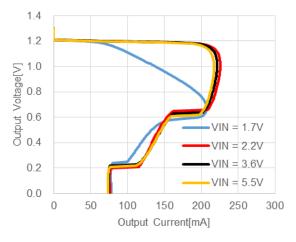

8) LDO Dropout Voltage vs. Output Current ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F) RP124x12xx RP124x18xx

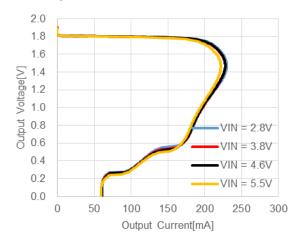




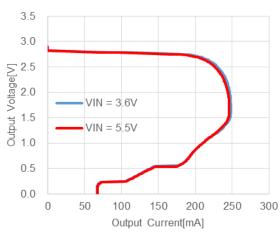


RP124x28xx



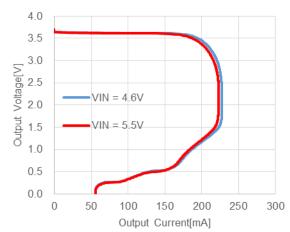

RP124x36xx



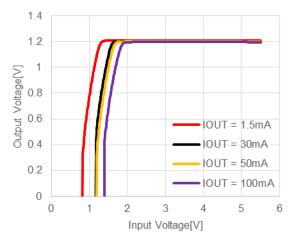

9) LDO Dropout Voltage vs. Set Output Voltage (C<sub>IN</sub> = Ceramic 1.0 μF, C<sub>OUT</sub> = Ceramic 1.0 μF, Ta = 25°C)

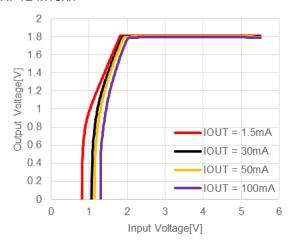



10) LDO Output Voltage vs. Output Current ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F, Ta = 25°C) RP124x12xx RP124x18xx

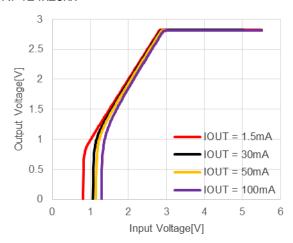




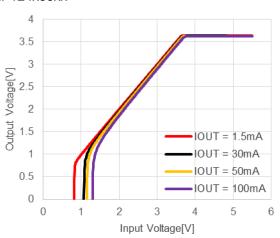


RP124x28xx



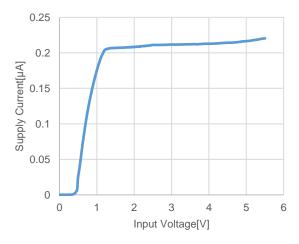


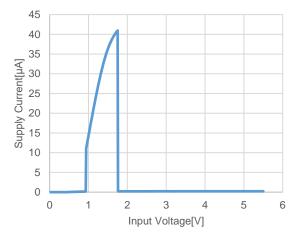

11) LDO Output Voltage vs. Input Voltage ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F, Ta = 25°C) RP124x12xx RP124x18xx



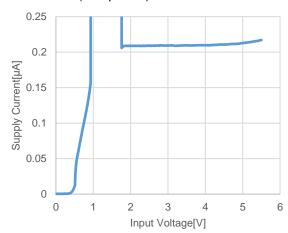




RP124x28xx

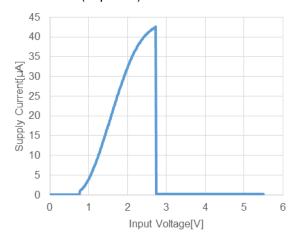



RP124x36xx

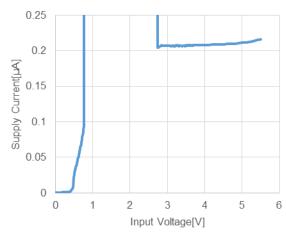



12) LDO Supply Current vs. Input Voltage ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F, Ta = 25°C) RP124x12xx

