
IM828-XCC

Description

The CIPOS™ Maxi IM828 product group offers the chance for integrating various power and control components to increase reliability, optimize PCB size and system costs. It is designed to operate as high-performance inverter for demanding motor drive applications and active power factor correction. The product concept is specially adapted to power applications, which need good thermal performance and electrical isolation as well as EMI save control and overload protection. Three phase inverter with 1200V CoolSiC™ MOSFETs are combined with an optimized 6-channel SOI gate driver for excellent electrical performance. The bodydiodes of CoolSiC™ MOSFETs can be used as free-wheeling diode, and turning on the MOSFET during bodydiode conduction (synchronous rectification) can be used to reduce losses further.

Features

- Fully isolated Dual In-Line molded module
- 1200V CoolSiC™ MOSFETs
- Rugged 1200V SOI gate driver technology with stability against transient and negative voltage
- Allowable negative VS potential up to -11 V for signal transmission at VBS = 15 V
- Integrated bootstrap functionality
- Over current shutdown
- Built-in NTC thermistor for temperature monitor
- Under-voltage lockout at all channels
- Low side source pins accessible for phase current monitoring (open source)
- Anti cross-conduction prevention
- All of 6 switches turn off during protection
- Programmable fault clear timing and enable input
- Lead-free terminal plating; RoHS compliant

Potential applications

Fan drives and active power factor correction and high-performance motor drives

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Table 1 Part Ordering Table

Dradust name Daskage tu		Standa	rd pack	Orderable part number	
Product name	Package type	Form	моQ	Orderable part number	
IM828-XCC	DIP 36x23D	14 pcs / tube	280	IM828XCCXKMA1	

Datasheet www.infineon.com

IM828-XCC

Table of contents

Table of contents

Desc	cription	1
Featı	tures	1
Pote	ential applications	1
Prod	duct validation	1
Table	le of contents	2
1	Internal electrical schematic	3
2	Pin configuration	
- 2.1	Pin assignment	
2.2	Pin description	
3	Absolute maximum ratings	7
3.1	Module section	
3.2	Inverter section	7
3.3	Control section	7
4	Thermal characteirstics	8
5	Recommended operation conditions	9
6	Static parameters	10
6.1	Inverter section	10
6.2	Control section	10
7	Dynamic parameters	12
7.1	Inverter section	12
7.2	Control section	13
8	Thermistor characteristics	14
9	Mechanical characteristics and ratings	15
10	Qualification information	16
11	Diagrams and tables	17
11.1	T _c measurement point	17
11.2	Backside curvature measurement point	17
11.3	8	
11.4	Switching times definition	18
12	Application guide	19
12.1	71 11	
12.2	Performance charts	20
13	Package outline	21
Revis	ision history	22

