life.augmented

STM32L452xx

Ultra-low-power Arm[®] Cortex[®]-M4 32-bit MCU+FPU, 100DMIPS, up to 512KB Flash, 160KB SRAM, analog, audio, ext. SMPS

Datasheet - production data

Features

- Ultra-low-power with FlexPowerControl
 - 1.71 V to 3.6 V power supply
 - -40 °C to 85/125 °C temperature range
 - 145 nA in V_{BAT} mode: supply for RTC and 32x32-bit backup registers
 - 22 nA Shutdown mode (5 wakeup pins)
 - 106 nA Standby mode (5 wakeup pins)
 - 375 nA Standby mode with RTC
 - 2.05 μA Stop 2 mode, 2.40 μA with RTC
 - 84 μA/MHz run mode (LDO Mode)
 - 36 μA/MHz run mode (@3.3 V SMPS Mode)
 - Batch acquisition mode (BAM)
 - 4 μs wakeup from Stop mode
 - Brown out reset (BOR)
 - Interconnect matrix
- Core: Arm[®] 32-bit Cortex[®]-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator[™]) allowing 0-wait-state execution from Flash memory, frequency up to 80 MHz, MPU, 100DMIPS and DSP instructions
- Performance benchmark
 - 1.25 DMIPS/MHz (Drystone 2.1)
 - 273.55 CoreMark[®] (3.42 CoreMark/MHz @ 80 MHz)
- Energy benchmark
 - 335 ULPMark™ CP score
 - 104 ULPMark™ PP score
- Clock Sources
 - 4 to 48 MHz crystal oscillator
 - 32 kHz crystal oscillator for RTC (LSE)
 - Internal 16 MHz factory-trimmed RC (±1%)
 - Internal low-power 32 kHz RC (±5%)
 - Internal multispeed 100 kHz to 48 MHz oscillator, auto-trimmed by LSE (better than ±0.25 % accuracy)
 - Internal 48 MHz with clock recovery

This is information on a product in full production.

LQFP100 (14×14) UFBGA100 (7×7) WLCSP64 UFQFPN48 (7×7) LQFP64 (10×10) UFBGA64 (5×5) (3.36×3.66) LQFP48 (7×7)

- 2 PLLs for system clock, audio, ADC
- Up to 83 fast I/Os, most 5 V-tolerant
- RTC with HW calendar, alarms and calibration
- Up to 21 capacitive sensing channels: support touchkey, linear and rotary touch sensors
- 12x timers: 1x 16-bit advanced motor-control, 1x 32-bit and 3x 16-bit general purpose, 2x 16bit basic, 2x low-power 16-bit timers (available in Stop mode), 2x watchdogs, SysTick timer
- Memories
 - Up to 512 KB single bank Flash, proprietary code readout protection
 - 160 KB of SRAM including 32 KB with hardware parity check
 - Quad SPI memory interface
- Rich analog peripherals (independent supply)
 - 1x 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200 μA/Msps
 - 1x 12-bit DAC output channels, low-power sample and hold
 - 1x operational amplifier with built-in PGA
 - 2x ultra-low-power comparators
 - Accurate 2.5 V or 2.048 V reference voltage buffered output
- 17x communication interfaces
 - USB 2.0 full-speed crystal less solution with LPM and BCD
 - 1x SAI (serial audio interface)
 - 4x I2C FM+(1 Mbit/s), SMBus/PMBus
 - 3x USARTs (ISO 7816, LIN, IrDA, modem)
 - 1x UART (LIN, IrDA, modem)
 - 1x LPUART (Stop 2 wake-up)
 - 3x SPIs (and 1x Quad SPI)

October 2020 DS11912 Rev 7 1/221

Downloaded from Arrow.com.

- CAN (2.0B Active) and SDMMC interface
- IRTIM (Infrared interface)
- 14-channel DMA controller
- True random number generator

- CRC calculation unit, 96-bit unique ID
- Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™
- All packages are ECOPACK2® compliant

Table 1. Device summary

Reference	Part numbers
STM32L452xx	STM32L452CC, STM32L452RC, STM32L452VC, STM32L452CE, STM32L452RE, STM32L452VE

2/221 DS11912 Rev 7

STM32L452xx Contents

Contents

1	Intro	duction	12
2	Desc	cription	13
3	Fund	ctional overview	17
	3.1	Arm [®] Cortex [®] -M4 core with FPU	17
	3.2	Adaptive real-time memory accelerator (ART Accelerator™)	17
	3.3	Memory protection unit	17
	3.4	Embedded Flash memory	18
	3.5	Embedded SRAM	19
	3.6	Firewall	19
	3.7	Boot modes	
	3.8	Cyclic redundancy check calculation unit (CRC)	20
	3.9	Power supply management	
		3.9.1 Power supply schemes	
		3.9.2 Power supply supervisor	
		3.9.3 Voltage regulator	23
		3.9.4 Low-power modes	23
		3.9.5 Reset mode	31
		3.9.6 VBAT operation	31
	3.10	Interconnect matrix	32
	3.11	Clocks and startup	34
	3.12	General-purpose inputs/outputs (GPIOs)	37
	3.13	Direct memory access controller (DMA)	37
	3.14	Interrupts and events	38
		3.14.1 Nested vectored interrupt controller (NVIC)	
		3.14.2 Extended interrupt/event controller (EXTI)	38
	3.15	Analog to digital converter (ADC)	39
		3.15.1 Temperature sensor	39
		3.15.2 Internal voltage reference (VREFINT)	40
		3.15.3 VBAT battery voltage monitoring	40
	3.16	Digital to analog converter (DAC)	40

Contents STM32L452xx

	3.17	Voltage reference buffer (VREFBUF)	.1
	3.18	Comparators (COMP) 4	.2
	3.19	Operational amplifier (OPAMP) 4	.2
	3.20	Touch sensing controller (TSC)	.2
	3.21	Digital filter for Sigma-Delta modulators (DFSDM) 4	.3
	3.22	Random number generator (RNG)	.5
	3.23	Timers and watchdogs	.5
		3.23.1 Advanced-control timer (TIM1)	۱6
		3.23.2 General-purpose timers (TIM2, TIM3, TIM15, TIM16) 4	6
		3.23.3 Basic timer (TIM6)	₽6
		3.23.4 Low-power timer (LPTIM1 and LPTIM2)	. 7
		3.23.5 Infrared interface (IRTIM)	
		3.23.6 Independent watchdog (IWDG)	
		3.23.7 System window watchdog (WWDG)	
		3.23.8 SysTick timer	
	3.24	Real-time clock (RTC) and backup registers	
	3.25	Inter-integrated circuit interface (I ² C)	
	3.26	Universal synchronous/asynchronous receiver transmitter (USART) 5	
	3.27	Low-power universal asynchronous receiver transmitter (LPUART) 5	
	3.28	Serial peripheral interface (SPI)	2
	3.29	Serial audio interfaces (SAI)	2
	3.30	Controller area network (CAN)	3
	3.31	Secure digital input/output and MultiMediaCards Interface (SDMMC) 5	3
	3.32	Universal serial bus (USB)	4
	3.33	Clock recovery system (CRS) 5	4
	3.34	Quad SPI memory interface (QUADSPI) 5	4
	3.35	Development support	6
		3.35.1 Serial wire JTAG debug port (SWJ-DP)	6
		3.35.2 Embedded Trace Macrocell™	6
4	Pino	uts and pin description	7
5	Mem	ory mapping	8
6	Elect	rical characteristics9	2

Downloaded from Arrow.com.

STM32L452xx Contents

6.1	Parame	eter conditions	. 92
	6.1.1	Minimum and maximum values	92
	6.1.2	Typical values	92
	6.1.3	Typical curves	92
	6.1.4	Loading capacitor	92
	6.1.5	Pin input voltage	92
	6.1.6	Power supply scheme	93
	6.1.7	Current consumption measurement	94
6.2	Absolut	e maximum ratings	. 94
6.3	Operati	ng conditions	. 97
	6.3.1	General operating conditions	97
	6.3.2	Operating conditions at power-up / power-down	98
	6.3.3	Embedded reset and power control block characteristics	98
	6.3.4	Embedded voltage reference	. 101
	6.3.5	Supply current characteristics	. 103
	6.3.6	Wakeup time from low-power modes and voltage scaling transition times	. 127
	6.3.7	External clock source characteristics	. 130
	6.3.8	Internal clock source characteristics	. 135
	6.3.9	PLL characteristics	. 142
	6.3.10	Flash memory characteristics	. 143
	6.3.11	EMC characteristics	. 144
	6.3.12	Electrical sensitivity characteristics	. 145
	6.3.13	I/O current injection characteristics	. 146
	6.3.14	I/O port characteristics	. 147
	6.3.15	NRST pin characteristics	. 152
	6.3.16	Extended interrupt and event controller input (EXTI) characteristics .	. 153
	6.3.17	Analog switches booster	. 153
	6.3.18	Analog-to-Digital converter characteristics	. 154
	6.3.19	Digital-to-Analog converter characteristics	. 167
	6.3.20	Voltage reference buffer characteristics	. 172
	6.3.21	Comparator characteristics	. 174
	6.3.22	Operational amplifiers characteristics	. 175
	6.3.23	Temperature sensor characteristics	. 178
	6.3.24	V _{BAT} monitoring characteristics	. 179
	6.3.25	Timer characteristics	. 179
	6.3.26	Communication interfaces characteristics	. 180

DS11912 Rev 7

Contents STM32L452xx

7	Packa	age info	rmation	193
	7.1	LQFP1	00 package information	. 193
	7.2	UFBGA	.100 package information	. 196
	7.3	LQFP6	4 package information	. 199
	7.4	UFBGA	.64 package information	. 202
	7.5	WLCSF	P64 package information	. 205
	7.6	LQFP48	3 package information	. 209
	7.7	UFQFP	N48 package information	. 212
	7.8	Therma	l characteristics	. 215
		7.8.1	Reference document	. 215
		7.8.2	Selecting the product temperature range	. 215
8	Order	ing info	ormation	218
9	Revis	ion his	tory	219

STM32L452xx List of tables

List of tables

Table 1.	Device summary	2
Table 2.	STM32L452xx family device features and peripheral counts	
Table 3.	Access status versus readout protection level and execution modes	
Table 4.	STM32L452xx modes overview	
Table 5.	Functionalities depending on the working mode	. 29
Table 6.	STM32L452xx peripherals interconnect matrix	. 32
Table 7.	DMA implementation	. 37
Table 8.	Temperature sensor calibration values	
Table 9.	Internal voltage reference calibration values	. 40
Table 10.	DFSDM1 implementation	. 45
Table 11.	Timer feature comparison	. 45
Table 12.	I2C implementation	
Table 13.	STM32L452xx USART/UART/LPUART features	. 50
Table 14.	SAI implementation	. 53
Table 15.	Legend/abbreviations used in the pinout table	. 62
Table 16.	STM32L452xx pin definitions	. 63
Table 17.	Alternate function AF0 to AF7	. 76
Table 18.	Alternate function AF8 to AF15	
Table 19.	STM32L452xx memory map and peripheral register boundary addresses	. 89
Table 20.	Voltage characteristics	
Table 21.	Current characteristics	. 95
Table 22.	Thermal characteristics	. 96
Table 23.	General operating conditions	
Table 24.	Operating conditions at power-up / power-down	. 98
Table 25.	Embedded reset and power control block characteristics	
Table 26.	Embedded internal voltage reference	101
Table 27.	Current consumption in Run and Low-power run modes, code with data processing	
	running from Flash, ART enable (Cache ON Prefetch OFF)	104
Table 28.	Current consumption in Run modes, code with data processing running from Flash,	
	ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS	
		105
Table 29.	Current consumption in Run and Low-power run modes, code with data processing	
	running from Flash, ART disable	106
Table 30.	Current consumption in Run modes, code with data processing running from Flash,	
	ART disable and power supplied by external SMPS (VDD12 = 1.10 V)	107
Table 31.	Current consumption in Run and Low-power run modes, code with data processing	
	running from SRAM1	108
Table 32.	Current consumption in Run, code with data processing running from	
	SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)	109
Table 33.	Typical current consumption in Run and Low-power run modes, with different codes	
	running from Flash, ART enable (Cache ON Prefetch OFF)	110
Table 34.	Typical current consumption in Run, with different codes running from Flash,	
	ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS	
	(VDD12 = 1.10 V)	110
Table 35.	Typical current consumption in Run, with different codes running from Flash,	
	ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS	
-	(VDD12 = 1.05 V)	111
Table 36.	Typical current consumption in Run and Low-power run modes, with different codes	

DS11912 Rev 7 7/221

List of tables STM32L452xx

	running from Flash, ART disable	112
Table 37.	Typical current consumption in Run modes, with different codes running from	
	Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V)	. 112
Table 38.	Typical current consumption in Run modes, with different codesrunning from	
	Flash, ART disable and power supplied by external SMPS (VDD12 = 1.05 V)	. 113
Table 39.	Typical current consumption in Run and Low-power run modes, with different codes	
	running from SRAM1	. 113
Table 40.	Typical current consumption in Run, with different codesrunning from	
	SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V)	. 114
Table 41.	Typical current consumption in Run, with different codesrunning from	
	SRAM1 and power supplied by external SMPS (VDD12 = 1.05 V)	. 114
Table 42.	Current consumption in Sleep and Low-power sleep modes, Flash ON	. 115
Table 43.	Current consumption in Sleep, Flash ON and power supplied by external SMPS	
	(VDD12 = 1.10 V)	. 116
Table 44.	Current consumption in Low-power sleep modes, Flash in power-down	. 116
Table 45.	Current consumption in Stop 2 mode	117
Table 46.	Current consumption in Stop 1 mode	. 119
Table 47.	Current consumption in Stop 0	. 120
Table 48.	Current consumption in Standby mode	. 121
Table 49.	Current consumption in Shutdown mode	122
Table 50.	Current consumption in VBAT mode	123
Table 51.	Peripheral current consumption	125
Table 52.	Low-power mode wakeup timings	127
Table 53.	Regulator modes transition times	129
Table 54.	Wakeup time using USART/LPUART	129
Table 55.	High-speed external user clock characteristics	
Table 56.	Low-speed external user clock characteristics	
Table 57.	HSE oscillator characteristics	
Table 58.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	
Table 59.	HSI16 oscillator characteristics	
Table 60.	MSI oscillator characteristics	
Table 61.	HSI48 oscillator characteristics	
Table 62.	LSI oscillator characteristics	
Table 63.	PLL, PLLSAI1 characteristics	
Table 64.	Flash memory characteristics	
Table 65.	Flash memory endurance and data retention	
Table 66.	EMS characteristics	
Table 67.	EMI characteristics	
Table 68.	ESD absolute maximum ratings	
Table 69.	Electrical sensitivities	
Table 70.	I/O current injection susceptibility	
Table 71.	I/O static characteristics	
Table 72.	Output voltage characteristics	
Table 73.	I/O AC characteristics	
Table 74.	NRST pin characteristics	
Table 75.	EXTI Input Characteristics	
Table 76.	Analog switches booster characteristics	
Table 77.	ADC characteristics	
Table 78.	Maximum ADC RAIN	
Table 79.	ADC accuracy - limited test conditions 1	
Table 80.	ADC accuracy - limited test conditions 2	
Table 81.	ADC accuracy - limited test conditions 3	. 102

ADC accuracy - limited test conditions 4	164
IWDG min/max timeout period at 32 kHz (LSI)	180
• • • • • • • • • • • • • • • • • • • •	
SAI characteristics	188
SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V	190
LQFP100 - Mechanical data	193
UFBGA100 - Mechanical data	196
UFBGA100 - Recommended PCB design rules (0.5 mm pitch BGA)	197
UFBGA64 - Mechanical data	202
UFBGA64 - Recommended PCB design rules (0.5 mm pitch BGA)	203
WLCSP64 - Recommended PCB design rules (0.4 mm pitch)	207
LQFP48 - Mechanical data	210
UFQFPN48 - Mechanical data	213
Package thermal characteristics	215
Document revision history	219
	ADC accuracy - limited test conditions 4 DAC characteristics DAC accuracy. VREFBUF characteristics. COMP characteristics OPAMP characteristics TS characteristics VBAT monitoring characteristics VBAT charging characteristics VBAT charging characteristics IWDG min/max timeout period at 32 kHz (LSI). WWDG min/max timeout value at 80 MHz (PCLK). I2C analog filter characteristics. SPI characteristics Quad SPI characteristics in SDR mode QUADSPI characteristics in DDR mode SAI characteristics SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V. USB electrical characteristics LQFP100 - Mechanical data UFBGA100 - Recommended PCB design rules (0.5 mm pitch BGA). LQFP64 - Mechanical data UFBGA64 - Recommended PCB design rules (0.5 mm pitch BGA). WLCSP64 - Recommended PCB design rules (0.4 mm pitch). LQFP48 - Mechanical data UFBGA64 - Recommended PCB design rules (0.4 mm pitch). LQFP48 - Mechanical data UFCSP64 - Recommended PCB design rules (0.4 mm pitch). LQFP48 - Mechanical data UFCSP64 - Recommended PCB design rules (0.4 mm pitch). LQFP48 - Mechanical data UFQFPN48 - Mechanical data

DS11912 Rev 7 9/221

List of figures STM32L452xx

List of figures

Figure 1.	STM32L452xx block diagram	16
Figure 2.	Power supply overview	21
Figure 3.	Power-up/down sequence	22
Figure 4.	Clock tree	36
Figure 5.	Voltage reference buffer	
Figure 6.	STM32L452Vx LQFP100 pinout ⁽¹⁾	57
Figure 7.	STM32L452Vx UFBGA100 ballout ⁽¹⁾	58
Figure 8.	STM32L452Rx LQFP64 pinout ⁽¹⁾	58
Figure 9.	STM32L452Rx, external SMPS device, LQFP64 pinout ⁽¹⁾	59
Figure 10.	STM32L452Rx UFBGA64 ballout ⁽¹⁾	59
Figure 11.	STM32L452Rx WLCSP64 pinout ⁽¹⁾	60
Figure 12.	STM32L452Rx, external SMPS device, WLCSP64 pinout ⁽¹⁾	60
Figure 13.	STM32L452Cx LQFP48 pinout ⁽¹⁾	61
Figure 14.	STM32L452Cx UFQFPN48 pinout ⁽¹⁾	61
Figure 15.	STM32L452xx memory map	
Figure 16.	Pin loading conditions	92
Figure 17.	Pin input voltage	92
Figure 18.	Power supply scheme	93
Figure 19.	Current consumption measurement scheme with and without external	
	SMPS power supply	94
Figure 20.	VREFINT versus temperature	102
Figure 21.	High-speed external clock source AC timing diagram	130
Figure 22.	Low-speed external clock source AC timing diagram	131
Figure 23.	Typical application with an 8 MHz crystal	133
Figure 24.	Typical application with a 32.768 kHz crystal	134
Figure 25.	HSI16 frequency versus temperature	136
Figure 26.	Typical current consumption versus MSI frequency	140
Figure 27.	HSI48 frequency versus temperature	141
Figure 28.	I/O input characteristics	148
Figure 29.	I/O AC characteristics definition ⁽¹⁾	152
Figure 30.	Recommended NRST pin protection	
Figure 31.	ADC accuracy characteristics	
Figure 32.	Typical connection diagram using the ADC	
Figure 33.	12-bit buffered / non-buffered DAC	
Figure 34.	SPI timing diagram - slave mode and CPHA = 0	
Figure 35.	SPI timing diagram - slave mode and CPHA = 1	
Figure 36.	SPI timing diagram - master mode	
Figure 37.	Quad SPI timing diagram - SDR mode	
Figure 38.	Quad SPI timing diagram - DDR mode	
Figure 39.	SAI master timing waveforms	189
Figure 40.	SAI slave timing waveforms	
Figure 41.	SDIO high-speed mode	
Figure 42.	SD default mode	
Figure 43.	LQFP100 - Outline	
Figure 44.	LQFP100 - Recommended footprint	
Figure 45.	LQFP100 marking (package top view)	
Figure 46.	UFBGA100 -Outline	
Figure 47.	UFBGA100 - Recommended footprint	197

STM32L452xx List of figures

Figure 48.	UFBGA100 marking (package top view)	198
Figure 49.	LQFP64 - Outline	
Figure 50.	LQFP64 - Recommended footprint	200
Figure 51.	LQFP64 marking (package top view)	201
Figure 52.	UFBGA64 - Outline	
Figure 53.	UFBGA64 - Recommended footprint	203
Figure 54.	UFBGA64 marking (package top view)	204
Figure 55.	WLCSP64 - Outline	205
Figure 56.	WLCSP64 - Recommended footprint	206
Figure 57.	WLCSP64 marking (package top view)	207
Figure 58.	WLCSP64, external SMPS device, marking (package top view)	208
Figure 59.	LQFP48 - Outline	209
Figure 60.	LQFP48 - Recommended footprint	211
Figure 61.	LQFP48 marking (package top view)	211
Figure 62.	UFQFPN48 - Outline	212
Figure 63.	UFQFPN48 - Recommended footprint	213
Figure 64.	UFQFPN48 marking (package top view)	214
Fiaure 65.	LQFP64 Pn max vs. T _A	217

DS11912 Rev 7 11/221

Introduction STM32L452xx

Introduction

12/221

Downloaded from Arrow.com.

This datasheet provides the ordering information and mechanical device characteristics of the STM32L452xx microcontrollers.

This document should be read in conjunction with the STM32L41x, STM32L42x, STM32L43x, STM32L44x, STM32L45x, STM32L46x reference manual (RM0394), available from the STMicroelectronics website www.st.com.

For information on the Arm^{®(a)} Cortex[®]-M4 core, refer to the Cortex[®]-M4 Technical Reference Manual, available from the www.arm.com website.

DS11912 Rev 7

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

STM32L452xx Description

2 Description

The STM32L452xx devices are ultra-low-power microcontrollers based on the high-performance Arm[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision that supports all Arm[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32L452xx devices embed high-speed memories (Flash memory up to 512 Kbyte, 160 Kbyte of SRAM), a Quad SPI Flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

The STM32L452xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.

The devices offer a fast 12-bit ADC (5 Msps), two comparators, one operational amplifier, one DAC channel, an internal voltage reference buffer, a low-power RTC, one general-purpose 32-bit timer, one 16-bit PWM timer dedicated to motor control, four general-purpose 16-bit timers, and two 16-bit low-power timers.

In addition, up to 21 capacitive sensing channels are available.

They also feature standard and advanced communication interfaces, namely four I2Cs, three SPIs, three USARTs, one UART and one Low-Power UART, one SAI, one SDMMC, one CAN, one USB full-speed device crystal less.

The STM32L452xx operates in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V V_{DD} power supply when using internal LDO regulator and a 1.05 to 1.32V V_{DD12} power supply when using external SMPS supply. A comprehensive set of power-saving modes makes possible the design of low-power applications.

Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMP and comparators. A VBAT input makes it possible to backup the RTC and backup registers. Dedicated V_{DD12} power supplies can be used to bypass the internal LDO regulator when connected to an external SMPS.

The STM32L452xx family offers seven packages from 48 to 100-pin packages.

DS11912 Rev 7 13/221

Description STM32L452xx

Table 2. STM32L452xx family device features and peripheral counts

	able 2. STM32 ripheral		L452Vx	STM32	· · · · · · · · · · · · · · · · · · ·		L452Cx			
Flash memory		256KB	512KB	256KB	512KB	256KB	512KB			
SRAM				160)KB		l			
Quad SPI				Ye	es					
	Advanced control			1 (16	6-bit)					
	General purpose		2 (16-bit) 1 (32-bit)							
	Basic		2 (16-bit)							
Timers	Low -power			2 (16	6-bit)					
	SysTick timer				1					
	Watchdog timers (independent, window)			2	2					
	SPI			3	3					
	I ² C			4	1					
Comm.	USART UART LPUART	3 1 1								
interfaces	SAI	1								
	CAN	1								
	USB FS	Yes								
	SDMMC	Yes ⁽¹⁾			N	lo				
RTC				Ye	es					
Tamper pir	ıs	;	3	2	2		2			
Random g	enerator			Ye	es					
GPIOs ⁽²⁾ Wakeup pi	ns		3 5	5 4 ⁰	2 (1)		38 3			
Capacitive sensing Number of channels		2	.1	1	2	ı	6			
12-bit ADC Number of channels		1 1 1 16 16 ⁽¹⁾ 10								
12-bit DAC channels		1								
Internal voltage reference buffer		Yes No								
Analog cor	nparator	2								
Operationa	al amplifiers	1								
Max. CPU	frequency	80 MHz								

14/221 DS11912 Rev 7

STM32L452xx Description

Table 2. STM32L452xx family device features and peripheral counts (continued)

	_			
Peripheral	STM32L452Vx	STM32L452Rx	STM32L452Cx	
Operating voltage	1.71 to 3.6 V			
Operating temperature	-4	bient operating temperat 40 to 85 °C / -40 to 125 ° Junction temperature: 0 to 105 °C / -40 to 130 °	С	
Packages	LQFP100 UFBGA100	WLCSP64 LQFP64 UFBGA64	LQFP48 UFQFPN48	

WKUP5, ADC1_IN14 and SDMMC interface are not supported by 64-pin packages with SMPS option.

In case external SMPS package type is used, 2 GPIO's are replaced by VDD12 pins to connect the SMPS power supplies hence reducing the number of available GPIO's by 2.