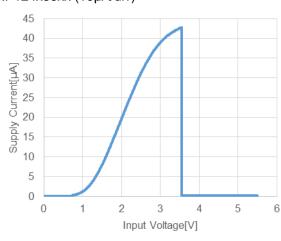



### RP124x18xx (10µA/div)

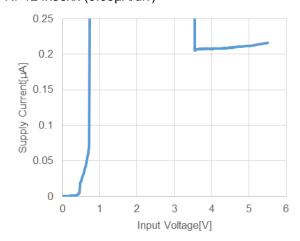



### RP124x18xx (0.05µA/div)



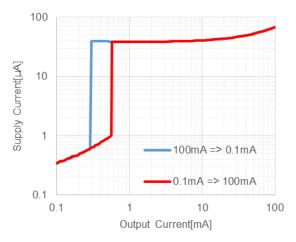

### RP124x28xx (10µA/div)

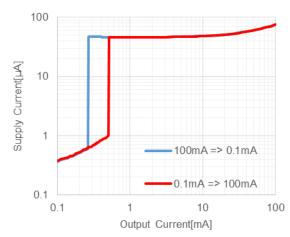



RP124x28xx (0.05µA/div)

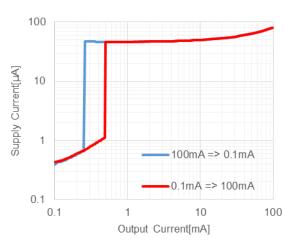


### RP124x36xx (10µA/div)

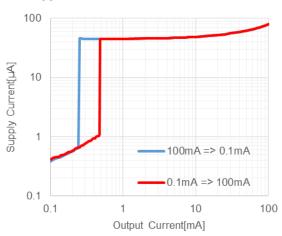




RP124x36xx (0.05µA/div)

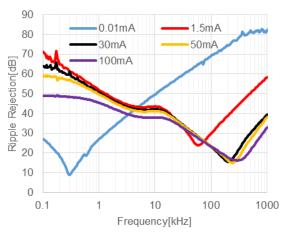


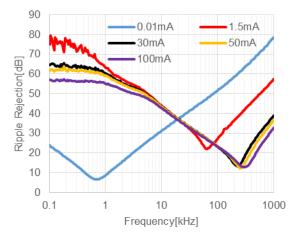

No. EA-503-190312

13) LDO Supply Current vs. Output Current ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F, Ta = 25°C) RP124x12xx RP124x18xx

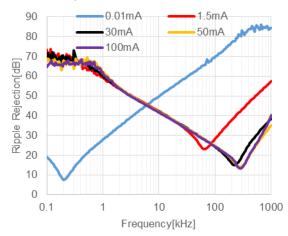




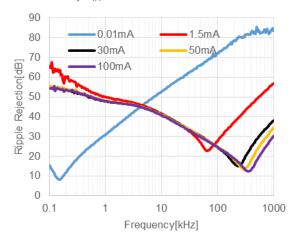


RP124x28xx



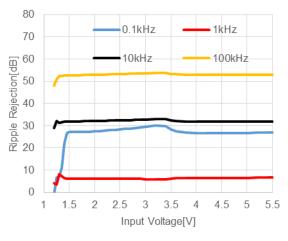

RP124x36xx

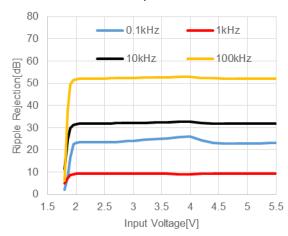



14) Ripple Rejection vs. Frequency ( $C_{IN}$  = none,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F, Ta = 25°C) RP124x12xx,  $V_{IN}$  = 2.2 V RP124x18xx,  $V_{IN}$  = 2.8 V

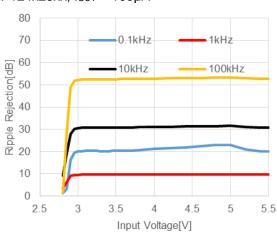






RP124x28xx,  $V_{IN} = 3.8V$ 




RP124x36xx,  $V_{IN} = 4.6V$ 

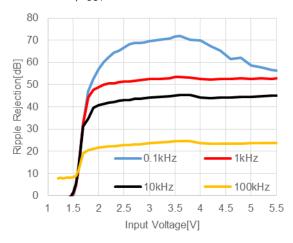



15) Ripple Rejection vs. Input Voltage ( $C_{IN}$  = none,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F, Ta = 25°C) RP124x12xx,  $I_{OUT}$  = 100  $\mu$ A RP124x18xx,  $I_{OUT}$  = 100  $\mu$ A

