PCF1254

FEATURES

- 22 bits of EEPROM code with automatic 2-bit preamble (over 4 × 10⁶ combinations)
- · Guaranteed reprogrammable up to 10 times
- Two operating modes: single or continuous transmission
- Supply voltage 2.5 V to 6.5 V
- High output current drive (typ. 50 mA at 5 V)
- Operating ambient temperature -40 to +85 °C
- · Designed for minimum 10 years data retention.

GENERAL DESCRIPTION

The PCF1254 is intended for remote control access, security or identification systems. The circuit can be used to transmit a programmable 22-bit code to a receiver by infrared or other transmission means. The code is stored in an EEPROM which is programmed by the equipment manufacturer.

ORDERING INFORMATION

EXTENDED TYPE	PACKAGE					
NUMBER	PINS	PIN POSITION	MATERIAL	CODE		
PCF1254P	8	DIL8	plastic	SOT971		
PCF1254T	8	SO8	plastic	SOT96-1		

PCF1254

PINNING

SYMBOL PIN		DESCRIPTION		
n.c.	1	not connected		
MODE	2	mode input to select single transmission (LOW), or continuous transmission (HIGH)		
PROG	3	programming input for the EEPROM		
V_{SS}	4	negative supply		
OUT	5	code output		
SCLK	6	serial clock input to program the EEPROM		
OSC	7	oscillator input and programming input for the EEPROM		
V _{DD}	8	positive supply		

FUNCTIONAL DESCRIPTION

The PCF1254 uses fixed frequency data coding and a 22-bit EEPROM code. A few milliseconds after application of the power supply, the circuit outputs the 22-bit pre-programmed EEPROM code three times in succession (one burst) at OUT (pin 5) in a pulse-width modulated format (see Fig.3). A sequence of two zeroes is automatically transmitted preceding the 22-bit code (preamble). The MODE input (pin 2) selects either a single burst (MODE = V_{SS}) or continuous transmission of bursts (MODE = V_{DD}).

PCF1254

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DD}	supply voltage (pin 8)	-0.3	+7.0	V
V _I	input voltage			
	any input except pin 3	-0.8	V _{DD} + 0.8	v
	pin 3	-0.8	V _{DD} + 3.0	v
T _{amb}	operating ambient temperature	-40	+85	°C
T _{stg(u)}	unprogrammed storage temperature	65	+150	°C
T _{stg(p)}	programmed storage temperature	-65	+85	℃

PCF1254

CHARACTERISTICS

 V_{DD} = 2.5 to 6.5 V; f_{OSC} = 50 kHz; T_{amb} = -40 to +85 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply	<u> </u>					
V _{DD}	operating supply voltage		2.5	T-	6.5	V
I _{DD}	operating supply current	V _{DD} = 5 V; T _{amb} = -25 to +85 °C	-	-	500	μΑ
Inputs (pins	s 2 and 6)	<u></u>				•
V _{IL}	LOW level input voltage -0.8 -		0.3V _{DD}	V		
V _{IH}	HIGH level input voltage		0.7V _{DD}	-	V _{DD} + 0.8	V
l _{IL}	input leakage current	input pin at V _{DD} or V _{SS}		-	1	μА
Input (pin 7	")		_			
V _{IL}	LOW level input voltage	programming	-0.8	T-	0	V
V _{IH}	HIGH level input voltage	programming	V_{DD}	_	V _{DD} + 0.8	V
I _{IL}	input leakage current	input pin at V _{SS}	-1	_	+1	μА
Input (pin 3	3)				-	-
I _I	input current	V _{DD} = 5 V; V _{PROG} = 7.5 V	-		3	mA
Output (pin	5)			•		•
loL	output sink current	V _{DD} = 5 V; V _{OL} = 4 V	25	50	I	mA
l _{он}	output source current	$V_{DD} = 5 \text{ V}; V_{OH} = 0 \text{ V}$	-400	-	-	μА
Oscillator (pin 7)					
fosc	frequency range	$V_{DD} = 3.5 \text{ V};$ $R_{OSC} = 51 \text{ k}\Omega;$ $C_{OSC} = 560 \text{ pF}$	40	-	60	kHz
fosc	maximum frequency		_	_	500	kHz
Input (pin 6	<u> </u>		_		_	
R _{SCLK}	SCLK resistor to V _{SS}		10	-	150	kΩ
EEPROM				-		-
t _{RET}	data retention time		10	-	-	years
t _{CY}	endurance		10	_	1-	cycles

PCF1254

supply voltage (VDD) with 50 kHz oscillator.

of supply voltage.

APPLICATION INFORMATION

A typical application for an oscillator frequency of 50 kHz is shown in Fig.6. Other frequencies may be obtained using the equation $f \approx 1 / (0.7 \times RC)$. For correct operation the following limits apply:

- Minimum resistance = 10 kΩ
- Maximum capacitance = 560 pF
- Maximum frequency = 500 kHz.

PCF1254

EEPROM PROGRAMMING (see Fig.7 and Table 1)

The code is programmed in the EEPROM by the manufacturer. The circuit may be reprogrammed up to a maximum of 10 times. The circuit is delivered with the code all zeroes.

To program the EEPROM the following procedure must be carried out:

- Connect V_{DD} to 5 V; connect pin 3 (PROG) to V_{DD} . The circuit is now in programming mode. Pin 5 (OUT) is disabled and the oscillator is disabled.
- Apply a 5 V, 2 MHz signal to pin 7 (OSC) and input signals to pin 3 (PROG) and pin 6 (SCLK) as shown in Fig.7.
- · Disconnect PROG from VDD.

Erase

PROG is taken to 7.5 V for a time tp.

Data input

With PROG at 7.5 V, a 5 V pulse on SCLK inputs a logic 1, and with PROG at 5 V, a 5 V pulse on SCLK inputs a logic 0. The data must be valid for a time $t_{\rm S}$ before and after the negative edge of SCLK. PROG must not be at 7.5 V for

longer than time t_H but can remain at 5 V indefinitely. PROG must return to 5 V for a time t_L . 24 SCLK pulses must be given, the code is input on pulses 3 to 24. PROG must be 5 V during the other SCLK pulse(s). The data bits are input in the same order as they are transmitted.

Write

PROG is taken to 7.5 v for a time tp.

In normal operation PROG must be connected to V_{SS}. The SCLK input has a 50 k Ω pull-down resistor and can be left open-circuit. Programming can be checked by taking V_{DD} to 0 V and back to 5 V and monitoring OUT. For fast checking a 5 V, 500 kHz signal (0.5 μ s HIGH; 1.5 μ s LOW) can be input at pin 7 (OSC), speeding up the output signal by a factor of 10.

Table 1 Timing values.

PARAMETER	MIN.	TYP.	MAX.	UNIT
tp	4	5	10	ms
t _S	0.5	1.0	_	μs
t _H	-	2	4	μs
tL	10	_	_	μs

PCF1254

