Memories

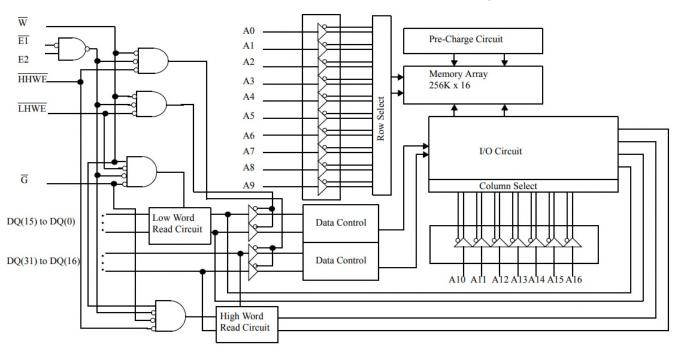
UT8R128K32 128Kx32 SRAM Memory

Datasheet

CobhamAES.com/HiRel March 2020

The most important thing we build is trust

FEATURES


- □ 15ns maximum access time
- □ Asynchronous operation for compatibility with industry-standard 128K x 32 SRAMs
- CMOS compatible inputs and output levels, threestate bidirectional data bus
 - I/O Voltage 3.3 volts, 1.8 volt core
- Operational environment:
 - Intrinsic total-dose: 100K rad(Si)
 - SEL Immune >100 MeV-cm²/mg
 - LET_{th} (0.25): 53.0 MeV-cm²/mg
 - Memory Cell Saturated xSection: 1.67E-7 cm²/bit
 - Neutron Fluence: 3.0E14n/cm²
 - Dose Rate
 - Upset 1.0E9 rad(Si)/sec
 - Latchup >1.0E11 rad(Si)/sec
- □ Packaging options:
 - 68-lead ceramic Quad flatpack (6.19 grams)
- □ Standard Microcircuit Drawing 5962-03236
 - QML Q & V compliant part

INTRODUCTION

The UT8R128K32 is a high-performance CMOS static RAM organized as 131,072 words by 32 bits. Easy memory expansion is provided by active LOW and HIGH chip enables ($\overline{E}1$, E2), an active LOW output enable (\overline{G}), and three-state drivers. This device has a power-down feature that reduces power consumption by more than 90% when deselected.

Writing to the device is accomplished by taking chip enable one ($\overline{E}1$) input LOW, chip enable two (E2) HIGH and write enable (\overline{W}) input LOW. Data on the 32 I/O pins (DQ0 through DQ31) is then written into the location specified on the address pins (A0 through A16). Reading from the device is accomplished by taking chip enable one ($\overline{E}1$) and output enable (\overline{G}) LOW while forcing write enable (\overline{W}) and chip enable two (E2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The 32 input/output pins (DQ0 through DQ31) are placed in a high impedance state when the device is deselected ($\overline{E}1$ HIGH or E2 LOW), the outputs are disabled (\overline{G} HIGH), or during a write operation ($\overline{E}1$ LOW, E2 HIGH and \overline{W} LOW).

Figure 1: UT8R128K32 SRAM Block Diagram

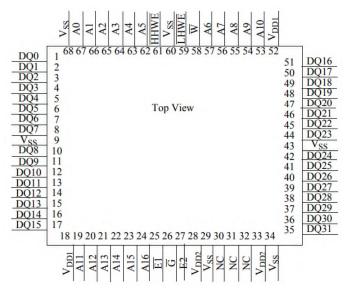


Figure 2: 15ns SRAM Pinout (68)

PIN NAMES

A(16:0)	Address	Ŵ	Write Enable
DQ(31:0)	Data Input/Output	G	Output Enable
Ē1	Chip Enable 1 (active low)	V_{DD1}	Power (1.8V)
E2	Chip Enable 2 (active high)	V _{DD2}	Power (3.3V)
HHWE LWHE	High half-word enable Low half-word enable	V _{SS}	Ground

DEVICE OPERATION

The UT8R128K32 has six control inputs called Chip Enable 1 ($\overline{E}1$), Chip Enable 2 (E2), Write Enable (\overline{W}), Half-word Enables (HHWE/LHWE) and Output Enable (\overline{G}); 17 address inputs, A(16:0); and 32 bidirectional data lines, DQ(31:0). $\overline{E}1$ and E2 device enables control device selection, active, or standby modes. Asserting $\overline{E}1$ and E2 enables the device, causes I_{DD} to rise to its active value, and decodes the 17 address inputs to select one of 131,072 words in the memory. \overline{W} controls read and write operations. During a read cycle, \overline{G} must be asserted to enable the outputs.