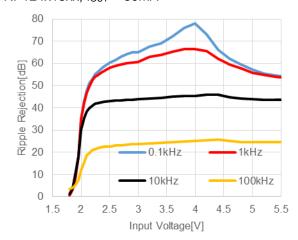




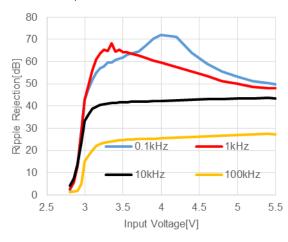

RP124x28xx,  $I_{OUT} = 100\mu A$ 



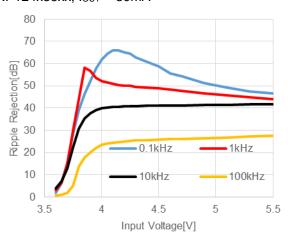

RP124x36xx,  $I_{OUT} = 100\mu A$ 



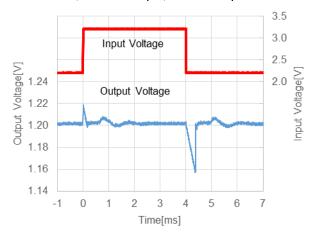

### No. EA-503-190312

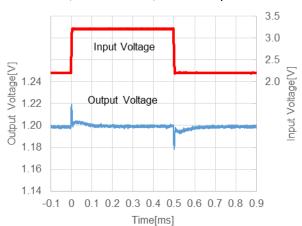

### RP124x12xx, $I_{OUT} = 30mA$

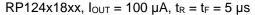


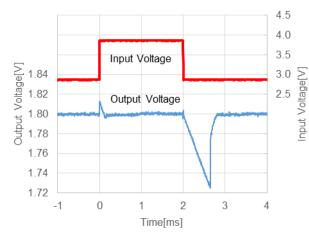

RP124x18xx,  $I_{OUT} = 30mA$ 



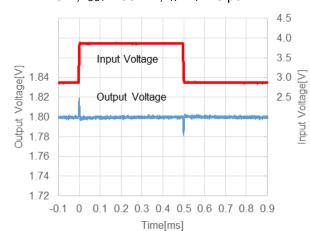

RP124x28xx,  $I_{OUT} = 30mA$ 





RP124x36xx,  $I_{OUT} = 30mA$ 



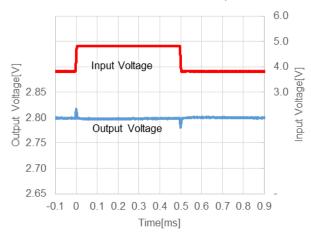

16) LDO Input Transient Response ( $C_{IN}$  = Ceramic 0.1  $\mu$ F,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F, Ta = 25°C) RP124x12xx,  $I_{OUT}$  = 100  $\mu$ A,  $I_{R}$  =  $I_{F}$  = 5  $\mu$ s RP124x12xx,  $I_{OUT}$  = 30 mA,  $I_{R}$  =  $I_{F}$  = 5  $\mu$ s



