T-41-41 # J16 Series ## Germanium Detector Operating Notes #### General J16 Series detectors are high-quality Germanium photodiodes designed for the 800 to 1800 nm wavelength range. The equivalent circuit for a Germanium photodiode (Fig. 2-1) is a photon-generated current source with shunt resistance $R_{\rm D}$, parallel capacitance $C_{\rm D}$ and series resistance $R_{\rm S}$. The value $R_{\rm S}$ is very small compared to $R_{\rm D}$ and can be disregarded except at high power levels (more than 3 mW). Detailed specifications are listed for J16 Series uncooled detectors on pages 4-5 and for high performance J16TE2 and J16D Series cooled detectors on pages 6-7. J16P and J16M Series Ge photodiode arrays are described on pages 11-13. Figure 2-1 Germanium Photodiode Equivalent Circuit Inh = Current generated by incident photons V_D = Actual voltage across diode junction C_D = Detector junction capacitance R_D = Detector shunt resistance R = Detector series resistance I = Output signal current Figure 2-2 Detectivity vs Wavelength for J16 Series Ge #### Responsivity A Ge photodiode generates a current across the p-n or p-i-n junction when photons of sufficient energy are absorbed within the active region. The responsivity (Amps/Watt) is a function of wavelength and detector temperature (Fig. 2-3). Temperature changes have little effect on the detector responsivity at wavelengths below the peak, but can be important at the longer wavelengths (Figs. 2-3 and 2-4). For example, at 1.2 μ m the change in response of a room temperature detector is less than 0.1% per °C, while at 1.7 μ m the change is approximately 1.5% per °C (Fig. 2-4). Uniformity of response within the active region of a room-temperature detector is typically better than \pm 2% at 1300 nm. Figure 2-3 Typical Responsivitiy for J16 Series Ge Figure 2-4 Temperature Coefficient of Responsivity at 25 °C ### **Operating Circuit** The recommended operating circuit for most applications is an operational amplifier in a negative-feedback transimpedance configuration (Fig. 2-5). The feedback circuit converts the detector output current to a voltage, while the op-amp maintains the detector near zero-volt bias for lowest noise (see "Shunt Resistance and Dark Current"). Selection of the proper op-amp is important, as the wrong choice can add excess preamp noise or limit system bandwidth. Judson has a complete line of preamps designed to match each detector type and application. Preamp recommendations are included with the detector specifications on pages 4-7. For high frequency applications, the detector may be reverse biased and terminated into a low impedance load (Fig. 2-6). Reverse biasing the detector significantly reduces junction capacitance for faster pulse response; however, the dark currents and low-frequency noise are increased. Figure 2-5 Basic Operation Figure 2-6 High Speed Circuit ## **0.8 to 1.8** μ **m** #### **Shunt Resistance and Dark Current** When the detector is used in the basic circuit of Figure 2-5, an undesirable DC offset current, or "dark current", will be produced. It is a function of the preamp input bias current $I_{\rm b}$, the preamp input offset voltage $V_{\rm os}$, and the detector shunt resistance $R_{\rm b}$. This total "dark current" is: Total $I_D = I_b + (V_{os} / R_D)$ High shunt resistance detectors will result in lowest overall DC "dark current". Preamp selection is also important; for higher shunt impedance detectors, choose a preamp with low bias current; for lower shunt impedance detectors, choose a preamp with low offset voltage (Fig. 3-1). When the detector is reverse biased and used in the high-speed circuit of Figure 2-6, the predominant dark current is a function of the applied bias voltage (Fig. 3-2). Figure 3-1 Total Dark Current vs Detector Resistance Detector Shunt Resistance R_D (Ohms) Figure 3-2 Dark Current vs Reverse Bias Voltage #### **Device Selection** Three main factors to consider when selecting a Judson Ge detector are: detector operating temperature, detector active area, and Judson's unique device option. - 1. Detector Temperature: Cooling the detector reduces dark current by increasing the shunt resistance $\rm R_D$ (Fig. 3-3). Judson offers a complete line of room temperature and cooled devices; shunt resistance data at 25°C is listed on the specification table of page 4. The data can be applied to Figure 3-3 to estimate $\rm R_D$ for detector temperatures from -40 to +60°C. - 2. Active Area: Larger active areas have lower shunt resistance $R_{\rm D}$ (Fig. 3-4), and therefore higher dark currents. When low noise is critical, the smallest detector acceptable for the application should be Figure 3-3 Change in Shunt Resistance vs Temperature Figure 3-4 Shunt Resistance vs Size and Device Option selected. Focusing optics may be added for increased light collection. 