Description STM32L452xx

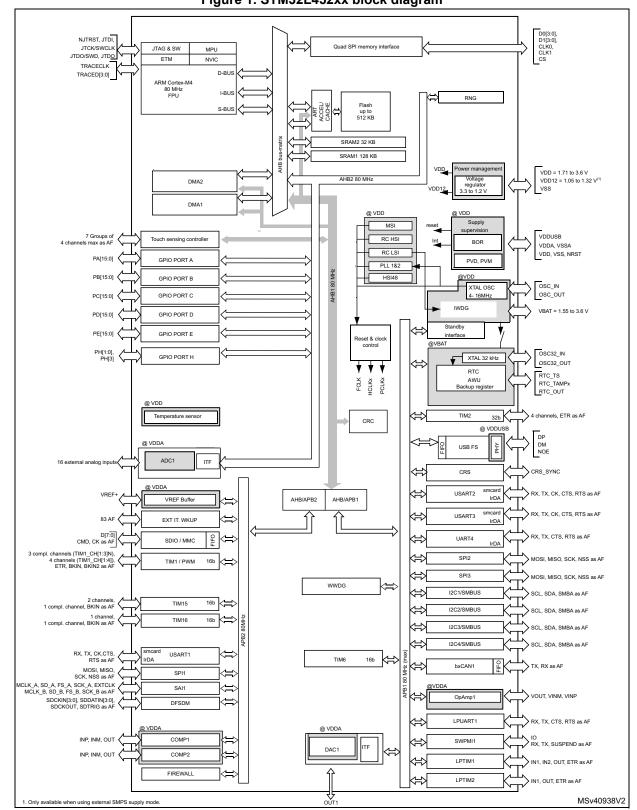


Figure 1. STM32L452xx block diagram

Note: AF: alternate function on I/O pins.

16/221 DS11912 Rev 7

3 Functional overview

3.1 Arm[®] Cortex[®]-M4 core with FPU

The Arm[®] Cortex[®]-M4 with FPU processor is the latest generation of Arm[®] processors for embedded systems, developed to provide a low-cost platform that meets the needs of MCU implementation with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The Arm[®] Cortex[®]-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm[®] core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions enabling efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded Arm[®] core, the STM32L452xx family is compatible with all Arm[®] tools and software.

Figure 1 shows the general block diagram of the STM32L452xx family devices.

3.2 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator optimized for STM32 industry-standard Arm® Cortex®-M4 processors. It balances the inherent performance advantage of the Arm® Cortex®-M4 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor near 100 DMIPS performance at 80 MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 80 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 Gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

DS11912 Rev 7 17/221

3.4 Embedded Flash memory

STM32L452xx devices feature up to 512 Kbyte of embedded Flash memory available for storing programs and data in single bank architecture. The Flash memory contains 256 pages of 2 Kbyte.

Flexible protections can be configured thanks to option bytes:

- Readout protection (RDP) to protect the whole memory. Three levels are available:
 - Level 0: no readout protection
 - Level 1: memory readout protection: the Flash memory cannot be read from or written to if either debug features are connected, boot in RAM or bootloader is selected
 - Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.

Area	Protection	U	oot from RA tem memor				
	level	Read	Write	Erase	Read	Write	Erase
Main	1	Yes	Yes	Yes	No	No	No
memory	2	Yes	Yes	Yes	N/A	N/A	N/A
System	1	Yes	No	No	Yes	No	No
memory	2	Yes	No	No	N/A	N/A	N/A
Option	1	Yes	Yes	Yes	Yes	Yes	Yes
bytes	2	Yes	No	No	N/A	N/A	N/A
Backup	1	Yes	Yes	N/A ⁽¹⁾	No	No	N/A ⁽¹⁾
registers	2	Yes	Yes	N/A	N/A	N/A	N/A
	1	Yes	Yes	Yes ⁽¹⁾	No	No	No ⁽¹⁾

Yes

N/A

N/A

N/A

Table 3. Access status versus readout protection level and execution modes

Yes

 Write protection (WRP): the protected area is protected against erasing and programming. Two areas can be selected, with 2-Kbyte granularity.

Yes

Proprietary code readout protection (PCROP): a part of the flash memory can be protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU, as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP) allows the user to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.

The whole non-volatile memory embeds the error correction code (ECC) feature supporting:

- single error detection and correction
- double error detection.

SRAM2

18/221 DS11912 Rev 7

^{1.} Erased when RDP change from Level 1 to Level 0.

The address of the ECC fail can be read in the ECC register.

3.5 Embedded SRAM

STM32L452xx devices feature 160 Kbyte of embedded SRAM, split into two blocks:

- 128 Kbyte mapped at address 0x2000 0000 (SRAM1)
- 32 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).

This memory is also mapped at address 0x2002 0000, offering a contiguous address space with the SRAM1 (32 Kbyte aliased by bit band)

This block is accessed through the ICode/DCode buses for maximum performance. These 32 Kbyte SRAM can also be retained in Standby mode.

The SRAM2 can be write-protected with 1 Kbyte granularity.

The memory can be accessed in read/write at CPU clock speed with 0 wait states.

3.6 Firewall

The device embeds a Firewall which protects code sensitive and secure data from any access performed by a code executed outside of the protected areas.

Each illegal access generates a reset which kills immediately the detected intrusion.

The Firewall main features are the following:

- Three segments can be protected and defined thanks to the Firewall registers:
 - Code segment (located in Flash or SRAM1 if defined as executable protected area)
 - Non-volatile data segment (located in Flash)
 - Volatile data segment (located in SRAM1)
- The start address and the length of each segments are configurable:
 - Code segment: up to 1024 Kbyte with granularity of 256 bytes
 - Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes
 - Volatile data segment: up to 128 Kbyte with a granularity of 64 bytes
- Specific mechanism implemented to open the Firewall to get access to the protected areas (call gate entry sequence)
- Volatile data segment can be shared or not with the non-protected code
- Volatile data segment can be executed or not depending on the Firewall configuration

The Flash readout protection must be set to level 2 in order to reach the expected level of protection.

3.7 Boot modes

At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed.

A Flash empty check mechanism is implemented to force the boot from system flash if the first flash memory location is not programmed and if the boot selection is configured to boot from main flash.

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, CAN or USB FS in Device mode through DFU (device firmware upgrade).

3.8 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.9 Power supply management

3.9.1 Power supply schemes

Downloaded from Arrow.com.

- V_{DD} = 1.71 to 3.6 V: external power supply for I/Os (V_{DDIO1}), the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through VDD pins.
- V_{DD12} = 1.05 to 1.32 V: external power supply bypassing internal regulator when connected to an external SMPS. It is provided externally through VDD12 pins and only available on packages with the external SMPS supply option. VDD12 does not require any external decoupling capacitance and cannot support any external load.
- V_{DDA} = 1.62 V (ADC/COMPs) / 1.8 (DAC/OPAMP) / 2.4 V (VREFBUF) to 3.6 V: external analog power supply for ADC, DAC, OPAMP, Comparators and Voltage reference buffer. The V_{DDA} voltage level is independent from the V_{DD} voltage.
- V_{DDUSB} = 3.0 to 3.6 V: external independent power supply for USB transceivers. The V_{DDUSB} voltage level is independent from the V_{DD} voltage.
- V_{BAT} = 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Note: When the functions supplied by V_{DDA} are not used, this supply should preferably be shorted to V_{DD} .

Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V

Note: V_{DDIOx} is the I/Os general purpose digital functions supply. V_{DDIOx} represents V_{DDIO1} , with $V_{DDIO1} = V_{DD}$.

20/221 DS11912 Rev 7

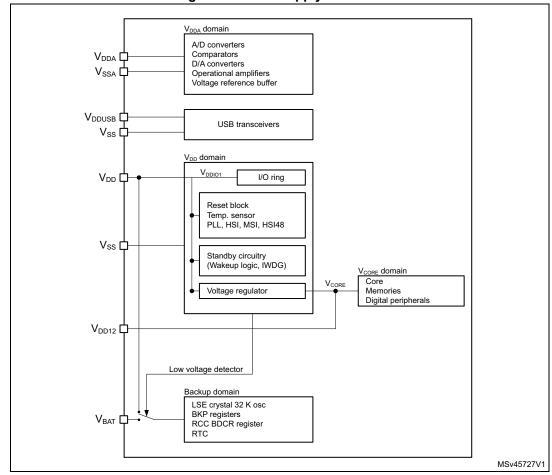


Figure 2. Power supply overview

During power-up and power-down phases, the following power sequence requirements must be respected:

- When V_{DD} is below 1 V, other power supplies (V_{DDA}) must remain below V_{DD} + 300 mV.
- When V_{DD} is above 1 V, all power supplies are independent.

During the power-down phase, V_{DD} can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ; this allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase.

DS11912 Rev 7 21/221

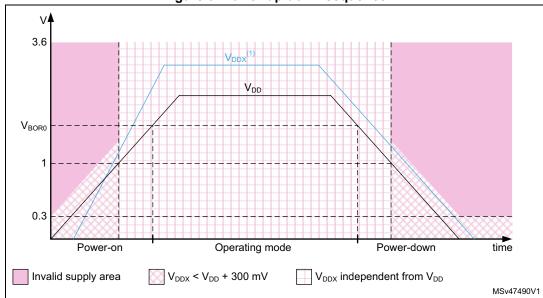


Figure 3. Power-up/down sequence

1. V_{DDX} refers to V_{DDA}.

3.9.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the VPVD threshold and/or when V_{DD} is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltage V_{DDA} with a fixed threshold in order to ensure that the peripheral is in its functional supply range.

47/

3.9.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).

- The MR is used in the Run and Sleep modes and in the Stop 0 mode.
- The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is also used to supply the 32 Kbyte SRAM2 in Standby with SRAM2 retention.
- Both regulators are in power-down in Standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The ultralow-power STM32L452xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (V_{CORE}) can be adjusted according to the system's maximum operating frequency.

There are two power consumption ranges:

- Range 1 with the CPU running at up to 80 MHz.
- Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also limited to 26 MHz.

The V_{CORE} can be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode.

 Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by HSI16.

When the MR is in use, the STM32L452xx with the external SMPS option permits to force an external V_{CORE} supply on the VDD12 supply pins.

When V_{DD12} is forced by an external source and is higher than the output of the internal LDO, the current is taken from this external supply and the overall power efficiency is significantly improved if using an external step down DC/DC converter.

3.9.4 Low-power modes

The ultra-low-power STM32L452xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources.

DS11912 Rev 7 23/221

Table 4. STM32L452xx modes overview

	(1)		i			Table 4: STM3ZL43ZXX IIIOUes OVELVIEW		(8)	;
	Regulator''	CPU	Flash	SRAM	Clocks	DMA and Peripherals ^(≤)	Wakeup source	Consumption	Wakeup time
	MR range 1					= <		94 µA/MHz	
	SMPS range 2 High	\$	(9)140	2	\ \	₹		34 µA/MHz ⁽⁴⁾	<u> </u>
_	MR range2	S D		5	Ś	ONG SE GOLL PROCESS IN	4/2	85 µA/MHz	<u>(</u>
	SMPS range 2 Low					All except COB_TO, NIVG		37 µA/MHz ⁽⁵⁾	
LPRun	LPR	Yes	(9)NO	NO	Any except PLL	All except USB_FS, RNG	N/A	2HW/VH 56	to Range 1: 4 µs to Range 2: 64 µs
l -	MR range 1					= <		27 µA/MHz	
_	SMPS range 2 High	2	(9)	(Z)IVO	Š	₹	Any interrupt or	10 µA/MHz ⁽⁴⁾	20/07/0
Oldep	MR range2	2			Σ.	ONG 33 GSI Haccock IIV	event	27 µA/MHz	c) c) cles
_	SMPS range 2 Low					All except 0.05 Log Nive		11 µA/MHz ⁽⁵⁾	
LPSleep	LPR	o N	(9)NO	ON ⁽⁷⁾	Any except PLL	All except USB_FS, RNG	Any interrupt or event	38 µA/MHz	6 cycles
	MR Range 1 ⁽⁸⁾	:		;	LSE	BOR, PVD, PVM RTC, IWDG COMPx (x=1,2) DAC1 OPAMPx (x=1) USARTx (x=13) ⁽⁹⁾	Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=12) USARTx (x=13) ⁽⁹⁾	125 µA	2.47 us in SRAM
Stop 0	MR Range 2 ⁽⁸⁾	0 Z	40	O O	LSI	UART4(9) LPUART1(9) 12Cx (x=14) ⁽¹⁰⁾ LPTIMx (x=1,2) *** All other peripherals are frozen.	UART4 ⁽⁹⁾ LPUART1 ⁽⁹⁾ I2Cx (x=14) ⁽¹⁰⁾ LPTIMx (x=1,2) USB_FS ⁽¹¹⁾	125 µА	4.1 µs in Flash

24/221 DS11912 Rev 7

Table 4. STM32L452xx modes overview (continued)

			•	-	1	Table 4: O INICELTORY INCIDES OVER (COMMISSES)	continued,		
Mode	Regulator ⁽¹⁾	CPU	Flash	SRAM	Clocks	DMA and Peripherals ⁽²⁾	Wakeup source	Consumption ⁽³⁾	Wakeup time
Stop 1	LPR	9 8	Off	NO	rse Lse	BOR, PVD, PVM RTC, IWDG COMPx (x=1,2) DAC1 OPAMPx (x=1) USARTx (x=13) ⁽⁹⁾ UART4 ⁽⁹⁾ LPUART1 ⁽⁹⁾ I2Cx (x=14) ⁽¹⁰⁾ LPTIMx (x=1,2) *** All other peripherals are frozen.	Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=12) USARTx (x=13) ⁽⁹⁾ UART4 ⁽⁹⁾ LPUART1 ⁽⁹⁾ I2Cx (x=14) ⁽¹⁰⁾ LPTIMx (x=1,2) USB_FS ⁽¹¹⁾	9.85 μΑ w/o RTC 10.5 μΑ w RTC	5.7 µs in SRAM 7 µs in Flash
Stop 2	LPR	No	ЭÚ	NO	rsi Lse	BOR, PVD, PVM RTC, IWDG COMPx (x=12) 12C3 ⁽¹⁰⁾ LPUART1 ⁽⁹⁾ LPTIM1 *** All other peripherals are frozen.	Reset pin, all I/Os BOR, PVD, PVM RTC, IWDG COMPx (x=12) I2C3 ⁽¹⁰⁾ LPUART1 ⁽⁹⁾	2.05 µA w/o RTC 2.30 µA w/RTC	5.8 µs in SRAM 8.3 µs in Flash

4

DS11912 Rev 7

25/221

Table 4. STM32L452xx modes overview (continued)

Mode	Regulator ⁽¹⁾	CPU	Flash	SRAM	CPU Flash SRAM Clocks	DMA and Peripherals ⁽²⁾	Wakeup source	Consumption ⁽³⁾	Wakeup time
	LPR			SRAM 2 ON		BOR, RTC, IWDG		0.35 µA w/o RTC 0.52 µA w/ RTC	
Standby	OFF	Power ed Off	#O	Power	LSE	All other peripherals are powered off. ***	Reset pin 5 I/Os (WKUPx) ⁽¹²⁾ BOR, RTC, IWDG	0.10 µA w/o RTC	16.1 µs
				Off		I/O configuration can be floating, pull-up or pull-down		0.27 µA w/ RIC	
						RTC ***			
Shutdown	OFF	Power ed Off	JJO	Power ed	LSE	All other peripherals are powered off.	Reset pin 5 I/Os (WKUPx) ⁽¹²⁾	0.02 µA w/o RTC 0.17 µA w/ RTC	256 µs
				5		I/O configuration can be floating, pull-up or pull- down ⁽¹³⁾	RIC		

LPR means Main regulator is OFF and Low-power regulator is ON.

All peripherals can be active or clock gated to save power consumption.

Typical current at V_{DD} = 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in LPRun/LPSleep.

Theoretical value based on V_{DD} = 3.3 V, DC/DC Efficiency of 85%, V_{CORE} = 1.10 V

Theoretical value based on V_{DD} = 3.3 V, DC/DC Efficiency of 85%, V_{CORE} = 1.05 V

The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.

The SRAM1 and SRAM2 clocks can be gated on or off independently.

SMPS mode can be used in STOP0 Mode, but no significant power gain can be expected.

U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.

12C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.

11. USB_FS wakeup by resume from suspend and attach detection protocol event.

12. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.

I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode. 3

26/221 DS11912 Rev 7

By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Low-power run mode

This mode is achieved with V_{CORE} supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.

• Low-power sleep mode

This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the low-power run mode.

Stop 0, Stop 1 and Stop 2 modes

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the V_{CORE} domain are stopped, the PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode to detect their wakeup condition.

Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the V_{CORE} domain is put in a lower leakage mode.

Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.

The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.

Standby mode

The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the V_{CORE} domain is powered off. The PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.

The RTC can remain active (Standby mode with RTC, Standby mode without RTC).

The brown-out reset (BOR) always remains active in Standby mode.

The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.

After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention mode).

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).

The system clock after wakeup is MSI up to 8 MHz.

DS11912 Rev 7 27/221

Downloaded from **Arrow.com**.

• Shutdown mode

The Shutdown mode permits to achieve the lowest power consumption. The internal regulator is switched off so that the V_{CORE} domain is powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also switched off.

The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).

The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.

SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain.

The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).

The system clock after wakeup is MSI at 4 MHz.

Table 5. Functionalities depending on the working mode⁽¹⁾

					Stop	0/1	Sto	р 2	Stan	dby	Shute	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	1	Wakeup capability	,	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
CPU	Υ	-	Υ	-	-	-	-	-	-	-	-	-	-
Flash memory (up to 512 KB)	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	O ⁽²⁾	-		-	-	-	-	-	-	-
SRAM1 (128 KB)	Υ	Y ⁽³⁾	Υ	Y ⁽³⁾	Υ	-	Υ	-	_	-	-	-	-
SRAM2 (32 KB)	Υ	Y ⁽³⁾	Υ	Y ⁽³⁾	Υ	-	Υ	-	O ⁽⁴⁾	-	-	-	-
Quad SPI	0	0	0	0	-	-	-	-	-	-	-	-	-
Backup registers	Υ	Y	Υ	Υ	Υ	-	Υ	-	Υ	-	Υ	-	Υ
Brown-out reset (BOR)	Y	Y	Y	Y	Y	Y	Y	Υ	Y	Υ	-	-	-
Programmable voltage detector (PVD)	0	0	0	0	0	0	0	0	-	-	-	-	-
Peripheral voltage monitor (PVMx; x=1,3,4)	0	0	0	0	0	0	0	0	-	-	-	-	-
DMA	0	0	0	0	-	-	-	-	-	-	-	-	-
High speed Internal (HSI16)	0	0	0	0	(5)	,	(5)	-	-	-	-	-	-
Oscillator RC48	0	0	-	-	-	-	-	-	-	-	-	-	-
High speed external (HSE)	0	0	0	0	-	,	-	-	-	-	-	-	-
Low speed internal (LSI)	0	0	0	0	0	•	0	-	0	-	-	-	-
Low speed external (LSE)	0	0	0	0	0		0	-	0	-	0	-	0
Multi-Speed internal (MSI)	0	0	0	0	ı	-	ı	-	-	-	-	-	-
Clock security system (CSS)	0	0	0	0	ı	-	ı	-	-	-	-	-	-
Clock security system on LSE	0	0	0	0	0	0	0	0	0	0	-	-	-
RTC / Auto wakeup	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of RTC Tamper pins	3	3	3	3	3	0	3	0	3	0	3	0	3

DS11912 Rev 7 29/221

Table 5. Functionalities depending on the working mode⁽¹⁾ (continued)

			ies dep		Stop			р 2		ndby	1	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	1	Wakeup capability	1	Wakeup capability	-	Wakeup capability	VBAT
USARTx (x=1,2,3) UART4	0	0	0	0	O ⁽⁶⁾	O ⁽⁶⁾	-	-	-	-	-	-	1
Low-power UART (LPUART)	0	0	0	0	O ⁽⁶⁾	O ⁽⁶⁾	O ⁽⁶⁾	O ⁽⁶⁾	-	-	-	-	-
I2Cx (x=1,2,4)	0	0	0	0	O ⁽⁷⁾	O ⁽⁷⁾	-	-	-	-	-	-	-
I2C3	0	0	0	0	O ⁽⁷⁾	O ⁽⁷⁾	O ⁽⁷⁾	O ⁽⁷⁾	ı	-	-	-	-
SPIx (x=1,2,3)	0	0	0	0	-	-	-	-	-	-	-	-	-
CAN	0	0	0	0	-	-	-	-	•	-	-	-	-
SDMMC1	0	0	0	0	-	-	-	-	-	-	-	-	-
SAIx (x=1)	0	0	0	0	-	-	-	-	-	-	-	-	-
DFSDM1	0	0	0	0	-	-	-	-	ı	-	-	-	-
ADCx (x=1)	0	0	0	0	-	-	-	-	-	-	-	-	-
DAC1	0	0	0	0	0	-	-	-	-	-	-	-	-
VREFBUF	0	0	0	0	0	-	-	-	•	-	-	-	-
OPAMPx (x=1)	0	0	0	0	0	-	-	-	-	-	-	-	-
COMPx (x=1,2)	0	0	0	0	0	0	0	0	-	-	-	-	-
Temperature sensor	0	0	0	0	-	-	-	-	•	-	-	-	-
Timers (TIMx)	0	0	0	0	-	-	-	-	-	-	-	-	-
Low-power timer 1 (LPTIM1)	0	0	0	0	0	0	0	0	-	-	-	-	-
Low-power timer 2 (LPTIM2)	0	0	0	0	0	0	-	-	-	-	-	-	-
Independent watchdog (IWDG)	0	0	0	0	0	0	0	0	0	0	-	-	1
Window watchdog (WWDG)	0	0	0	0	-	-	-	-	-	-	-	-	-
SysTick timer	0	0	0	0	-	-	-	-	ı	-	-	-	-
Touch sensing controller (TSC)	0	0	0	0	-	-	-	-	-	-	-	-	-
Random number generator (RNG)	O ⁽⁸⁾	O ⁽⁸⁾	-	-	-	-	-	-	-	-	-	-	-

30/221 DS11912 Rev 7

Shutdown Stop 0/1 Stop 2 Standby Wakeup capability Wakeup capability Wakeup capability capability Low-Low-**VBAT Peripheral** Run Sleep power power run sleep Wakeup CRC calculation unit 0 0 0 O 5 5 (9)(11)**GPIOs** 0 pins 0 0 0 0 0 0 \circ pins (10)(10)

Table 5. Functionalities depending on the working mode⁽¹⁾ (continued)

- 1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). = Not available.
- 2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
- 3. The SRAM clock can be gated on or off.
- 4. SRAM2 content is preserved when the bit RRS is set in PWR CR3 register.
- Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
- UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
- 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
- 8. Voltage scaling Range 1 only.
- 9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
- 10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
- 11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

3.9.5 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.9.6 VBAT operation

The VBAT pin permits to power the device VBAT domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode.

VBAT operation is automatically activated when V_{DD} is not present.

An internal VBAT battery charging circuit is embedded and can be activated when V_{DD} is present.

Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation.

DS11912 Rev 7 31/221

3.10 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run and sleep, Stop 0, Stop 1 and Stop 2 modes.

Table 6. STM32L452xx peripherals interconnect matrix

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
	TIMx	Timers synchronization or chaining	Υ	Υ	Υ	Υ	-	-
TIMx	ADCx DAC1 DFSDM1	Conversion triggers	Υ	Υ	Υ	Υ	1	-
	DMA	Memory to memory transfer trigger	Υ	Υ	Υ	Υ	-	-
	COMPx	Comparator output blanking	Υ	Υ	Υ	Υ	1	-
TIM15/TIM16	IRTIM	Infrared interface output generation	Υ	Υ	Υ	Υ	1	-
COMPx	TIM1 TIM2	Timer input channel, trigger, break from analog signals comparison	Υ	Υ	Υ	Υ	1	-
COIVIPX	LPTIMERx	Low-power timer triggered by analog signals comparison	Υ	Υ	Υ	Υ	Υ	Y (1)
ADCx	TIM1	Timer triggered by analog watchdog	Υ	Υ	Υ	Υ	-	-
	TIM16	Timer input channel from RTC events	Υ	Υ	Υ	Υ	-	-
RTC	LPTIMERx	Low-power timer triggered by RTC alarms or tampers	Υ	Υ	Υ	Υ	Υ	Y (1)
All clocks sources (internal and external)	TIM2 TIM15, 16	Clock source used as input channel for RC measurement and trimming	Υ	Υ	Υ	Υ	-	-
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx PVD DFSDM1 (analog watchdog, short circuit detection)	TIM1 TIM15,16	Timer break	Υ	Y	Y	Υ	-	-

Table 6. STM32L452xx peripherals interconnect matrix (continued)

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
	TIMx	External trigger	Υ	Υ	Υ	Υ	•	-
GPIO	LPTIMERX	External trigger	Y	Υ	Υ	Υ	Υ	Y (1)
	ADCx DAC1 DFSDM1	Conversion external trigger	Υ	Υ	Υ	Υ	1	-

^{1.} LPTIM1 only.

3.11 Clocks and startup

The clock controller (see *Figure 4*) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching:** clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management:** to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- System clock source: four different clock sources can be used to drive the master clock SYSCLK:
 - 4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
 - System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency at 80 MHz.
- RC48 with clock recovery system (HSI48): internal RC48 MHz clock source can be used to drive the SDMMC or the RNG peripherals. This clock can be output on the MCO.
- Auxiliary clock source: two ultralow-power clock sources that can be used to drive the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
 The LSI clock accuracy is ±5% accuracy.
- Peripheral clock sources: Several peripherals (SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC) have their own independent clock whatever the system clock. Two PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the SDMMC/RNG and the SAI.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 4 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software

interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt.

- Clock-out capability:
 - MCO: microcontroller clock output: it outputs one of the internal clocks for external use by the application. Low frequency clocks (LSI, LSE) are available down to Stop 1 low power state.
 - LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes down to Standby mode. LSE can also be output on LSCO in Shutdown mode. LSCO is not available in VBAT mode.

Several prescalers permit to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 80 MHz.