V 2.1

Internal electrical schematic

1 Internal electrical schematic

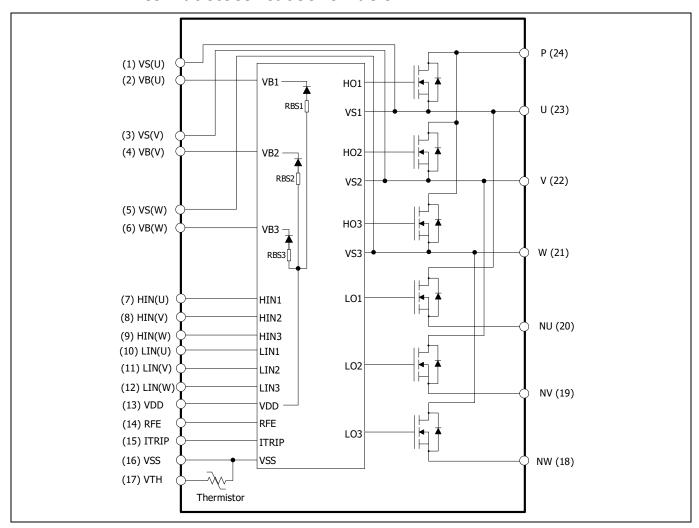


Figure 1 Internal electrical schematic

Pin configuration

2 Pin configuration

2.1 Pin assignment

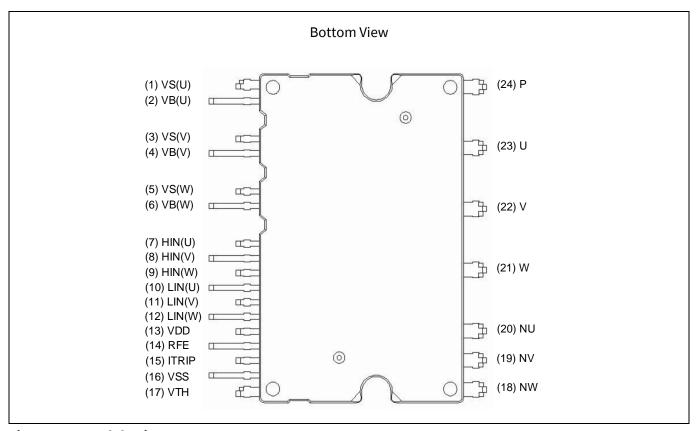


Figure 2 Module pinout

Table 2 Pin assignment

Pin number	Pin name	Pin description
1	VS(U)	U-phase high side floating IC supply offset voltage
2	VB(U)	U-phase high side floating IC supply voltage
3	VS(V)	V-phase high side floating IC supply offset voltage
4	VB(V)	V-phase high side floating IC supply voltage
5	VS(W)	W-phase high side floating IC supply offset voltage
6	VB(W)	W-phase high side floating IC supply voltage
7	HIN(U)	U-phase high side gate driver input
8	HIN(V)	V-phase high side gate driver input
9	HIN(W)	W-phase high side gate driver input
10	LIN(U)	U-phase low side gate driver input
11	LIN(V)	V-phase low side gate driver input
12	LIN(W)	W-phase low side gate driver input
13	VDD	Low side control supply
14	RFE	Programmable fault clear time, fault output, enable input
15	ITRIP	Over current shutdown input

Pin configuration

Pin number	Pin name	Pin description
16	VSS	Low side control negative supply
17	VTH	Thermistor therminal
18	NW	W-phase low side source
19	NV	V-phase low side source
20	NU	U-phase low side source
21	W	Motor W-phase output
22	V	Motor V-phase output
23	U	Motor U-phase output
24	Р	Positive bus input voltage

2.2 Pin description

HIN (U, V, W) and LIN (U, V, W) (Low side and high side control pins, Pin 7 - 12)

These pins are positive logic and they are responsible for the control of the integrated MOSFETs. The schmitt-trigger input thresholds of them are such to guarantee LSTTL and CMOS compatibility down to 3.3 V controller outputs. Pull-down resistor of about 5 $k\Omega$ is internally provided to pre-bias inputs during supply start-up. Input schmitt-trigger and noise filter provide beneficial noise rejection to short input pulses.

The noise filter suppresses control pulses which are below the filter time $t_{\text{FIL,IN}}$. The filter acts according to Figure 4.

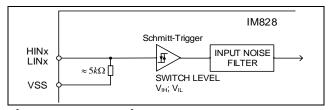


Figure 3 Input pin structure

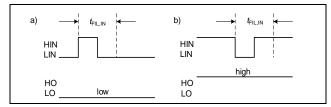


Figure 4 Input filter timing diagram

It is not recommended for proper work to provide input pulse-width lower than 1 μ s.

The integrated gate driver provides additionally a shoot through prevention capability which avoids the simultaneous on-state of two gate drivers of the same leg (i.e. HO1 and LO1, HO2 and LO2, HO3 and LO3). When two inputs of a same leg are activated, only former activated one is activated so that the leg is kept steadily in a safe state.

A minimum deadtime insertion of typically 300 ns is also provided by driver IC, in order to reduce cross-conduction of the external power switches.

RFE (Fault / Fault clear time / Enable, Pin 14)

The RFE pin conbines three functions in one pin: programmable fault clear time by RC-network, fault-out and enable input.

The programmable fault-clear time can be adjusted by RC network, which is external pull-up resistor and capacitor. For example, typical value is about 1ms at 1 M Ω and 2 nF.

The fault-out indicates a module failure in case of under voltage at pin VDD or in case of triggered over current detection at ITRIP.

The microcontroller can pull this pin low to disable the IPM functionality. This is enable function.