Table 1. Device Operation Truth Table

G	Ŵ	E2	Ē1	LHWE	HHWE	I/O Mode	Mode
x	x	x	Н	х	х	DQ(31:16) 3-State DQ(15:0) 3-State	Standby
x	x	L	х	х	x	DQ(31:16) 3-State DQ(15:0) 3-State	Standby
L	Н	Н	L	L	Н	DQ(31:16) 3-State DQ(15:0) Data Out	Low Half- Word Read
L	Н	Н	L	Н	L	DQ(31:16) Data Out DQ(15:0) 3-State	High Half- Word Read
L	Н	Н	L	L	L	DQ(31:16) Data Out DQ(15:0) Data Out	Word Read
x	L	Н	L	L	L	DQ(31:16) Data In DQ(15:0) Data In	Word Write
x	L	Н	L	L	Н	DQ(31:16) 3-State DQ(15:0) Data In	Low Half- Word Write
x	L	Н	L	Н	L	DQ(31:16) Data In DQ(15:0) 3-State	High Half- Word Write
н	Н	Н	L	х	х	DQ(31:16) DQ(15:0) All 3-State	3-State
x	x	н	L	Н	Н	DQ(31:16) DQ(15:0) All 3-State	3-State

Notes:

1. "X" is defined as a "don't care" condition.

2. Device active; outputs disabled.

READ CYCLE

A combination of \overline{W} and E2 greater than V_{IH} (min) and $\overline{E1}$ less than V_{IL} (max) defines a read cycle. Read access time is measured from the latter of chip enable, output enable, or valid address to valid data output. Read cycles initiate with the assertion of any chip enable or any address change while any chip enable is asserted.

SRAM Read Cycle 1, the Address Access in Figure 3a, is initiated by a change in address inputs while the chip is enabled with \overline{G} asserted and \overline{W} deasserted. Valid data appears on data outputs DQ(31:0) after the specified t_{AVQV} is satisfied. Outputs remain active throughout the entire cycle. As long as chip enable and output enable are active, the address inputs may change at a rate equal to the minimum read cycle time (t_{AVAV}). Changing addresses prior to satisfying t_{AVAV} minimum results in an invalid operation. Invalid read cycles will require re-initialization.

SRAM Read Cycle 2, the Chip Enable-controlled Access in Figure 3b, is initiated by $\overline{E}1$ and E2 going active while \overline{G} remains asserted, \overline{W} remains deasserted, and the addresses remain stable for the entire cycle. After the specified t_{ETQV} is satisfied, the 32-bit word addressed by A(16:0) is accessed and appears at the data outputs DQ(31:0).

SRAM Read Cycle 3, the Output Enable-controlled Access in Figure 3c, is initiated by \overline{G} going active while $\overline{E}1$ and E2 are asserted, \overline{W} is deasserted, and the addresses are stable. Read access time is t_{GLQV} unless t_{AVQV} or t_{ETQV} have not been satisfied.

WRITE CYCLE

A combination of \overline{W} and $\overline{E}1$ less than $V_{IL}(max)$ and E2 greater than $V_{IH}(min)$ defines a write cycle. The state of \overline{G} is a "don't care" for a write cycle. The outputs are placed in the high-impedance state when either \overline{G} is greater than $V_{IH}(min)$, or when \overline{W} is less than $V_{IL}(max)$.