DS11912 Rev 7 35/221

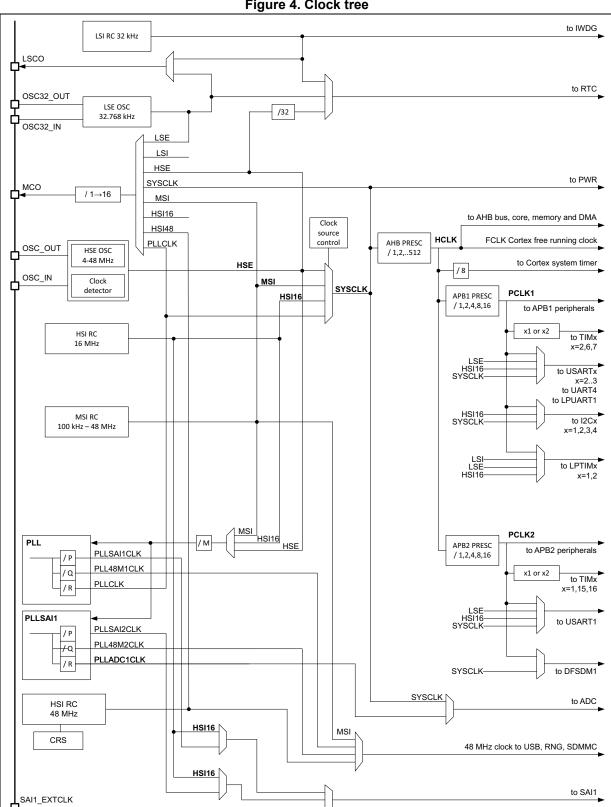


Figure 4. Clock tree

MSv40980V2

3.12 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.13 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to *Table 7: DMA implementation* for the features implementation.

Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations.

The two DMA controllers have 14 channels in total, each dedicated to managing memory access requests from one or more peripherals. Each has an arbiter for handling the priority between DMA requests.

The DMA supports:

- 14 independently configurable channels (requests)
- Each channel is connected to dedicated hardware DMA requests, software trigger is also supported on each channel. This configuration is done by software.
- Priorities between requests from channels of one DMA are software programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (example: request 1 has priority over request 2)
- Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size.
- Support for circular buffer management
- 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error) logically ORed together in a single interrupt request for each channel
- Memory-to-memory transfer
- Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral transfers
- Access to Flash, SRAM, APB and AHB peripherals as source and destination
- Programmable number of data to be transferred: up to 65536.

Table 7. DMA implementation

DMA features	DMA1	DMA2
Number of regular channels	7	7

DS11912 Rev 7 37/221

3.14 Interrupts and events

3.14.1 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 67 maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M4.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.14.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 37 edge detector lines used to generate interrupt/event requests and wake-up the system from Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 83 GPIOs can be connected to the 16 external interrupt lines.

3.15 Analog to digital converter (ADC)

The device embeds a successive approximation analog-to-digital converter with the following features:

- 12-bit native resolution, with built-in calibration
- 5.33 Msps maximum conversion rate with full resolution
 - Down to 18.75 ns sampling time
 - Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit resolution)
- Up to 16 external channels.
- 4 internal channels: internal reference voltage, temperature sensor, VBAT/3 and DAC1_OUT1.
- One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
- Single-ended and differential mode inputs
- Low-power design
 - Capable of low-current operation at low conversion rate (consumption decreases linearly with speed)
 - Dual clock domain architecture: ADC speed independent from CPU frequency
- Highly versatile digital interface
 - Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
 - ADC supports multiple trigger inputs for synchronization with on-chip timers and external signals
 - Results stored into data register or in RAM with DMA controller support
 - Data pre-processing: left/right alignment and per channel offset compensation
 - Built-in oversampling unit for enhanced SNR
 - Channel-wise programmable sampling time
 - Three analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers
 - Hardware assistant to prepare the context of the injected channels to allow fast context switching

3.15.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{TS} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC1_IN17 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

DS11912 Rev 7 39/221

Calibration value nameDescriptionMemory addressTS_CAL1TS_ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), $V_{DDA} = V_{REF+} = 3.0 \text{ V} (\pm 10 \text{ mV})$ 0x1FFF 75A8 - 0x1FFF 75A9TS_CAL2TS_ADC raw data acquired at a temperature of 130 °C (\pm 5 °C), $V_{DDA} = V_{REF+} = 3.0 \text{ V} (\pm 10 \text{ mV})$ 0x1FFF 75CA - 0x1FFF 75CB

Table 8. Temperature sensor calibration values

3.15.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Table 9. Internal voltage reference calibration values

Calibration value name	Description	Memory address
VREFINT	Raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = V _{REF+} = 3.0 V (± 10 mV)	0x1FFF 75AA - 0x1FFF 75AB

3.15.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC1_IN18 or ADC3_IN18. As the V_{BAT} voltage may be higher than V_{DDA} , and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 3. As a consequence, the converted digital value is one third the V_{BAT} voltage.

3.16 Digital to analog converter (DAC)

One 12-bit buffered DAC channel can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital interface supports the following features:

- Up to two DAC output channels
- 8-bit or 12-bit output mode
- Buffer offset calibration (factory and user trimming)
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion
- Sample and hold low-power mode, with internal or external capacitor

The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.17 Voltage reference buffer (VREFBUF)

The STM32L452xx devices embed an voltage reference buffer which can be used as voltage reference for ADCs, DAC and also as voltage reference for external components through the VREF+ pin.

The internal voltage reference buffer supports two voltages:

- 2.048 V
- 2.5 V

An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.

The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

VREFBUF
VDDA DAC, ADC
Bandgap
Low frequency cut-off capacitor

MSv40197V1

Figure 5. Voltage reference buffer

4

DS11912 Rev 7 41/221

3.18 Comparators (COMP)

The STM32L452xx devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output channels
- Internal reference voltage or submultiple (1/4, 1/2, 3/4).

All comparators can wake up from Stop mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.19 Operational amplifier (OPAMP)

The STM32L452xx embeds one operational amplifier with external or internal follower routing and PGA capability.

The operational amplifier features:

- Low input bias current
- Low offset voltage
- Low-power mode
- Rail-to-rail input

3.20 Touch sensing controller (TSC)

The touch sensing controller provides a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (such as glass or plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

The main features of the touch sensing controller are the following:

- Proven and robust surface charge transfer acquisition principle
- Supports up to 21 capacitive sensing channels
- Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time
- Spread spectrum feature to improve system robustness in noisy environments
- Full hardware management of the charge transfer acquisition sequence
- Programmable charge transfer frequency
- Programmable sampling capacitor I/O pin
- Programmable channel I/O pin
- Programmable max count value to avoid long acquisition when a channel is faulty
- · Dedicated end of acquisition and max count error flags with interrupt capability
- One sampling capacitor for up to 3 capacitive sensing channels to reduce the system components
- Compatible with proximity, touchkey, linear and rotary touch sensor implementation
- Designed to operate with STMTouch touch sensing firmware library

Note: The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability.

3.21 Digital filter for Sigma-Delta modulators (DFSDM)

The device embeds one DFSDM with 2 digital filters modules and 4 external input serial channels (transceivers) or alternately 4 internal parallel inputs support.

The DFSDM peripheral is dedicated to interface the external $\Sigma\Delta$ modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on $\Sigma\Delta$ modulators inputs). DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in

hardware. DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM).

DFSDM transceivers support several serial interface formats (to support various $\Sigma\Delta$ modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution.

The DFSDM peripheral supports:

- 4 multiplexed input digital serial channels:
 - configurable SPI interface to connect various SD modulator(s)
 - configurable Manchester coded 1 wire interface support
 - PDM (Pulse Density Modulation) microphone input support
 - maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
 - clock output for SD modulator(s): 0..20 MHz
- alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
 - internal sources: device memory data streams (DMA)
- 2 digital filter modules with adjustable digital signal processing:
 - Sinc^x filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
 - integrator: oversampling ratio (1..256)
- up to 24-bit output data resolution, signed output data format
- automatic data offset correction (offset stored in register by user)
- continuous or single conversion
- start-of-conversion triggered by:
 - software trigger
 - internal timers
 - external events
 - start-of-conversion synchronously with first digital filter module (DFSDM1_FLT0)
- analog watchdog feature:
 - low value and high value data threshold registers
 - dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
 - input from final output data or from selected input digital serial channels
 - continuous monitoring independently from standard conversion
- short circuit detector to detect saturated analog input values (bottom and top range):
 - up to 8-bit counter to detect 1..256 consecutive 0's or 1's on serial data stream
 - monitoring continuously each input serial channel
- break signal generation on analog watchdog event or on short circuit detector event
- extremes detector:
 - storage of minimum and maximum values of final conversion data
 - refreshed by software
- DMA capability to read the final conversion data
- interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
- "regular" or "injected" conversions:
 - "regular" conversions can be requested at any time or even in continuous mode

without having any impact on the timing of "injected" conversions

"injected" conversions for precise timing and with high conversion priority

Table 10. DFSDM1 implementation

DFSDM features	DFSDM1
Number of channels	8
Number of filters	4
Input from internal ADC	-
Supported trigger sources	10
Pulses skipper	-
ID registers support	-

3.22 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.23 Timers and watchdogs

The STM32L452xx includes one advanced control timers, up to five general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Table 11. Timer feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3
General- purpose	TIM2	32-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM3	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1
General- purpose	TIM16	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

DS11912 Rev 7 45/221

3.23.1 Advanced-control timer (TIM1)

The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

Many features are shared with those of the general-purpose TIMx timers (described in Section 3.23.2) using the same architecture, so the advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

3.23.2 General-purpose timers (TIM2, TIM3, TIM15, TIM16)

There are up to three synchronizable general-purpose timers embedded in the STM32L452xx (see *Table 11* for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.

TIM2, TIM3

They are full-featured general-purpose timers:

- TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler.
- TIM3 has 16-bit auto-reload up/downcounter and 16-bit prescaler.

These timers feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work with the other general-purpose timers via the Timer Link feature for synchronization or event chaining.

The counters can be frozen in debug mode.

All have independent DMA request generation and support quadrature encoder.

TIM15 and 16

They are general-purpose timers with mid-range features:

They have 16-bit auto-reload upcounters and 16-bit prescalers.

- TIM15 has 2 channels and 1 complementary channel
- TIM16 has 1 channel and 1 complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode output.

The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.

The counters can be frozen in debug mode.

3.23.3 Basic timer (TIM6)

The basic timer is mainly used for DAC trigger generation. It can also be used as generic 16-bit timebase.

3.23.4 Low-power timer (LPTIM1 and LPTIM2)

The devices embed two low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to wakeup the system from Stop mode.

LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.

LPTIM2 is active in Stop 0 and Stop 1 mode.

This low-power timer supports the following features:

- 16-bit up counter with 16-bit autoreload register
- 16-bit compare register
- Configurable output: pulse, PWM
- Continuous/ one shot mode
- Selectable software/hardware input trigger
- Selectable clock source
 - Internal clock sources: LSE, LSI, HSI16 or APB clock
 - External clock source over LPTIM input (working even with no internal clock source running, used by pulse counter application).
- Programmable digital glitch filter
- Encoder mode (LPTIM1 only)

3.23.5 Infrared interface (IRTIM)

The STM32L452xx includes one infrared interface (IRTIM), which can be used with an infrared LED to perform remote control functions. It uses TIM15 and TIM16 output channels to generate output signal waveforms on IR_OUT pin.

3.23.6 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.23.7 System window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

DS11912 Rev 7 47/221

3.23.8 SysTick timer

This timer is dedicated to real-time operating systems, but can also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

3.24 Real-time clock (RTC) and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature, which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the VBAT pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby or Shutdown mode.

The RTC clock sources can be:

Downloaded from Arrow.com.

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator (LSE)
- The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32.

The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode.

All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

3.25 Inter-integrated circuit interface (I²C)

The device embeds four I2C. Refer to *Table 12* for the features implementation.

The I²C bus interface handles communications between the microcontroller and the serial I²C bus. It controls all I²C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Slave and master modes, multimaster capability
 - Standard-mode (Sm), with a bitrate up to 100 kbit/s
 - Fast-mode (Fm), with a bitrate up to 400 kbit/s
 - Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
 - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System Management Bus (SMBus) specification rev 2.0 compatibility:
 - Hardware PEC (Packet Error Checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. Refer to Figure 4: Clock tree.
- Wakeup from Stop mode on address match
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 12. I2C implementation

I2C features ⁽¹⁾	I2C1	I2C2	I2C3	I2C4
Standard-mode (up to 100 kbit/s)	Х	Х	Х	Х
Fast-mode (up to 400 kbit/s)	Х	Х	Х	Х
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х	Х	Х	Х
Programmable analog and digital noise filters	Х	Х	Х	Х
SMBus/PMBus hardware support	Х	Х	Х	Х
Independent clock	Х	Х	Х	Х
Wakeup from Stop 1 mode on address match	Х	Х	Х	Х
Wakeup from Stop 2 mode on address match	-	-	Х	-

^{1.} X: supported

3.26 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32L452xx devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3) and one universal asynchronous receiver transmitters (UART4).

These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable, and are able to communicate at speeds of up to 10 Mbit/s.

USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and SPI-like communication capability.

All USART have a clock domain independent from the CPU clock, allowing the USARTx (x=1,2,3,4) to wake up the MCU from Stop mode using baudrates up to 204 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

All USART interfaces can be served by the DMA controller.

USART3 USART modes/features⁽¹⁾ USART1 USART2 **UART4** LPUART1 Hardware flow control for modem Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Continuous communication using DMA Multiprocessor communication Χ Χ Χ Χ Χ Χ Χ Synchronous mode Х Smartcard mode Χ Χ Χ Χ Χ Χ Single-wire half-duplex communication Χ Х IrDA SIR ENDEC block Х Χ Χ Х LIN mode Χ Χ Χ Χ Dual clock domain Х Χ Χ Х Х Wakeup from Stop 0 / Stop 1 modes Х Χ Х Х Х Wakeup from Stop 2 mode -Χ Receiver timeout interrupt Х Χ Χ Х Х Χ Х Modbus communication Χ Auto baud rate detection X (4 modes) **Driver Enable** Χ Χ Х Х Χ LPUART/USART data length 7, 8 and 9 bits

Table 13. STM32L452xx USART/UART/LPUART features

^{1.} X = supported.

3.27 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- · Any received data frame
- A specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

DS11912 Rev 7 51/221

3.28 Serial peripheral interface (SPI)

Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.

All SPI interfaces can be served by the DMA controller.

3.29 Serial audio interfaces (SAI)

The device embeds 1 SAI. Refer to *Table 14: SAI implementation* for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.

The SAI peripheral supports:

- Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO.
- 8-word integrated FIFOs for each audio sub-block.
- Synchronous or asynchronous mode between the audio sub-blocks.
- Master or slave configuration independent for both audio sub-blocks.
- Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode.
- Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
- Peripheral with large configurability and flexibility permitting to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF out.
- Up to 16 slots available with configurable size and with the possibility to select which
 ones are active in the audio frame.
- Number of bits by frame may be configurable.
- Frame synchronization active level configurable (offset, bit length, level).
- First active bit position in the slot is configurable.
- LSB first or MSB first for data transfer.
- Mute mode.
- Stereo/Mono audio frame capability.
- Communication clock strobing edge configurable (SCK).
- Error flags with associated interrupts if enabled respectively.
 - Overrun and underrun detection.
 - Anticipated frame synchronization signal detection in slave mode.
 - Late frame synchronization signal detection in slave mode.
 - Codec not ready for the AC'97 mode in reception.
- Interruption sources when enabled:
 - Errors.

Downloaded from Arrow.com.

- FIFO requests.
- DMA interface with 2 dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block.

Support⁽¹⁾ **SAI** features I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 Х Χ Mute mode Stereo/Mono audio frame capability. Χ 16 slots Χ Χ Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit FIFO Size X (8 Word) **SPDIF** Χ

Table 14. SAI implementation

3.30 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bitrate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

The CAN peripheral supports:

- Supports CAN protocol version 2.0 A, B Active
- Bit rates up to 1 Mbit/s
- Transmission
 - Three transmit mailboxes
 - Configurable transmit priority
- Reception
 - Two receive FIFOs with three stages
 - 14 Scalable filter banks
 - Identifier list feature
 - Configurable FIFO overrun
- Time-triggered communication option
 - Disable automatic retransmission mode
 - 16-bit free running timer
 - Time Stamp sent in last two data bytes
- Management
 - Maskable interrupts
 - Software-efficient mailbox mapping at a unique address space

3.31 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The card host interface (SDMMC) provides an interface between the APB peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards.

DS11912 Rev 7 53/221

^{1.} X: supported

The SDMMC features include the following:

• Full compliance with MultiMediaCard System Specification Version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit

- Full compatibility with previous versions of MultiMediaCards (forward compatibility)
- Full compliance with SD Memory Card Specifications Version 2.0
- Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit
- Data transfer up to 48 MHz for the 8 bit mode
- Data write and read with DMA capability

3.32 Universal serial bus (USB)

The STM32L452xx devices embed a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up-to 1 KB and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal less operation.

3.33 Clock recovery system (CRS)

The STM32L452xx devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.34 Quad SPI memory interface (QUADSPI)

The Quad SPI is a specialized communication interface targeting single, dual or quad SPI Flash memories. It can operate in any of the three following modes:

- Indirect mode: all the operations are performed using the QUADSPI registers
- Status polling mode: the external Flash memory status register is periodically read and an interrupt can be generated in case of flag setting
- Memory-mapped mode: the external Flash is memory mapped and is seen by the system as if it were an internal memory

Both throughput and capacity can be increased two-fold using dual-flash mode, where two Quad SPI flash memories are accessed simultaneously.

The Quad SPI interface supports:

- Three functional modes: indirect, status-polling, and memory-mapped
- Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two flash memories in parallel.
- SDR and DDR support
- Fully programmable opcode for both indirect and memory mapped mode
- Fully programmable frame format for both indirect and memory mapped mode
- Each of the five following phases can be configured independently (enable, length, single/dual/quad communication)
 - Instruction phase
 - Address phase
 - Alternate bytes phase
 - Dummy cycles phase
 - Data phase
- Integrated FIFO for reception and transmission
- 8, 16, and 32-bit data accesses are allowed
- DMA channel for indirect mode operations
- Programmable masking for external flash flag management
- Timeout management
- Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error

3.35 Development support

3.35.1 Serial wire JTAG debug port (SWJ-DP)

The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using only two pins instead of the five required by the JTAG (JTAG pins can be reused as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.35.2 Embedded Trace Macrocell™

The Arm[®] Embedded Trace Macrocell™ provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L452xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell™ operates with third party debugger software tools.

4 Pinouts and pin description

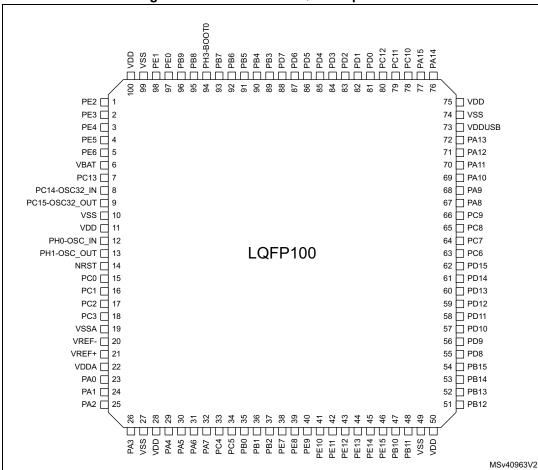


Figure 6. STM32L452Vx LQFP100 pinout⁽¹⁾

1. The above figure shows the package top view.

47/

DS11912 Rev 7 57/221

1 2 11 12 PE3 PE1 рнз-воот PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12 PE2 PB7 PD1 PC12 PC10 PE4 РВ9 PB6 PD6 PD4 PD3 PA11 VDD VDDUSB PC13 PE5 PE0 PB5 PD2 PD0 PC11 PA10 PE6 VSS PA9 PA8 PC9 VBAT VSS PC8 PC7 PC6 vss PH0-OSC IN vss vss UFBGA100 PH1-OSC_OUT VDD VDD VDD PC0 NRST VDD PD15 PD14 PD13 VSSA PC2 PD12 PD11 VREF-PC4 PB15 PB14 PB13 VREF+ MSv40961V2

Figure 7. STM32L452Vx UFBGA100 ballout⁽¹⁾

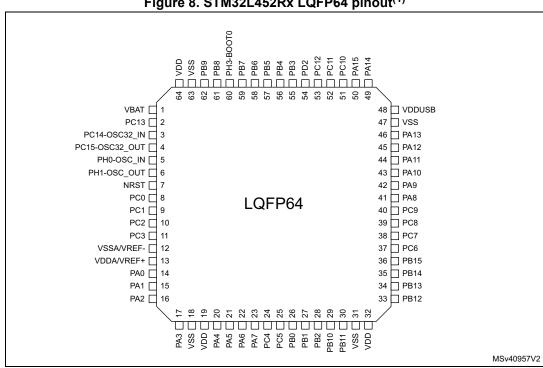


Figure 8. STM32L452Rx LQFP64 pinout⁽¹⁾

1. The above figure shows the package top view.

Figure 9. STM32L452Rx, external SMPS device, LQFP64 pinout⁽¹⁾

PC14-OSC32_IN PC13 PB9 PB4 PB3 PA15 PA14 PA13 PC15-OSC32_OUT VBAT PB8 РН3-ВООТ PD2 PC10 PA12 PC11 PH0-OSC_II vss PB7 PB5 PC12 PA10 PA9 PA11 PH1-OSC_OUT VDD PB6 VSS vss VSS PA8 PC9 NRST PC1 PC0 VDD VDDUSB VDD PC7 PC8 VSSA/VREF PC2 PA2 PA5 PB0 PC6 PB15 PB14 PC3 PA0 PA3 PA6 PB1 PB2 PB10 PB13 /DDA/VREF PA1 PA7 PB11 PB12 MSv40959V2

Figure 10. STM32L452Rx UFBGA64 ballout⁽¹⁾

1. The above figure shows the package top view.

DS11912 Rev 7 59/221

Figure 11. STM32L452Rx WLCSP64 pinout⁽¹⁾

	1	2	3	4	5	6	7	8
А	VDDUSB	PA15	PC12	PB4	PB7	PB8	vss	VDD
В	vss	VDD	PC11	PB3	PB6	РН3-ВООТ0	VBAT	PC13
c	PA10	PA13	PA14	PD2	PB5	PB9	PC15- OSC32_OUT	PC14- OSC32_IN
D	PA9	PA11	PA12	PC10	PC1	PC2	PC0	PH0-OSC_IN
E	PC7	PC9	PA8	PC4	PA7	PA1	PC3	PH1- OSC_OUT
F	PB15	PC6	PC8	PB1	PA5	PA3	VDDA/VREF+	NRST
G	PB14	PB13	PB12	PB2	PC5	PA4	PA2	VSSA/VREF-
н	VDD	vss	PB11	PB10	PB0	PA6	VDD	PA0

Figure 12. STM32L452Rx, external SMPS device, WLCSP64 pinout⁽¹⁾

i igaic iz.	••=		,, 0,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		401.00	,	U. U.
	1	2	3	4	5	6	7	8
А	VDDUSB	PA14	PC12	PB4	PB7	PB8	vss	VDD
В	vss	VDD	PC11	PB3	PB6	РН3-ВООТ0	VDD12	PC13
С	PA10	PA13	PA15	PB5	PB9	VBAT	PC15- OSC32_OUT	PC14- OSC32_IN
D	PA9	PA11	PA12	PC10	PC3	PC1	PC0	PH0-OSC_IN
E	PC6	PC7	PA8	PC4	PA7	PA1	PC2	PH1- OSC_OUT
F	PB15	PB13	PC8	PB2	PA5	PA3	VDDA/VREF+	NRST
G	PB14	PB12	PC9	PB11	PB0	PA4	PA2	VSSA/VREF-
н	VDD	vss	VDD12	PB10	PB1	PA6	VDD	PA0

1. The above figure shows the package top view.

4

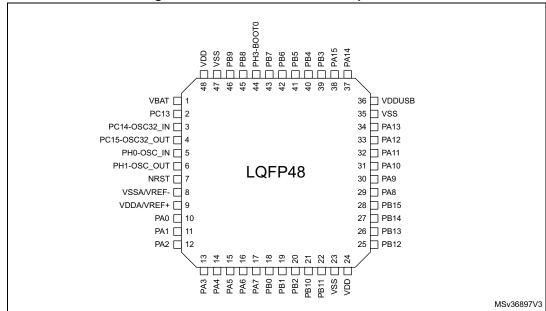


Figure 13. STM32L452Cx LQFP48 pinout⁽¹⁾

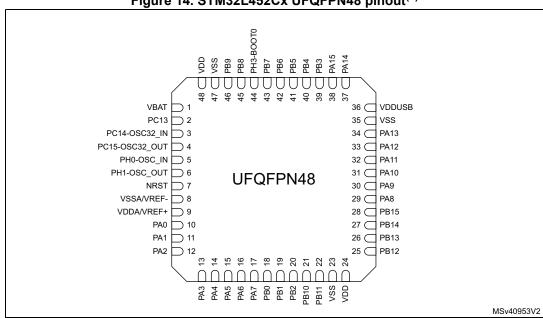


Figure 14. STM32L452Cx UFQFPN48 pinout⁽¹⁾

1. The above figure shows the package top view.

57/

DS11912 Rev 7 61/221

Table 15. Legend/abbreviations used in the pinout table

Na	me	Abbreviation	Definition					
Pin r	name	Unless otherwise specified in reset is the same as the actu	brackets below the pin name, the pin function during and after al pin name					
		S	Supply pin					
Pin	type	I	Input only pin					
		I/O	Input / output pin					
		FT	5 V tolerant I/O					
		TT 3.6 V tolerant I/O						
		RST Bidirectional reset pin with embedded weak pull-up resis						
I/O str	ructure	Option for TT or FT I/Os						
		_f ⁽¹⁾	I/O, Fm+ capable					
		_u ⁽²⁾	I/O, with USB function supplied by V _{DDUSB}					
		_a ⁽³⁾	I/O, with Analog switch function supplied by V _{DDA}					
No	tes	Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.						
Pin	Alternate functions	Functions selected through G	GPIOx_AFR registers					
functions	Additional functions	Functions directly selected/enabled through peripheral registers						

^{1.} The related I/O structures in *Table 16* are: FT_f, FT_fa.

^{2.} The related I/O structures in *Table 16* are: FT_u, FT_fu.

^{3.} The related I/O structures in *Table 16* are: FT_a, FT_fa, TT_a.