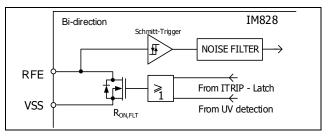


Figure 5 Internal circuit at pin RFE

IM828-XCC

Pin configuration

VTH (Thermistor, Pin 17)

The VTH pin provides direct access to the NTC, which is referenced to VSS. An external pull-up resistor connected to +5 V ensures that the resulting voltage can be directly connected to the microcontroller.

ITRIP (Over current detection function, Pin 15)

IM828 provides an over current detection function by connecting the ITRIP input with the MOSFET drain current feedback. The ITRIP comparator threshold (typ. $0.5\,\text{V}$) is referenced to VSS ground. An input noise filter (t_{ITRIP} = typ. 500 ns) prevents the driver to detect false over-current events.

Over current detection generates a shutdown of all outputs of the gate driver after the shutdown propagation delay of typically $1\mu s$.

Fault-clear time is set to typical 1.1ms at R_{RCIN} = 1 $\text{M}\Omega$ and C_{RCIN} = 2 nF.

VDD, VSS (Low side control supply and reference, Pin 13, 16)

VDD is the control supply and it provides power both to input logic and to output power stage. Input logic is referenced to VSS ground.

The under-voltage circuit enables the device to operate at power on when a supply voltage of at least a typical voltage of $V_{DDUV+} = 12.2 \text{ V}$ is present.

The IC shuts down all the gate drivers power outputs, when the VDD supply voltage is below V_{DDUV} = 11.2 V. This prevents the external power switches from critically low gate voltage levels during on-state and therefore from excessive power dissipation.

VB (U, V, W) and VS (U, V, W) (High side supplies, Pin 1 - 6)

VB to VS is the high side supply voltage. The high side circuit can float with respect to VSS following the external high side power device source voltage.

Due to the low power consumption, the floating driver stage is supplied by integrated bootstrap circuit.

The under-voltage detection operates with a rising supply threshold of typical $V_{BSUV+} = 11.2 \text{ V}$ and a falling threshold of $V_{BSUV-} = 10.2 \text{ V}$.

VS (U, V, W) provide a high robustness against negative voltage in respect of VSS of -50 V transiently. This ensures very stable designs even under rough conditions.

NW, NV, NU (Low side source, Pin 18 - 20)

The low side sources are available for current measurements of each phase leg. It is recommended to keep the connection to pin VSS as short as possible in order to avoid unnecessary inductive voltage drops.

W, V, U (High side source and low side drain, Pin 21 - 23)

These pins are motor U, V, W input pins.

P (Positive bus input voltage, Pin 24)

The high side MOSFETs are connected to the bus voltage. It is noted that the bus voltage does not exceed 900 V.

Absolute maximum ratings

Absolute maximum ratings 3

 $(V_{DD} = 15 \text{ V and } T_J = 25^{\circ}\text{C}$, if not stated otherwise)

Module section 3.1

Description	Symbol	Condition	Value	Unit
Storage temperature range	T_{STG}		-40 ~ 125	°C
Operating case temperature	T _C	Refer to Figure 7	-40 ~ 125	°C
Operating junction temperature	TJ		-40 ~150	°C
Isolation test voltage	V _{ISO}	1min, RMS, f = 60Hz	2500	V

Inverter section 3.2

Description	Symbol	Condition	Value	Unit	
Max. blocking voltage	V_{DSS}		1200	V	
DC link supply voltage of P-N	V_{PN}	Applied between P-N	900	V	
DC link supply voltage (surge) of P-N	$V_{PN(surge)}$	Applied between P-N	1000	V	
201	I _D	$T_C = 25^{\circ}C, T_J < 150^{\circ}C$	±35	_	
DC drain current ¹		$T_{C} = 80^{\circ}C, T_{J} < 150^{\circ}C$	±20	Α	
Pulse drain current ²	I _{DP}		±60	Α	
Power dissipation per MOSFET	P _{tot}		86	W	
Short circuit withstand time ³	t _{sc}	V _{DC} ≤ 800 V, T _J ≤ 150°C	3	μs	

Control section 3.3

Description	Symbol	Condition	Value	Unit
High Side offset voltage	Vs		1200	V
Repetitive peak reverse voltage of bootstrap diode	V_{RRM}		1200	V
Module control supply voltage	V_{DD}		-1 ~ 20	V
High side floating supply voltage (V _B reference to V _S)	V _{BS}		-1 ~ 20	V
Input voltage (LIN, HIN, ITRIP, RFE)	V _{IN}		-1 ~ V _{DD} + 0.3	V

¹ Pulse width and period are limited by junction temperature.