Write Cycle 1, the Write Enable-controlled Access in Figure 4a is defined by a write terminated by \overline{W} going high, with $\overline{E}1$ and E2 still active. The write pulse width is defined by t_{WLWH} when the write is initiated by \overline{W} , and by t_{ETWH} when the write is initiated by $\overline{E}1$ or E2. Unless the outputs have been previously placed in the high-impedance state by \overline{G} , the user must wait t_{WLQZ} before applying data to the 32 bidirectional pins DQ(31:0) to avoid bus contention.

Write Cycle 2, the Chip Enable-controlled Access in Figure 4b, is defined by a write terminated by either of $\overline{E}1$ or E2 going inactive. The write pulse width is defined by t_{WLEF} when the write is initiated by \overline{W} , and by t_{ETEF} when the write is initiated by either $\overline{E}1$ or E2 going active. For Version 1.0.0

the \overline{W} initiated write, unless the outputs have been previously placed in the high-impedance state by \overline{G} , the user must wait t_{WLQZ} before applying data to the 32 bidirectional pins DQ(31:0) to avoid bus contention.

WORD ENABLES

Separate half-word enable controls (LHWE and HHWE) allow individual 16-bit word accesses. LHWE controls the lower bits DQ(15:0). HHWE controls the upper bits DQ(31:16). Writing to the device is performed by asserting E1, E2 and the half-word enables. Reading the device is performed by asserting E1, E2, G, and the half-word enables while W is held inactive (HIGH).

HHWE	LHWE	OPERATION	
0	0	32-bit read or write cycle	
0	1	16-bit high half-word read or write cycle (low half-word bi-direction pins DQ(15:0) are in 3-state)	
1	0	16-bit low half-word read or write cycle (high half-word bi-direction pins DQ(31:16) are in 3-state)	
1	1	High and low half-word bi- directional pins remain in 3-state, write function disabled	

OPERATIONAL ENVIRONMENT

The UT8R128K32 SRAM incorporates special design, layout, and process features which allows operation in a limited environment.

Table 2. Operational Environment Design Specifications¹

Total Dose	100K	rad(Si)
Heavy Ion Error Rate ²	8.9x10 ⁻¹⁰	Errors/Bit-Day

Notes:

- 1. The SRAM is immune to latchup to particles >100MeV- $\rm cm^2/mg.$
- 90% worst case particle environment, Geosynchronous orbit, 100 mils of Aluminum.

SUPPLY SEQUENCING

No supply voltage sequencing is required between V_{DD1} and $V_{\text{DD2}}.$

ABSOLUTE MAXIMUM RATINGS¹

(Referenced to Vss)

SYMBOL	PARAMETER	LIMITS
V _{DD1}	DC supply voltage	-0.3 to 2.4V
V _{DD2}	DC supply voltage	-0.3 to 4.5V
V _{I/O}	Voltage on any pin	-0.3 to 4.5V
T _{STG}	Storage temperature	-65 to +150°C
P _D	Maximum power dissipation	1.2W
TJ	Maximum junction temperature ²	+150°C
Θ _{JC}	Thermal resistance, junction-to-case ³	5°C/W
II	DC input current	±5 mA

Notes:

Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability and performance.
 Test per MIL-STD-883, Method 1012.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS
V _{DD1}	Positive supply voltage	1.7 to 1.9V ¹
V _{DD2}	Positive supply voltage	3.0 to 3.6V
T _c	Case temperature range	(P) Screening: -25°C (C) Screening: -55 to +125°C (W) Screening: -40 to +125°C
V _{IN}	DC input voltage	0V to V _{DD2}

Notes:

1. For increased noise immunity, supply voltage (V_{DD1}) can be increased to 2.0V. If not tested, all applicable DC and AC characteristics are guaranteed by characterization at VDD1 (max) = 2.0V.