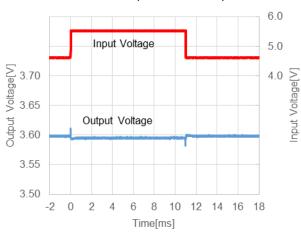




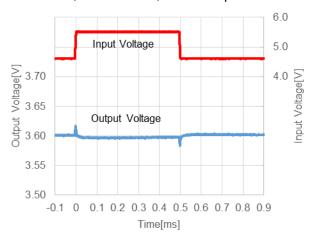




### RP124x18xx, $I_{OUT}$ = 30 mA, $t_R$ = $t_F$ = 5 $\mu s$




RP124x28xx,  $I_{OUT}$  = 100  $\mu$ A,  $t_R$  =  $t_F$  = 5  $\mu$ s

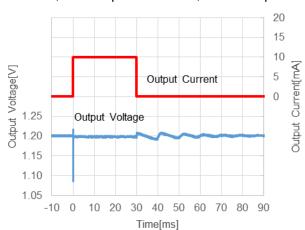



RP124x28xx,  $I_{OUT} = 30$  mA,  $t_R = t_F = 5$   $\mu s$ 

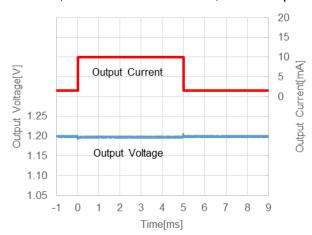


RP124x36xx,  $I_{OUT} = 100 \mu A$ ,  $t_R = t_F = 5 \mu s$ 



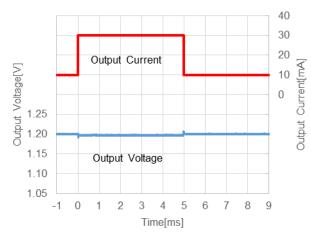

RP124x36xx,  $I_{OUT} = 30$  mA,  $t_R = t_F = 5$   $\mu s$ 




### No. EA-503-190312

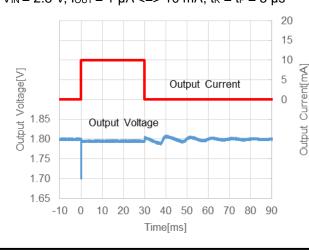
17) LDO Load Transient Response ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F, Ta = 25°C) RP124x12xx RP124x12xx

 $V_{IN}$  = 2.2 V,  $I_{OUT}$  = 1  $\mu A$  <=> 10 mA,  $t_R$  =  $t_F$  = 5  $\mu s$ 



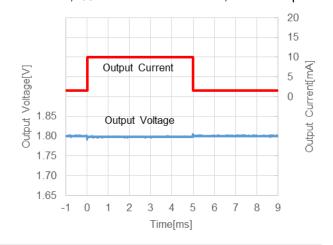

 $V_{IN} = 2.2 \text{ V}$ ,  $I_{OUT} = 1.5 \text{ mA} <=> 10 \text{ mA}$ ,  $I_{R} = I_{F} = 5 \text{ }\mu\text{s}$ 




### RP124x12xx

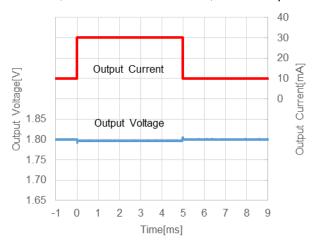
 $V_{IN}$  = 2.2 V,  $I_{OUT}$  = 10 mA <=> 30 mA,  $t_R$  =  $t_F$  = 5  $\mu s$ 




### RP124x18xx

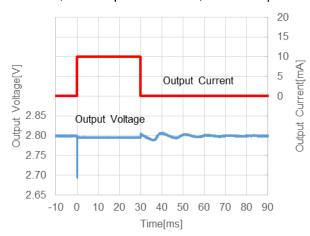
 $V_{IN} = 2.8 \text{ V}$ ,  $I_{OUT} = 1 \mu A <=> 10 \text{ mA}$ ,  $t_R = t_F = 5 \mu s$ 




### RP124x18xx

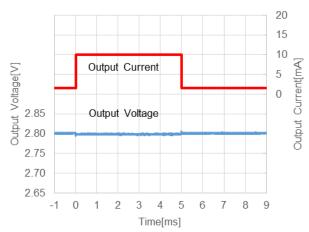
 $V_{IN} = 2.8 \text{ V}$ ,  $I_{OUT} = 1.5 \text{ mA} <=> 10 \text{ mA}$ ,  $t_R = t_F = 5 \mu s$ 




#### RP124x18xx

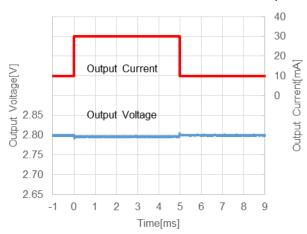
 $V_{IN}$  = 2.8 V,  $I_{OUT}$  = 10 mA <=> 30 mA,  $t_R$  =  $t_F$  = 5  $\mu s$ 




### RP124x28xx

 $V_{\text{IN}} = 3.8$  V,  $I_{\text{OUT}} = 1~\mu\text{A} <=> 10~\text{mA},~t_{\text{R}} = t_{\text{F}} = 5~\mu\text{s}$ 

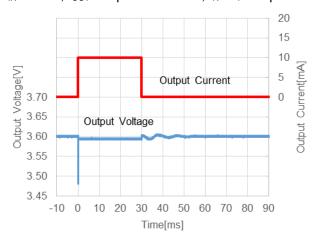



### RP124x28xx V<sub>IN</sub> = 3.8 V, I<sub>C</sub>

 $V_{IN}$  = 3.8 V,  $I_{OUT}$  = 1.5 mA <=> 10 mA,  $t_R$  =  $t_F$  = 5  $\mu s$ 