² Verified by design, t_p limited by T_{imax}

³ Verified by design for single short circuit event. Datasheet

IM828-XCC

Thermal characteirstics

4 Thermal characteirstics

Description	Cymphol	Condition		llm:t		
Description	Symbol	Min.	Тур.	Max.	Unit	
Single MOSFET thermal resistance, junction-case	R_{thJC}	-	-	-	1.45	K/W

IM828-XCC

Recommended operation conditions

5 Recommended operation conditions

All voltages are absolute voltages referenced to V_{SS} -potential unless otherwise specified.

Description	Compleal		l l m i d		
Description	Symbol	Min.	Тур.	Max.	Unit
DC link supply voltage of P-N	V_{PN}	350	600	800	V
Low side supply voltage	V_{DD}	13.5	15	18.5	V
High side floating supply voltage (V _B vs. V _S)	V_{BS}	12.5	-	18.5	V
Logic input voltages LIN, HIN, ITRIP, RFE	V _{IN}	0	-	5	V
PWM carrier frequency at V _{DD} = 15 V	F _{PWM}	-	-	80	kHz
External dead time between HIN & LIN	DT	0.5	-	-	μs
Voltage between VSS - N (including surge)	V_{COMP}	-5	-	5	V
Minimum input pulse width	PW _{IN(ON)} PW _{IN(OFF)}	1	-	-	μs
Control supply variation	$\Delta V_{BS,} \ \Delta V_{DD}$	-1 -1	-	1 1	V/µs

Static parameters

6 Static parameters

 $(V_{DD} = 15 \text{ V and } T_J = 25^{\circ}\text{C}$, if not stated otherwise)

6.1 Inverter section

D	Complete I	C	Value			11
Description	Symbol	Condition	Min.	Тур.	Max.	Unit
		$I_D = 20 A, V_{IN} = 5 V$				
Drain-source on-state resistance	R _{DS(on)}	T _J = 25°C	-	55	87	mΩ
		150°C	-	70	-	
Drain-source leakage current	I _{DSS}	V _{DS} = 1200V	-	-	1	mA
		$I_{SD} = 20 \text{ A}, V_{IN} = 0 \text{ V}$				
Diode forward voltage	V_{SD}	T _J = 25°C	-	3.9	5.8	V
		150°C	-	3.8	-	

6.2 Control section

D	Symbol Condition			Value			
Description	Symbol	Condition	Min.	Тур.	Max.	Unit	
Logic "1" input voltage (LIN, HIN)	V _{IH}		-	1.9	2.3	V	
Logic "0" input voltage (LIN, HIN)	V _{IL}		0.7	0.9	-	V	
ITRIP positive going threshold	V _{IT,TH+}		475	500	525	mV	
ITRIP input hysteresis	V _{IT,HYS}		-	55	-	mV	
V _{DD} and V _{BS} supply under voltage positive going threshold	$V_{\text{DDUV+}}$ $V_{\text{BSUV+}}$		11.5 10.5	12.2 11.2	13.0 12.0	V	
V _{DD} / V _{BS} supply under voltage negative going threshold	V_{DDUV}		10.5 9.5	11.2 10.2	12.0 11.0	V	
V _{DD} / V _{BS} supply under voltage lockout hysteresis	V _{DDUVH} V _{BSUVH}		-	1	-	V	
Quiescent V_{Bx} supply current (V_{Bx} only)	I_{QBS}	H _{IN} = 0 V	-	175	-	μΑ	
Quiescent V _{DD} supply current (V _{DD} only)	I _{QDD}	$L_{INX} = 0 V,$ $H_{INX} = 5 V$	-	1	-	mA	
Input bias current for LIN, HIN	I _{IN+}	V _{IN} = 5 V	-	1	-	mA	
Input bias current for ITRIP	I _{ITRIP+}	$V_{ITRIP} = 5 V$	-	30	100	μΑ	
Input bias current for RFE	I _{RFE}	$V_{RFE} = 5 V$, $V_{ITRIP} = 0 V$	-	-	5	μΑ	
RFE output voltage	V_{RFE}	$I_{RFE} = 10 \text{ mA},$ $V_{ITRIP} = 1 \text{ V}$	-	0.4	-	V	
V _{RFE} positive going threshold	$V_{RFE,TH+}$		-	1.9	2.3	V	
V _{RFE} negative going threshold	V _{RFE,TH} -		0.7	0.9	-	V	
Bootstrap diode forward voltage	V_{F_BSD}	I _F = 0.3 mA	-	0.9	-	V	