DC ELECTRICAL CHARACTERISTICS (PRE AND POST-RADIATION)* Unless otherwise noted, Tc is per the temperature ordered

SYMBOL	PARAMETER	CONDITION		MIN	MAX	UNIT
V _{IH}	High-level input voltage		.7*V _{DD2}		V	
V _{IL}	Low-level input voltage			.3*V _{DD2}	V	
V _{OL}	Low-level output voltage	$I_{OL} = 8mA, V_{DD2} = V_{DD2}$ (min)			.2*V _{DD2}	V
V _{OH}	High-level output voltage	I_{OH} = -4mA, V_{DD2} = V_{DD2} (min)	.8*V _{DD2}		V
C_{IN}^{1}	Input capacitance	f = 1MHz @ 0V			12	pF
C _{IO} ¹	Bidirectional I/O capacitance	f = 1MHz @ 0V			12	pF
\mathbf{I}_{IN}	Input leakage current	$V_{IN} = V_{DD2}$ and V_{SS}		-2	2	μA
I _{OZ}	Three-state output leakage current			-2	2	μA
I _{OS} ^{2, 3}	Short-circuit output current			-100	+100	mA
I_{DD1} (OP ₁)		Inputs : $V_{IL} = V_{SS} + 0.2V$	$V_{DD1} = 1.9V$		15	mA
	operating @ 1MHz	$\begin{split} V_{IH} &= V_{DD2} - 0.2V, \ I_{OUT} = 0 \\ V_{DD2} &= V_{DD2} \ (max) \end{split}$	$V_{\rm DD1} = 2.0 V$		18	mA
I_{DD1} (OP ₂)		Inputs : $V_{IL} = V_{SS} + 0.2V$,	$V_{DD1} = 1.9V$		85	mA
	operating @66MHz	$V_{IH} = V_{DD2} - 0.2V, I_{OUT} = 0$ $V_{DD2} = V_{DD2} \text{ (max)}$	V _{DD1} = 2.0V		105	mA
$I_{DD2} (OP_1)$	V _{DD2} Supply current operating @ 1MHz	Inputs : $V_{IL} = V_{SS} + 0.2V$ $V_{IH} = V_{DD2} - 0.2V$, $I_{OUT} = 0$ $V_{DD1} = V_{DD1}$ (max) $V_{DD2} = V_{DD2}$ (max)			1	mA
I _{DD2} (OP ₂)	V _{DD2} Supply current operating @66MHz	Inputs : $V_{IL} = V_{SS} + 0.2V$, $V_{IH} = V_{DD2} - 0.2V$, $I_{OUT} = 0$ $V_{DD1} = V_{DD1}$ (max), $V_{DD2} = V_{DD2}$ (max)			12	mA

$I_{DD1}(SB)^4$	Supply current standby @ 0Hz	CMOS inputs , $I_{OUT} = 0$	V _{DD1} = 1.9V	11	ΜA
		$\overline{E}1 = V_{DD2} - 0.2, E2 = GND$ $V_{DD2} = V_{DD2}$ (max)	$V_{DD1} = 2.0V$	18	mA
$I_{DD2}(SB)^4$			$V_{DD1} =$	100	μ A
			V _{DD1} (max)		
$I_{DD1}(SB)^4$	Supply current standby	CMOS inputs , $I_{OUT} = 0$	$V_{DD1} = 1.9V$	11	ΜA
	A(16:0) @ 66MHz	$\overline{E}1 = V_{DD2} - 0.2$, $E2 = GND$, $V_{DD2} = V_{DD2}$ (max)	$V_{DD1} = 2.0V$	18	mA
$I_{DD2}(SB)^4$			V _{DD1} =	100	μA
			V _{DD1} (max)		

Notes:

* For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.
1. Measured only for initial qualification and after process or design changes that could affect input/output capacitance.
2. Supplied as a design limit but not guaranteed or tested.
3. Not more than one output may be shorted at a time for maximum duration of one second.

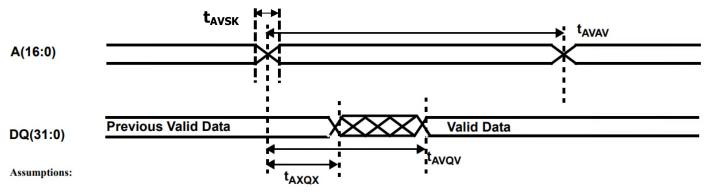
4. $V_{IH} = V_{DD2}$ (max), $V_{IL} = 0V$.