Table 16. STM32L452xx pin definitions

ıctions	Additional functions			ı		RTC_TAMP3/WKUP3	-	RTC_TAMP1/RTC_TS/RTC_OUT/W KUP2	OSC32_IN	OSC32_OUT
Pin fun	Alternate functions	TRACECK, TIM3_ETR, TSC_G7_IO1, SA11_MCLK_A, EVENTOUT	TRACED0, TIM3_CH1, TSC_G7_IO2, SAI1_SD_B, EVENTOUT	TRACED1, TIM3_CH2, DFSDM1_DATIN3, TSC_G7_IO3, SAI1_FS_A, EVENTOUT	TRACED2, TIM3_CH3, DFSDM1_CKIN3, TSC_G7_IO4, SAI1_SCK_A, EVENTOUT	TRACED3, TIM3_CH4, SAI1_SD_A, EVENTOUT	•	EVENTOUT	EVENTOUT	EVENTOUT
	Notes	1	ı	1	ı	-	-	(1)	(1)	(1)
	I/O structure	FT	FT	FT	FT	FT	-	FT	FT	FT
	Pin type	0/1	0/1	<u>Q</u>	0/1	0/I	S	9	0/1	0/1
	Pin name (function after reset)	PE2	PE3	PE4	PE5	PE6	VBAT	PC13	PC14- OSC32_ IN (PC14)	PC15- OSC32_ OUT (PC15)
	001A987U	B2	A A	B1	C2	D2	E2	2	10	П
	Г О ЕЬ100	~	2	8	4	5	9	7	8	6
per	PBGA64	1	ı	ı	ı	1	B2	A2	A1	B1
Zum/	LQFP64 SMPS	ı	ı	ı	ı	-	_	7	3	4
Jin P	LQFP64	1	1	1	1	-	1	2	3	4
_	WLCSP64 SMPS	1	1	ı	1	,	90	B8	C8	C7
	WLCSP64	-	-	ı	-	-	B7	B8	63	C7
	ГОГР48, ИГОГРИ48	ı	ı	1	ı		1	2	3	4
	Pin Number Pin functions	Pin Number Pin Number Pin name (function UFBGA64 UCFP64 SMPS UCFP6	Pin Number Pin name Pin name	Pin Number Pin Number Pin name Pin name Pin functions after Afternate functions Alternate functions after Alternate functions bin	Pin Number Pin name After SMPS After SMPS After SMPS After Set A	Pin Number Pin name (function after after Alternate functions Alternate functions Pin name (function after a	Pin Number Pin name (function after creset) Pin name Pi	Pin Number Pin name Cfunction Alternate SMPS CSPEct SMPS City City CSPEct SMPS Cfunctions Cfunctions	Pin Number Pin name (function after (fun	Pin Number Pin number Pin name Alternate functions Pin functions

LY/

DS11912 Rev 7

Additional functions ADC1_IN2 ADC1_IN3 OSC_IN OSC_OUT ADC1_IN4 ADC1_IN1 Pin functions LPTIM1_IN1, I2C4_SCL, I2C3_SCL, LPUART1_RX, LPTIM2_IN1, LPTIM1_IN2, SPI2_MISO, DFSDM1_CKOUT, EVENTOUT Table 16. STM32L452xx pin definitions (continued) LPUART1_TX, EVENTOUT SAI1_SD_A, LPTIM2_ETR, EVENTOUT LPTIM1 ETR, SPI2 MOSI, TRACEDO, LPTIM1_OUT, I2C4_SDA, I2C3_SDA, Alternate functions EVENTOUT EVENTOUT EVENTOUT Notes FT_fa FT_fa اھ RST I/O structure 님 님 ᇤ ᆸ Pin type 9 9 9 0 9 9 0 ഗ ഗ ഗ ഗ Pin name (function OSC_IN (PH0) PH1-OSC_ OUT_ after reset) NRST VSSA VSS VDD PH0-(PH1) VREF. РСЗ PC0 PC1 PC2 G2 F2 꿈 72 33 $\frac{5}{2}$ 7 조 $\overline{\mathsf{L}}$ 9 Ξ **UFBGA100** 9 7 5 4 15 16 8 9 $\stackrel{\leftarrow}{\sim}$ 17 20 LQFP100 F2 5 E3 E2 $^{\circ}$ Ш 9 **UFBGA64** Number 9 LQFP64 SMPS 2 9 ω 0 7 10 7 Pin LQFP64 2 ∞ 0 8 8 **D**6 **D**5 80 7 E7 **MCC2P64 SMPS** 80 D5 90 8 8 70 E7 WLCSP64

64/221 DS11912 Rev 7

ГДГР48, UFQFРN48

2

9

•

(Continue)	
dofinitions.	
2	5
150×	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
'n	140
7	;
2	פ

	Pin functions	Additional functions	-	VREFBUF_OUT	-	•	OPAMP1_VINP, COMP1_INM, ADC1_IN5, RTC_TAMP2/WKUP1	OPAMP1_VINM, COMP1_INP, ADC1_IN6	COMP2_INM, ADC1_IN7, WKUP4/LSCO	OPAMP1_VOUT, COMP2_INP, ADC1_IN8	-	
Table 16. STM32L452xx pin definitions (continued)	Pin fun	Alternate functions	-	•	1	-	TIM2_CH1, USART2_CTS, UART4_TX, COMP1_OUT, SAI1_EXTCLK, TIM2_ETR, EVENTOUT	TIM2_CH2, I2C1_SMBA, SPI1_SCK, USART2_RTS_DE, UART4_RX, TIM15_CH1N, EVENTOUT	TIM2_CH3, USART2_TX, LPUART1_TX, QUADSPI_BK1_NCS, COMP2_OUT, TIM15_CH1, EVENTOUT	TIM2_CH4, USART2_RX, LPUART1_RX, QUADSPI_CLK, SA11_MCLK_A, TIM15_CH2, EVENTOUT	1	•
152x		Notes	-	-	-	-	1	ı	ı	ı	-	
FM32L4		I/O structure	ı	-	•	1	FT_a	FT_a	FT_a	E_a	•	ı
6. S ⁻		Pin type	တ	S	S	S	0/1	0/1	0/1	9	S	S
Table 1		Pin name (function after reset)	VSSA/ VREF-	VREF+	VDDA	VDDA/ VREF+	PA0	PA1	PA2	PA3	SSA	VDD
		UFBGA100		7	M		7	M2	8	23	E3	Н3
		ГОЕЬ100	ı	21	22	1	23	24	25	26	27	28
	Jer	UFBGA64	F1	-		Ŧ	G 2	H2	F3	63	C2	D2
	Pin Number	LQFP64 SMPS	12		ı	13	41	15	16	17	18	19
	in	LQFP64	12	•	ı	13	14	15	16	17	18	19
		WLCSP64 SMPS	85	-	-	F7	8Н	E6	29	F6	-	Н7
		MCCSP64	68	-	-	F7	H8	E6	67	F6	-	Н7
		ГДГР48, UГДГРИ48	_∞	1	ı	6	10	7	12	13		1

able 16. STM32L452xx pin definitions (continued)

	Pin functions	Additional functions	COMP1_INM, COMP2_INM, ADC1_IN9, DAC1_OUT1	COMP1_INM, COMP2_INM, ADC1_IN10	ADC1_IN11	ADC1_IN12	COMP1_INM, ADC1_IN13	COMP1_INP, ADC1_IN14, WKUP5	ADC1_IN15
Table 16. STM32L452xx pin definitions (continued)	Pin fu	Alternate functions	SPI1_NSS, SPI3_NSS, USART2_CK, SAI1_FS_B, LPTIM2_OUT, EVENTOUT	TIM2_CH1, TIM2_ETR, SP11_SCK, DFSDM1_CKOUT, LPTIM2_ETR, EVENTOUT	TIM1_BKIN, TIM3_CH1, SP11_MISO, COMP1_OUT, USART3_CTS, LPUART1_CTS, QUADSPI_BK1_IO3, TIM1_BKIN_COMP2, TIM16_CH1, EVENTOUT	TIM1_CH1N, TIM3_CH2, I2C3_SCL, SPI1_MOSI, DFSDM1_DATIN0, QUADSPI_BK1_IO2, COMP2_OUT, EVENTOUT	USART3_TX, EVENTOUT	USART3_RX, EVENTOUT	TIM1_CH2N, TIM3_CH3, SP11_NSS, DFSDM1_CKIN0, USART3_CK, QUADSPI_BK1_IO1, COMP1_OUT, SA11_EXTCLK, EVENTOUT
152)		Notes	ı	ı	1	ı	-	-	ı
TM32L4		I/O structure	Т_а	T_a	FT_a	FT_fa	FT_a	FT_a	FT_a
		Pin type	0/1	0/1	0/1	9	O/I	O/I	0/1
able '		ion ion	4	10			_	2	00
		Pin name (function after reset)	PA4	PA5	PA6	PA7	PC4	PC5	PB0
		Pin na afte afte rese	M3 PA	K4 PA	L4 PA6	M4 PA7	K5 PC	L5 PC	M5 PE
	ber	UFBGA100	M3	추 4	47	M 4	K5	F2	M5
	lumber	UFBGA100	29 M3	30 K4	31 L4	32 M4	33 K5	34 L5	35 M5
	in Number	UFBGA64	H3 29 M3	F4 30 K4	G4 31 L4	H4 32 M4	H5 33 K5	H6 34 L5	F5 35 M5
	Pin Number	LQFP64 SMPS UFBGA64 UFBGA100	20 H3 29 M3	21 F4 30 K4	22 G4 31 L4	23 H4 32 M4	24 H5 33 K5	- H6 34 L5	25 F5 35 M5
	Pin Number	LQFP64 UFBGA64 UFBGA64 UFBGA100	20 20 H3 29 M3	21 21 F4 30 K4	22 22 G4 31 L4	23 23 H4 32 M4	24 24 H5 33 K5	25 - H6 34 L5	26 25 F5 35 M5

•	(continued)
	detir
	452xx bin 0
	ble 16. STM32L4
•	ple 16

	ctions	Additional functions	COMP1_INM, ADC1_IN16	COMP1_INP	ı	•	•	1	•	
Table 16. STM32L452xx pin definitions (continued)	Pin functions	Alternate functions	TIM1_CH3N, TIM3_CH4, DFSDM1_DATIN0, USART3_RTS_DE, LPUART1_RTS_DE, QUADSPI_BK1_IO0, LPTIM2_IN1, EVENTOUT	RTC_OUT, LPTIM1_OUT, I2C3_SMBA, DFSDM1_CKIN0, EVENTOUT	TIM1_ETR, DFSDM1_DATIN2, SAI1_SD_B, EVENTOUT	TIM1_CH1N, DFSDM1_CKIN2, SAI1_SCK_B, EVENTOUT	TIM1_CH1, DFSDM1_CKOUT, SA11_FS_B, EVENTOUT	TIM1_CH2N, TSC_G5_IO1, QUADSPI_CLK, SAI1_MCLK_B, EVENTOUT	TIM1_CH2, TSC_G5_102, QUADSPI_BK1_NCS, EVENTOUT	TIM1_CH3N, SP11_NSS, TSC_G5_IO3, QUADSPI_BK1_IO0, EVENTOUT
522		Notes	1	1	ı	- 1	-	ı	-	ı
FM32L4		I/O structure	FT_a	FT_a	FI	FT	FT	Ħ	FT	FT
6. S		Pin type	O <u>l</u>	0/1	<u>Q</u>	0/1	0/1	<u>Q</u>	0/1	0/1
Table 1		Pin name (function after reset)	PB1	PB2	PE7	PE8	PE9	PE10	PE11	PE12
		UFBGA100	M6	97	M7	L7	M8	F8	6W	67
		ГФЕЬ100	36	37	38	39	40	14	42	43
	ber	UFBGA64	G5	99	ı	ı		ı		1
	Pin Number	LQFP64 SMPS	26	27	ı	ı		ı		ı
	Pin	LQFP64	27	28	1			ı		ı
	_	WLCSP64 SMPS	H5	F4	ı	ı	1	ı	1	1
		MCCSP64	F4	G4	1	-		ı		1
		ГДГР48, UГДГРИ48	19	20	ı	ı		ı		ı

47/

DS11912 Rev 7 67/221

Table 16. STM32L452xx pin definitions (continued)

	ctions	Additional functions	,	,	•	•	,		-	•
lable 16. STIMSZL45ZXX pin definitions (continued)	Pin functions	Alternate functions	TIM1_CH3, SPI1_SCK, TSC_G5_IO4, QUADSPI_BK1_IO1, EVENTOUT	TIM1_CH4, TIM1_BKIN2, TIM1_BKIN2_COMP2, SP11_MISO, QUADSPI_BK1_IO2, EVENTOUT	TIM1_BKIN, TIM1_BKIN_COMP1, SPI1_MOSI, QUADSPI_BK1_103, EVENTOUT	TIMZ_CH3, I2C4_SCL, I2C2_SCL, SPI2_SCK, USART3_TX, LPUART1_RX, TSC_SYNC, QUADSPI_CLK, COMP1_OUT, SAI1_SCK_A, EVENTOUT	TIM2_CH4, I2C4_SDA, I2C2_SDA, USART3_RX, LPUART1_TX, QUADSPI_BK1_NCS, COMP2_OUT, EVENTOUT	-	•	۲
(70:		Notes	1	ı	1	1	ı		-	-
M32L4		I/O structure	FT	FT	FT	FΤ_f	FΤ_f	-	-	-
٥. د		Pin type	0/1	0/1	0/1	0/1	0/1	S	S	S
lable		Pin name (function after reset)	PE13	PE14	PE15	PB10	PB11	VDD12	NSS	ααΛ
		UFBGA100	M10	Z	M12	L10	L1	ı	F12	G12
		ГДЕР100	44	45	46	47	48		49	20
	er	UFBGA64	ı	ı	ı	G7	H7	ı	D6	E6
	Pin Number	LQFP64 SMPS	ı	ı	1	28	29	30	31	32
	in N	LQFP64	ı	ı	-	29	30	-	31	32
	ш	MCCSP64 SMPS	1	1	1	H	G4	Н3	H2	H
		MFC2P64	1	1	1	H4	Н3	-	Н2	H1
		ГДГР48, UFQFРN48	1	1	1	21	22	ı	23	24

(Political)	
Joffinitions.	
AEOvy nin	437Y DIII
CTMPO	170MIC:
Fable 46	מסום סיים

ſ									
	ctions	Additional functions	·	ı	ı	ı	•		•
Table 16. STM32L452xx pin definitions (continued)	Pin functions	Alternate functions	TIM1_BKIN, TIM1_BKIN_COMP2, I2C2_SMBA, SPI2_NSS, DFSDM1_DATIN1, USART3_CK, LPUART1_RTS_DE, TSC_G1_IO1, CAN1_RX, SAI1_FS_A, TIM15_BKIN, EVENTOUT	TIM1_CH1N, I2C2_SCL, SPI2_SCK, DFSDM1_CKIN1, USART3_CTS, LPUART1_CTS, TSC_G1_I02, CAN1_TX, SAI1_SCK_A, TIM15_CH1N, EVENTOUT	TIM1_CH2N, I2C2_SDA, SPI2_MISO, DFSDM1_DATIN2, USART3_RTS_DE, TSC_G1_I03, SAI1_MCLK_A, TIM15_CH1, EVENTOUT	RTC_REFIN, TIM1_CH3N, SPI2_MOSI, DFSDM1_CKIN2, TSC_G1_IO4, SAI1_SD_A, TIM15_CH2, EVENTOUT	USART3_TX, EVENTOUT	USART3_RX, EVENTOUT	USART3_CK, TSC_G6_101, EVENTOUT
52		Notes	1	ı	ı	1		-	1
FM32L4		I/O structure	FT	FT_f	F_F	E	占	FT	FT
16. ST		Pin type	0/1	<u>Q</u>	<u>Q</u>	9	9	9	0/1
Table		Pin name (function after reset)	PB12	PB13	PB14	PB15	PD8	6ОА	PD10
		001ABB7	L12	K12	7 7 7 1	10 FT_f 	J12		
		ГДЕР100	51	52			22	99	25
	ber	UFBGA64	8H	68	F8	F7	,	ı	
	Pin Number	LQFP64 SMPS	33	34		36	ı	1	ı
	Pin l	LQFP64	33	34	35	36		1	
	_	WLCSP64 SMPS	62	F2	61	F	,	-	'
		MCCSP64	63	G 2	6	7	,		'
		ГДГР48, ИГДГРИ48	25	26	27	28	ı	ı	-
								_	

TY/

DS11912 Rev 7 69/221

Table 16. STM32L452xx pin definitions (continued)

	ctions	Additional functions	,	•	•			ı	ı	1	1	•
Table 16. STM32L452xx pin definitions (continued)	Pin functions	Alternate functions	I2C4_SMBA, USART3_CTS, TSC_G6_IO2, LPTIM2_ETR, EVENTOUT	I2C4_SCL, USART3_RTS_DE, TSC_G6_I03, LPTIM2_IN1, EVENTOUT	I2C4_SDA, TSC_G6_104, LPTIM2_OUT, EVENTOUT	EVENTOUT	EVENTOUT	TIM3_CH1, DFSDM1_CKIN3, TSC_G4_IO1, SDMMC1_D6, EVENTOUT	TIM3_CH2, DFSDM1_DATIN3, TSC_G4_IO2, SDMMC1_D7, EVENTOUT	TIM3_CH3, TSC_G4_103, SDMMC1_D0, EVENTOUT	TIM3_CH4, TSC_G4_104, USB_NOE, SDMMC1_D1, EVENTOUT	MCO, TIM1_CH1, DFSDM1_CKIN1, USART1_CK, SAI1_SCK_A, LPTIM2_OUT, EVENTOUT
452)		Notes	1	-	-	1	-	ı	1	-	ı	ı
LM32L		I/O structure	FT	FT	FT	FT	占	F	F	FT	FI	FT
.S.		Pin type	0/	0/1	0/1	0	9	<u>Q</u>	<u>Q</u>	0/1	<u>Q</u>	0/1
Table 1		Pin name (function after reset)	PD11	PD12	PD13	PD14	PD15	PC6	PC7	82A	6Od	PA8
		001A987U	11 11	J10	H12	H11	H10	E12	E11	E10	D12	D11
		Г О ЕЬ100	58	69	09	61	62	63	64	99	99	29
	þer	PBGA64	1	1	ı		ı	F6	E7	E8	D8	D7
	Pin Number	LQFP64 SMPS	ı	1		1	ı	37	38	39	40	41
	Pin l	LQFP64	ı	ı		1	1	37	38	39	40	4
	_	MCCSP64 SMPS	ı	ı	ı	1	1	П	E2	F3	63	E3
		WLCSP64	1	1	1	1	1	F2	П	F3	E2	E3
		ГОГР48, UFQFPN48	1	1	1	-	ı	1	1	ı	1	29

(Political)	
A finitions	
1 452×× 5in	110000
16 CTM221	40 E
10146	ס ט

	ctions	Additional functions	•	•	•	1		1		1	1	
Table 16. STM32L452xx pin definitions (continued)	Pin functions	Alternate functions	TIM1_CH2, I2C1_SCL, DFSDM1_DATIN1, USART1_TX, SAI1_FS_A, TIM15_BKIN, EVENTOUT	TIM1_CH3, I2C1_SDA, USART1_RX, USB_CRS_SYNC, SAI1_SD_A, EVENTOUT	TIM1_CH4, TIM1_BKIN2, SP11_MISO, COMP1_OUT, USART1_CTS, CAN1_RX, USB_DM, TIM1_BKIN2_COMP1, EVENTOUT	TIM1_ETR, SP11_MOSI, USART1_RTS_DE, CAN1_TX, USB_DP, EVENTOUT	JTMS/SWDAT, IR_OUT, USB_NOE, SAI1_SD_B, EVENTOUT	-	•	-	-	JTCK/SWCLK, LPTIM1_OUT, I2C1_SMBA, I2C4_SMBA, SAI1_FS_B, EVENTOUT
452)		Notes	-	ı	1	ı	(3)	1	-	•	1	(3)
TM32L		9/Instructure	FT_f	FT_f	FT_u	PT_u	FT		-			FT
.S.9I		Pin type	0/1	0/1	0/1	0/I	O/I	S	S	S	S	0/1
Table 1		Pin name (function after reset)	6VA	PA10	PA11	PA12	PA13 (JTMS/ SWDIO)	SSA	asnaan	SSA	ααΛ	PA14 (JTCK/ SWCLK)
		001ABB7U0	D10	C12	B12	A12	A11	ı	C11	F11	G11	A10
		ГОЕЬ100	89	69	70	71	72	ı	73	74	75	92
	ber	UFBGA64	C7	90	C8	B8	A8	D5	E5			A7
	Pin Number	LQFP64 SMPS	42	43	44	45	46	47	48	ı	ı	49
	in N	LQFP64	42	43	44	45	46	47	48	ı	ı	49
	т	MCCSP64 SMPS	D1	C1	D2	D3	C2	B1	A1		B2	A2
		MCCSP64	D1	C1	D2	D3	C2	B1	A1		B2	C3
		ГОЕР48, UFQFРN48	30	31	32	33	34	35	36	ı	ı	37

Table 16. STM32L452xx pin definitions (continued)

Downloaded from Arrow.com.

ctions	Additional functions		1	ı	ı	,	•	ı	1
Pin fund	Alternate functions	JTDI, TIM2_CH1, TIM2_ETR, USART2_RX, SP11_NSS, SP13_NSS, USART3_RTS_DE, UART4_RTS_DE, TSC_G3_IO1, EVENTOUT	TRACED1, SPI3_SCK, USART3_TX, UART4_TX, TSC_G3_IO2, SDMMC1_D2, EVENTOUT	SPI3_MISO, USART3_RX, UART4_RX, TSC_G3_IO3, SDMMC1_D3, EVENTOUT	TRACED3, SPI3_MOSI, USART3_CK, TSC_G3_IO4, SDMMC1_CK, EVENTOUT	SPI2_NSS, CAN1_RX, EVENTOUT	SPI2_SCK, CAN1_TX, EVENTOUT	TRACED2, TIM3_ETR, USART3_RTS_DE, TSC_SYNC, SDMMC1_CMD, EVENTOUT	SPI2_MISO, DFSDM1_DATINO, USART2_CTS, QUADSPI_BK2_NCS, EVENTOUT
	sətoN	(3)	ı	ı	ı		ı	ı	ı
	I/O structure	FT	FI	FT	FT	FT	FT	FI	FT
	Pin type	9	<u>Q</u>	2	2	0	0	<u>Q</u>	2
	Pin name (function after reset)	PA15 (JTDI)	PC10	PC11	PC12	PD0	PD1	PD2	PD3
	UFBGA100	A9	B11	C10	B10	හි	B3	8	B8
	ГОЕЬ100	22	78	62	80	81	82	83	84
ber	UFBGA64	A6	B7	B6	C5			B5	ı
Jum	LQFP64 SMPS	50	51	52	53	ı	•	ı	ı
Jin l	LQFP64	50	51	52	53	ı	ı	54	ı
_	WLCSP64 SMPS	C3	D4	B3	A3	ı	•	ı	ı
	WLCSP64	A2	D4	B3	A3			C4	ı
	ГОГР48, ИГОГРИ48	38	ı	ı	ı	ı	ı	ı	ı
	Pin Number Pin functions	Pin Number Pin Number Pin Number Pin name (function after UGFP64 SMPS UFBGA100 UFBGA100 UFBGA100 I/O structure No structure No structure No structure No structure	Pin Number Pin name CSP64 SMPS CSP64	Pin Number Pin name (function after SMPS Pin name (function after SPE4 SMPS LQFP64 SMPS	Pin Number Pin name Pin name	Pin Number Pin name	Pin Number Pin name Pin name Pin name Pin name Pin functions	Pin Number Pin	Pin Number Pin name

_
(continued)
definitions
<u></u>
-452xx I
16. STM32I
6
Table

ctions	Additional functions	1	1	1	1	COMP2_INM	COMP2_INP	•
Pin fun	Alternate functions	SPI2_MOSI, DFSDM1_CKIN0, USART2_RTS_DE, QUADSPI_BK2_IO0, EVENTOUT	USART2_TX, QUADSPI_BK2_101, EVENTOUT	DFSDM1_DATIN1, USART2_RX, QUADSPI_BK2_IO2, SAI1_SD_A, EVENTOUT	DFSDM1_CKIN1, USART2_CK, QUADSPI_BK2_IO3, EVENTOUT	JTDO/TRACESWO, TIM2_CH2, SP11_SCK, SP13_SCK, USART1_RTS_DE, SA11_SCK_B, EVENTOUT	NJTRST, TIM3_CH1, I2C3_SDA, SP11_MISO, SP13_MISO, USART1_CTS, TSC_G2_IO1, SA11_MCLK_B, EVENTOUT	LPTIM1_IN1, TIM3_CH2, CAN1_RX, I2C1_SMBA, SP11_MOSI, SP13_MOSI, USART1_CK, TSC_G2_IO2, COMP2_OUT, SA11_SD_B, TIM16_BKIN, EVENTOUT
	SejoN	ı	ı	1	ı	(3)	(3)	1
	I/O structure	ТЭ	FT	FT	FT	FT_a	FT_fa	FT
	Pin type	0/1	0/I	0/1	0/I	0/1	0/1	0/1
	Pin name (function after reset)	PD4	PD5	PD6	PD7	PB3 (JTDO/ TRACE SWO)	PB4 (NJTRST)	PB5
	001A987U	87	A6	B6	A5	A8	A7	C5
	ГОЕЬ100	85	98	87	88	68	06	91
oer	UFBGA64	ı	ı	ı	ı	A5	A 4	C4
lum!	LQFP64 SMPS	ı	ı	ı	ı	54	55	99
in N	ГОЕР64	ı	ı	ı	ı	55	56	22
_	MLCSP64 SMPS	ı	1	ı	ı	B4	A4	C4
	MFC8bet	ı	ı	ı	ı	B4	A4	C5
İ	ГОЕР48, ИГОЕРИ48	ı	ı	ı	ı	39	40	41
	Pin Number Pin functions	Pin Number Pin name Pin name Pin name UCFP64 SMPS Afternate functions UCFP64 SMPS Pin name UCFP64 SMPS Afternate functions UCFP64 SMPS Pin name UCFP64 SMPS Afternate functions	Pin Number Pin name Pin name	Pin Number Pin name (function after CSP64 SMPS) Pin name Pin name	Pin Number Pin Number Pin name Pin name <th> Pin Number</th> <th> Pin Number Pin name</th> <th> Pin Number Pin name </th>	Pin Number	Pin Number Pin name	Pin Number Pin name

LY/

Table 16. STM32L452xx pin definitions (continued)

Downloaded from Arrow.com.