IM828-XCC

Static parameters

Description	Symbol	Condition	Value			linit
Description		Condition	Min.	Тур.	Max.	Unit
Bootstrap diode resistance	R _{BSD}	Between $V_F = 4 V$ and $V_F = 5 V$	-	120	-	Ω

IM828-XCC

Dynamic parameters

7 Dynamic parameters

 $(V_{DD} = 15 \text{ V and } T_J = 25^{\circ}\text{C}$, if not stated otherwise)

7.1 Inverter section

	D	Ch. al	C	Value				
Description		Symbol	Condition	Min.	Тур.	Max.	Unit	
	Turn-on propagation delay time	t _{on}		-	870	-	ns	
	Turn-on rise time	t _r	$V_{HIN} = 5 V$,	-	45	-	ns	
	Turn-on switching time	t _{c(on)}	$I_D = 20 \text{ A},$ $V_{DC} = 600 \text{ V}$	-	140	-	ns	
	Reverse recovery time	t _{rr}	VDC OOO V	-	60	-	ns	
	Turn-off propagation delay time	t_{off}	V _{HIN} = 0 V,	-	960	-	ns	
	Turn-off fall time	t _f	$I_D = 20 A,$	-	70	-	ns	
Lliah	Turn-off switching time	$t_{\text{c(off)}}$	$V_{DC} = 600 \text{ V}$	-	100	-	ns	
High side	MOSFET turn-on energy (includes reverse recovery of diode)	E _{on}	$V_{DC} = 600 \text{ V}, I_{D} = 20 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ 150°C	-	0.90 1.04	-	mJ	
	MOSFET turn-off energy	E _{off}	$V_{DC} = 600 \text{ V}, I_{D} = 20 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ 150°C	- -	0.48 0.66	- -	mJ	
	Bodydiode recovery energy	E _{rec}	$V_{DC} = 600 \text{ V}, I_{D} = 20 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ 150°C	-	0.08 0.10		mJ	
	Turn-on propagation delay time	t _{on}		-	960	-	ns	
	Turn-on rise time	t _r	$V_{LIN} = 5 V$	-	85	-	ns	
	Turn-on switching time	$t_{c(on)}$	$I_D = 20 \text{ A},$ $V_{DC} = 600 \text{ V}$	-	230	1	ns	
	Reverse recovery time	t _{rr}	VDC OOO V	-	90	-	ns	
	Turn-off propagation delay time	t_{off}	$V_{LIN} = 0 V$	-	880	-	ns	
	Turn-off fall time	t_{f}	$I_D = 20 A,$	-	50	-	ns	
Low	Turn-off switching time	$t_{c(off)}$	V _{DC} = 600 V	-	60	-	ns	
Low side	MOSFET turn-on energy (includes reverse recovery of diode)	E _{on}	$V_{DC} = 600 \text{ V}, I_{D} = 20 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ 150°C	-	1.51 1.62	-	mJ	
	MOSFET turn-off energy	E _{off}	$V_{DC} = 600 \text{ V}, I_{D} = 20 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ 150°C	-	0.25 0.34	-	mJ	
	Bodydiode recovery energy	E _{rec}	$V_{DC} = 600 \text{ V}, I_{D} = 20 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ 150°C	-	0.07 0.07		mJ	
Short	circuit propagation delay time	t _{SCP}	From V _{IT,TH+} to 10% I _{SC}	-	3	-	μs	