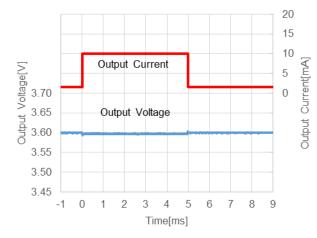


### RP124x28xx


 $V_{IN}$  = 3.8 V,  $I_{OUT}$  = 10 mA <=> 30 mA,  $t_R$  =  $t_F$  = 5  $\mu s$ 

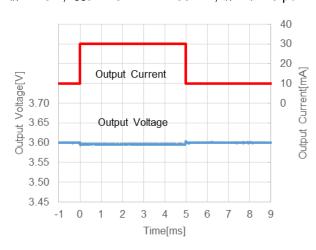


### No. EA-503-190312


#### RP124x36xx

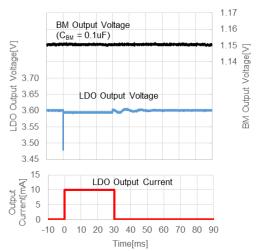
 $V_{IN}$  = 4.6 V,  $I_{OUT}$  = 1  $\mu A$  <=> 10 mA,  $t_R$  =  $t_F$  = 5  $\mu s$ 



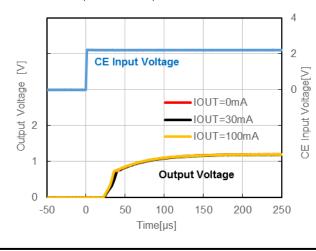

### RP124x36xx

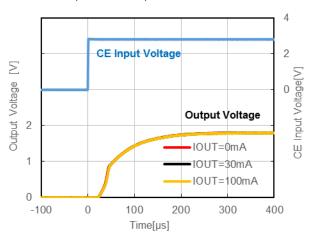
 $V_{IN} = 4.6 \text{ V}, I_{OUT} = 1.5 \text{ mA} <=> 10 \text{ mA}, t_R = t_F = 5 \mu \text{s}$ 

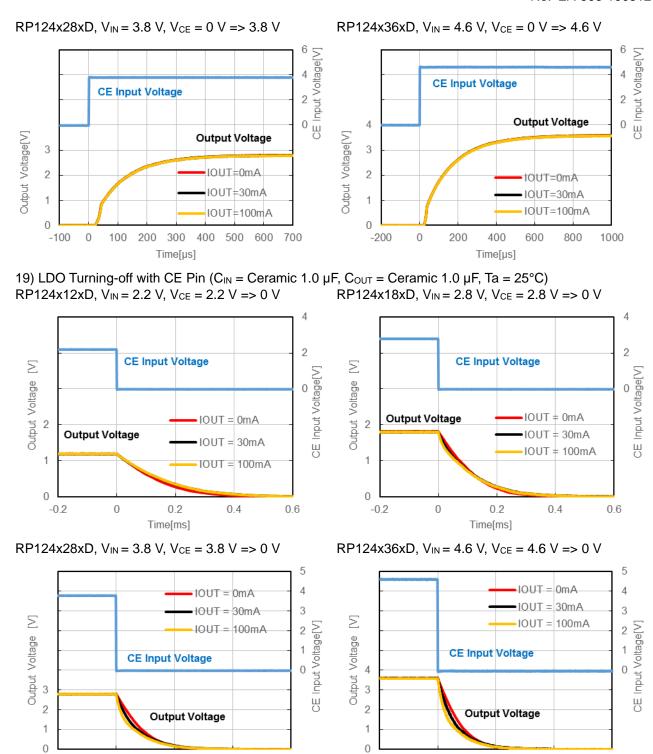



### RP124x36xx

 $V_{IN} = 4.6 \text{ V}$ ,  $I_{OUT} = 10 \text{ mA} <=> 30 \text{ mA}$ ,  $t_R = t_F = 5 \mu s$ 





### RP124x364x


 $V_{IN} = 4.6 \text{ V}, I_{OUT} = 1 \mu A <=> 10 \text{ mA}, t_R = t_F = 5 \mu s$ 



18) LDO Turning-on with CE Pin ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F, Ta = 25°C) RP124x12xD,  $V_{IN}$  = 2.2 V,  $V_{CE}$  = 0 V => 2.2 V RP124x18xD,  $V_{IN}$  = 2.8 V,  $V_{CE}$  = 0 V => 2.8 V







0.6

-0.2

0.2

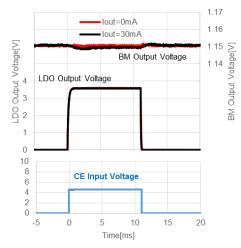
Time[ms]

