

DSC1001/3/4

1.8V-3.3V Low-Power Precision CMOS Oscillators

Features

- Frequency Range: 1 MHz to 150 MHz
- · Exceptional Stability over Temperature
 - ±10 ppm, ±20 ppm, ±25 ppm, ±50 ppm
- · Operating Voltage
 - 1.7 to 3.6V
- · Operating Temperature Range
 - Ext. Industrial -40°C to 105°C
 - Industrial -40°C to 85°C
 - Commercial -20°C to 70°C
- · Low Operating and Standby Current
 - 6 mA Operating (1 MHz)
 - 15 µA Standby (Max.)
- · Ultra Miniature Footprint
 - 2.5 mm x 2.0 mm x 0.85 mm
 - 3.2 mm x 2.5 mm x 0.85 mm
 - 5.0 mm x 3.2 mm x 0.85 mm
 - 7.0 mm x 5.0 mm x 0.85 mm
- · MIL-STD 883 Shock and Vibration Resistant
- · Pb Free, RoHS, Reach SVHC Compliant
- · AEC-Q100 Reliability Qualified

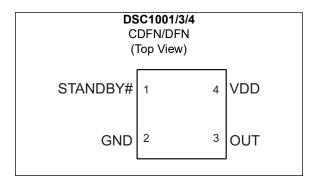
Applications

- · Mobile Applications
- · Consumer Electronics
- · Portable Electronics
- · DVR, CCTV, Surveillance Cameras
- Low Profile Applications
- · Industrial Applications

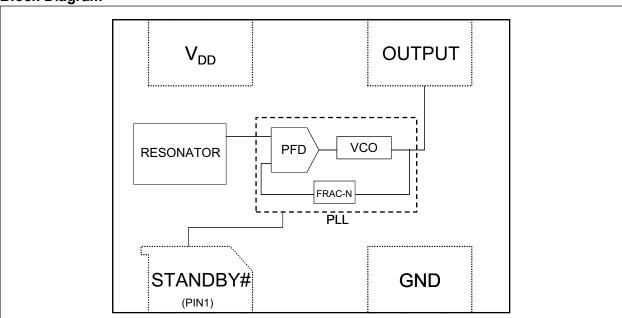
Benefits

- Pin for Pin "Drop-In" Replacement for Industry Standard Oscillators
- Semiconductor Level Reliability, Significantly Higher than Quartz
- · Short Mass Production Lead Times
- · Longer Battery Life/Reduced Power Consumption
- · Compact Plastic Package
- · Cost Effective

General Description


The DSC1001/3/4 is a silicon MEMS based CMOS family of oscillators that offers excellent jitter and stability performance over a wide range of supply voltages and temperatures. The device operates from 1 MHz to 150 MHz with supply voltages between 1.8 to 3.3 volts and temperature ranges up to -40°C to 105°C.

The DSC1001/3/4 incorporate an all silicon resonator that is extremely robust and nearly immune to stress related fractures, common to crystal based oscillators. Without sacrificing the performance and stability required of today's systems, a crystal-less design allows for a higher level of reliability, making the DSC1001/3/4 ideal for rugged, industrial, and portable applications where stress, shock, and vibration can damage quartz crystal based systems.


Available in industry standard packages, the DSC1001/3/4 can be "dropped-in" to the same PCB footprint as standard crystal oscillators.

The DSC1003 and DSC1004 have the same functionality and performance as the DSC1001, but feature higher output drives of 25 pF and 40 pF, respectively.

Package Types

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage (V _{IN})	–0.3V to V _{DD} + 0.3V
ESD Protection	4 kV HBM, ±200V MM, 1.5 kV CDM

Recommended Operating Conditions

Supply Voltage (V _{DD})	
Output Load (Z _L)	R > 10 kΩ, C ≤ 15 pF

[†] Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: DC CHARACTERISTICS

Electrical Characteristics: V_{DD} = 1.8 to 3.3V; T_A = +85°C unless otherwise specified.