AC CHARACTERISTICS READ CYCLE (PRE AND POST-RADIATION)*

SYMBOL	PARAMETER	8R128	K32-15	UNIT
		MIN	МАХ	
t _{AVAV} ^{1,6}	Read cycle time	15		ns
t _{AVSK} 5	Address valid to address valid skew time		4	ns
t _{avqv}	Address to data valid		15	ns
t _{AXQX} ²	Output hold time from address change	3		ns
t _{GLQX} ^{1,2}	G-controlled output enable time	0		ns
t _{GLQV}	G-controlled output data valid		7	ns
t _{GHQZ} ²	\overline{G} -controlled output three-state time		7	ns
t _{ETQX} ^{2,3}	E-controlled output enable time	5		ns
t _{AVET2} 5	Address setup time for read (E-Controlled)	-4		ns
t _{ETQV} ³	E-controlled access time		15	ns
t _{EFQZ} ⁴	E-controlled output three-state time ²		7	ns
t _{BLQX} 1	LHWE, HHWE Enable to Output in Low-Z	0		ns
t _{BHQZ}	LHWE, HHWE Enable to Output in High-Z		7	ns
t _{BLQV}	LHWE, HHWE Enable to data valid		10	ns

 $V_{DD1} = V_{DD1}$ (min), $V_{DD2} = V_{DD2}$ (min); Unless otherwise noted, Tc is per the temperature ordered

Notes:

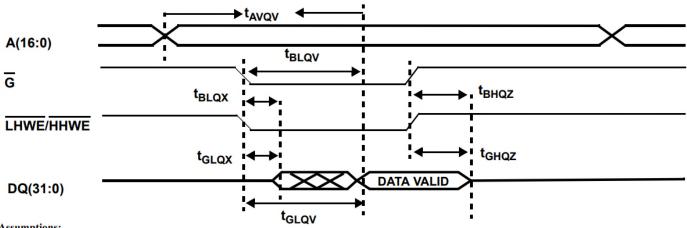

* For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.

Guaranteed, but not tested.
 Three-state is defined as a 200mV change from steady-state output voltage.
 The ET (chip enable true) notation refers to the latter falling edge of E1 or rising edge of E2.

4. The EF (chip enable false) notation refers to the latter rising edge of $\overline{E}1$ or falling edge of E2.

5. Guaranteed by design

6. Address changes prior to satisfying t_{AVAV} minimum is an invalid operation


1. $\overline{E1} \text{ and } \overline{G} \leq V_{IL} \text{ (max) and } E2 \text{ and } \overline{W} \geq V_{IH} \text{ (min)}$

Assumptions:

1. \overline{G} , \overline{HHWE} , $\overline{LHWE} \le V_{IL}$ (max) and $\overline{W} \ge V_{IH}$ (min)

Figure 3b. SRAM Read Cycle 2: Chip Enable Access

Assumptions:

1. $\overline{E1} \leq V_{IL} \mbox{(max)}$, E2 and $\overline{W} \geq V_{IH} \mbox{(min)}$

AC CHARACTERISTICS WRITE CYCLE (PRE AND POST-RADIATION)*

 $V_{DD1} = V_{DD1}$ (min), $V_{DD2} = V_{DD2}$ (min); Unless otherwise noted, Tc is per the temperature ordered