0.4

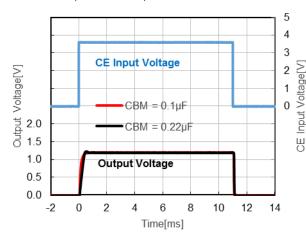
0.6

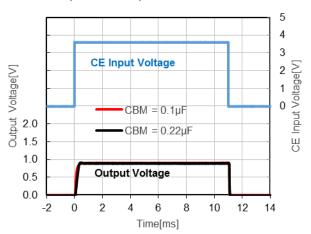
0

-0.2

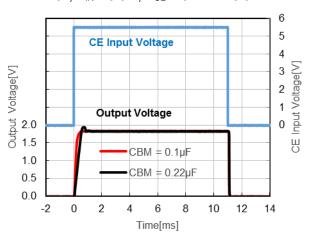

0.2

Time[ms]

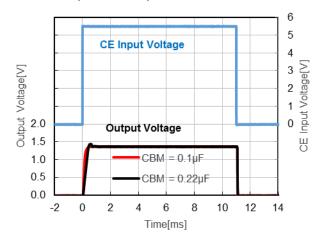

0.4

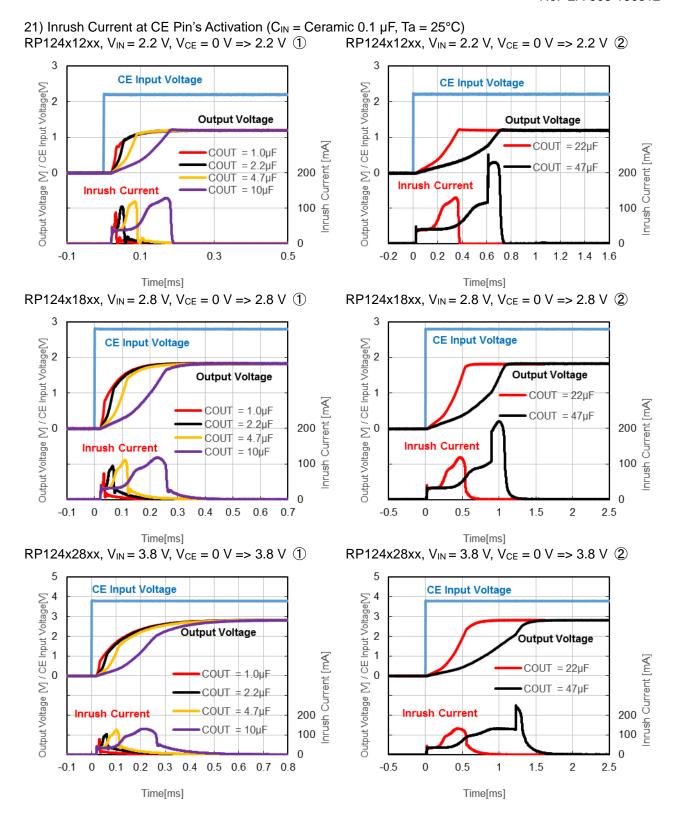

### No. EA-503-190312

RP124x364D,  $V_{IN} = 4.6 \text{ V}$ ,  $V_{CE} = 0 \text{ V} <=> 4.6 \text{ V}$ 



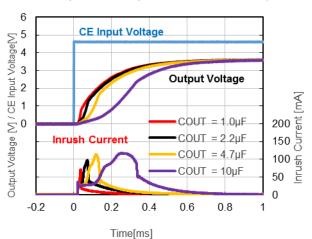

20) BM Turning-on/off with CE Pin ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{BM}$  = Ceramic 0.1  $\mu$ F, 0.22  $\mu$ F, Ta = 25°C) RP124xxx3x,  $V_{IN}$  = 3.6 V,  $V_{CE}$  = 0 V <=> 3.6 V RP124xxx4x,  $V_{IN}$  = 3.6 V,  $V_{CE}$  = 0 V <=> 3.6 V



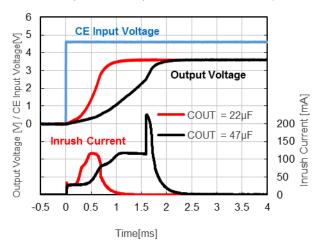




RP124xxx3x,  $V_{IN} = 5.5 \text{ V}$ ,  $V_{CE} = 0 \text{ V} <=> 5.5 \text{ V}$ 



