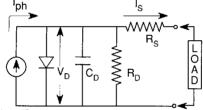
T-41-41

J16 Series

Germanium Detector Operating Notes

General


J16 Series detectors are high-quality Germanium photodiodes designed for the 800 to 1800 nm wavelength range.

The equivalent circuit for a Germanium photodiode (Fig. 2-1) is a photon-generated current source with shunt resistance $R_{\rm D}$, parallel capacitance $C_{\rm D}$ and series resistance $R_{\rm S}$. The value $R_{\rm S}$ is very small compared to $R_{\rm D}$ and can be disregarded except at high power levels (more than 3 mW).

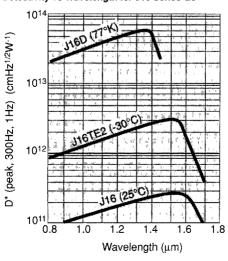
Detailed specifications are listed for J16 Series uncooled detectors on pages 4-5 and for high performance J16TE2 and J16D Series cooled detectors on pages 6-7.

J16P and J16M Series Ge photodiode arrays are described on pages 11-13.

Figure 2-1 Germanium Photodiode Equivalent Circuit

Inh = Current generated by incident photons

V_D = Actual voltage across diode junction


C_D = Detector junction capacitance

R_D = Detector shunt resistance

R = Detector series resistance

I = Output signal current

Figure 2-2
Detectivity vs Wavelength for J16 Series Ge

Responsivity

A Ge photodiode generates a current across the p-n or p-i-n junction when photons of sufficient energy are absorbed within the active region. The responsivity (Amps/Watt) is a function of wavelength and detector temperature (Fig. 2-3).

Temperature changes have little effect on the detector responsivity at wavelengths below the peak, but can be important at the longer wavelengths (Figs. 2-3 and 2-4). For example, at 1.2 μ m the change in response of a room temperature detector is less than 0.1% per °C, while at 1.7 μ m the change is approximately 1.5% per °C (Fig. 2-4).

Uniformity of response within the active region of a room-temperature detector is typically better than \pm 2% at 1300 nm.

Figure 2-3
Typical Responsivitiy for J16 Series Ge

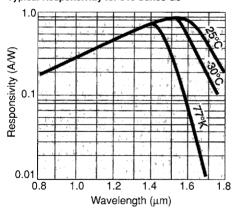
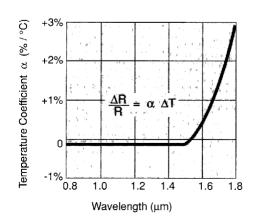



Figure 2-4
Temperature Coefficient of Responsivity at 25 °C

Operating Circuit

The recommended operating circuit for most applications is an operational amplifier in a negative-feedback transimpedance configuration (Fig. 2-5). The feedback circuit converts the detector output current to a voltage, while the op-amp maintains the detector near zero-volt bias for lowest noise (see "Shunt Resistance and Dark Current").

Selection of the proper op-amp is important, as the wrong choice can add excess preamp noise or limit system bandwidth. Judson has a complete line of preamps designed to match each detector type and application. Preamp recommendations are included with the detector specifications on pages 4-7.

For high frequency applications, the detector may be reverse biased and terminated into a low impedance load (Fig. 2-6). Reverse biasing the detector significantly reduces junction capacitance for faster pulse response; however, the dark currents and low-frequency noise are increased.

Figure 2-5
Basic Operation

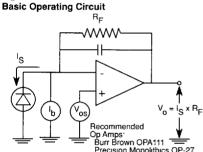
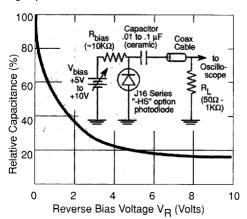



Figure 2-6 High Speed Circuit

0.8 to 1.8 μ **m**

Shunt Resistance and Dark Current

When the detector is used in the basic circuit of Figure 2-5, an undesirable DC offset current, or "dark current", will be produced. It is a function of the preamp input bias current $I_{\rm b}$, the preamp input offset voltage $V_{\rm os}$, and the detector shunt resistance $R_{\rm b}$. This total "dark current" is:

Total $I_D = I_b + (V_{os} / R_D)$

High shunt resistance detectors will result in lowest overall DC "dark current". Preamp selection is also important; for higher shunt impedance detectors, choose a preamp with low bias current; for lower shunt impedance detectors, choose a preamp with low offset voltage (Fig. 3-1).