Parameters	Sym.	Min.	Тур.	Max.	Units	Cond	itions	
Frequency	F ₀	1	_	150	MHz	Single Frequence	у	
		_	_	±10		Includes frequency variations		
	4.5	_	_	±20		due to initial tole		
Frequency Tolerance	Δf	_	_	±25	ppm	temperature and	l power supply	
		_	_	±50		voltage		
Aging	Δf	_	_	±5	ppm	1 year @ +25°C		
Supply Current, Standby	I _{DD}	_	_	15	μA	T = +25°C		
Output Startup Time (Note 1)	t _{SU}	_	1.0	1.3	ms	T = +25°C		
Output Disable Time	t_{DA}	_	20	100	ns	_		
Output Duty Cycle	SYM	45	_	55	%	_		
Input Logic Level High	V_{IH}	0.75 x V _{DD}	_	_	V	_		
Input Logic Level Low	V_{IL}	_	_	0.25 x V _{DD}	V	_		
V _{DD} = 1.8V								
	I _{DD}	_	6.0	6.3		1 MHz	$C_L = 0 \text{ pF},$ $R_L = \infty,$ $T = +25^{\circ}C$	
Committee Comment No. 1 and		_	6.5	7.1	Л	27 MHz		
Supply Current, No Load		_	7.2	8.5	mA	70 MHz		
		_	8.3	11.9		150 MHz		
		0.8 x V _{DD}	_	_		-6 mA, DSC100	4, C _L = 40 pF	
Output Logic Level High	V_{OH}	0.8 x V _{DD}	_	_	V	-6 mA, DSC100	3, C _L = 25 pF	
		0.8 x V _{DD}	_	_		-4 mA, DSC100	1, C _L = 15 pF	
		_	_	0.2 x V _{DD}		6 mA, DSC1004	, C _L = 40 pF	
Output Logic Level Low	V_{OL}	_	_	0.2 x V _{DD}	V	6 mA, DSC1003, C _L = 25 pF		
		_	_	0.2 x V _{DD}		4 mA, DSC1001	, C _L = 15 pF	

Note 1: t_{SU} is time to stable output frequency after V_{DD} is applied. t_{SU} and t_{EN} (after EN is asserted) are identical values.

2: Measured over 50k clock cycles.

DSC1001/3/4

TABLE 1-1: DC CHARACTERISTICS (CONTINUED)

Electrical Characteristics: V_{DD} = 1.8 to 3.3V; T_A = +85°C unless otherwise specified.

Parameters	Sym.	Min.	Тур.	Max.	Units	Cond	itions	
		_	1.4	3.0		DSC1001, C _L = 15 pF		
Output Transition Rise Time	t _R	_	1.5	3.0	ns	DSC1003, C _L = 25 pF	T = +25°C, 20% to 80%	
		_	1.8	3.0		DSC1004, C ₂ = 40 pF		
		_	1.0	3.0		DSC1001, C _L = 15 pF		
Output Transition Fall Time	t _F	_	1.1	3.0	ns	DSC1003, C _L = 25 pF	T = +25°C, 20% to 80%	
		_	1.2	3.0		DSC1004, C ₂ = 40 pF		
Jitter, Max. Cycle-to-Cycle	J _{CC}	_	60	_	ps	f = 100 MHz (No	te 2)	
Period Jitter	J_P	_	10	15	ps _{RMS}	f = 100 MHz (No	te 2)	
V _{DD} = 2.5V								
		_	6.0	6.4		1 MHz		
Committee Committee No. 1 and 1	I _{DD}	_	6.7	7.5	mA	27 MHz	$C_L = 0 \text{ pF},$ $R_L = \infty,$ $T = +25^{\circ}\text{C}$	
Supply Current, No Load		_	7.7	9.4		70 MHz		
		_	9.6	13.9		150 MHz		
	V _{OH}	0.9 x V _{DD}	_	_	V	-6 mA, DSC100	4, C _L = 40 pF	
Output Logic Level High		0.8 x V _{DD}	_	_		-6 mA, DSC1003, $C_L = 25$ pF		
		0.8 x V _{DD}	_	_		-4 mA, DSC100	1, C _L = 15 pF	
	V _{OL}	_	_	0.1 x V _{DD}		6 mA, DSC1004, C _L = 40 pF		
Output Logic Level Low		_	_	0.2 x V _{DD}	V	6 mA, DSC1003, C _L = 25 pF		
		_	_	0.2 x V _{DD}		4 mA, DSC1001	, C _L = 15 pF	
		_	1.0	2.0		DSC1001, C _L = 15 pF		
Output Transition Rise Time	t _R	_	1.1	2.0	ns	DSC1003, C _L = 25 pF	T = +25°C, 20% to 80%	
		_	1.2	2.0		DSC1004, C ₂ = 40 pF		
		_	0.9	2.0	ns	DSC1001, C _L = 15 pF	T = +25°C, 20% to 80%	
Output Transition Fall Time	t _F	_	1.0	2.0		DSC1003, C _L = 25 pF		
		_	1.1	2.0		DSC1004, C ₂ = 40 pF		

Note 1: t_{SU} is time to stable output frequency after V_{DD} is applied. t_{SU} and t_{EN} (after EN is asserted) are identical values.