	Pin functions	Additional functions	COMP2_INP	COMP2_INM, PVD_IN	1	•	•	-		-	-	-
lable 16. S I M3ZL45ZXX pin definitions (continued)	Pin fur	Alternate functions	LPTIM1_ETR, I2C1_SCL, I2C4_SCL, USART1_TX, CAN1_TX, TSC_G2_IO3, SAI1_FS_B, TIM16_CH1N, EVENTOUT	LPTIM1_IN2, I2C1_SDA, I2C4_SDA, USART1_RX, UART4_CTS, TSC_G2_IO4, EVENTOUT	EVENTOUT	I2C1_SCL, CAN1_RX, SDMMC1_D4, SAI1_MCLK_A, TIM16_CH1, EVENTOUT	IR_OUT, I2C1_SDA, SPI2_NSS, CAN1_TX, SDMMC1_D5, SAI1_FS_A, EVENTOUT	-	TIM16_CH1, EVENTOUT	EVENTOUT	•	•
132		Notes	ı	ı	1	ı	1	1	•	1	ı	ı
I M32L		I/O structure	FT_fa	FT_fa	F	FT_f	FT_f	ı	FT	FT	ı	1
ە. د		Pin type	0/	0/1	<u>Q</u>	0/1	0/1	S	0/1	0	S	S
lable		Pin name (function after reset)	PB6	PB7	PH3- BOOT0 (BOOT0)	PB8	PB9	VDD12	DE0	PE1	SSA	QQA
		UFBGA100	B5	B4	A	A3	B3		\Im	A2	D3	C4
		ГДЕР100	92	93	94	95	96	,	26	86	66	100
	oer	UFBGA64	D3	c3	B	B3	A3		1		D4	E4
	Pin Number	LQFP64 SMPS	25	28	59	09	61	62	ı		63	64
	in N	ГОЕР64	58	59	09	61	62	-	-	-	63	64
	-	MLCSP64 SMPS	B5	A5	B6	A6	C5	28	-	-	4 7	A8
		MFCSP64	B5	A5	B6	A6	C6	-	-	-	Α7	A8
		ГДЕР48, ИГДЕРИ48	42	43	44	45	46	ı	ı	ı	47	48

PC13. PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:

- The speed should not exceed 2 MHz with a maximum load of 30 pF

- These GPIOs must not be used as current sources (e.g. to drive an LED).

After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0394 reference manual. ۲,

After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated. ω.

577

DS11912 Rev 7 75/221

	AF7	USART1/ USART2/ USART3	USART2_CTS	USART2_RTS_ DE	USART2_TX	USART2_RX	USART2_CK	ı	USART3_CTS	ı	USART1_CK	USART1_TX	USART1_RX	USART1_CTS	USART1_RTS_ DE	ı		USART3_RTS_ DE
	AF6	SPI3/DFSDM/ COMP1	ı	<u>-</u>		1	SPI3_NSS	DFSDM1_ CKOUT	COMP1_OUT	DFSDM1_ DATIN0	DFSDM1_ CKIN1	DFSDM1_ DATIN1	ı	COMP1_OUT	٠	ı	ı	SPI3_NSS
	AF5	SPI1/SPI2/I2C4	ı	SPI1_SCK	1	1	SPI1_NSS	SPI1_SCK	SPI1_MISO	SPI1_MOSI	1	1	1	SPI1_MISO	SPI1_MOSI	ı	I2C4_SMBA	SPI1_NSS
AF0 to AF7 ⁽¹⁾	AF4	2C1/ 2C2/ 2C3/ 2C4	ı	I2C1_SMBA	•	1	1	ı	ı	I2C3_SCL	1	I2C1_SCL	I2C1_SDA	1	1	ı	I2C1_SMBA	1
Table 17. Alternate function AF0 to AF7 ⁽¹⁾	AF3	I2C4/USART2/ CAN1/TIM1	-	-	-	-	-	1	1	1	-	1		ı	1	-	-	USART2_RX
Table 17. Alte	AF2	I2C4/TIM1/ TIM2/TIM3	ı	1	•	1	1	TIM2_ETR	TIM3_CH1	TIM3_CH2	1	1		TIM1_BKIN2	1	ı	1	TIM2_ETR
	AF1	TIM1/TIM2 LPTIM1	TIM2_CH1	TIM2_CH2	TIM2_CH3	TIM2_CH4	1	TIM2_CH1	TIM1_BKIN	TIM1_CH1N	TIM1_CH1	TIM1_CH2	TIM1_CH3	TIM1_CH4	TIM1_ETR	IR_OUT	LPTIM1_OUT	TIM2_CH1
	AF0	SYS_AF	1	1	•	ı	1	ı	ı	1	MCO	ı		1	ı	JTMS/SWDAT	JTCK/SWCLK	IOTU
•		Port	PA0	PA1	PA2	PA3	PA4	PA5	PA6	PA7	PA8	PA9	PA10	PA11	PA12	PA13	PA14	PA15
		<u>. </u>									Port A							

(continued)
<u> </u>
ت
_
щ
⋖
0
¥
6
Ą
₹
\Box
0
ź
ប
unction
3
=
Φ
=
22
rn
ā
¥
₫
7.
7.
_
a)
ple
Q
<u>_</u>

			Iabl	e 17. Alternate	lable 17. Alternate function AFU to AF7.7 (continued)	AF/''' (contin	nea)		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
<u>ā</u>	Port	SYS_AF	TIM1/TIM2 LPTIM1	I2C4/TIM1/ TIM2/TIM3	I2C4/USART2/ CAN1/TIM1	12C1/12C2/ 12C3/12C4	SPI1/SPI2/I2C4	SPI3/DFSDM/ COMP1	USART1/ USART2/ USART3
	PB0		TIM1_CH2N	TIM3_CH3	1	ı	SPI1_NSS	DFSDM1_ CKIN0	USART3_CK
	PB1	ı	TIM1_CH3N	TIM3_CH4	ı	1	1	DFSDM1_ DATIN0	USART3_RTS_ DE
	PB2	RTC_OUT	LPTIM1_OUT		1	I2C3_SMBA	1	DFSDM1_ CKIN0	1
	PB3	JTDO/ TRACESWO	TIM2_CH2	1	1	1	SPI1_SCK	SPI3_SCK	USART1_RTS_ DE
	PB4	NJTRST	1	TIM3_CH1	1	I2C3_SDA	SPI1_MISO	SPI3_MISO	USART1_CTS
	PB5	ı	LPTIM1_IN1	TIM3_CH2	CAN1_RX	I2C1_SMBA	SPI1_MOSI	SPI3_MOSI	USART1_CK
	PB6	1	LPTIM1_ETR	•	1	I2C1_SCL	I2C4_SCL	1	USART1_TX
a to d	PB7	ı	LPTIM1_IN2	1	1	I2C1_SDA	I2C4_SDA	•	USART1_RX
ב	PB8	-	•	-	-	I2C1_SCL	1	•	1
	PB9	-	IR_OUT	-	-	I2C1_SDA	SPI2_NSS	•	1
	PB10	-	TIM2_CH3	-	I2C4_SCL	I2C2_SCL	SPI2_SCK	•	USART3_TX
	PB11	-	TIM2_CH4	-	I2C4_SDA	I2C2_SDA	1	-	USART3_RX
	PB12		TIM1_BKIN	•	TIM1_BKIN_C OMP2	I2C2_SMBA	SPI2_NSS	DFSDM1_ DATIN1	USART3_CK
	PB13		TIM1_CH1N	•		I2C2_SCL	SPI2_SCK	DFSDM1_ CKIN1	USART3_CTS
	PB14	-	TIM1_CH2N	-	-	I2C2_SDA	SPI2_MISO	DFSDM1_ DATIN2	USART3_RTS_ DE
	PB15	RTC_REFIN	TIM1_CH3N		1	-	SPI2_MOSI	DFSDM1_ CKIN2	

LY/

DS11912 Rev 7 77/221

Table 17. Alternate function AF0 to AF7⁽¹⁾ (continued)

			Table	e 17. Alternate	lable 17. Alternate function AFU to AF 717 (continued)	OAF / ''' (contin	ned)		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
P	Port	SYS_AF	TIM1/TIM2 LPTIM1	I2C4/TIM1/ TIM2/TIM3	I2C4/USART2/ CAN1/TIM1	12C1/12C2/ 12C3/12C4	SPI1/SPI2/I2C4	SPI3/DFSDM/ COMP1	USART1/ USART2/ USART3
	PC0	ı	LPTIM1_IN1	I2C4_SCL		I2C3_SCL	-	,	ı
	PC1	TRACED0	LPTIM1_OUT	I2C4_SDA	•	I2C3_SDA	-	1	ı
	PC2	ı	LPTIM1_IN2	-	,	-	SPI2_MISO	DFSDM1_ CKOUT	ı
	PC3	1	LPTIM1_ETR	1	1	1	SPI2_MOSI	1	ı
	PC4	ı	1	1	1	-	-	ı	USART3_TX
	PC5	ı	-	-	•	-	-	1	USART3_RX
	PC6	•		TIM3_CH1			-	DFSDM1_ CKIN3	1
Port C	PC7	ı		TIM3_CH2				DFSDM1_ DATIN3	ı
	PC8	1	-	TIM3_CH3	ı	-	-	1	1
	PC9	1		TIM3_CH4	ı	1	-	1	ı
	PC10	TRACED1	-	-	1	-	-	SPI3_SCK	USART3_TX
	PC11	1	1	-	ı	-	-	SPI3_MISO	USART3_RX
	PC12	TRACED3	-	-	•	-	-	SPI3_MOSI	USART3_CK
	PC13	1	-	-	1	-	-	-	1
	PC14	1	-	-	•	-	•	-	1
	PC15	1	•		1		-	•	1

_
ned
ntin
္ဌ
_
AF7 (1
NF0 to A
AF(
unction
ate f
Altern
17.
Table

	AF7	USART1/ USART2/ USART3	-	-	USART3_RTS_ DE	USART2_CTS	USART2_RTS_ DE	USART2_TX	USART2_RX	USART2_CK	USART3_TX	USART3_RX	USART3_CK	USART3_CTS	USART3_RTS_ DE	-	-	•
	AF6	SPI3/DFSDM/ COMP1	-	-	-	DFSDM1_ DATIN0	DFSDM1_ CKIN0	-	DFSDM1_ DATIN1	DFSDM1_ CKIN1	-	-	-	-	-	-	-	-
ned)	AF5	SPI1/SPI2/I2C4	SSN_SIPS	SPI2_SCK	-	SPI2_MISO	SPI2_MOSI	-	-	-	-	-	-	-	-	-	-	-
o AF7 ⁽¹⁾ (contir	AF4	2C1/ 2C2/ 2C3/ 2C4	1	-	-		ı				1	1	ı	I2C4_SMBA	I2C4_SCL	I2C4_SDA	-	
Table 17. Alternate function AF0 to AF7 ⁽¹⁾ (continued)	AF3	I2C4/USART2/ CAN1/TIM1	-	-	-		1	•	-	-	-	-	-	-	-	-	-	•
e 17. Alternate	AF2	I2C4/TIM1/ TIM2/TIM3	1	-	TIM3_ETR	ı	1	1	ı	ı	1	1	1	1	1	-	-	
Tabl	AF1	TIM1/TIM2 LPTIM1	1	-	-	ı	1	1	ı	ı	1	1	1	1	1	-	-	
	AF0	SYS_AF	1	1	TRACED2		1	1	1	1	1	1	1	1		•	1	•
•		Port	PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7	PD8	6ОА	PD10	PD11	PD12	PD13	PD14	PD15
		ш								Port D								

\7/

Table 17. Alternate function AF0 to AF7⁽¹⁾ (continued)

ſ																		
	AF7	USART1/ USART2/ USART3	•	•	•	•	1	1	ı	1	1	1	•	•	•	•	1	
	AF6	SPI3/DFSDM/ COMP1		1	•		DFSDM1_ DATIN3_	DFSDM1_ CKIN3		DFSDM1_ DATIN2	DFSDM1_ CKIN2	DFSDM1_ CKOUT	1	•	1	-	-	
(pen	AF5	SPI1/SPI2/I2C4	1	1	1	-		1	1	-			1	1	SPI1_NSS	SPI1_SCK	SPI1_MISO	SPI1_MOSI
Table 17. Alternate function AF0 to AF7(1) (continued)	AF4	12C1/12C2/ 12C3/12C4	-	-	-	-		-	•	-	-		-	-	-	-	-	-
function AF0 to	AF3	I2C4/USART2/ CAN1/TIM1	1	1	1	-	1	ı	1	-	1	1	1	1	1	1	TIM1_BKIN2_ COMP2	TIM1_BKIN_ COMP1
e 17. Alternate	AF2	I2C4/TIM1/ TIM2/TIM3	1	1	TIM3_ETR	TIM3_CH1	TIM3_CH2	TIM3_CH3	TIM3_CH4	-	1		1	1	1	1	TIM1_BKIN2	-
Tab	AF1	TIM1/TIM2 LPTIM1	-	-	-	-		-	•	TIM1_ETR	TIM1_CH1N	TIM1_CH1	TIM1_CH2N	TIM1_CH2	TIM1_CH3N	TIM1_CH3	TIM1_CH4	TIM1_BKIN
•	AF0	SYS_AF	1	ı	TRACECK	TRACED0	TRACED1	TRACED2	TRACED3	1	1	1	ı	ı	ı	ı	1	1
=		ב	PE0	PE1	PE2	PE3	PE4	PE5	PE6	PE7	PE8	PE9	PE10	PE11	PE12	PE13	PE14	PE15
		Port									Port E							

_
ned
ntin
<u>ဝ</u>
$\overline{}$
_
function AF0 to AF7 ⁽¹⁾ (
4
¥
Ĭ
Ĕ
뇄
function
F
ä
err
¥
e 1
Table
Ë

AF1 AF2	AF3	AF4	AF5	AF6	AF7
TIM1/TIM2 I2C4/TIM1/ LPTIM1 TIM2/TIM3	I2C4/USART2/ CAN1/TIM1	12C1/12C2/ 12C3/12C4	SPI1/SPI2/I2C4	SPI3/DFSDM/ COMP1	USART1/ USART2/ USART3
-	-	-	-	•	1
1	-	-	-	1	•
1	-	-	•	1	•

. Refer to Table 18 for AF8 to AF15.

47/

DS11912 Rev 7 81/221

ble 18. Alternate function AF8 to AF15⁽¹⁾

	AF15	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT
•	AF14	TIM2/TIM15/ TIM16/LPTIM2	TIM2_ETR	TIM15_CH1N	TIM15_CH1	TIM15_CH2	LPTIM2_OUT	LPTIM2_ETR	TIM16_CH1	1	LPTIM2_OUT	TIM15_BKIN	ı	1	ı		-	•
•	AF13	SAI1	SAI1_EXTCLK	ı	1	SAI1_MCLK_A	SAI1_FS_B	ı	1	1	SAI1_SCK_A	SAI1_FS_A	SAI1_SD_A	1	1	SAI1_SD_B	SAI1_FS_B	ı
Table 18. Alternate function AF8 to AF15(1)	AF12	SDMMC1/ COMP1/ COMP2	COMP1_OUT	ı	COMP2_OUT	ı	ı	ı	TIM1_BKIN_ COMP2	COMP2_OUT	ı	ı	ı	TIM1_BKIN2_ COMP1	ı	ı	-	,
rnate function	AF11				ı	1	ı	ı	ı	ı	ı		ı	ı		•		•
lable 18. Alte	AF10	CAN1/USB/ QUADSPI	ı	ı	QUADSPI_ BK1_NCS	QUADSPI_CLK	ı	ı	QUADSPI_ BK1_IO3	QUADSPI_ BK1_IO2	ı	1	USBCRS_ SYNC	USBDM	USBDP	USBNOE	-	-
	AF9	CAN1/TSC	1	1		-	1	1	1	1	1			CAN1_RX	CAN1_TX	-	-	TSC_G3_101
•	AF8	UART4/ LPUART1/ CAN1	UART4_TX	UART4_RX	LPUART1_TX	LPUART1_RX	1	1	LPUART1_CTS	1	1	1		1	ı	-	-	UART4_RTS_
		Port	PA0	PA1	PA2	PA3	PA4	PA5	PA6	PA7	PA8	PA9	PA10	PA11	PA12	PA13	PA14	PA15
		<u></u>								t C								

(continued)
7
ũ
$\overline{}$
AF15 ⁽¹⁾
_
¥
AF8 to /
₹
function /
Φ
at
Ξ
ţ
₹
18.
4
Table

			Iadi	e 10. Alternate	IUIICIIOII ALO II	Table 16. Alternate function APS to APTS (continued)	nuea)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
<u> </u>	Port	UART4/ LPUART1/ CAN1	CAN1/TSC	CAN1/USB/ QUADSPI		SDMMC1/ COMP1/ COMP2	SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTOUT
	PB0	,	ı	QUADSPI_ BK1_I01	,	COMP1_OUT	SAI1_EXTCLK	1	EVENTOUT
	PB1	LPUART1_RTS _DE	ı	QUADSPI_ BK1_IO0	1	1	1	LPTIM2_IN1	EVENTOUT
	PB2	1	ı	ı	ı	ı	ı	ı	EVENTOUT
	PB3	1	ı	1		1	SAI1_SCK_B	ı	EVENTOUT
	PB4	1	TSC_G2_101	1	ı	ı	SAI1_MCLK_B	ı	EVENTOUT
	PB5	1	TSC_G2_102	ı	ı	COMP2_OUT	SAI1_SD_B	TIM16_BKIN	EVENTOUT
	PB6	CAN1_TX	TSC_G2_103	1	1	ı	SAI1_FS_B	TIM16_CH1N	EVENTOUT
t C	PB7	UART4_CTS	TSC_G2_104	1	1	ı	1	ı	EVENTOUT
9 10 1	PB8	1	CAN1_RX	ı	ı	SDMMC1_D4	SAI1_MCLK_A	TIM16_CH1	EVENTOUT
	PB9	-	CAN1_TX	ı	ı	SDMMC1_D5	SAI1_FS_A	ı	EVENTOUT
	PB10	LPUART1_RX	TSC_SYNC	QUADSPI_CLK	-	COMP1_OUT	SAI1_SCK_A	•	EVENTOUT
	PB11	LPUART1_TX	1	QUADSPI_ BK1_NCS	•	COMP2_OUT	•	•	EVENTOUT
	PB12	LPUART1_RTS _DE	TSC_G1_101	CAN1_RX	1		SAI1_FS_A	TIM15_BKIN	EVENTOUT
	PB13	LPUART1_CTS	TSC_G1_102	CAN1_TX	1	ı	SAI1_SCK_A	TIM15_CH1N	EVENTOUT
	PB14	-	TSC_G1_I03	1	-	1	SAI1_MCLK_A	TIM15_CH1	EVENTOUT
	PB15		TSC_G1_I04	•			SAI1_SD_A	TIM15_CH2	EVENTOUT

\7/

DS11912 Rev 7

83/221

Table 18. Alternate function AF8 to AF15⁽¹⁾ (continued)

		TUC	TUC	TUC	TUC	TUC	TUC	TUC	TUC	TUC	TUC	TUC	TU	TUC	TUC	TUC	TUC	F
	AF15	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	FIGHIAL
	AF14	TIM2/TIM15/ TIM16/LPTIM2	LPTIM2_IN1	-	-	LPTIM2_ETR	-	-	-	-	-	-	-	-	-	-	-	
nued)	AF13	SAI1	1	ı		SAI1_SD_A	1	1	ı	1	1	ı	1	1	ı	1	1	
lable 18. Alternate function AF8 to AF15'' (continued)	AF12	SDMMC1/ COMP1/ COMP2	-	1	1	1	1	1	SDMMC1_D6	SDMMC1_D7	SDMMC1_D0	SDMMC1_D1	SDMMC1_D2	SDMMC1_D3	SDMMC1_CK	1	1	
tunction AF8 to	AF11	-	-	-		ı	-	-	-	-	-	-	-	-	-	-	-	
e 18. Alternate	AF10	CAN1/USB/ QUADSPI	1	1		1	1	1	1	1	1	USBNOE	1	1	1	1	1	
Iable	AF9	CAN1/TSC	ı	ı		ı	ı	ı	TSC_G4_I01	TSC_G4_102	TSC_G4_103	TSC_G4_I04	TSC_G3_102	TSC_G3_103	TSC_G3_I04	ı	ı	
	AF8	UART4/ LPUART1/ CAN1	LPUART1_RX	LPUART1_TX	ı	ı	ı	ı	ı	ı	ı	ı	UART4_TX	UART4_RX	ı	ı	ı	
		Port	PC0	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13	PC14	7,70
		<u>~</u>		- 	· ——		- 	- 	- 	<u>t</u>		- 	- 		- 	- 	- 	

Table 18. Alternate function AF8 to AF15⁽¹⁾ (continued)

	AF15	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT	EVENTOUT
-	AF14	TIM2/TIM15/ TIM16/LPTIM2	1	1	1	1	1	1	1	1	1	ı	1	LPTIM2_ETR	LPTIM2_IN1	LPTIM2_OUT	-	1
nued)	AF13	SAI1	ı	1	ı	ı	ı	ı	SAI1_SD_A	ı	1	1	ı	1	ı	ı	-	1
Table 18. Alternate function AF8 to AF15(1) (continued)	AF12	SDMMC1/ COMP1/ COMP2	1	1	SDMMC1_ CMD	1	1	ı	1	ı	1	1	1	1	1	ı	1	
function AF8 to	AF11	1	ı	1	1	1	ı	1	1	1	1	1	ı	1	1	ı	1	
e 18. Alternate	AF10	CAN1/USB/ QUADSPI	ı	1	1	QUADSPI_ BK2_NCS	QUADSPI_ BK2_IO0	QUADSPI_ BK2_I01	QUADSPI_ BK2_IO2	QUADSPI_ BK2_IO3	1	ı	1	1	ı	ı	-	
Table	AF9	CAN1/TSC	CAN1_RX	CAN1_TX	TSC_SYNC	ı	ı	1	1	1	1	1	TSC_G6_101	TSC_G6_102	TSC_G6_103	TSC_G6_104	-	
-	AF8	UART4/ LPUART1/ CAN1	ı	1	ı	1	ı	ı	1	ı	1	ı	ı	1	ı	ı	-	
- - -		Port	PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7	PD8	PD9	PD10	PD11	PD12	PD13	PD14	PD15
		<u>n</u>							Port D									

LY/

DS11912 Rev 7

85/221

Table 18. Alternate function AF8 to AF15⁽¹⁾ (continued)

			labi	Table 18. Alternate function AF8 to AF15(1) (continued)	runction AF8 t	o AF15''' (cont	ınued)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
<u>~</u>	Port	UART4/ LPUART1/ CAN1	CAN1/TSC	CAN1/USB/ QUADSPI		SDMMC1/ COMP1/ COMP2	SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTOUT
	PE0		ı	ı			ı	TIM16_CH1	EVENTOUT
	PE1		1	1			1	1	EVENTOUT
	PE2	1	TSC_G7_I01	1	•	ı	SAI1_MCLK_A	ı	EVENTOUT
	PE3	ı	TSC_G7_102	1		ı	SAI1_SD_B	1	EVENTOUT
	PE4	ı	TSC_G7_103	ı	•	ı	SAI1_FS_A	1	EVENTOUT
	PE5	ı	TSC_G7_I04	ı		ı	SAI1_SCK_A	1	EVENTOUT
	PE6	ı	1	ı		ı	SAI1_SD_A	1	EVENTOUT
	PE7	ı	ı	ı		ı	SAI1_SD_B	1	EVENTOUT
	PE8	ı	ı	1		ı	SAI1_SCK_B	ı	EVENTOUT
Port E	PE9	ı	1	ı		ı	SAI1_FS_B	1	EVENTOUT
	PE10	-	TSC_G5_IO1	QUADSPI_CLK	-	-	SAI1_MCLK_B	1	EVENTOUT
	PE11	-	TSC_G5_IO2	QUADSPI_ BK1_NCS	-	-	-	1	EVENTOUT
	PE12	-	TSC_G5_103	QUADSPI_ BK1_100		-	1	1	EVENTOUT
	PE13	ı	TSC_G5_IO4	QUADSPI_ BK1_I01	ı	ı	ı	ı	EVENTOUT
	PE14	ı	1	QUADSPI_ BK1_I02	ı	ı	1	1	EVENTOUT
	PE15	ı	1	QUADSPI_ BK1_IO3	ı	ı	ı	ı	EVENTOUT
	PH0	1	1	-		1	-	-	EVENTOUT
Port H	PH1		ı	1			1	1	EVENTOUT
	PH3	•	ı	ı		ı	1	1	EVENTOUT

