TENTATIVE DATA

Gallium arsenide bulk effect devices employing the Gunn effect to produce CW oscillations at microwave frequencies. Each device is encapsulated in a varactor type pill package suitable for mounting in various types of cavity. The devices will oscillate throughout X-band, the actual frequency depending on the cavity used.

QUICK 1	REFERENCE DAT	ΓA		
Operating voltage (typ.)	7.0		v	.
P_{tot} max. $(T_{pin} = 35 {}^{O}C)$		1.0	w	
Operating frequency		8.0 to 12	GHz	
Pout min.	CXY11A	5.0	mW	
out	CXY11B	10	mW	
	CXY11C	15	mW	

Unless otherwise stated, data is applicable to all types

OUTLINE DRAWING

A = concentricity tolerance = ± 0.13

All dimensions in mm

RATINGS (ABSOLUTE MAXIMUM SYSTEM)

	V max. (see note 1)		7.0			V←	
	P_{tot}^{max} . ($T_{pin}^{=35}$ C)			1.0		W	
	Temperature						
	T _{stg} max.			175		°C	
ELEC	TRICAL CHARACTERISTICS	$(T_{amb} = 25^{\circ}C)$				←	
			Min.	Typ.	Max.		
	I_{de} (at $V = 7.0V$, see note 1)		-	140	-	mA	
	Frequency (see note 2)		8.0	-	12	GHz	
	Pout (see note 3)	CXY11A CXY11B CXY11C	5.0 10 15	8.0 12 20	-	mW mW mW	

OPERATING NOTES

- 1. Bias must be applied in such a way that the flanged end of the device is always negative. Reversing polarity may cause permanent damage. The V max, rating may be increased provided that the $P_{\rm tot}$ rating is not exceeded. In any event care should be taken to protect the device from transients in excess of 8 volts.
- 2. The frequency is governed by the choice of cavity to which the device is coupled.
- 3. The output power is normally measured in a coaxial cavity at a frequency of 9.5GHz. Other centre frequencies may be supplied at 8.5, 10.5 and 11.5GHz by suffixing the type number e.g. CXY11B/10.5 specifies a diode giving 10mW min, at 10.5GHz. See the table below.

 Diodes with these other centre frequencies will not necessarily oscillate over the whole 8 to 12GHz range.
- 4. It is important to have a good thermal contact between the pin and the cavity.

Minimum output	Test Frequency (GHz)					
power (mW)	8.5	9.5	10.5	11.5		
5	CXY11A/8.5	CXY11A	CXY11A/10.5	CXY11A/11.5		
10	CXY11B/8.5	CXY11B	CXY11B/10.5	CXY11B/11.5		
15	CXY11C/8.5	CXY11C	CXY11C/10.5	CXY11C/11.5		

Complete oscillators using these devices are obtainable from Mullard Ltd.