^{2:} Measured over 50k clock cycles.

TABLE 1-1: DC CHARACTERISTICS (CONTINUED)

Electrical Characteristics: V_{DD} = 1.8 to 3.3V; T_A = +85°C unless otherwise specified.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Jitter, Max. Cycle-to-Cycle	J _{CC}	_	50	_	ps	f = 100 MHz (No	ote 2)
Period Jitter	J_P	_	5	10	ps _{RMS}	f = 100 MHz (No	ote 2)
V _{DD} = 3.3V							
		_	6.0	6.5		1 MHz	
Cumply Current No Load		_	6.8	8.0	A	27 MHz	$C_L = 0 \text{ pF},$
Supply Current, No Load	I _{DD}	_	8.2	10.5	mA	70 MHz	R _L = ∞, T = +25°C
		_	10.8	16.6		150 MHz	
		0.9 x V _{DD}	_	_		-8 mA, DSC100	4, C _L = 40 pF
Output Logic Level High	V_{OH}	0.9 x V _{DD}	_	_	V	-6 mA, DSC100	3, C _L = 25 pF
		0.8 x V _{DD}	_	_		-4 mA, DSC100	1, C _L = 15 pF
	V _{OL}	_	_	0.1 x V _{DD}	V	8 mA, DSC1004, $C_L = 40 \text{ pF}$	
Output Logic Level Low		_	_	0.1 x V _{DD}		6 mA, DSC1003	, C _L = 25 pF
		_	_	0.2 x V _{DD}		4 mA, DSC1001	, C _L = 15 pF
	t _R	_	1.0	2.0	ns	DSC1001, C _L = 15 pF	T = +25°C, 20% to 80%
Output Transition Rise Time		_	1.1	2.0		DSC1003, C _L = 25 pF	
		_	1.2	2.0		DSC1004, C ₂ = 40 pF	
		_	0.9	2.0		DSC1001, C _L = 15 pF	T = +25°C, 20% to 80%
Output Transition Fall Time	t _F	_	1.0	2.0	ns	DSC1003, C _L = 25 pF	
		_	1.1	2.0		DSC1004, C ₂ = 40 pF	
Jitter, Max. Cycle-to-Cycle	J _{CC}	_	50	_	ps	f = 100 MHz (Note 2)	
Period Jitter	J_{P}	_	5	10	ps _{RMS}	f = 100 MHz (No	ote 2)

Note 1: t_{SU} is time to stable output frequency after V_{DD} is applied. t_{SU} and t_{EN} (after EN is asserted) are identical values.

^{2:} Measured over 50k clock cycles.

DSC1001/3/4

TEMPERATURE SPECIFICATIONS (Note 1)

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
		-40	_	+105	°C	Ordering Option L
Operating Temperature Range (T)	T _A	-40	_	+85	°C	Ordering Option I
		-20	_	+70	°C	Ordering Option E
Junction Operating Temperature	TJ	_	_	+150	°C	_
Storage Temperature Range	T _A	-55	_	+150	°C	_
Soldering Temperature Range	T _S	_	_	+260	°C	40 sec. max

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1 and Table 2-2.

TABLE 2-1: CDFN PACKAGE PIN FUNCTION TABLE

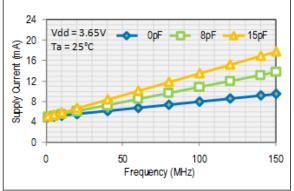

Pin Number	Symbol	Description
1	STANDBY#	Standby input (Section 4.1 "Standby Function")
2	GND	Power supply ground
3	OUT	Oscillator output
4	VDD	Positive power supply

TABLE 2-2: DFN PACKAGE PIN FUNCTION TABLE

Pin Number	Symbol	Description
1	STANDBY#	Standby input (Section 4.1 "Standby Function")
2	GND	Power supply ground
3	OUT	Oscillator output
4	VDD	Positive power supply
Center Pad	NC	Tie to GND or do not connect.