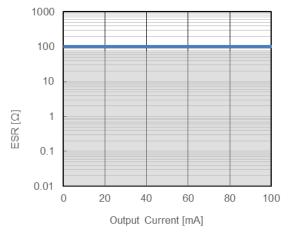

RP124xxx4x,  $V_{IN} = 5.5 V$ ,  $V_{CE} = 0 V <=> 5.5 V$ 



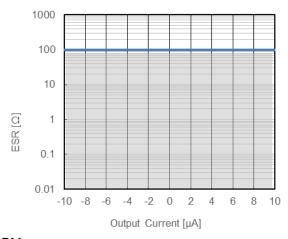



No. EA-503-190312

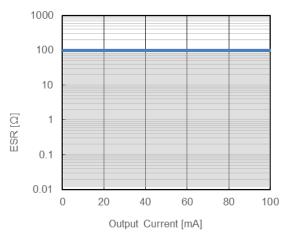
RP124x36xx,  $V_{IN} = 4.6 \text{ V}$ ,  $V_{CE} = 0 \text{ V} \Rightarrow 4.6 \text{ V}$  1



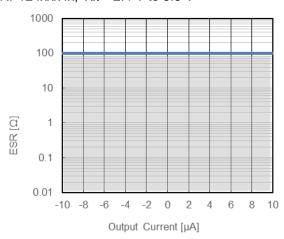

RP124x36xx,  $V_{IN} = 4.6 \text{ V}$ ,  $V_{CE} = 0 \text{ V} \Rightarrow 4.6 \text{ V}$  2



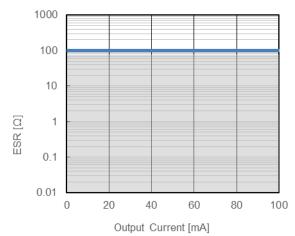

22) ESR vs. Output Current ( $C_{IN}$  = Ceramic 1.0  $\mu$ F,  $C_{OUT}$  = Ceramic 1.0  $\mu$ F,  $C_{BM}$  = Ceramic 0.1  $\mu$ F) Measuring Frequency : 10 Hz to 2 MHz , Ambient Temperature : -40°C to 5°C LDO


RP124x12xx, V<sub>IN</sub>= 1.7V to 5.5V




RP124xxx3x, V<sub>IN</sub>= 1.7V to 5.5V




LDO RP124x28xx,  $V_{IN}$  = 2.8 V to 5.5 V



BM RP124xxx4x,  $V_{IN} = 2.4 \text{ V to } 5.5 \text{ V}$ 



LDO RP124x36xx,  $V_{IN}$  = 3.6 V to 5.5 V

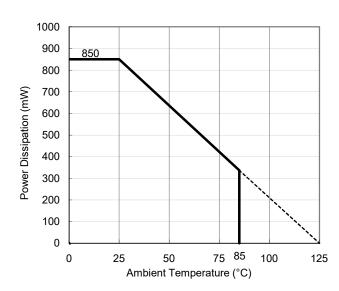


Ver. A

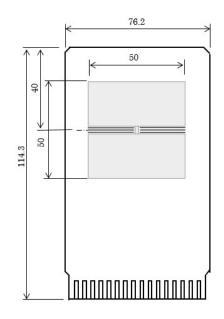
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

#### **Measurement Conditions**

| Item             | Measurement Conditions                                                                                                                                                                       |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Environment      | Mounting on Board (Wind Velocity = 0 m/s)                                                                                                                                                    |  |
| Board Material   | Glass Cloth Epoxy Plastic (Four-Layer Board)                                                                                                                                                 |  |
| Board Dimensions | 76.2 mm × 114.3 mm × 0.8 mm                                                                                                                                                                  |  |
| Copper Ratio     | Outer Layer (First Layer): Less than 95% of 50 mm Square<br>Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square<br>Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square |  |
| Through-holes    | φ 0.2 mm × 14 pcs                                                                                                                                                                            |  |