IM828-XCC

Dynamic parameters

7.2 Control section

Description	Symbol	Condition	Value			Unit
Description	Symbol	Condition	Min.	Тур.	Max.	
Input filter time ITRIP	t _{ITRIP}	V _{ITRIP} = 1 V	-	500	-	ns
Input filter time at LIN, HIN for turn on and off	t _{FIL,IN}	V _{LIN, HIN} = 0 V or 5 V	-	350	-	ns
Fault clear time after ITRIP-fault	t _{FLT,CLR}	$V_{ITRIP} = 1V,$ $V_{pull-up} = 5V$ $(R_{RFE} = 1 \text{ M}\Omega, C_{RFE} = 2 \text{ nF})$		1.1	-	ms
ITRIP to Fault propagation delay	t _{FLT}	$V_{LIN, HIN} = 0 \text{ or } 5 \text{ V},$ $V_{ITRIP} = 1 \text{ V}$	-	650	900	ns
Internal deadtime	DT _{IC}	$V_{IN} = 0$ or $V_{IN} = 5$ V	300	-	-	ns
Matching propagation delay time (On & Off) all channels	M _T	External dead time > 500ns	-	-	130	ns

infineon

Thermistor characteristics

8 Thermistor characteristics

Description	Candition	Symbol	Value			llmit.
Description	Condition		Min.	Тур.	Max.	Unit
Resistance	T _{NTC} = 25°C	R _{NTC}	-	85	-	kΩ
B-constant of NTC (Negative Temperature Coefficient)		B (25/100)	-	4092	-	К

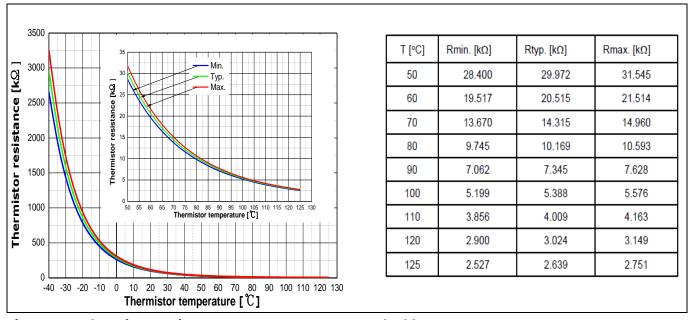


Figure 6 Thermistor resistance – temperature curve and table

(For more information, please refer to the application note 'AN2020-41 CIPOS™ Maxi application note')

IM828-XCC

Mechanical characteristics and ratings

9 Mechanical characteristics and ratings

Description	Condition		11		
Description		Min.	Тур.	Max.	Unit
Comparative Tracking Index (CTI)		600	-	-	
Mounting torque	M3 screw and washer	0.49	-	0.78	Nm
Backside curvature	Refer to Figure 8	0	-	150	μm
Weight		-	7.02	-	g

IM828-XCC

Qualification information

10 Qualification information

UL Certification	File number E314539		
Moisture sensitivity level (SOP package only)	-		
RoHS Compliant	Yes (Lead-free terminal plating)		
ESD (Electrostatic	HBM (Human body model) Class as per JESD22-A114	2 (> 2000 V to < 4000 V)	
Discharge)	CDM (Charged Device model) Class as per JESD22-C101	C3 (>= 1000 V)	

infineon

Diagrams and tables

11 Diagrams and tables

11.1 T_c measurement point

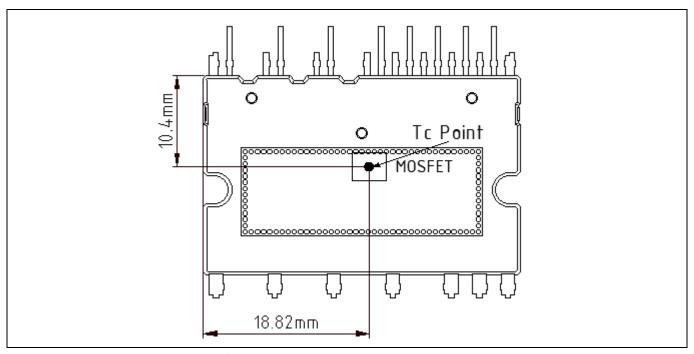


Figure 7 T_c measurement point¹

11.2 Backside curvature measurement point

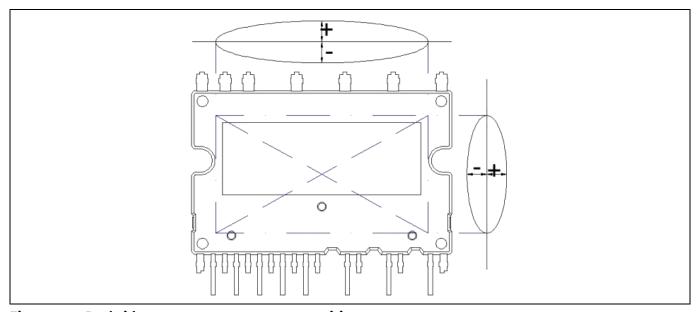


Figure 8 Backside curvature measurement position

¹Any measurement except for the specified point in Figure 7 is not relevant for the temperature verification and brings wrong or different information.