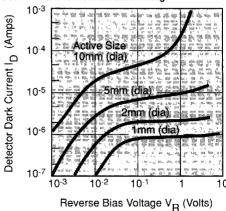

When the detector is reverse biased and used in the high-speed circuit of Figure 2-6, the predominant dark current is a function of the applied bias voltage (Fig. 3-2).

Figure 3-1
Total Dark Current vs Detector Resistance

Detector Shunt Resistance R_D (Ohms)

Figure 3-2 Dark Current vs Reverse Bias Voltage

Device Selection

Three main factors to consider when selecting a Judson Ge detector are: detector operating temperature, detector active area, and Judson's unique device option.

- 1. Detector Temperature: Cooling the detector reduces dark current by increasing the shunt resistance $\rm R_D$ (Fig. 3-3). Judson offers a complete line of room temperature and cooled devices; shunt resistance data at 25°C is listed on the specification table of page 4. The data can be applied to Figure 3-3 to estimate $\rm R_D$ for detector temperatures from -40 to +60°C.
- 2. Active Area: Larger active areas have lower shunt resistance $R_{\rm D}$ (Fig. 3-4), and therefore higher dark currents. When low noise is critical, the smallest detector acceptable for the application should be

Figure 3-3 Change in Shunt Resistance vs Temperature

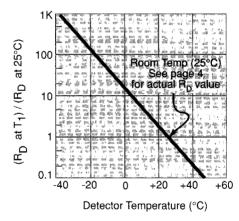
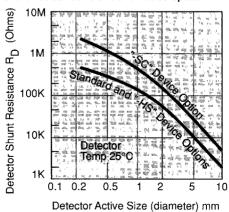



Figure 3-4
Shunt Resistance vs Size and Device Option

selected. Focusing optics may be added for increased light collection.

3. <u>Device Option:</u> Judson offers three unique Ge device options for optimum performance in different applications (Fig. 3-5).

The "-SC" device is a p-n diode, ideal for low frequency applications and DC-average power meters. It offers the highest shunt resistance available in a Ge photodiode, resulting in the lowest DC drifts. However, its higher capacitance and low reverse bias limit make it less suitable for operation above ~1 KHz (depending on active size).

The new "-HS" option has a p-i-n structure for extremely low capacitance and excellent speed of response, with R_D and noise similar to the standard device. This option is ideal for pulsed laser diode monitoring and general use above ~10 KHz.

The standard device offers excellent performance at intermediate frequencies. It is suitable for general use in applications from ~100 Hz to 100 MHz.

NEP vs Frequency for J16 Device Options

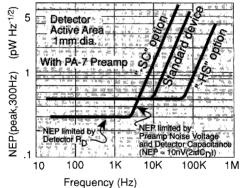
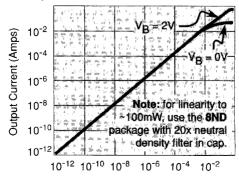



Figure 3-7 Linearity for J16 Series Ge

Incident Power Intensity (Watts)

J16 Series

Room Temperature Germanium Detectors

0.8 to 1.8 μ **m**

General

J16 Series room temperature Germanium detectors are designed for operation under ambient conditions to +60°C. Judson's Germanium photodiodes have high responsivity, good linearity, fast response times, uniform response and excellent long-term stability.

Please review the detailed operating information on pages 2-3 for assistance in selecting the proper detector for your application.

General Specifications all J16 Series Ge

Parameter	Min	Тур	Max	Units
Responsivity at 25°C				
(@ 1550nm)	.8	.9		A/W
(@ 1300nm)	.6	.65		A/W
(@ 850nm)	.15	.2		A/W
Uniformity of Response				
over Area (25°C)		±2		%
Storage Temperature	-55		+80	°C
Operating Temperature	-55		+60	°C

Device Options

EG&G Judson offers three specialized Ge device options, designated by a part number suffix "-SC" or "-HS" (no suffix for "standard" devices). For details please see "Device Selection" on page 3.

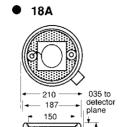
Responsivity Calibration

J16 Series Ge detectors are 100% tested for minimum responsivity at 1300nm. For an additional fee, Judson will calibrate response vs wavelength from 800 to 1800 nm (for detector size 2mm and larger only.)

Preamplifiers

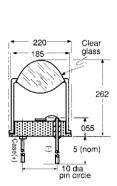
Recommended preamps are the Judson model PA-6 for detectors with $\rm R_{\rm D}$ less than 50K Ω , and the PA-7 for detectors with $\rm R_{\rm D}$ greater than 50K Ω (Fig. 3-1). The model PA-400 is suggested for high speed operation (to 50MHz). Preamps are sold separately; specifications begin on page 42.