### **Measurement Result**

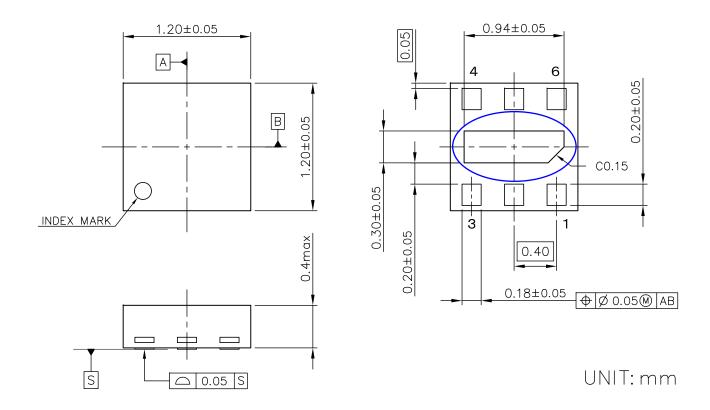
 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$ 


| Item                                     | Measurement Result |
|------------------------------------------|--------------------|
| Power Dissipation                        | 850 mW             |
| Thermal Resistance (θja)                 | θja = 117°C/W      |
| Thermal Characterization Parameter (ψjt) | ψjt = 50°C/W       |

 $\theta$ ja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter




Power Dissipation vs. Ambient Temperature



**Measurement Board Pattern** 

i

Ver. B



**DFN1212-6 Package Dimensions** 

\* The tab on the bottom of the package is substrate level (GND). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

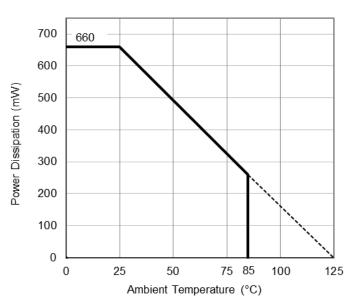
i

Ver △

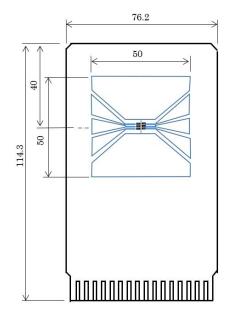
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

### **Measurement Conditions**

| Item             | Measurement Conditions                                                                                                                                                                 |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Environment      | Mounting on Board (Wind Velocity = 0 m/s)                                                                                                                                              |  |  |  |
| Board Material   | Glass Cloth Epoxy Plastic (Four-Layer Board)                                                                                                                                           |  |  |  |
| Board Dimensions | 76.2 mm × 114.3 mm × 0.8 mm                                                                                                                                                            |  |  |  |
| Copper Ratio     | Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square |  |  |  |
| Through-holes    | φ 0.3 mm × 7 pcs                                                                                                                                                                       |  |  |  |

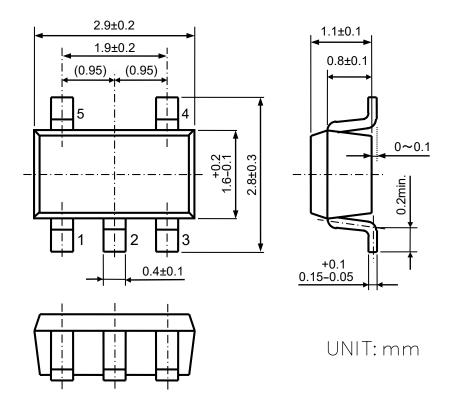

### **Measurement Result**

(Ta = 25°C, Tjmax = 125°C)


| Item                                     | Measurement Result |  |  |
|------------------------------------------|--------------------|--|--|
| Power Dissipation                        | 660 mW             |  |  |
| Thermal Resistance (θja)                 | θja = 150°C/W      |  |  |
| Thermal Characterization Parameter (ψjt) | ψjt = 51°C/W       |  |  |

 $\theta$ ja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter




**Power Dissipation vs. Ambient Temperature** 



**Measurement Board Pattern** 

Ver. A



**SOT-23-5 Package Dimensions** 



- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.



Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Halogen Free

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

#### RICOH RICOH ELECTRONIC DEVICES CO., LTD.

#### https://www.e-devices.ricoh.co.jp/en/

### Sales & Support Offices

Ricoh Electronic Devices Co., Ltd.

Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan
Phone: +81-50-3814-7687 Fax: +81-45-474-0074

Ricoh Americas Holdings, Inc

way, Suite 200 Campbell, CA 95008, U.S.A.

675 Campbell Technology Part Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V.

Semiconductor Support Centre

Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

Ricoh International B.V. - German Branch

Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0

Ricoh Electronic Devices Korea Co., Ltd.

3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

Ricoh Electronic Devices Shanghai Co., Ltd.

Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203,

People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

Ricoh Electronic Devices Shanghai Co., Ltd. Shenzhen Branch

1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District,

Shenzhen, China Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.

Taipei office
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623