1. Refer to Table 17 for AF0 to AF7.

47/

DS11912 Rev 7

87/221

Memory mapping STM32L452xx

5 Memory mapping

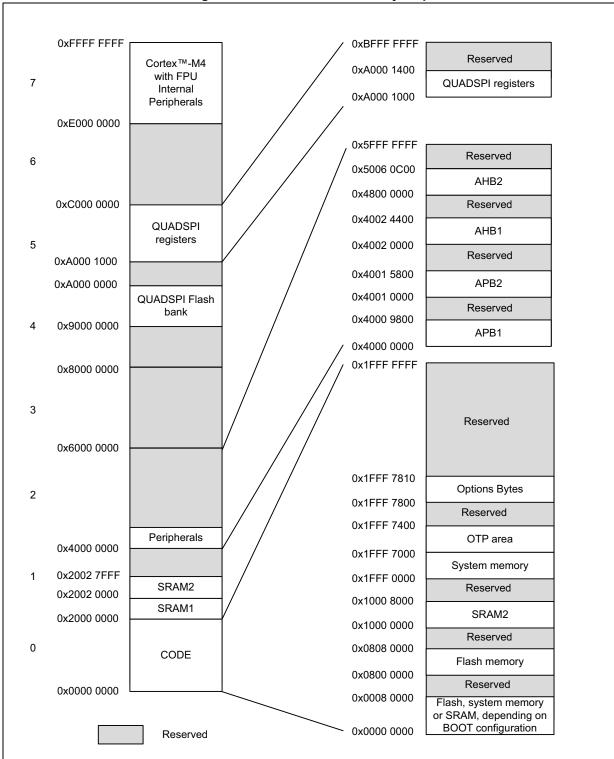


Figure 15. STM32L452xx memory map

88/221 DS11912 Rev 7

MSv40981V3

STM32L452xx Memory mapping

Table 19. STM32L452xx memory map and peripheral register boundary addresses⁽¹⁾

Bus	Boundary address	Size(bytes)	Peripheral
	0x5006 0800 - 0x5006 0BFF	1 KB	RNG
	0x5004 0400 - 0x5006 07FF	158 KB	Reserved
	0x5004 0000 - 0x5004 03FF	1 KB	ADC
	0x5000 0000 - 0x5003 FFFF	16 KB	Reserved
	0x4800 2000 - 0x4FFF FFFF	~127 MB	Reserved
AHB2	0x4800 1C00 - 0x4800 1FFF	1 KB	GPIOH
Andz	0x4800 1400 - 0x4800 1BFF	2 KB	Reserved
	0x4800 1000 - 0x4800 13FF	1 KB	GPIOE
	0x4800 0C00 - 0x4800 0FFF	1 KB	GPIOD
	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA
-	0x4002 4400 - 0x47FF FFFF	~127 MB	Reserved
	0x4002 4000 - 0x4002 43FF	1 KB	TSC
	0x4002 3400 - 0x4002 3FFF	1 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 KB	FLASH registers
ALIDI	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0800 - 0x4002 0FFF	2 KB	Reserved
	0x4002 0400 - 0x4002 07FF	1 KB	DMA2
	0x4002 0000 - 0x4002 03FF	1 KB	DMA1
	0x4001 6400 - 0x4001 FFFF	39 KB	Reserved
	0x4001 6000 - 0x4000 63FF	1 KB	DFSDM1
	0x4001 5800 - 0x4001 5FFF	2 KB	Reserved
	0x4001 5400 - 0x4000 57FF	1 KB	SAI1
	0x4001 4800 - 0x4000 53FF	3 KB	Reserved
APB2	0x4001 4400 - 0x4001 47FF	1 KB	TIM16
	0x4001 4000 - 0x4001 43FF	1 KB	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1 KB	USART1
	0x4001 3400 - 0x4001 37FF	1 KB	Reserved
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1

DS11912 Rev 7 89/221

Memory mapping STM32L452xx

Table 19. STM32L452xx memory map and peripheral register boundary addresses⁽¹⁾ (continued)

Bus	Boundary address	Size(bytes)	Peripheral	
	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1	
	0x4001 2800 - 0x4001 2BFF	1 KB	SDMMC1	
	0x4001 2000 - 0x4001 27FF	2 KB	Reserved	
	0x4001 1C00 - 0x4001 1FFF	1 KB	FIREWALL	
APB2	0x4001 0800- 0x4001 1BFF	5 KB	Reserved	
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI	
	0x4001 0200 - 0x4001 03FF		COMP	
	0x4001 0030 - 0x4001 01FF	1 KB	VREFBUF	
	0x4001 0000 - 0x4001 002F		SYSCFG	
	0x4000 9800 - 0x4000 FFFF	26 KB	Reserved	
	0x4000 9400 - 0x4000 97FF	1 KB	LPTIM2	
	0x4000 8800 - 0x4000 93FF	3 KB	Reserved	
	0x4000 8400 - 0x4000 87FF	1 KB	I2C4	
	0x4000 8000 - 0x4000 83FF	1 KB	LPUART1	
	0x4000 7C00 - 0x4000 7FFF	1 KB	LPTIM1	
	0x4000 7800 - 0x4000 7BFF	1 KB	OPAMP	
	0x4000 7400 - 0x4000 77FF	1 KB	DAC1	
	0x4000 7000 - 0x4000 73FF	1 KB	PWR	
	0x4000 6C00 - 0x4000 6FFF	1 KB	USB SRAM	
	0x4000 6800 - 0x4000 6BFF	1 KB	USB FS	
APB1	0x4000 6400 - 0x4000 67FF	1 KB	CAN1	
AIDI	0x4000 6000 - 0x4000 63FF	1 KB	CRS	
	0x4000 5C00- 0x4000 5FFF	1 KB	I2C3	
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2	
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1	
	0x4000 5000 - 0x4000 53FF	1 KB	Reserved	
	0x4000 4C00 - 0x4000 4FFF	1 KB	UART4	
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3	
	0x4000 4400 - 0x4000 47FF	1 KB	USART2	
	0x4000 4000 - 0x4000 43FF	1 KB	Reserved	
	0x4000 3C00 - 0x4000 3FFF	1 KB	SPI3	
	0x4000 3800 - 0x4000 3BFF	1 KB SPI2		
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved	

STM32L452xx Memory mapping

Table 19. STM32L452xx memory map and peripheral register boundary addresses⁽¹⁾ (continued)

Bus	Boundary address	Size(bytes)	Peripheral
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
APB1	0x4000 1400 - 0x4000 27FF	5 KB	Reserved
AFDI	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0800- 0x4000 0FFF	2 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

^{1.} The gray color is used for reserved boundary addresses.

Electrical characteristics STM32L452xx

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_{Amax}$ (given by the selected temperature range).

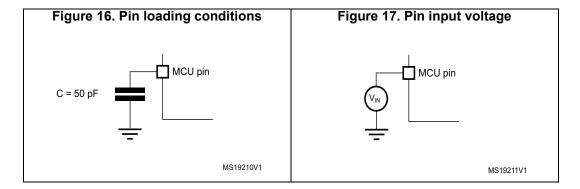
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 16.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 17.

6.1.6 Power supply scheme

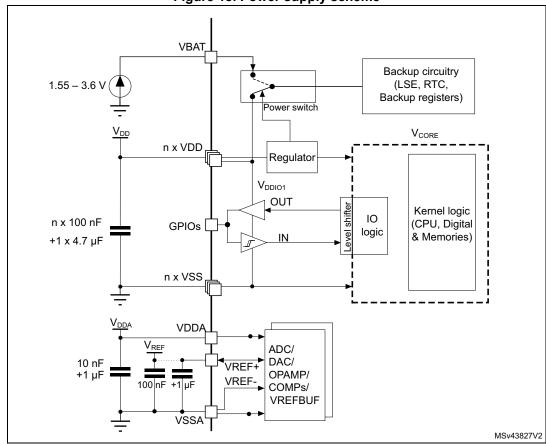
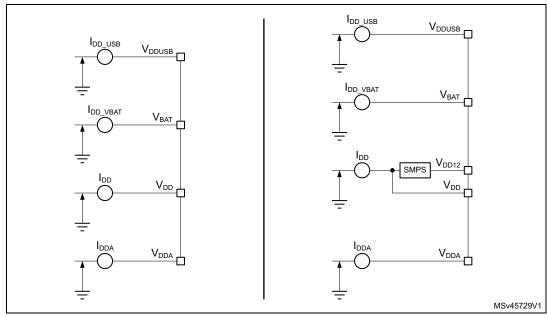


Figure 18. Power supply scheme


Caution:

Each power supply pair (such as V_{DD}/V_{SS} , V_{DDA}/V_{SSA}) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

Electrical characteristics STM32L452xx

6.1.7 Current consumption measurement

Figure 19. Current consumption measurement scheme with and without external SMPS power supply

The I_{DD_ALL} parameters given in *Table 27* to *Table 49* represent the total MCU consumption including the current supplying V_{DD} , V_{DDA} , V_{DDUSB} and V_{BAT} .

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 20: Voltage characteristics*, *Table 21: Current characteristics* and *Table 22: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand.

Table 20. Voltage characteristics⁽¹⁾

Symbol	Ratings	Min	Max	Unit
V _{DDX} - V _{SS}	External main supply voltage (including V _{DD} , V _{DDA} , V _{DDUSB} , V _{BAT})	-0.3	4.0	V
V _{DD12} - V _{SS}	External SMPS supply voltage	-0.3	1.32	V
(2)	Input voltage on FT_xxx pins	V _{SS} -0.3	min (V _{DD} , V _{DDA} , V _{DDUSB}) + 4.0 ⁽³⁾⁽⁴⁾	
V _{IN} ⁽²⁾	Input voltage on TT_xx pins	V _{SS} -0.3	4.0	V
	Input voltage on any other pins	V _{SS} -0.3	4.0	

Table 20. Voltage characteristics ⁽¹⁾ (continued)	Table 20.	Voltage	characteristics ⁽¹⁾	(continued)
--	-----------	---------	--------------------------------	-------------

Symbol	Ratings	Min	Max	Unit
ΔV _{DDx}	Variations between different V _{DDX} power pins of the same domain	-	50	mV
V _{SSx} -V _{SS}	Variations between all the different ground pins ⁽⁵⁾	-	50	mV

- All main power (V_{DD}, V_{DDA}, V_{DDUSB}, V_{BAT}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.
- 2. V_{IN} maximum must always be respected. Refer to *Table 21: Current characteristics* for the maximum allowed injected current values.
- 3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
- 4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
- 5. Include VREF- pin.

Table 21. Current characteristics

Symbol	Ratings	Max	Unit
ΣIV _{DD}	Total current into sum of all V _{DD} power lines (source) ⁽¹⁾⁽²⁾	140	
∑IV _{SS}	Total current out of sum of all V _{SS} ground lines (sink) ⁽¹⁾	140	
IV _{DD(PIN)}	Maximum current into each V _{DD} power pin (source) ⁽¹⁾	100	
IV _{SS(PIN)}	Maximum current out of each V _{SS} ground pin (sink) ⁽¹⁾	100	
	Output current sunk by any I/O and control pin except FT_f	20	
I _{IO(PIN)}	Output current sunk by any FT_f pin	20	
	Output current sourced by any I/O and control pin	20	mA
71	Total output current sunk by sum of all I/Os and control pins ⁽³⁾	100	
$\sum I_{IO(PIN)}$	Total output current sourced by sum of all I/Os and control pins ⁽³⁾	100	
I _{INJ(PIN)} (4)	Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5	-5/+0 ⁽⁵⁾	
,	Injected current on PA4, PA5	-5/0	
Σ I _{INJ(PIN)}	Total injected current (sum of all I/Os and control pins) ⁽⁶⁾	25	

- All main power (V_{DD}, V_{DDA}, V_{DDUSB}, V_{BAT}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supplies, in the permitted range.
- 2. Valid also for V_{DD12} on SMPS packages.
- 3. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
- Positive injection (when V_{IN} > V_{DDIOx}) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- A negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer also to *Table 20: Voltage characteristics* for the maximum allowed input voltage values.
- When several inputs are submitted to a current injection, the maximum ∑|I_{INJ(PIN)}| is the absolute sum of the negative injected currents (instantaneous values).

4

DS11912 Rev 7 95/221

Electrical characteristics STM32L452xx

Table 22. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
T _J	Maximum junction temperature	150	°C

6.3 Operating conditions

6.3.1 General operating conditions

Table 23. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit				
f _{HCLK}	Internal AHB clock frequency	-	0	80					
f _{PCLK1}	Internal APB1 clock frequency	-	0	80	MHz				
f _{PCLK2}	Internal APB2 clock frequency	-	0	80					
V _{DD}	Standard operating voltage	-	1.71 (1)	3.6	V				
V	Standard operating voltage	Full frequency range	1.08	1.32	V				
V _{DD12}	Standard operating voltage	Up to 26 MHz	1.05	1.52	'				
		ADC or COMP used	1.62						
		DAC or OPAMP used	1.8						
V_{DDA}	Analog supply voltage	alog supply voltage VREFBUF used 2.4							
V _{BAT}	Backup operating voltage	-	1.55	3.6	V				
\ <u></u>	LICE cumply voltage	USB used	3.6	V					
V _{DDUSB}	USB supply voltage	USB not used	0	3.6	7 V				
		TT_xx I/O	-0.3	V _{DDIOx} +0.3					
V _{IN}	I/O input voltage	All I/O except TT_xx	Min(Min(V _{DD} , V _{DDA} , V _{DDUSB})+3.6 V, 5.5 V) ⁽²⁾⁽³⁾	V					
		LQFP100	-	357					
		UFBGA100	-	267					
		LQFP64	-	345					
P_{D}	Power dissipation at T _A = 85 °C for suffix 6	UFBGA64	-	308	mW				
	TA GG G ISI GUIIIN G	WLCSP64	-	377					
		LQFP48	-	346					
		UFQFPN48	-	690					
		LQFP100	-	89					
		UFBGA100	-	67					
		LQFP64	-	86					
P_D	Power dissipation at T _A = 125 °C for suffix 3 ⁽⁴⁾	UFBGA64	77	mW					
	n	WLCSP64	-	94					
		LQFP48	-	86					
		UFQFPN48	-	172					

47/

DS11912 Rev 7 97/221

Electrical characteristics STM32L452xx

Symbol	Parameter	Conditions	Min	Max	Unit
	Ambient temperature for the	Maximum power dissipation	-40	85	
TA	suffix 6 version	Low-power dissipation ⁽⁵⁾	-40	105	°C
IA	Ambient temperature for the	Maximum power dissipation	-40	125	
	suffix 3 version	Low-power dissipation ⁽⁵⁾	-40	130	
т	Junction temperature range	Suffix 6 version	-40	105	°C
T _J	Junicuon temperature range	Suffix 3 version	-40	130	

Table 23. General operating conditions (continued)

- 1. When RESET is released functionality is guaranteed down to $V_{\mbox{\footnotesize{BOR0}}}$ Min.
- This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between Min(V_{DD}, V_{DDA}, V_{DDUSB})+3.6 V and 5.5V.
- 3. For operation with voltage higher than Min (V_{DD}, V_{DDA}, V_{DDUSB}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled
- 4. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.8: Thermal characteristics).
- In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.8: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 24* are derived from tests performed under the ambient temperature condition summarized in *Table 23*.

	<u> </u>		<u> </u>		
Symbol	Parameter	Conditions	Min	Max	Unit
4	V _{DD} rise time rate		0	∞	μs/V
t _{VDD}	V _{DD} fall time rate	-	10	∞	μ5/ ν
+	V _{DDA} rise time rate		0	∞	μs/V
t _{VDDA}	V _{DDA} fall time rate	-	10	∞	μs/v
+	V _{DDUSB} rise time rate		0	∞	μοΛ/
t _{VDDUSB} -	V _{DDUSB} fall time rate	-	10	∞	μs/V

Table 24. Operating conditions at power-up / power-down

The requirements for power-up/down sequence specified in *Section 3.9.1: Power supply schemes* must be respected.

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 25* are derived from tests performed under the ambient temperature conditions summarized in *Table 23: General operating conditions*.

Table 25. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
t _{RSTTEMPO} ⁽²⁾	Reset temporization after BOR0 is detected	V _{DD} rising	-	250	400	μs

Table 25. Embedded reset and power control block characteristics (continued)

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
V (2)	Prown out road throshold 0	Rising edge	1.62	1.66	1.7	V
V _{BOR0} ⁽²⁾	Brown-out reset threshold 0	Falling edge	1.6	1.64	1.69	V
M	Duestine and manage themselved 4	Rising edge	2.06	2.1	2.14	
V_{BOR1}	Brown-out reset threshold 1	Falling edge	1.96	2	2.04	V
V	Brown-out reset threshold 2	Rising edge	2.26	2.31	2.35	V
V_{BOR2}	brown-out reset tilleshold 2	Falling edge	2.16	2.20	2.24	V
V	Prown out road throshold 2	Rising edge	2.56	2.61	2.66	V
V_{BOR3}	Brown-out reset threshold 3	Falling edge	2.47	2.52	2.57	V
M	Duestine and manage themselved 4	Rising edge	2.85	2.90	2.95	
V_{BOR4}	Brown-out reset threshold 4	Falling edge	2.76	2.81	2.86	V
1/	Programmable voltage	Rising edge	2.1	2.15	2.19	
V_{PVD0}	detector threshold 0	Falling edge	2	2.05	2.1	V
1/	DVD three hold 4	Rising edge	2.26	2.31	2.36	V
V_{PVD1}	PVD threshold 1	Falling edge	2.15	2.20	2.25	V
1/	DVD three hold 0	Rising edge	2.41	2.46	2.51	\ /
V_{PVD2}	PVD threshold 2	Falling edge	2.31	2.36	2.41	V
1/	DVD three hold 2	Rising edge	2.56	2.61	2.66	
V_{PVD3}	PVD threshold 3	Falling edge	2.47	2.52	2.57	V
W	PVD threshold 4	Rising edge	2.69	2.74	2.79	V
V_{PVD4}	PVD threshold 4	Falling edge	2.59	2.64	2.69	V
\/	DVD throubold 5	Rising edge	2.85	2.91	2.96	V
V_{PVD5}	PVD threshold 5	Falling edge	2.75	2.81	2.86	V
W	PVD threshold 6	Rising edge	2.92	2.98	3.04	V
V_{PVD6}	PVD threshold 6	Falling edge	2.84	2.90	2.96	V
V _{hyst_BORH0}	Hysteresis voltage of BORH0	Hysteresis in continuous mode	-	20	-	mV
<u>,,</u>		Hysteresis in other mode	-	30	-	
V _{hyst_BOR_PVD}	Hysteresis voltage of BORH (except BORH0) and PVD	-	-	100	-	mV
I _{DD} (BOR_PVD) ⁽²⁾	BOR ⁽³⁾ (except BOR0) and PVD consumption from V _{DD}	-	-	1.1	1.6	μΑ
V _{PVM1}	V _{DDUSB} peripheral voltage monitoring	-	1.18	1.22	1.26	V
		Rising edge	1.61	1.65	1.69	
V_{PVM3}	/ _{DDA} peripheral voltage nonitoring					V

DS11912 Rev 7 99/221

Electrical characteristics STM32L452xx

Table 25. Embedded reset and power control block characteristics (continued)

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit			
V	V _{DDA} peripheral voltage	Rising edge	1.78	1.82	1.86	V			
V _{PVM4}	monitoring	Falling edge	1.77	1.81	1.85	V			
V _{hyst_PVM3}	PVM3 hysteresis	-	-	10	-	mV			
V _{hyst_PVM4}	PVM4 hysteresis	-	-	10	-	mV			
I _{DD} (PVM1)	PVM1 consumption from V _{DD}	-	-	0.2	-	μA			
I _{DD} (PVM3/PVM4)	PVM3 and PVM4 consumption from V _{DD}	-	-	2	-	μA			

Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

^{2.} Guaranteed by design.

^{3.} BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.

6.3.4 Embedded voltage reference

The parameters given in *Table 26* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*.

Table 26. Embedded internal voltage reference

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	-40 °C < T _A < +130 °C	1.182	1.212	1.232	V
t _{S_vrefint} (1)	ADC sampling time when reading the internal reference voltage	-	4 ⁽²⁾	-	-	μs
t _{start_vrefint}	Start time of reference voltage buffer when ADC is enable	-	-	8	12 ⁽²⁾	μs
I _{DD} (V _{REFINTBUF})	V _{REFINT} buffer consumption from V _{DD} when converted by ADC	-	-	12.5	20 ⁽²⁾	μА
ΔV_{REFINT}	Internal reference voltage spread over the temperature range	V _{DD} = 3 V	-	5	7.5 ⁽²⁾	mV
T _{Coeff}	Temperature coefficient	-40°C < T _A < +130°C	-	30	50 ⁽²⁾	ppm/°C
A _{Coeff}	Long term stability	1000 hours, T = 25°C	-	300	1000 ⁽²⁾	ppm
V _{DDCoeff}	Voltage coefficient	3.0 V < V _{DD} < 3.6 V	-	250	1200 ⁽²⁾	ppm/V
V _{REFINT_DIV1}	1/4 reference voltage		24	25	26	24
V _{REFINT_DIV2}	1/2 reference voltage	-	49	50	51	% V _{REFINT}
V _{REFINT_DIV3}	3/4 reference voltage		74	75	76	INLFIINT

^{1.} The shortest sampling time can be determined in the application by multiple iterations.

101/221

^{2.} Guaranteed by design.

Electrical characteristics STM32L452xx

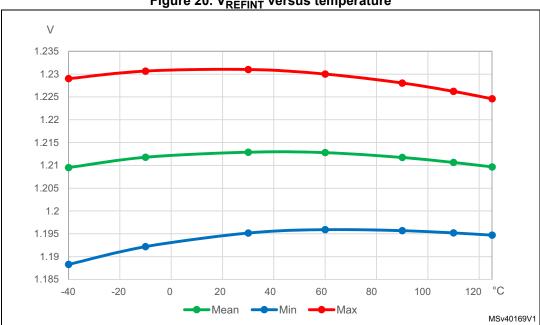


Figure 20. V_{REFINT} versus temperature

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 19: Current consumption* measurement scheme with and without external SMPS power supply.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- · All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted with the minimum wait states number, depending on the f_{HCLK} frequency (refer to the table "Number of wait states according to CPU clock (HCLK) frequency" available in the RM0394 reference manual).
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in *Table 27* to *Table 50* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*.

DS11912 Rev 7 103/221

₹

МA

Table 27. Current consumption in Run and Low-power run modes, code with data processing running from Flash, ART enable (Cache ON Prefetch OFF)

Unit

10.75 1400 1300 1250 1200 3.75 5.15 2.80 2.00 1.40 1.30 1.25 9.85 8.90 7.00 4.20 3.25 1.60 125° ပွ 10.10 1.45 0.75 9.15 8.25 3.20 2.20 0.85 0.65 6.35 3.55 565 4.50 2.60 670 770 009 105° MAX⁽¹⁾ ပွ 0.75 0.45 9.75 4.15 1.95 0.55 0.40 8.80 2.30 315 2.90 7.90 6.00 3.20 470 375 325 85 ပွ 1.75 2.75 1.00 0.60 0.40 0.30 0.25 9.50 8.60 7.70 5.80 3.95 3.05 2.10 225 335 165 140 22 ပွ 0.35 0.15 2.65 1.70 0.95 0.55 0.25 9.45 8.50 7.60 5.70 3.85 2.95 2.00 275 105 170 20 25 ပွ 0.745 0.910 0.825 3.00 2.15 1.45 1.10 9.25 8.45 5.85 3.35 7.60 4.20 2.50 900 800 735 705 125° 105 °C 0.495 0.415 0.580 0.760 1.10 5.45 2.15 2.65 1.80 8.90 8.05 7.20 3.80 2.95 355 550 450 385 0.420 0.330 0.940 0.595 0.250 ပွ 1.65 8.65 7.85 5.25 3.60 2.50 7.00 2.80 1.95 175 365 270 205 85 0.320 0.845 0.495 0.235 0.155 ပွ 1.55 7.70 5.15 2.65 1.85 99.5 71.0 2.40 8.50 6.85 3.50 260 160 22 0.815 0.295 0.465 0.205 0.130 ပွ 2.35 1.50 8.45 7.65 5.10 73.0 38.0 6.80 2.60 1.80 225 130 25 24 MHz 16 MHz 100 kHz 72 MHz 64 MHz 16 MHz 100 KHz 4 MHz 2 MHz 32 MHz 400 kHz 26 MHz 8 MHz 48 MHz 80 MHz 2 MHz 1 MHz fHCLK Range 2 Voltage scaling Range 1 $f_{HCLK} = f_{MSI}$ all peripherals disable peripherals disable f_{HCLK} = f_{HSE} up to 48MHz included, PLL ON above bypass mode 48 MHz all Low-power Parameter current in Run mode current in run mode Supply Symbol DD ALL (Run)

1. Guaranteed by characterization results, unless otherwise specified.

47/

Table 28. Current consumption in Run modes, code with data processing running from Flash, ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS (VDA)

	<u>*</u>							{	<u>{</u>						
		125 °C	3.33	3.04	2.73	2.10	1.51	1.20	06.0	0.63	0.47	0.39	0.36	0.32	
		105°C	3.20	2.89	2.59	1.96	1.37	1.06	0.77	0.47	0.33	0.25	0.21	0.18	
	TYP	3° 58	3.11	2.82	2.52	1.89	1.29	1.01	0.70	0.41	0.26	0.18	0.14	0.11	
		2° 55	3.06	2.77	2.46	1.85	1.26	0.95	0.67	0.36	0.21	0.14	0.10	0.07	
		25 °C	3.04	2.75	2.44	1.83	1.24	0.93	0.65	0.35	0.20	0.13	0.09	90.0	
		fнськ	80 MHz	72 MHz	64 MHz	48 MHz	32 MHz	24 MHz	16 MHz	8 MHz	4 MHz	2 MHz	1 MHz	100 kHz	
(VDD12 = 1.10 V)	Conditions ⁽¹⁾	•						f _{HCLK} = f _{HSE} up to 48MHz included, bypass mode	48 MHz all peripherals disable						
	Daramotor							Supply current in Run	mode						
	Cympol	Ogiii G						(1)	'DD_ALL(Ruii)						

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, $V_{DD12} = 1.10 \text{ V}$

DS11912 Rev 7 105/221

Table 29. Current consumption in Run and Low-power run modes, code with data processing