Diagrams and tables

11.3 Switching test circuit

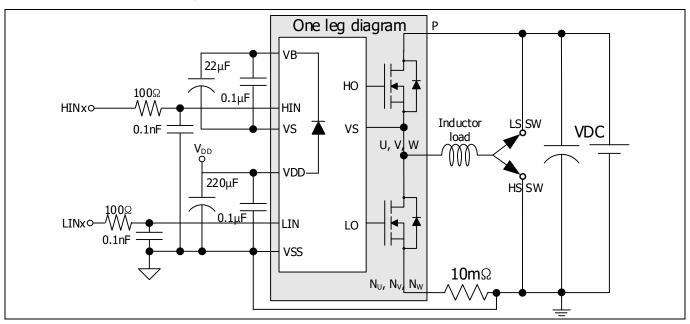


Figure 9 Switching test circuit

11.4 Switching times definition

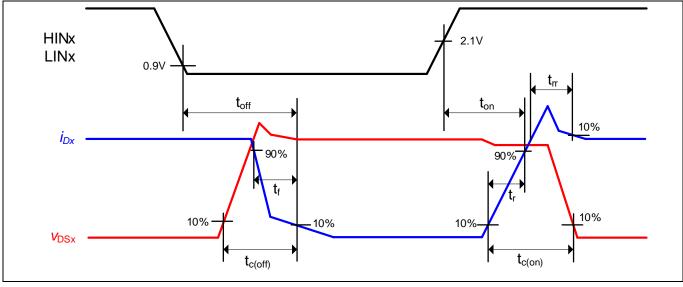


Figure 10 Switching times definition

Application guide

2022-02-23

12 Application guide

12.1 Typical application schematic

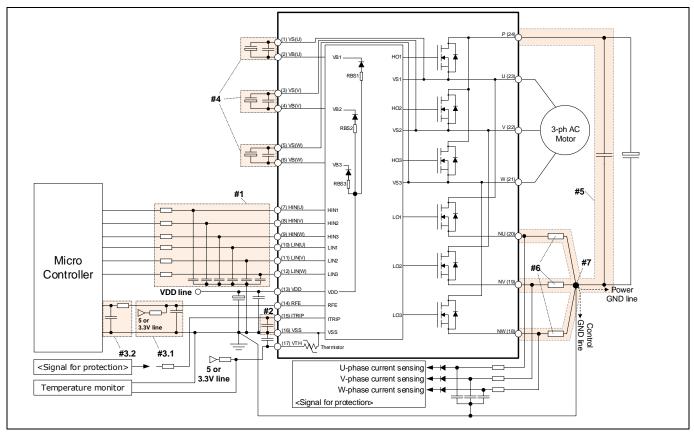
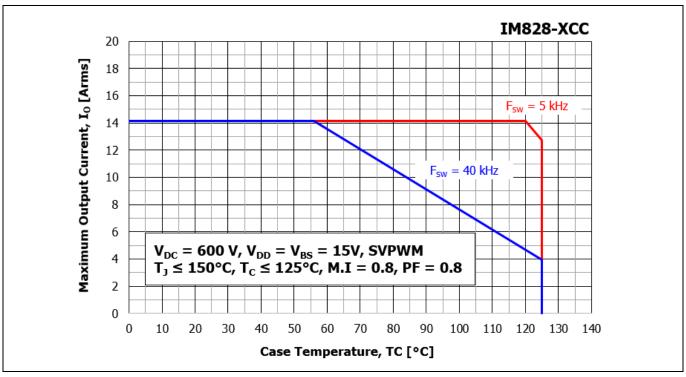