Applications


- Optical Power Meters
- Fiber Testing
- Laser Diode Control
- Optical Communications
- Temperature Sensors

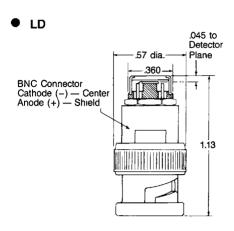
Typical Specifications J16 Series Room Temperature Ge @25°C

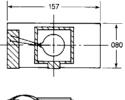
	Active Size		unt Resistance Dark Current			Maximum Reverse	Typical NEP Capacitance @ λ _{peak} C _p		Cutoff Frequency	Packages	
Model Number	(dia.)	@V _R = 10mV (kΩ)		@ Maximum V _R (μA)		Voltage V _a	and 300Hz	@ V _B = 0V	@ Max. $V_{\rm B}$ and $R_{\rm c}=50\Omega$	(see page 5)	
	(mm)	Min.	Тур.	Тур.	Max.	(3/)	(pW/Hz ^{1/2})	(nF)	(MHz)	Standard	Options
J16-18A-R250U-HS J16-18A-R250U-SC	0.25	400 1400	600 2400	1 0.025	.05	10 0.25	0.50 0.10	0.02 0.14	750 40	18A	LD C02 C11 18D
J16-18A-R500U-HS J16-18A-R500U-SC	0.5	200 700	300 1200	3 0.05	5 0.1	10 0.25	0.7 0.2	0.03 0.50	500 10		
J16-18A-R01M-HS J16-18A-R01M J16-18A-R01M-SC	1.0	100 100 250	200 200 350	2 2 0.1	5 5 0.2	10 5 0.25	0.9 0.5 0.3	0.12 1 2	400 15 2		
J16-5SP-R02M-HS J16-5SP-R02M J16-5SP-R02M-SC	2.0	25 25 80	50 50 120	5 5 0.2	10 10 1	5 5 0.25	0.8 0.8 0.5	0.6 4 8	25 4 0.5	5SP	5AR¹ LD 8SP
J16-5SP-R03M-HS J16-5SP-R03M J16-5SP-R03M-SC	3.0	15 15 35	30 30 60	10 10 0.5	30 30 5	5 5 0.25	1 1 0.7	1 7 14	15 2 0.2	_ 55P	8ND ² C11
J16-8SP-R05M-HS J16-8SP-R05M J16-8SP-R05M-SC	5.0	10 5 14	15 10 20	10 15 1.5	25 50 10	5 5 0.25	2 2 1	3 18 36	5 0.8 0.1	8SP	8AR¹ 8ND² P2, C12
J16-P1-R10M-HS J16-P1-R10M J16-P1-R10M-SC	10.0	1 1 3	2 2 5	200 200 25	400 400 50	2 1 0.25	4 4 2	12 60 120	1 0.1 0.04	P1	P2
J16-P1-R13M J16-P1-R13M-SC	13.0	0.5 1.5	1.0 2.5	400 50	800 100	1 0.25	6 3	100 200	0.07 0.02	1	

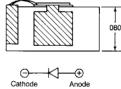

Note 1: The 5AR and 8AR packages have AR-coated glass windows to prevent back reflectance to source. Reflectance < 0.5% at 1300nm and < 0.2% at 1550nm.

Note 2: The 8ND package includes Neutral Density Filter with 5% transmission. Extends device linear range to >100mW at 0V bias, reduces effective responsivity by 95%.

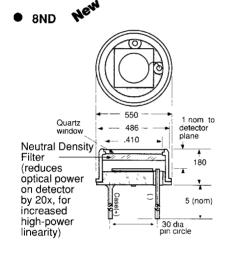
125


10 dia pin circle • 18D

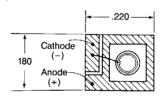

Window5SP:
Clear
Glass
5AR:
AR-coated
Glass
5 AR:
260
045 io detector plane
180
5 (nom)

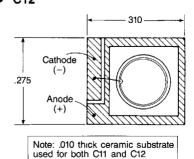

5 (nom)

30 dia pin circle



● C02




Window8SP:
Clear
Glass
BAR:
AR-coated
Glass
486 detector
plane
180

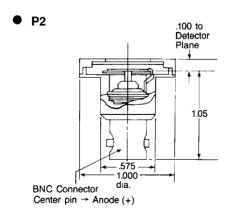
• C11

• C12

1 250 dia.

1.100 dia.

600 dia.


1.285

1.285

1.285

1.285

.750