SYMBOL	PARAMETER	8R128	K32-15	UNIT
		MIN	МАХ	
t_{AVAV}^1	Write cycle time	15		ns
t _{etwh}	Chip enable to end of write	12		ns
t_{AVET}	Address setup time for write ($\overline{E}1/E2$ - controlled)	0		ns
t _{AVWL}	Address setup time for write (\overline{W} - controlled)	1		ns
t_{WLWH}	Write pulse width	12		ns
t _{whax}	Address hold time for write (\overline{W} - controlled)	2		ns
t_{EFAX}	Address hold time for chip enable ($\overline{E}1/E2$ -controlled)	2		ns
t _{wLQZ} ²	\overline{W} - controlled three-state time		5	ns
t _{wHQX} ²	\overline{W} - controlled output enable time	4		ns
t_{ETEF}	Chip enable pulse width ($\overline{E}1/E2$ - controlled)	12		ns
t_{DVWH}	Data setup time	7		ns
t_{WHDX}	Data hold time	2		ns
t_{WLEF}	Chip enable controlled write pulse width	12		ns
t_{DVEF}	Data setup time	7		ns
$t_{\sf EFDX}$	Data hold time	2		ns
t _{avwh}	Address valid to end of write	12		ns
t_{WHWL}^1	Write disable time	3		ns
t _{BLWH}	LHWE, HHWE low to write high	12		ns
t _{BLEF}	LHWE, HHWE low to enable high	12		ns

Notes:

*For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.

1. Test with G high.

2. Three-state is defined as 200mV change from steady-state output voltage.

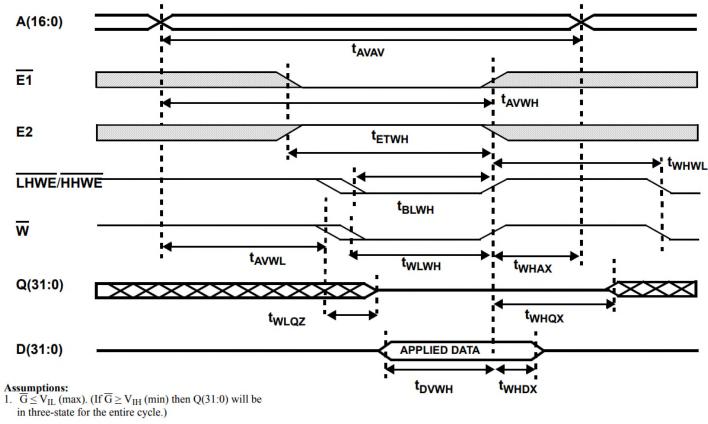
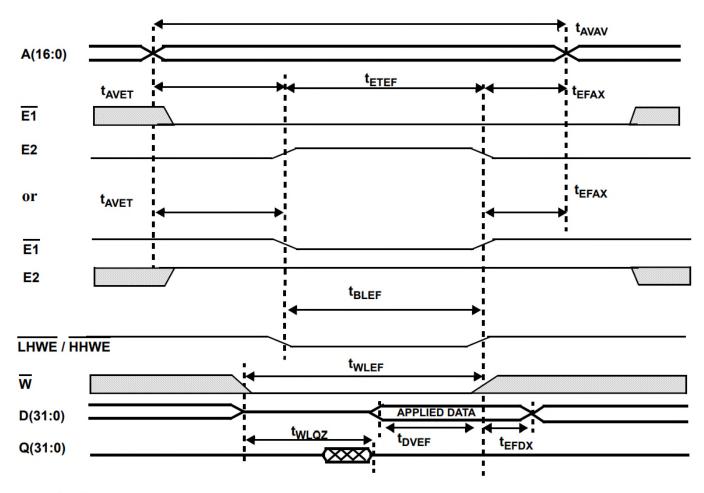



Figure 4a. SRAM Write Cycle 1: W - Controlled Access

Assumptions & Notes: 1. $\overline{G} \leq V_{\underline{IL}}$ (max). (If $\overline{G} \geq V_{IH}$ (min) then Q(31:0) will be in three-state for the entire cycle.) 2. Either $\overline{E1}$ / E2 scenario can occur.