3.0 NOMINAL PERFORMANCE CHARACTERISTICS

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

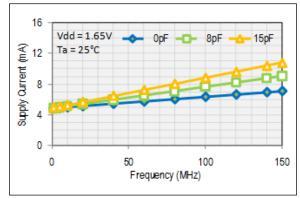


FIGURE 3-1: Supply Current.

2 Vdd = 3.3V -40°C -25°C -85°C 92 0.5 0 0 50 Frequency (MHz)

FIGURE 3-4: Supply Current.

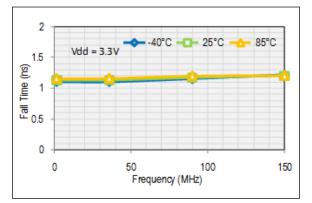


FIGURE 3-2: Rise Time.

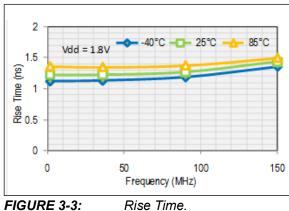
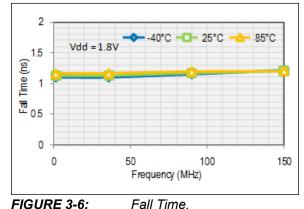



FIGURE 3-5: Fall Time.

Rise Time. FIGURE 3-6: Fall Time

4.0 OUTPUT WAVEFORM

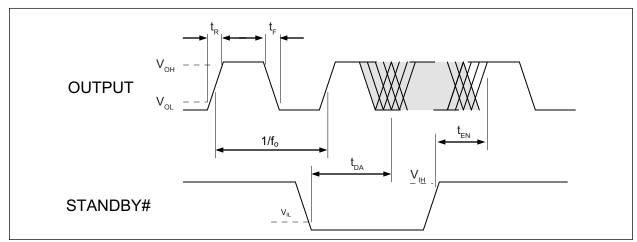


FIGURE 4-1: Output Waveform.

4.1 Standby Function

Standby# (Pin 1)	Output (Pin 3)
High Level	Output ON
Open (no connect)	Output ON
Low Level	High Impedance

5.0 TEST CIRCUIT

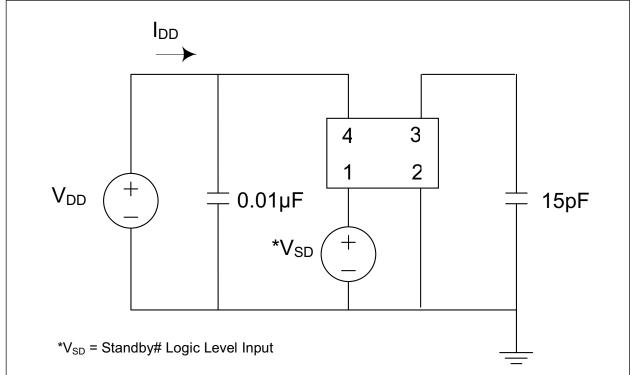


FIGURE 5-1: DSC1001/3/4 Test Circuit.

6.0 BOARD LAYOUT (RECOMMENDED)

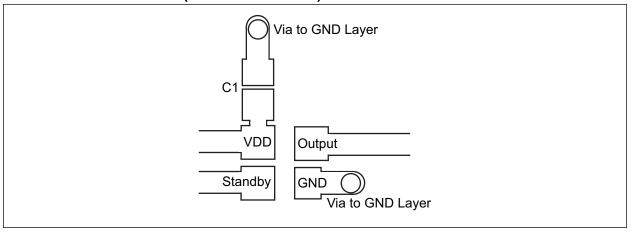


FIGURE 6-1: Recommended Board Layout for DSC1001/3/4.

7.0 SOLDER REFLOW PROFILE

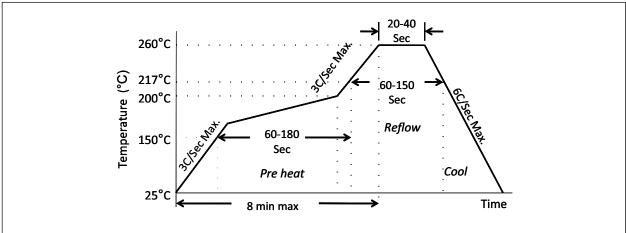


FIGURE 7-1: Solder Reflow Profile.