	Unit																	<	ξ	
		125 °C	4.30	3.35	2.35	1.80	1.50	1.35	1.25	11.5	10.5	10.5	9.00	6.80	5.40	4.25	1550	1350	1250	1200
		105 °C	3.70	2.75	1.75	1.25	0.95	0.80	0.65	11.0	9.70	9.70	8.30	6.10	4.75	3.60	088	720	620	275
	MAX ⁽¹⁾	85 °C	3.40	2.50	1.50	0.95	0.65	0.50	0.40	10.5	9.35	9.35	7.90	5.75	4.40	3.25	272	420	340	320
		J. 55	3.25	2.30	1.35	0.80	0.50	0.35	0.25	10.5	9.15	9.10	7.65	5.50	4.20	3.05	455	285	185	145
		25 °C	3.15	2.25	1.25	0.75	0.45	0.30	0.15	10.0	9.05	8.95	7.55	5.40	4.10	3.00	400	225	130	75
		125 °C	3.40											1000	928	092	715			
able		105 °C	3.10											099	009	405	360			
running from Flash, ART disable	TYP	85 °C	2.90	2.90 2.10 1.25 0.765 0.375 0.375 9.05 8.20 8.20 8.10 6.80 6.80 3.80									2.75	470	320	225	180			
Flash,		25 °C	2.80	2.00	1.15	0.670	0.405	0.275	0.160	8.90	8.05	7.95	6.65	4.80	3.65	2.65	360	215	120	75.5
ig from		25 °C	2.75	1.95	1.10	0.640	0.380	0.250	0.135	8.85	8.00	7.90	09.9	4.75	3.60	2.60	340	175	89.5	42.5
runnir		fнсск	26 MHz	16 MHz	8 MHz	4 MHz	2 MHz	1 MHz	100 kHz	80 MHz 72 MHz 64 MHz 48 MHz 32 MHz 24 MHz 16 MHz							2 MHz	1 MHz	400 kHz	100 kHz
	itions	Voltage scaling				Range 2							Range 1						Φ	
	Condi			Rafuct = fuse up to 48MHz included, bypass mode PLL ON above 48 MHz all peripherals disable Ra												ble				
		Parameter		Supply current in Run mode													Nagario	Supply current in	Low-power	5
		Symbol Symbol (Run)											lpp ALL	(LPRun)						

1. Guaranteed by characterization results, unless otherwise specified.

Table 30. Current consumption in Run modes, code with data processing running from Flash, ART disable and power supplied by external SMPS ($V_{DD12} = 1.10 \text{ V}$)

J МA 3.18 3.15 0.75 0.43 2.68 2.00 1.56 1.20 0.54 0.32 0.37 125 105 °C 0.18 3.02 2.53 1.85 0.40 0.29 0.23 3.34 3.00 1.44 1.06 0.60 ე₀ 58 0.16 0.11 3.25 2.95 1.78 0.33 0.22 2.91 2.44 1.37 0.99 0.54 1.73 0.12 3.20 2.89 2.86 2.39 0.95 0.50 0.29 0.17 0.07 1.31 22 90.0 0.16 3.18 2.88 2.84 1.29 0.93 0.28 0.11 1.71 0.47 2.37 22 100 kHz 72 MHz 64 MHz 32 MHz 80 MHz 48 MHz 24 MHz 16 MHz 1 MHz 8 MHz 4 MHz 2 MHz **f**HCLK f_{HCLK} = f_{HSE} up to 48MHz included, bypass mode PLL ON above 48 MHz all peripherals disable Conditions⁽¹⁾ Supply current in Run **Parameter** IDD_ALL(Run) Symbol

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V

47/

DS11912 Rev 7 107/221

STM32L452xx **Electrical characteristics**

Table 31. Current consumption in Run and Low-power run modes, code with data processing running from SRAM1

		Unit							4	<u> </u>								<u> </u>	ξ.	
		125 °C	3.80	2.80	2.00	1.60	1.40	1.30	1.25	11.0	9.95	9.00	7.05	5.15	4.20	3.25	1400	1300	1250	1200
		105 °C	3.20	2.25	1.45	1.05	0.85	0.75	0.65	10.5	9.25	8.35	6.40	4.50	3.55	2.60	760	099	585	555
	MAX ⁽¹⁾	၁. ૬8	2.90	1.95	1.15	0.75	0.55	0.45	0.35	9.85	8.90	7.95	6.05	4.20	3.25	2.30	460	370	330	305
		J. 55	2.75	3.05 2.70 2.75 2.15 1.70 1.80 1.45 0.95 1.00 1.10 0.55 0.60 0.915 0.35 0.40 0.825 0.25 0.30 0.750 0.15 0.25 9.35 9.55 9.65 8.50 8.70 7.75 7.70 7.70 7.75 5.90 5.75 5.85 4.25 3.90 4.00 3.40 3.00 3.05 2.55 2.05 2.10											330	215	160	130		
		25 °C	2.70												270	165	100	63.0		
		125 °C	3.05												895	795	730	695		
		105 °C	2.70											540	440	375	345			
	ТУР	85 °C	2.55	55 65 950 300 330 250								7.10	5.30	3.65	2.80	1.95	360	260	195	165
		55 °C	2.40	1.55	0.850	0.500	0.325	0.235	0.155	8.60	7.80	6.95	5.20	3.50	2.70	1.85	255	155	92.0	62.5
		25 °C	2.40	1.50	0.820	0.470	0.295	0.210	0.130	8.55	7.70	6.90	5.15	3.45	2.65	1.80	220	120	0.09	36.0
5		fнсLK	26 MHz	16 MHz	8 MHz	4 MHz	2 MHz	1 MHz	100 kHz	80 MHz	72 MHz	64 MHz	48 MHz	32 MHz	24 MHz	16 MHz	2 MHz	1 MHz	400 kHz	100 kHz
	ions	Voltage scaling				Range 2							Range 1							
	Conditions	Supply Supply bypass mode current in PLL ON above 48 MHz all peripherals disable Ra														fHCLK = fMSI	all periprierals disable FLASH in power-down			
																S. Jac.	Supply current in	low-power		
	Symbol IDD ALL (Run)													IDD ALL	(LPRun)					

1. Guaranteed by characterization results, unless otherwise specified.

Table 32. Current consumption in Run, code with data processing running from SRAM1 and power supplied by external SMPS (V_{DD12} = 1.10 V)

	<u>+</u>							S	<u>(</u>					
		125 °C	3.24	2.94	2.63	2.00	1.38	1.07	22.0	0.47	0.31	0.24	0.20	0.16
		105 °C	3.18	2.87	2.57	1.93	1.32	1.02	17.0	14.0	0.25	0.18	0.14	0.10
	ТУР	85 °C	3.14	2.84	2.53	1.90	1.29	0.98	0.68	0.38	0.22	0.15	0.11	0.07
		25 °C	3.12	2.81	2.51	1.88	1.27	96.0	99.0	0.36	0.21	0.13	60.0	0.06
.10 V)		25 °C	3.10	2.80	2.50	1.87	1.26	96.0	0.65	0.35	0.20	0.13	60.0	0.05
$\sqrt{DD12} = 1$		fнсLK	80 MHz	72 MHz	64 MHz	48 MHz	32 MHz	24 MHz	16 MHz	8 MHz	4 MHz	2 MHz	1 MHz	100 kHz
SRAM1 and power supplied by external SMPS ($V_{DD12} = 1.10 \text{ V}$)	Conditions ⁽¹⁾	•						f _{HCLK} = f _{HSE} up to 48MHz included, bypass mode						
SF	Daramotor							obom and ai taomio ylamio	Supply callelle iii Nail Illode					
	Sympo	9						(Dina)	DD_ALL(INGII)					

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, $V_{DD12} = 1.10 \text{ V}$

47/

DS11912 Rev 7 109/221

Table 33. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART enable (Cache ON Prefetch OFF)

			Condition	ons	TYP		TYP		
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit	
			N	Reduced code ⁽¹⁾	2.35		90		
			Range 2 _{LK} = 26 MHz	Coremark	2.65	,	102		
		£ _£	ange = 26	Dhrystone 2.1	2.75	mA	106	μΑ/MHz	
		f _{HCLK} = f _{HSE} up to 48 MHz	Ra fHCLK	Fibonacci	2.60	·	100		
I _{DD_ALL}	Supply current in	included, bypass		While(1)	2.35	·	90		
(Run)	Run mode	mode PLL ON above 48 MHz	구 구	Reduced code ⁽¹⁾	8.45		106		
		all peripherals disable	Range 1 _{:LK} = 80 MHz	Coremark	9.45	·	118		
		disable	ange = 80	Dhrystone 2.1	9.85	mA	123	µA/MHz	
			Ra fHCLK	Fibonacci	9.25		116		
			Ţ	While(1)	8.45		106		
				Reduced code ⁽¹⁾	225		113		
	Supply			Coremark	260		130		
I _{DD_ALL} (LPRun)	current in f _{HCLK} = f _{MSI} = Low-power all peripherals			Dhrystone 2.1	270	μΑ	135	μΑ/MHz	
	run	, , , , , , , , , , , , , , , ,		Fibonacci	245	,	123	<u> </u>	
				While(1)	285		143		

^{1.} Reduced code used for characterization results provided in *Table 27*, *Table 29*, *Table 31*.

Table 34. Typical current consumption in Run, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS $(V_{DD12} = 1.10 \text{ V})$

		Co	onditions ⁽	1)	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			77	Reduced code ⁽²⁾	1.01		39	
			26 MHz	Coremark	1.14		44	
		f _{HCLK} = f _{HSE} up to	= 26	Dhrystone 2.1	1.19		46	
		48 MHz included,	^f нсск [:]	Fibonacci	1.12		43	
I _{DD_ALL}	Supply current in	bypass mode PLL ON above	Ŧ	While(1)	1.01	mA	39	μΑ/MHz
(Run)	Run mode	48 MHz	7Z	Reduced code ⁽²⁾	3.04	ША	38	μΑ/ΙΝΙΙ ΙΖ
		all peripherals	80 MHz	Coremark	3.40		42	
		disable	98 =	Dhrystone 2.1	3.54		44	
			fнсск [:]	Fibonacci	3.33		42	
			Щ	While(1)	3.04		38	

- 1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, $V_{DD12} = 1.10 \text{ V}$
- 2. Reduced code used for characterization results provided in *Table 27*, *Table 29*, *Table 31*.

Table 35. Typical current consumption in Run, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS $(V_{DD12} = 1.05 \text{ V})$

		Co	onditions ⁽	1)	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
		f _{HCLK} = f _{HSE} up to	Z	Reduced code ⁽²⁾	0.92		36	
	Supply	48 MHz included, bypass mode PLL	MHz	Coremark	1.04		40	
I _{DD_ALL}	current in	ON above	26	Dhrystone 2.1	1.08	mA	42	μΑ/MHz
(Run)	Run mode	48 MHz	K II	Fibonacci	1.02		39	
		all peripherals disable	fнсск	While(1)	0.92		36	

^{1.} All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, $\text{V}_{\text{DD}12}$ = 1.05 V

DS11912 Rev 7 111/221

^{2.} Reduced code used for characterization results provided in Table 27, Table 29, Table 31.

Table 36. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART disable

			Conditio	ns	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			¥	Reduced code ⁽¹⁾	2.75		106	
			ange 2 = 26 MHz	Coremark	2.50		96	
		$f_{HCLK} = f_{HSE}$ up to	Range _{-K} = 26	Dhrystone 2.1	2.50	mA	96	μΑ/MHz
		48 MHz included,	Ra	Fibonacci	2.30		88	
I _{DD ALL}	in) Current III	bypass mode PLL ON above	Ť,	While(1)	2.20		84.6	
(Run)		48 MHz	Range 1 f _{HCLK} = 80 MHz	Reduced code ⁽¹⁾	8.85		111	
		all peripherals disable		Coremark	8.15		102	
				Dhrystone 2.1	8.15	mA	102	μΑ/MHz
				Fibonacci	7.55		94	
			fπ	While(1)	7.95		99	
				Reduced code ⁽¹⁾	340		170	
	Supply I _{DD_ALL} current in (LPRun) Low-power	£ £ 0.141	-	Coremark	380		190	
		f _{HCLK} = f _{MSI} = 2 MI all peripherals disa		Dhrystone 2.1	355	μΑ	178	μΑ/MHz
(2. /(dil)	run	all peripherals disab	Fibonacci 355			178		
				While(1)	405		203	

^{1.} Reduced code used for characterization results provided in *Table 27*, *Table 29*, *Table 31*.

Table 37. Typical current consumption in Run modes, with different codes running from Flash, ART disable and power supplied by external SMPS ($V_{DD12} = 1.10 \text{ V}$)

		C	onditions ⁽	1)	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			ZH	Reduced code ⁽²⁾	1.19		46	
			3 MHz	Coremark	1.08		41	
		f _{HCLK} = f _{HSE} up to	= 26	Dhrystone 2.1	1.08		41	
	O. was to	48 MHz included,	fHCLK :	Fibonacci	0.99		38	
I _{DD ALL}	Supply current in	bypass mode PLL ON above	步	While(1)	0.95	mA	37	μΑ/MHz
I _{DD_} ALL (Run)	Run mode	48 MHz	4z	Reduced code ⁽²⁾	3.18	ША	40	μΑ/ΙΝΙΙ ΙΖ
		all peripherals	80 MHz	Coremark	2.93		37	1
		disable	= 8(Dhrystone 2.1	2.93		37	
			fHCLK :	Fibonacci	2.71		34	
			fμc	While(1)	2.86		36	

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.10 V

Ay/

^{2.} Reduced code used for characterization results provided in *Table 27*, *Table 29*, *Table 31*.

Table 38. Typical current consumption in Run modes, with different codes running from Flash, ART disable and power supplied by external SMPS ($V_{DD12} = 1.05 \text{ V}$)

		C	onditions ⁽	1)	TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
		f _{HCLK} = f _{HSE} up to	MHz	Reduced code ⁽²⁾	1.08		42	
	Supply	48 MHz included,		Coremark	0.98		38	
I _{DD_ALL} (Run)	current in	bypass mode PLL ON above	= 26	Dhrystone 2.1	0.98	mA	38	μΑ/MHz
(311)	Run mode	48 MHz	^f нсск [:]	Fibonacci	0.90		35	
		all peripherals	f.	While(1)	0.86		33	

^{1.} All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, $V_{DD12} = 1.05 \text{ V}$

Table 39. Typical current consumption in Run and Low-power run modes, with different codes running from SRAM1

			Conditio	ons	TYP		TYP		
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit	
			2 MHz	Reduced code ⁽¹⁾	2.40		92		
			Z Z	Coremark	2.20		85		
		f _{HCLK} = f _{HSE} up to	Range 2	Dhrystone 2.1	2.35	mA	90	μA/MHz	
		48 MHz included,	Ra fHCLK	Fibonacci	2.20		85		
I _{DD_ALL}	current in	bypass mode PLL ON above		While(1)	2.30		88		
(Run)	Run mode	48 MHz all	Ŧ	Reduced code ⁽¹⁾	8.55		107		
		peripherals	Range 1 _{:LK} = 80 MHz	Coremark	7.75		97	μΑ/MHz	
		disable		Dhrystone 2.1	8.45	mA	106		
			Ra fHCLK	Fibonacci	7.80		98		
			fπ	While(1)	8.75		109		
				Reduced code ⁽¹⁾	220		110		
	Supply I _{DD ALL} current in (LPRun) Low-power	£ £ 0.MI	I	Coremark	190		95	1	
		f _{HCLK} = f _{MSI} = 2 MH all peripherals disa		Dhrystone 2.1	tone 2.1 215 µA		108	μΑ/MHz	
(=: / tan)	run	er all peripherals disable		Fibonacci	200		100		
				While(1)	210		105		

^{1.} Reduced code used for characterization results provided in *Table 27*, *Table 29*, *Table 31*.

^{2.} Reduced code used for characterization results provided in *Table 27*, *Table 29*, *Table 31*.

Table 40. Typical current consumption in Run, with different codes running from SRAM1 and power supplied by external SMPS ($V_{DD12} = 1.10 \text{ V}$)

		Co	nditions ⁽¹⁾		TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
			Z Z	Reduced code ⁽²⁾	1.04		40	
			MHZ	Coremark	0.95		37	
		f -f unto	= 26	Dhrystone 2.1	1.01		39	
	Supply D_ALL current in	f _{HCLK} = f _{HSE} up to 48 MHz included, bypass mode	fHCLK =	Fibonacci	0.95		37	
I _{DD ALL}			<u>ਜ</u> ੍ਹੇ	While(1)	0.99	mA	38	μΑ/MHz
(Run)	Run mode	PLL ON above	Z Z	Reduced code ⁽²⁾	3.07	ш	38	μΑ/ΙΝΙΙΙΖ
	Run mode	48 MHz all	80 MHz	Coremark	2.79		35	
		peripherals disable	9(Dhrystone 2.1	3.04		38	
			fHCLK "	Fibonacci	2.80		35	
			ĨŦ.	While(1)	3.15		39	

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.10 V

Table 41. Typical current consumption in Run, with different codes running from SRAM1 and power supplied by external SMPS ($V_{DD12} = 1.05 \text{ V}$)

		Co	nditions ⁽¹⁾		TYP		TYP	
Symbol	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
		f _{HCLK} = f _{HSE} up to	MHz	Reduced code ⁽²⁾	0.94		36	
	Supply	48 MHz included,		Coremark	0.86		33	
I _{DD_ALL} (Run)	current in	bypass mode PLL ON above	= 26	Dhrystone 2.1	0.92	mA	36	μA/MHz
(* 15.11)	Run mode	48 MHz all	fHCLK :	Fibonacci	0.86		33	
		peripherals disable	fπ	While(1)	0.90		35	

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.05 V

^{2.} Reduced code used for characterization results provided in Table 27, Table 29, Table 31.

^{2.} Reduced code used for characterization results provided in *Table 27*, *Table 29*, *Table 31*.

Table 42. Current consumption in Sleep and Low-power sleep modes, Flash ON

		Unit							۵	<u> </u>								<	ξ	
		125 °C	1.90	1.65	1.45	1.35	1.25	1.25	1.20	3.80	3.55	3.35	2.80	2.35	2.10	1.85	1250	1250	1200	1200
		105 °C	1.30	1.05	0.85	0.75	0.70	0.65	0.65	3.15	2.90	2.70	2.15	1.70	1.45	1.20	610	585	220	560
	MAX ⁽¹⁾	85 °C	1.05	0.80	0.60	0.45	0.40	0.40	0.35	2.85	2.60	2.35	1.85	1.40	1.15	0.90	355	335	320	305
asii ON		J. 55	06'0	0.65	0.45	0:30	0.25	0.25	0.20	2.65	2.40	2.20	1.65	1.20	0.95	0.75	185	160	140	130
des, ri		25 °C	0.80	0.55	0.35	0.25	0.20	0.15	0.15	2.55	2.35	2.10	1.60	1.10	0.90	0.65	120	88.5	68.5	66.0
eeb IIIO		125 °C	1.35	1.10	0.920	0.830	0.785	092'0	0.740	3.05	2.80	2.60	2.15	1.70	1.50	1.25	745	725	710	715
OWEI SI		J. 201	1.00	0.775	065.0	0.500	0.455	0.430	0.410	2.65	2.45	2.25	1.75	1.30	1.10	968.0	362	370	355	345
LOW-P	TYP	85 °C	0.830	0.605	0.425	0.335	0.290	0.265	0.245	2.45	2.25	2.05	1.55	1.15	0.920	0.705	215	195	175	195
ch allo		ე. 99	0.730	0.505	0.325	0.235	0.190	0.170	0.150	2.35	2.15	1.90	1.40	1.00	0.800	065.0	110	86.5	70.5	75.0
OE		25 °C	0.700	0.475	0.300	0.210	0.165	0.145	0.125	2.30	2.10	1.90	1.40	0.970	0.765	0.555	76.0	54.0	39.0	35.5
aumpuo		fнсLK	26 MHz	16 MHz	8 MHz	4 MHz	2 MHz	1 MHz	100 kHz	80 MHz	72 MHz	64 MHz	48 MHz	32 MHz	24 MHz	16 MHz	2 MHz	1 MHz	400 kHz	100 kHz
elit coll	litions	Voltage scaling				Range 2							Range 1						able	
lable 42. Cullett collouinpitol III Sleep and EOW-power sleep illoues, I lasti ON	Cond	-		f _{HCLK} = f _{HSE} up to 48 MHz included, bypass mode pll ON above 48 MHz all peripherals disable Ra									f _{HCLK} = f _{MSI}	all peripherals disable						
		Parameter		Supply current in sleep mode,								Supply	current in	sleep	mode					
		Symbol	lpo_ALL (Sleep)									lpp ALL	(LPSleep)							

1. Guaranteed by characterization results, unless otherwise specified.

4

DS11912 Rev 7 115/221

Table 43. Current consumption in Sleep, Flash ON and power supplied by external SMPS

TYP	55°C 85°C 105°C 125°C	0.88 0.95 1.10	0.81 0.88 1.01	0.81 0.93	0.63 0.77	.7 0.61	0.54	0.45	0.40	0.36	0.34	0.33	0.32
ТҮР	55°C 85°C 105°C	0.95	0.88	0.81			0.54	0.45	0.40	0.36	0.34	0.33	0.32
ТҮР	25°C 85°C				0.63	.7							
TYP	2° 55	88.0	81			0.47	0.40	0.32	0.25	0.22	0.20	0.19	0.18
			0	0.74	0.56	0.41	0.33	0.25	0.18	0.14	0.13	0.11	0.11
		0.84	0.77	0.68	0.50	0.36	0.29	0.21	0.14	0.10	0.08	0.07	90.0
	25 °C	0.83	0.75	0.68	0.50	0.35	0.28	0.20	0.13	60.0	0.07	90.0	0.05
	fнсLK	SHM 08	72 MHz	64 MHz	48 MHz	32 MHz	24 MHz	16 MHz	8 MHz	4 MHz	2 MHz	1 MHz	100 kHz
Conditions ⁽¹⁾	•					fucive = fuse up to 48 MHz included, bypass	mode	pll ON above	48 MHz all peripherals disable				
Paramoter	נמומוופנפו						Supply of transfer and a	Supply suited in steep mode,					
	9						(Cloon)	(Cleeb)					
		Symbol Parameter ———————————————————————————————————					Parameter					Parameter ep) Supply current in sleep mode,	

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, $V_{DD12} = 1.10 \text{ V}$

Table 44. Current consumption in Low-power sleep modes, Flash in power-down

	Unit		4	ξ	
	125 °C	1250	1200	1200	1200
	f _{HCLK} 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C	009	220	555	550
MAX ⁽¹⁾	ე. 98	350	325	305	300
	22 °C	175	155	130	120
	25 °C	110	81.5	60.5	58.5
	125 °C	740	715	695	069
	105 °C	410	385	370	360
Ϋ́	85 °C	220	195	175	170
	55 °C	105	81.0	64.5	55.0
	25 °C	76.5	54.0 81.0	28.0	21.5 55.0
	fнсLK	2 MHz	1 MHz	400 kHz	100 kHz
nditions	Voltage scaling			disable	
CO	-		fHCLK = fMSI	all peripherals	
	Parameter		Supply current fp	sleep mode	-
	Symbol		PD ALL	(LPSleep)	

^{1.} Guaranteed by characterization results, unless otherwise specified.

Table 45. Current consumption in Stop 2 mode

	2	= 5		4	ξ							4	ξ							m A	
		125 °C	220	225	230	235	220	225	230	235	1	ı	ı	1	1	1	ı	ı	1	1	1
		105 °C	100	100	105	105	100	100	105	105	1		ı	1	,	1	ı	ı	1	1	1
:	MAX ⁽¹⁾	85 °C	41.5	42.0	43.0	44.0	42.0	42.5	43.5	44.5	ı	ı	ı	ı	ı	ı	ı	ı	,	1	1
		25 °C	11.5	11.5	12.0	12.0	12.0	12.0	12.5	13.0	1		ı	ı	1		ı	ı	1	1	1
		25 °C	4.00	4.05	4.10	4.20	4.50	4.65	4.90	5.20	1		ı	1	,		ı	ı	1	1	1
поде		125 °C	0.76	98.5	100	105	0.76	0.66	100	105	97.0	98.5	100	105	98.0	99.5	100	105	1		,
Stop 2		105 °C	44.0	44.5	45.0	46.5	44.0	44.5	45.5	47.0	48.0	49.0	49.5	51.5	44.5	45.0	46.0	47.0	1		1
lable 45. Current consumption in Stop 2 mode	ΤΥΡ	85 °C	19.0	19.0	19.5	20.0	19.0	19.5	20.0	20.5	21.0	21.0	21.5	22.5	19.0	19.5	20.0	20.5	,	1	1
dwnsu		2° 55	5.40	5.45	5.55	5.65	5.65	5.80	5.90	6.15	6.05	6.20	6.35	09.9	5.70	5.85	00.9	6.25			1
rent co		25 °C	2.05	2.10	2.05	2.05	2.30	2.35	2.50	2.60	2.60	2.55	2.80	2.85	2.40	2.50	2.60	2.65	1.85	1.50	1.55
io. car		V _{DD}	1.8 V	2.4 V	3 \	3.6 V	1.8 V	2.4 V	3 \	3.6 V	1.8 V	2.4 V	3 \	3.6 V	1.8 V	2.4 V	3 \	3.6 V	> °E	3 V	3 <
lable	Conditions	•		,	•			RTC clocked by LSI				RTC clocked by LSE	bypassed at 32768 Hz		- - - - - -	KIC clocked by LSE	in low drive mode		Wakeup clock is MSI = 48 MHz, voltage Range 1. See ⁽³⁾ .	Wakeup clock is MSI = 4 MHz, voltage Range 2. See ⁽³⁾ .	Wakeup clock is HSI16 = 16 MHz, voltage Range 1. See ⁽³⁾ .
	Daramotor	raiailletei		Supply current in	RTC disabled						-	Supply current in	RTC enabled							Supply current during wakeup from Stop 2 mode	
	Cympol	99111001		IDD ALL	(Stop 2)						-	DD_ALL	RTC)	`						l _{DD_ALL} (wakeup from Stop 2)	

Guaranteed based on test during characterization, unless otherwise specified.

Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. α

47/

117/221

Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.