Figure 4b. SRAM Write Cycle 2: Chip Enable - Controlled Access

DATA RETENTION CHARACTERISTICS (PRE-RADIATION)*

$(V_{DD2} = V_{DD2} (min), 1 \text{ Sec DR Pulse})$

SYMBOL	PARAMETER	TEMP	MINIMUM	MAXIMUM	UNIT
V _{DR}	VDD1 for data retention		1.0		V
I _{DDR} ¹	Data retention current	-40°C		600	μA
		-55°C		600	μA
		25°C		600	μA
		125°C		12	mA
t _{EFR} ^{1,2}	Chip deselect to data retention time		0		ns
t _R ^{1,2}	Operation recovery time		t _{avav}		ns

Notes: * For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured. $1.\overline{E}1 = V_{DD2}$ or $E2 = V_{SS}$ all other inputs = V_{DD2} or V_{SS} $2.V_{DD2} = 0$ volts to V_{DD2} (max)

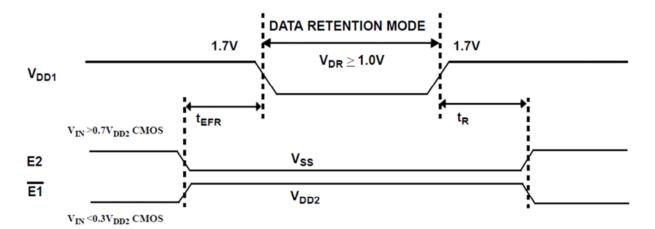
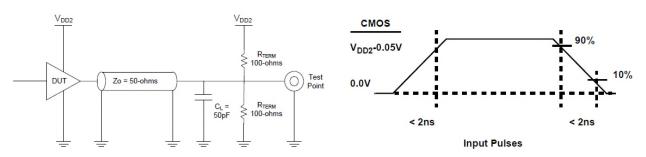



Figure 5. Low V_{DD} Data Retention Waveform

Notes:

1. Measurement of data output occurs at the low to high or high to low transition mid-point (i.e., CMOS input = $V_{DD2}/2$).

Figure 6. AC Test Loads and Input Waveforms

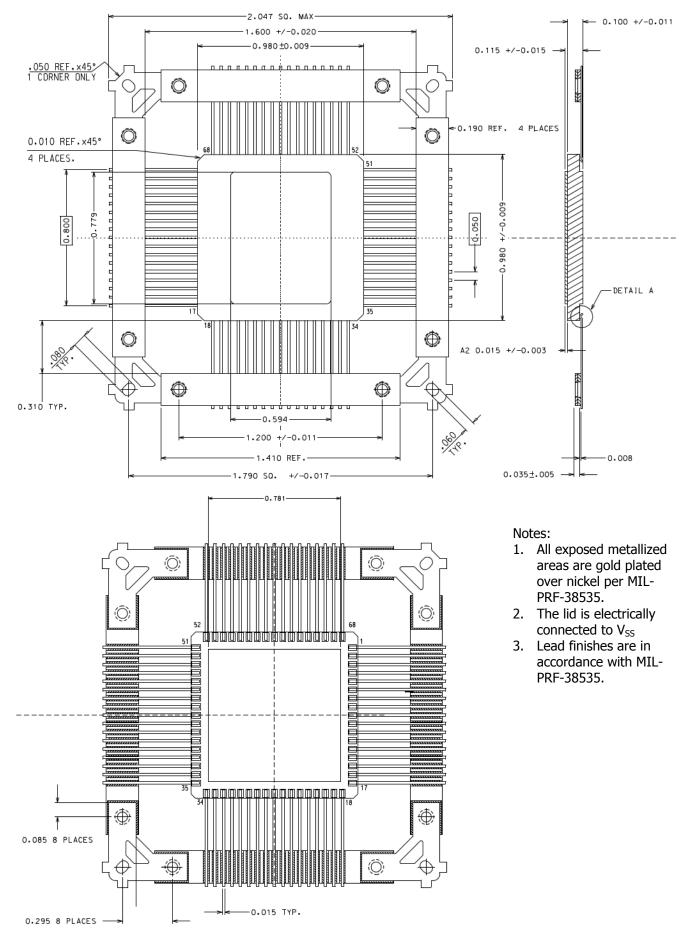
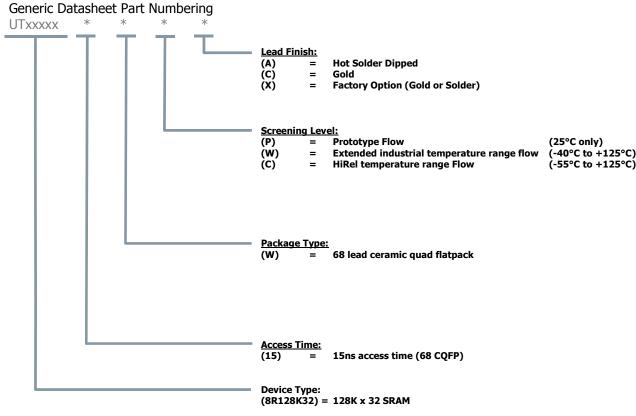
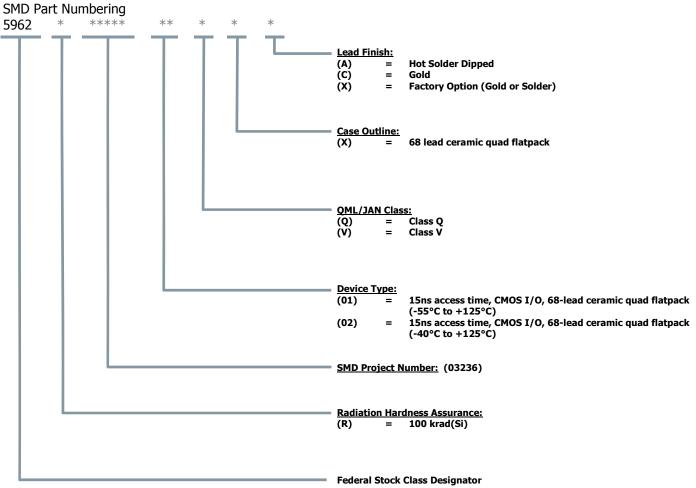