MSL 1 @ 260°C refer to JSTD-020C						
Ramp-Up Rate (200°C to Peak Temp)	3°C/sec. max.					
Preheat Time 150°C to 200°C	60 to 180 sec.					
Time maintained above 217°C	60 to 150 sec.					
Peak Temperature	255°C to 260°C					
Time within 5°C of Actual Peak	20 to 40 sec.					
Ramp-Down Rate	6°C/sec. max.					
Time 25°C to Peak Temperature	8 minutes max.					

8.0 PACKAGING INFORMATION

8.1 Package Marking Information

4-Lead CDFN/DFN*

XXXXXX XXXYYWW 0SSS Example

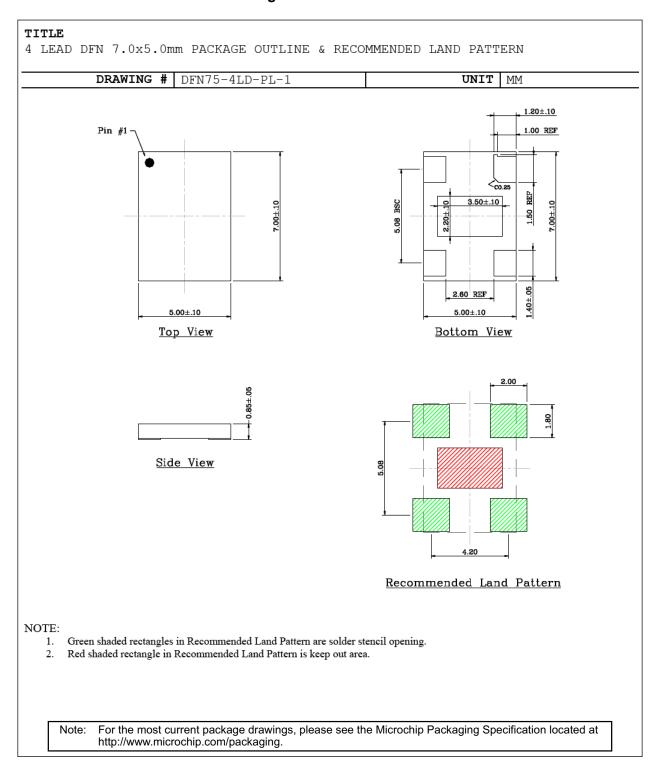
0400000 DCP2317 0BD2

Legend: XX...X Product code, customer-specific information, or frequency in MHz without printed decimal point

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

SSS Alphanumeric traceability code

Pb-free JEDEC® designator for Matte Tin (Sn)

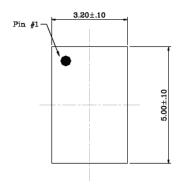

This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.

•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

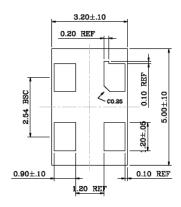
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (¯) symbol may not be to scale.

4-Lead DFN 7.0 mm x 5.0 mm Package Outline & Recommended Land Pattern

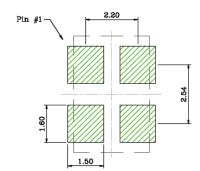


4-Lead CDFN 5.0 mm x 3.2 mm Package Outline & Recommended Land Pattern


TITLE

4 LEAD CDFN 5.0x3.2mm COL PACKAGE OUTLINE & RECOMMENDED LAND PATTERN

DRAWING # CDFN5032-4LD-PL-1 UNIT MM


Top View

Bottom View

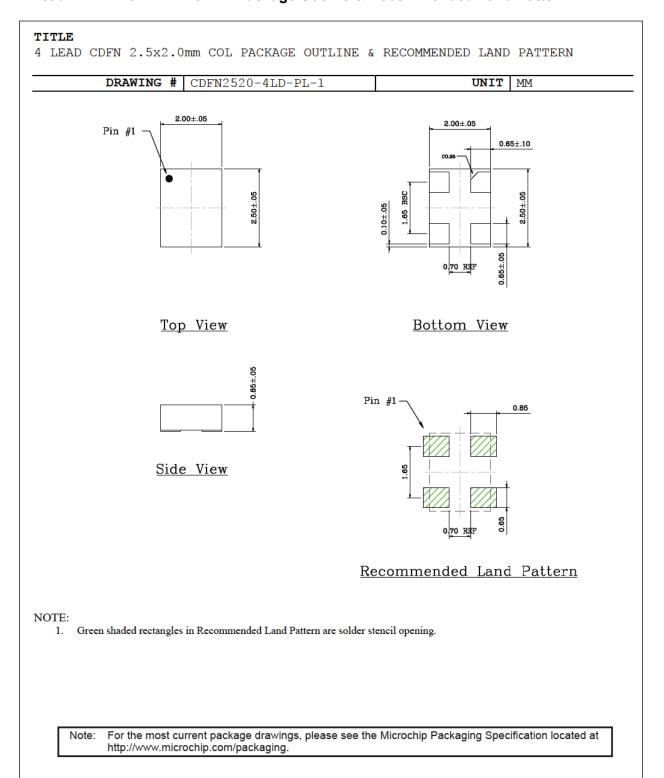
Side View

Recommended Land Pattern

NOTE:

1. Green shaded rectangles in Recommended Land Pattern are solder stencil opening.

ote: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.


4-Lead CDFN 3.2 mm x 2.5 mm Package Outline & Recommended Land Pattern

TITLE 4 LEAD CDFN 3.2x2.5mm COL PACKAGE OUTLINE & RECOMMENDED LAND PATTERN DRAWING # | CDFN3225-4LD-PL-1 UNIT MM Pin #1 2.50±.05 2.50±.05 0.80±.10 3.20±.05 $3.20 \pm .05$ BSC 2.10 0.90 REF Top View Bottom View Pin #1 Side View Recommended Land Pattern NOTE: 1. Green shaded rectangles in Recommended Land Pattern are solder stencil opening.

For the most current package drawings, please see the Microchip Packaging Specification located at

http://www.microchip.com/packaging.

4-Lead CDFN 2.5 mm x 2.0 mm Package Outline & Recommended Land Pattern

	C	C1	IN	n	1	12	IA
u	J	U	ľ	v		J	/+

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (September 2017)

- Converted Micrel data sheet DSC1001 to Microchip format data sheet DS20005529A.
- · Minor text changes throughout.
- Added Table 2-2 for DFN package.
- Combined Micrel data sheet DSC1003 and DSC1004 into this data sheet.
 - Updated Section 1.0 "Electrical Characteristics" to reflect this change.
 - Updated General Description and Features to reflect this change.

Revision B (November 2017)

• Updated V_{OH} and V_{OL} values in Table 1-1.

Revision C (July 2023)

Updated the Package Marking Information drawing.

	SC	1 N	1 1	1/2	11
U	3 C	ΙU	ו טי	I / J	/4

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	X		X	X	-YYY	.xxxx	χ	Examples:	
	T Package			T			T	a)	DSC1001AE
Device:	DSC10	001/3	/4: 1.8V - 3 Oscillat		/-Power F	Precision (CMOS		
Package:	A B C D	= = =		.0 mm x 3	3.2 mm (2.5 mm (DFN DFN		b)	DSC1003BL2
Temperature Range:	E I L	= =	-40°C to	+85°C (l	Industrial	d Commer l) ed Industri	,		
Stability:	1 2 3 5	= = =	±50ppm ±25ppm ±20 ppm ±10 ppm					(c)	DSC1001DE
Frequency:	xxx.xx	xx =	=1 MHz to	150 MHz	z (user-d	efined)			
Packing Option:	<blaue> T</blaue>	(>= =	110/Tube 1,000/Re					d)	DSC1004AI

Evamples:

E1-010.0000T:

1.8V - 3.3V Low-Power Precision CMOS Oscillator, 4-Lead 7.0 mm x 5.0 mm DFN, Ext. Commercial Temperature Range, ±50 ppm, 10 MHz Output Frequency, 1,000/Reel

.2-030.0000:

1.8V - 3.3V Low-Power Precision CMOS Oscillator, 4-Lead 5.0 mm x 3.2 mm CDFN, Ext. Industrial Temperature Range, ±25 ppm, 30 MHz Output Frequency, 110/Tube

E5-150.0000:

1.8V - 3.3V Low-Power Precision CMOS Oscillator, 4-Lead 2.5 mm x 2.0 mm CDFN, Ext. Commercial Temperature Range, ±10 ppm, 150 MHz Output Frequency, 110/Tube

13-075.0000T:

1.8V - 3.3V Low-Power Precision CMOS Oscillator, 4-Lead 7.0 mm x 5.0 mm DFN, Industrial Temperature Range, ± 20 ppm, 75 MHz Output Frequency, 1,000/Reel

Tape and Reel identifier only appears in the Note 1: catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

\Box	C	C1	lN	7	1/2	3/4
u	J	U	ıv	v	I / J	<i>))</i> +

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017 - 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2904-7

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com
Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423

Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820