3. <u>Device Option:</u> Judson offers three unique Ge device options for optimum performance in different applications (Fig. 3-5). The "-SC" device is a p-n diode, ideal for low frequency applications and DC-average power meters. It offers the highest shunt resistance available in a Ge photodiode, resulting in the lowest DC drifts. However, its higher capacitance and low reverse bias limit make it less suitable for operation above ~1 KHz (depending on active size). The new "-HS" option has a p-i-n structure for extremely low capacitance and excellent speed of response, with R_D and noise similar to the standard device. This option is ideal for pulsed laser diode monitoring and general use above ~10 KHz. The standard device offers excellent performance at intermediate frequencies. It is suitable for general use in applications from ~100 Hz to 100 MHz. NEP vs Frequency for J16 Device Options Figure 3-7 Linearity for J16 Series Ge Incident Power Intensity (Watts) # J16 Series # Room Temperature Germanium Detectors **0.8 to 1.8** μ **m** #### General J16 Series room temperature Germanium detectors are designed for operation under ambient conditions to +60°C. Judson's Germanium photodiodes have high responsivity, good linearity, fast response times, uniform response and excellent long-term stability. Please review the detailed operating information on pages 2-3 for assistance in selecting the proper detector for your application. General Specifications all J16 Series Ge | Parameter | Min | Тур | Max | Units | |------------------------|-----|-----|-----|-------| | Responsivity at 25°C | | | | | | (@ 1550nm) | .8 | .9 | | A/W | | (@ 1300nm) | .6 | .65 | | A/W | | (@ 850nm) | .15 | .2 | | A/W | | Uniformity of Response | | | | | | over Area (25°C) | | ±2 | | % | | Storage Temperature | -55 | | +80 | °C | | Operating Temperature | -55 | | +60 | °C | #### **Device Options** EG&G Judson offers three specialized Ge device options, designated by a part number suffix "-SC" or "-HS" (no suffix for "standard" devices). For details please see "Device Selection" on page 3. #### **Responsivity Calibration** J16 Series Ge detectors are 100% tested for minimum responsivity at 1300nm. For an additional fee, Judson will calibrate response vs wavelength from 800 to 1800 nm (for detector size 2mm and larger only.) #### **Preamplifiers** Recommended preamps are the Judson model PA-6 for detectors with $\rm R_{\rm D}$ less than 50K Ω , and the PA-7 for detectors with $\rm R_{\rm D}$ greater than 50K Ω (Fig. 3-1). The model PA-400 is suggested for high speed operation (to 50MHz). Preamps are sold separately; specifications begin on page 42. ### **Applications** - Optical Power Meters - Fiber Testing - Laser Diode Control - Optical Communications - Temperature Sensors Typical Specifications J16 Series Room Temperature Ge @25°C | | Active
Size | | unt Resistance Dark Current | | | Maximum
Reverse | Typical NEP Capacitance
@ λ _{peak} C _p | | Cutoff
Frequency | Packages | | |--|----------------|--------------------------------|-----------------------------|----------------------------------|------------------|---------------------------|---|-----------------------|---|--------------|-------------------------| | Model Number | (dia.) | @V _R = 10mV
(kΩ) | | @ Maximum V _R
(μA) | | Voltage
V _a | and 300Hz | @ V _B = 0V | @ Max. $V_{\rm B}$ and $R_{\rm c}=50\Omega$ | (see page 5) | | | | (mm) | Min. | Тур. | Тур. | Max. | (3/) | (pW/Hz ^{1/2}) | (nF) | (MHz) | Standard | Options | | J16-18A-R250U-HS
J16-18A-R250U-SC | 0.25 | 400
1400 | 600
2400 | 1
0.025 | .05 | 10
0.25 | 0.50
0.10 | 0.02
0.14 | 750
40 | 18A | LD
C02
C11
18D | | J16-18A-R500U-HS
J16-18A-R500U-SC | 0.5 | 200
700 | 300
1200 | 3
0.05 | 5
0.1 | 10
0.25 | 0.7
0.2 | 0.03
0.50 | 500
10 | | | | J16-18A-R01M-HS
J16-18A-R01M
J16-18A-R01M-SC | 1.0 | 100
100
250 | 200
200
350 | 2
2
0.1 | 5
5
0.2 | 10
5
0.25 | 0.9
0.5
0.3 | 0.12
1
2 | 400
15
2 | | | | J16-5SP-R02M-HS
J16-5SP-R02M
J16-5SP-R02M-SC | 2.0 | 25
25
80 | 50
50
120 | 5
5
0.2 | 10
10
1 | 5
5
0.25 | 0.8
0.8
0.5 | 0.6
4
8 | 25
4
0.5 | 5SP | 5AR¹
LD
8SP | | J16-5SP-R03M-HS
J16-5SP-R03M
J16-5SP-R03M-SC | 3.0 | 15
15
35 | 30
30
60 | 10
10
0.5 | 30
30
5 | 5
5
0.25 | 1
1
0.7 | 1
7
14 | 15
2
0.2 | _ 55P | 8ND ²
C11 | | J16-8SP-R05M-HS
J16-8SP-R05M
J16-8SP-R05M-SC | 5.0 | 10
5
14 | 15
10
20 | 10
15
1.5 | 25
50
10 | 5
5
0.25 | 2
2
1 | 3
18
36 | 5
0.8
0.1 | 8SP | 8AR¹
8ND²
P2, C12 | | J16-P1-R10M-HS
J16-P1-R10M
J16-P1-R10M-SC | 10.0 | 1
1
3 | 2
2
5 | 200
200
25 | 400
400
50 | 2
1
0.25 | 4
4
2 | 12
60
120 | 1
0.1
0.04 | P1 | P2 | | J16-P1-R13M
J16-P1-R13M-SC | 13.0 | 0.5
1.5 | 1.0
2.5 | 400
50 | 800
100 | 1
0.25 | 6
3 | 100
200 | 0.07
0.02 | 1 | | Note 1: The 5AR and 8AR packages have AR-coated glass windows to prevent back reflectance to source. Reflectance < 0.5% at 1300nm and < 0.2% at 1550nm. Note 2: The 8ND package includes Neutral Density Filter with 5% transmission. Extends device linear range to >100mW at 0V bias, reduces effective responsivity by 95%. 125 10 dia pin circle • 18D Window5SP: Clear Glass 5AR: AR-coated Glass 5 AR: 260 045 io detector plane 180 5 (nom) 5 (nom) 30 dia pin circle ● C02 Window8SP: Clear Glass BAR: AR-coated Glass 486 detector plane 180 • C11 • C12 1 250 dia. 1.100 dia. 600 dia. 1.285 1.285 1.285 1.285 .750