Figure 7. 68-Lead Ceramic Quad Flatpack

9.0 ORDERING INFORMATION


9.1 COBHAM PART NUMBER ORDERING INFORMATION

NOTES:

- 1. Lead finish (A, C, or X) must be specified.
- 2. If an "X" is specified when ordering, then the part marking will match the lead finish and will be either "A" (solder) or "C" (gold).
- Prototype flow per Aeroflex Colorado Springs Manufacturing Flows Document. Tested at 25°C only. Lead finish is GOLD ONLY. Radiation neither tested nor guaranteed.
- 4. HiRel Temperature Range flow per Cobham Colorado Springs Manufacturing Flows Document. Devices are tested at -55°C, room temp, and 125°C. Radiation neither tested nor guaranteed.
- 5. Extended Industrial Range flow per Cobham Colorado Springs Manufacturing Flows Document. Devices are tested at -40°C, room temp, and 125°C. Radiation neither tested nor guaranteed.

NOTES:

- 1. Lead finish (A, C, or X) must be specified.
- 2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).
- 3. Total dose radiation must be specified when ordering. QML Q and QML V not available without radiation hardening

10.0 REVISION HISTORY

Date	Revision	Change Description
March 2020	A	Pkg tolerance correction; removed extra pkg outline; added wording addressing read ap note AN-MEM-002 and added timing parameters to AC Characteristics Read Cycle table, figure 3a, and 3b; Updated V_{DD1} , V_{DD2} , V_{IO} abs max limits to match burn-in testing; Obsolete 300krad TID option. 100krad TID is now the maximum available.

Cobham Semiconductor Solutions – Datasheet Definitions

	Definition
Advanced Datasheet	Cobham reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet <i>is subject to change</i> . Specifications can be <i>TBD</i> and the part package and pinout are <i>not final</i> .
Preliminary Datasheet	Cobham reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in Production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Semiconductor & Space Solutions 4350 Centennial Blvd Colorado Springs, CO 80907

E: info-ams@cobhamaes.com T: 800 645 8862

Cobham Colorado Springs Inc. (Cobham) reserves the right to make changes to any products and services described herein at any time without notice. Consult Cobham or an authorized sales representative to verify that the information in this data sheet is current before using this product. Cobham does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Cobham or of third parties.