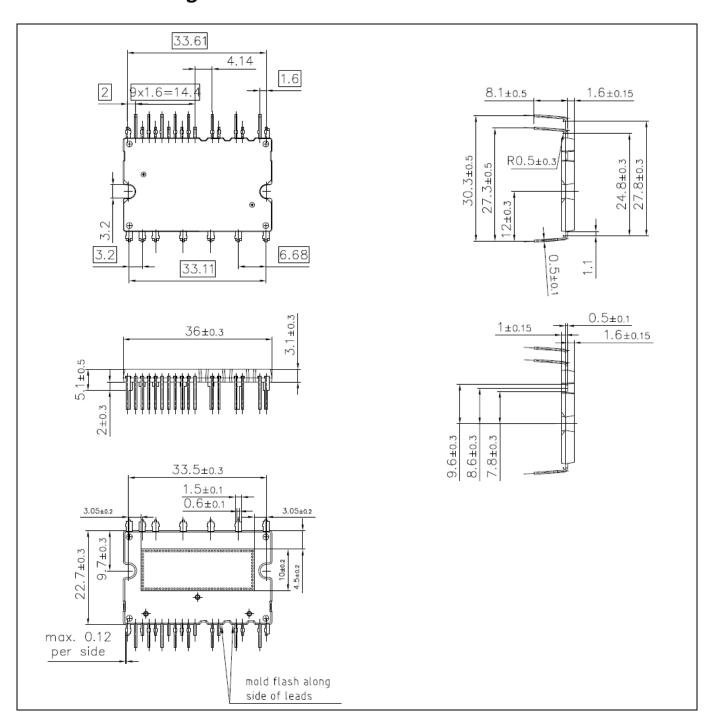
Figure 11 Typical application circuit

- 1. Input circuit
 - To reduce input signal noise by high speed switching, the R_{IN} and C_{IN} filter circuit should be mounted. (100 Ω , 1 nF)
 - C_{IN} should be placed as close to V_{SS} pin as possible.
- 2. Itrip circuit
 - To prevent protection function errors, CITRIP should be placed as close to Itrip and Vss pins as possible.
- 3. RFE circuit
 - 3.1 Pull-up resistor (R_{RFE}) and pull-down capacitor (C_{RFE})
 - RFE output is an open drain output. This signal line should be pulled up to the positive side of the 5 V / 3.3 V control power supply voltage (V_{CTR}) with a proper resistor R_{FE} .
 - The fault-clear time is adjusted by RC network of RRFE and CRFE and pull-up voltage.
 - $t_{FLTCLR} = -R_{RFE} \cdot C_{RFE} \cdot ln(1 V_{RFE,TH+}/V_{CTR}) + internal fault-clear time 160 \mus$
 - $t_{FLTCLR} = -1 \text{ M}\Omega \times 2 \text{ nF} \times \ln(1 1.9 / 5 \text{ V}) + 160 \mu \text{s} \cong 1.1 \text{ ms at R}_{RFE} = 1 \text{ M}\Omega, C_{RFE} = 2 \text{ nF and V}_{CTR} = 5 \text{ V}$
 - A pull-up resistor is limited to max. 2 M Ω
 - In case of V_{CTR} is higher than 5 V, the R_{RFE} needs to be at least 200 k Ω to limit the IC power dissipation
 - 3.2 RC filter
 - It is recommended that RC filter be placed as close to the controller as possible.
- 4. VB-VS circuit
 - Capacitor for Low side floating supply voltage should be placed as close to VB and VS pins as possible.
- 5. Snubber capacitor
 - The wiring between IM828 and snubber capacitor including shunt resistor should be as short as possible.
- 6. Shunt resistor
 - The shunt resistor of SMD type should be used for reducing its stray inductance.
- 7. Ground pattern
 - Ground pattern should be separated at only one point of shunt resistor as short as possible.

Application guide

12.2 Performance charts




Figure 12 Operating current SOA¹ (Based on multi-chip heating R_{thJC})

¹This operating current SOA is just reference information based on simulation results. It can be changed by each user's actual operating conditions.

Package outline

13 Package outline

IM828-XCC

Revision history

Revision history

Document version	Date of release	Description of changes
2.0	2020-09-03	Initial release
2.1	2022-02-23	Update notes (3.1) in section 12.1

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-02-23
Published by
Infineon Technologies AG
81726 München, Germany

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.