57

Table 46. Current consumption in Stop 1 mode

	<u>*</u>	5		4	<u> </u>							٥	í							шĄ	
		125 °C	850	850	850	860	840	845	855	860	1	1	,	ı	ı		1	1	1	1	1
		105 °C	395	395	400	405	395	395	400	405	ı		-	ı	ı				1	1	ı
5	MAX ⁽¹⁾	3° 58	185	185	185	190	185	185	185	190	1	,		ı	,				1	1	1
		ე. 99	49.5	49.5	90.09	50.5	90.09	50.5	50.5	51.5			-	ı			1	-	1	1	1
		25 °C	17.0	17.0	17.5	17.5	17.0	17.0	17.5	17.5	1	ı	-	ı	ı	-		-	-	•	-
anou		125°C	430	435	435	410	430	435	435	440	435	435	440	440	435	435	440	440	ı	ı	ı
		105 °C	225	225	225	230	225	225	225	230	225	225	225	230	220	220	220	225	ı	ı	ı
	ТУР	3° 58	100	100	100	105	100	100	105	105	100	100	105	105	99.5	99.5	100	100	1	1	ı
dilling		2° 55	29.0	29.5	29.5	28.0	29.5	29.5	30.0	30.0	29.5	29.5	30.0	30.5	29.0	29.0	29.0	29.5	ı	ı	•
3		25 °C	9.85	9.85	9.90	10.0	10.5	10.5	10.5	10.5	10.0	10.0	10.5	11.0	10.0	10.0	10.0	10.5	1.15	1.20	1.20
Sulle		V _{DD}	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	3 <	3 <	3 <
lable 46.	Conditions	•		,	ı			RTC clocked by LSI	101 fg posson 0 121				bypassed, at 32768 Hz			RTC clocked by LSE quartz ⁽²⁾	in low drive mode		Wakeup clock MSI = 48 MHz, voltage Range 1. See (3).	Wakeup clock MSI = 4 MHz, voltage Range 2. See (3)	Wakeup clock HSI16 = 16 MHz, voltage Range 1. See ⁽³⁾ .
	Daramotor		Supply	current in	Stop 1 mode,	KIC disabled					Supply	current in stop		KIC enabled						Supply current during wakeup from Stop 1	
	Symbol	9		IDD ALL	(Stop 1)							OD ALL	RTC)	•						l _{DD_ALL} (wakeup from Stop1)	

Guaranteed based on test during characterization, unless otherwise specified.

Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. ۲, Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.

77/

Table 47. Current consumption in Stop 0

12	<u> </u>		4	<u> </u>	
	125 °C	1150	1150	1150	1150 ⁽²⁾
	25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C	009	605	610	615
MAX ⁽¹⁾	85 °C	320	355	360	365
	22 °C	190	195	195	200
	25 °C	145	150	155	155
	125 °C	645	645	650	655
	105°C	390	390	395	400
TYP	85 °C	240	240	245	245
	2° 55	150	150	150	155
	25 °C	125	125	125	125
Conditions	V _{DD}	1.8 V	2.4 V	3 V	3.6 ∨
20,000		Supply	current in	Stop 0 mode,	KIC disabled
Chamin	oyiiiooi		lpp ALL	(Stop 0)	

Guaranteed by characterization results, unless otherwise specified. . %

Guaranteed by test in production.

able 48. Current consumption in Standby mode

Ī	in it					δ	<u> </u>							4	<u> </u>							٥	<u> </u>			
		125 °C	25000	29000	33500	38500	ı		ı	ı	25000	29000	34000	39000	ı	1	1	ı	ı	1		ı	ı	ı		
		105°C	9250	11000	13000	15000	-	ı	ı	ı	9550	11500	13500	15500	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı		-
	MAX ⁽¹⁾	82 °C	3250	3750	4450	5250	ı		ı	1	3750	4400	5100	0009	ı	1	1	ı	ı	1		ı	ı	ı		,
		22 °C	029	750	950	1150	-		1		1150	1450	1700	2100	ı	ı	ı	ı	ı	ı		ı	ı	ı		-
_		25 °C	202	225	290	355	ı			1	720	875	1070	1320	ı			ı	ı			ı	ı	ı	,	
moae		125 °C	8650	10000	12000	14500	8700	10500	12500	14500	8600	10000	12000	14500	8800	10500	12500	15000	ı	ı		ı	8800	10500	12500	15000
tandby		105°C	3300	3850	4550	2200	3450	4100	4850	2950	3450	4050	4750	2900	3550	4250	5100	6200	ı	ı		ı	3550	4250	2050	2900
on in S	TYP	85 °C	1200	1400	1650	2000	1350	1650	1950	2450	1400	1650	2000	2450	1450	1800	2150	2700	-		-	-	1500	1750	2100	2600
sumpti		25 °C	270	305	360	445	435	540	655	895	202	620	745	915	540	069	098	1150		ı			220	999	810	1000
nt con		25 °C	100	110	125	160	265	335	420	280	345	420	510	635	375	490	620	845	395	200	625	262	375	460	265	720
. curre		V _{DD}	1.8 V	2.4 V	3 \	3.6 V	1.8 V	2.4 V	3 \	3.6 V	1.8 V	2.4 V	3 \	3.6 V	1.8 V	2.4 V	3 \	3.6 V	1.8 V	2.4 V	3 \	3.6 V	1.8 V	2.4 V	3 \	3.6 V
lable 46. Current consumption in Standby mode	Conditions			populatow taobaoabai oa	וומפלים וומפלים אמנסומס			with independent	watchdog			RTC clocked by LSI, no	independent watchdog			RTC clocked by LSI, with	independent watchdog			RTC clocked by LSE	bypassed at 32768Hz			RTC clocked by LSE	quartz $^{(2)}$ in low drive mode	
	Parameter			-	Supply current in Standby	mode (backup	registers	retained), RTC disabled								-	Supply current in Standby	mode (backup	registers	retained), RTC enabled						
	Symbol	6				lpp ALL	(Standby)											DD_ALL	with RTC)							

DS11912 Rev 7 121/221

Table 48. Current consumption in Standby mode (continued)

	Init			δα	[mA
		125 °C	32000	32000	32500	33000	1
		V _{DD} 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C	14500	14500	15000	15000	-
	MAX ⁽¹⁾	3° 58	9320	6450	6500	6500	1
		25 °C	1800	1800	1850	1950	ı
		25 °C	229	620	645	790	ı
,		125 °C	13850	14000	6450 13500	13500	
		105 °C	6350	6150	6450	6500	-
	ТҮР	85 °C	2700	2700	2700	2800	1
		J. 99	082	740	740	755	-
		25 °C	250	250	255	255	3 V 2.00
		V _{DD}	1.8 V	2.4 V	3 \	3.6 V	3 V
	Conditions	-		•	1		Wakeup clock is MSI = 4 MHz. See ⁽⁴⁾ .
	Daramotor		Supply current		when SRAM2	is retained	Supply current during wakeup from Standby mode
	Symbol			PD ALL	(SRAM2) ⁽³⁾		l _{DD} ALL (wakeup from Standby)

. Guaranteed by characterization results, unless otherwise specified.

Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. ď The supply current in Standby with SRAM2 mode is: I_{DD_ALL}(Standby) + I_{DD_ALL}(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: I_{DD_ALL}(Standby + I_{DD_ALL}(SRAM2). က

Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings. 4.

Table 49. Current consumption in Shutdown mode

	- Crit		,	Ρη	
	V _{DD} 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 85 °C 105 °C 125 °C	19500	22500	26000	30000
	105 °C	6350	7450	8750	10500 30000
MAX ⁽¹⁾	ე _° 98	2050	2400	2850	3500
	25 °C	320	400	200	029
	25 °C	38.0	62.0	105	160
	125 °C	6400	7450	8700	3950 11000
	105 °C	2200	2600	3100	0968
TYP	ე _° 98	720	855	1050	1350
	2° 55	120	145	185	260
	25 °C	1.8 V 19.0 120	2.4 V 26.0	3 V 37.0	3.6 V 67.0
	V _{DD}	1.8 V	2.4 V	3 V	3.6 V
Conditions				,	
	Parameter	Supply current	in Shutdown	(backup	registers retained) RTC disabled
,	Symbol			IDD ALL	

Table 49. Current consumption in Shutdown mode (continued)

	ļ	5				۸۵	<u>[</u>				mA
		125 °C	-	ı	ı	ı	ı	ı			1
		105 °C 125 °C	-	ı	ı	ı	ı	ı			1
	MAX ⁽¹⁾	ე. 98		ı	ı	ı	ı	ı	ı		1
		2° 53	-	ı	ı	ı	ı	ı	ı		1
,		25 °C			ı		ı	ı	ı		
		105°C 125°C 25°C	0229	7650	9050	11500	0029	7800	8800	11500	
			2600	3100	3750	4800	2550	3050	3700	4950	
	TYP	3° 58	950	1150	1450	1900	1050	1250	1550	1950	1
		J. 99	275	370	485	655	410	515	645	840	1
-		25 °C	165	235	325	445	290	375	480	625	1.00
		αα _Λ	1.8 V	2.4 V	3 V	3.6 V	1.8 V	2.4 V	3 V	3.6 V	3 V
	Conditions	•		RTC clocked by LSE	bypassed at 32768 Hz			RTC clocked by LSE	mode		Wakeup clock is MSI = 4 MHz. See ⁽³⁾ .
	Daramoter			Supply current	in Shutdown	mode /hackiin	registers	retained) RTC	enabled		Supply current during wakeup from Shutdown mode
	Symbol	6				PD ALL	with RTC)				UDD_ALL (wakeup from Shutdown)

. Guaranteed by characterization results, unless otherwise specified.

Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 52: Low-power mode wakeup timings.

Table 50. Current consumption in VBAT mode

lodmyS	Darameter	Conditions				ТУР					MAX ⁽¹⁾			Init
6			V _{ВАТ}	25 °C	22 °C	85 °C	25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C	125 °C	25 °C	22 °C	85 °C	105 °C	125 °C	5
			1.8 V	3.00	-		ı							
		RTC disabled	2.4 V	4.00								ı	ı	
			3 V	2.00									ı	
lpp_vBAT	Backup domain		3.6 V	11.0		ı	ı				-	ı	ı	δα
(VBAT)	supply current		1.8 V	145	165	285	220	ı	ı	ı		ı	ı	[
		RTC enabled and	2.4 V	205	235	370	029			1	-	ı	1	
		bypassed at 32768 Hz	3 V	285	315	470	820			1	-	ı	1	
			3.6 V	375	430	715	1350	1	ı	1		1	1	

1. Guaranteed by characterization results, unless otherwise specified.

47/

DS11912 Rev 7

123/221

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 71: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 51: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

 V_{DDIOx} is the I/O supply voltage

 $f_{\mbox{SW}}$ is the I/O switching frequency

C is the total capacitance seen by the I/O pin: $C = C_{INT} + C_{EXT} + C_{S}$

C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

4

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 51*. The MCU is placed under the following conditions:

- All I/O pins are in Analog mode
- The given value is calculated by measuring the difference of the current consumptions:
 - when the peripheral is clocked on
 - when the peripheral is clocked off
- Ambient operating temperature and supply voltage conditions summarized in Table 20: Voltage characteristics
- The power consumption of the digital part of the on-chip peripherals is given in *Table 51*. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

Table 51. Peripheral current consumption

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	Bus Matrix ⁽¹⁾	3.2	2.9	3.1	
	ADC independent clock domain	0.4	0.1	0.2	
	ADC clock domain	2.1	1.9	1.9	
	CRC	0.4	0.2	0.3	
	DMA1	1.4	1.3	1.4	
	DMA2	1.5	1.3	1.4	
	FLASH	6.2	5.2	5.8	
	GPIOA ⁽²⁾	1.7	1.4	1.6	
	GPIOB ⁽²⁾)	1.6	1.3	1.6	
AHB	GPIOC ⁽²⁾	1.7	1.5	1.6	
AND	GPIOD ⁽²⁾	1.8	1.6	1.7	
	GPIOE ⁽²⁾	1.7	1.6	1.6	μΑ/MHz
	GPIOH ⁽²⁾	0.6	0.6	0.5	
	QSPI	7.0	5.8	7.3	
	RNG independent clock domain	2.2	N/A	N/A	
	RNG clock domain	0.5	N/A	N/A	
	SRAM1	0.8	0.9	0.7	
	SRAM2	1.0	0.8	0.8	
	TSC	1.6	1.3	1.3	
	All AHB Peripherals	25.2	21.7	23.6	
	AHB to APB1 bridge ⁽³⁾	0.9	0.7	0.9	
APB1	CAN1	4.1	3.2	3.9	
	DAC1	2.4	1.8	2.2	

DS11912 Rev 7 125/221

Table 51. Peripheral current consumption (continued)

	Peripheral Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	RTCA	1.7	1.1	2.1	
	CRS	0.3	0.3	0.6	
	USB FS independent clock domain	2.9	N/A	N/A	
	USB FS clock domain	2.3	N/A	N/A	
	I2C1 independent clock domain	3.5	2.8	3.4	
	I2C1 clock domain	1.1	0.9	1.0	
	I2C2 independent clock domain	3.5	3.0	3.4	
	I2C2 clock domain	1.1	0.7	0.9	
	I2C3 independent clock domain	2.9	2.3	2.5	
	I2C3 clock domain	0.9	0.4	0.8	
	LPUART1 independent clock domain	1.9	1.6	1.8	
	LPUART1 clock domain	0.6	0.6	0.6	
	LPTIM1 independent clock domain	2.9	2.4	2.8	
APB1	LPTIM1 clock domain	0.8	0.4	0.7	A /N/ILI
APDI	LPTIM2 independent clock domain	3.1	2.7	3.9	μΑ/MHz
	LPTIM2 clock domain	0.8	0.7	0.8	
	OPAMP	0.4	0.2	0.4	
	PWR	0.4	0.1	0.4	
	SPI2	1.8	1.6	1.6	
	SPI3	1.7	1.3	1.6	
	TIM2	6.2	5.0	5.9	
	TIM6	1.0	0.6	0.9	
	USART2 independent clock domain	4.1	3.6	3.8	
	USART2 clock domain	1.3	0.9	1.1	
	USART3 independent clock domain	4.3	3.5	4.2	
	USART3 clock domain	1.5	1.1	1.3	
	WWDG	0.5	0.5	0.5	
	All APB1 on	51.5	35.5	48.6	

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	AHB to APB2 ⁽⁴⁾	1.0	0.9	0.9	
	FW	0.2	0.2	0.2	
	SAI1 independent clock domain	2.3	1.8	1.9	
	SAI1 clock domain	2.1	1.8	2.0	
	SDMMC1 independent clock domain	4.7	3.9	3.9	
	SDMMC1 clock domain	2.5	1.9	1.9	
APB2	SPI1	1.8	1.6	1.7	
APDZ	SYSCFG/VREFBUF/COMP	0.6	0.5	0.6	μΑ/MHz
	TIM1	8.1	6.5	7.6	
	TIM15	3.7	3.0	3.4	
	TIM16	2.7	2.1	2.6	
	USART1 independent clock domain	4.8	4.2	4.6	
	USART1 clock domain	1.5	1.3	1.7	
	All APB2 on	24.2	19.9	22.6	
	ALL	100.9	77.1	94.8	

Table 51. Peripheral current consumption (continued)

- 3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.
- 4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.

6.3.6 Wakeup time from low-power modes and voltage scaling transition times

The wakeup times given in *Table 52* are the latency between the event and the execution of the first user instruction.

The device goes in low-power mode after the WFE (Wait For Event) instruction.

Table 52. Low-power mode wakeup timings⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WUSLEEP}	Wakeup time from Sleep mode to Run mode	-	6	6	Nb of
t _{WULPSLEEP}	Wakeup time from Low- power sleep mode to Low- power run mode	Wakeup in Flash with Flash in power-down during low-power sleep mode (SLEEP_PD=1 in FLASH_ACR) and with clock MSI = 2 MHz	6	9	cycles

DS11912 Rev 7 127/221

^{1.} The BusMatrix is automatically active when at least one master is ON (CPU, DMA).

^{2.} The GPIOx (x= A...H) dynamic current consumption is approximately divided by a factor two versus this table values when the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).

Table 52. Low-power mode wakeup timings⁽¹⁾ (continued)

Symbol	Parameter		Conditions	Тур	Max	Unit	
		Range 1	Wakeup clock MSI = 48 MHz	3.34	4.3		
	Wake up time from Stop 0	Range	Wakeup clock HSI16 = 16 MHz	3.7	6.5		
	mode to Run mode in		Wakeup clock MSI = 24 MHz	3.8	7.1		
	Flash	Range 2	Wakeup clock HSI16 = 16 MHz	3.7	6.5		
+			Wakeup clock MSI = 4 MHz	9.3	7.1	ш	
^t wustopo		Pango 1	Wakeup clock MSI = 48 MHz	1.85	2.7	μs	
	Wake up time from Stop 0	Range 1	Wakeup clock HSI16 = 16 MHz	2.68	3		
	mode to Run mode in	Range 2	Wakeup clock MSI = 24 MHz	2.47	3.4		
	SRAM1		Wakeup clock HSI16 = 16 MHz	2.68	3		
			Wakeup clock MSI = 4 MHz	9.67	12.5		
		Range 1	Wakeup clock MSI = 48 MHz	6.75	7.6		
	Wake up time from Stop 1 mode to Run in Flash		Wakeup clock HSI16 = 16 MHz	7.14	8		
		Range 2	Wakeup clock MSI = 24 MHz	7	7.82		
			Wakeup clock HSI16 = 16 MHz	7.14	7.9	μs	
			Wakeup clock MSI = 4 MHz	10.44	11.9		
		Range 1	Wakeup clock MSI = 48 MHz	5.21	5.9		
	Wake up time from Stop 1	Range i	Wakeup clock HSI16 = 16 MHz	6.23	6.9		
t _{WUSTOP1}	mode to Run mode in		Wakeup clock MSI = 24 MHz	5.73	6.4		
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	6.23	6.9		
			Wakeup clock MSI = 4 MHz	10.9	12.3		
	Wake up time from Stop 1 mode to Low-power run mode in Flash	Regulator in low-power	Makaun alaak MOL O MUL	16.05	19.2		
	Wake up time from Stop 1 mode to Low-power run mode in SRAM1	mode (LPR=1 in PWR_CR1)	Wakeup clock MSI = 2 MHz	17.06	20.3		

Conditions Symbol Parameter Тур Max Unit Wakeup clock MSI = 48 MHz 7.93 9.1 Range 1 Wakeup clock HSI16 = 16 MHz 7.32 8.5 Wake up time from Stop 2 mode to Run mode in Wakeup clock MSI = 24 MHz 8.25 9.4 Flash Wakeup clock HSI16 = 16 MHz Range 2 7.32 8.4 Wakeup clock MSI = 4 MHz 11.43 13.3 μs twustop2 Wakeup clock MSI = 48 MHz 5.23 6 Range 1 Wakeup clock HSI16 = 16 MHz 6.33 7.1 Wake up time from Stop 2 mode to Run mode in Wakeup clock MSI = 24 MHz 5.78 6.5 SRAM1 7.1 Range 2 Wakeup clock HSI16 = 16 MHz 6.33 Wakeup clock MSI = 4 MHz 11.37 12.9 18.2 Wakeup clock MSI = 8 MHz 16.13 Wakeup time from Standby Range 1 μs **t**WUSTBY mode to Run mode Wakeup clock MSI = 4 MHz 24.06 26.6 16.09 18.2 Wakeup clock MSI = 8 MHz Wakeup time from Standby twustby Range 1 μs with SRAM2 to Run mode SRAM2 Wakeup clock MSI = 4 MHz 26.6 Wakeup time from 255.38 316.41 Shutdown mode to Run Range 1 Wakeup clock MSI = 4 MHz μs twushdn mode

Table 52. Low-power mode wakeup timings⁽¹⁾ (continued)

Table 53. Regulator modes transition times⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WULPRUN}	Wakeup time from Low-power run mode to Run mode ⁽²⁾	Code run with MSI 2 MHz	5	7	110
t _{VOST}	Regulator transition time from Range 2 to Range 1 or Range 1 to Range 2 ⁽³⁾	Code run with MSI 24 MHz	20	40	μs

- 1. Guaranteed by characterization results.
- 2. Time until REGLPF flag is cleared in PWR SR2.
- 3. Time until VOSF flag is cleared in PWR_SR2.

Table 54. Wakeup time using USART/LPUART⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
Wakeup time needed to calculate the	Stop 0 mode	-	1.7		
t _{WUUSART} t _{WULPUART}	maximum USART/LPUART baudrate permitting to wakeup up from stop mode when USART/LPUART clock source is HSI16	Stop 1 mode and Stop 2 mode	-	8.5	μs

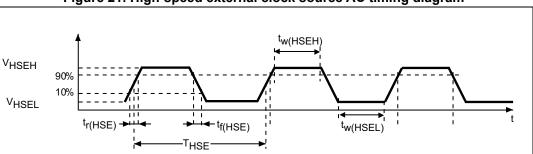
^{1.} Guaranteed by design.

DS11912 Rev 7 129/221

^{1.} Guaranteed by characterization results.

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source


In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 21: High-speed external clock source AC timing diagram*.

Table 55. High-speed external user clock characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext} U	User external clock source frequency	Voltage scaling Range 1	-	8	48	MHz
	Osci external clock source frequency	Voltage scaling Range 2	-	8	26	IVII IZ
V _{HSEH}	OSC_IN input pin high level voltage	-	0.7 V _{DDIOx}	-	V_{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	0.3 V _{DDIOx}	V
t _{w(HSEH)}	OSC IN high or low time	Voltage scaling Range 1	7	-	-	20
t _{w(HSEL)}	OSC_IN HIGH OF IOW LITTLE	Voltage scaling Range 2	18	-	-	ns

^{1.} Guaranteed by design.

MS19214V2

Figure 21. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

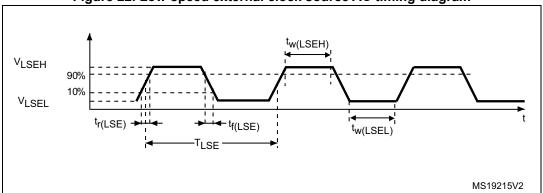

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 22*.

Table 56. Low-speed external user clock characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency	-	-	32.768	1000	kHz
V_{LSEH}	OSC32_IN input pin high level voltage	-	0.7 V _{DDIOx}	-	V_{DDIOx}	V
V_{LSEL}	OSC32_IN input pin low level voltage	-	V_{SS}	-	0.3 V _{DDIOx}	V
$\begin{matrix} t_{w(LSEH)} \\ t_{w(LSEL)} \end{matrix}$	OSC32_IN high or low time	-	250	-	-	ns

^{1.} Guaranteed by design.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 57*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 57. HSE	oscillator	characteristi	ics(')

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	48	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	5.5	
		V_{DD} = 3 V, Rm = 30 Ω , CL = 10 pF@8 MHz	-	0.44	-	
	HSE current consumption	V _{DD} = 3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.45	-	mA
I _{DD(HSE)}		$V_{DD} = 3 \text{ V},$ $Rm = 30 \Omega,$ $CL = 5 \text{ pF@48 MHz}$	-	0.68	-	
		$V_{DD} = 3 \text{ V},$ $Rm = 30 \Omega,$ CL = 10 pF@48 MHz	-	0.94	-	
		V _{DD} = 3 V, Rm = 30 Ω, CL = 20 pF@48 MHz	-	1.77	-	
G _m	Maximum critical crystal transconductance	Startup	-	-	1.5	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

- 1. Guaranteed by design.
- 2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
- 3. This consumption level occurs during the first 2/3 of the $t_{\text{SU(HSE)}}$ startup time
- 4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 23*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note:

For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

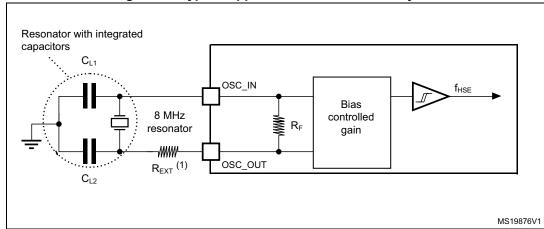


Figure 23. Typical application with an 8 MHz crystal

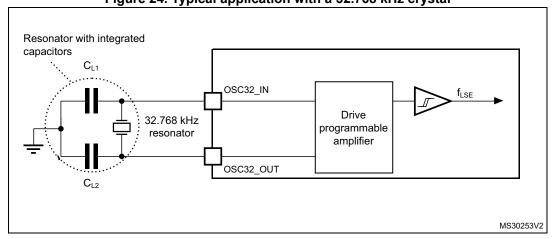
1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 58*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 58. LSE oscillator characteristics (f_{LSE} = 32.768 kHz)⁽¹⁾

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit	
		LSEDRV[1:0] = 00 Low drive capability	-	250	-		
	LCC current concumntion	LSEDRV[1:0] = 01 Medium low drive capability	-	315	-	- A	
I _{DD(LSE)}	LSE current consumption	LSEDRV[1:0] = 10 Medium high drive capability	-	500	-	nA	
		LSEDRV[1:0] = 11 High drive capability	-	630	-		
		LSEDRV[1:0] = 00 Low drive capability	-	-	0.5		
Gm	Maximum critical crystal	LSEDRV[1:0] = 01 Medium low drive capability	-	-	0.75	μA/V	
Gm _{critmax}	gm	LSEDRV[1:0] = 10 Medium high drive capability	-	-	1.7		
		LSEDRV[1:0] = 11 High drive capability	-	-	2.7		
t _{SU(LSE)} (3)	Startup time	V _{DD} is stabilized	-	2	-	s	


DS11912 Rev 7

133/221

- 1. Guaranteed by design.
- Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
- t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 24. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

47/

6.3.8 Internal clock source characteristics

The parameters given in *Table 59* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI16) RC oscillator

Table 59. HSI16 oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI16}	HSI16 Frequency	V _{DD} =3.0 V, T _A =30 °C	15.88	-	16.08	MHz
TRIM	HSI16 user trimming step	Trimming code is not a multiple of 64	0.2	0.3	0.4	%
	riorio user tillillilling step	Trimming code is a multiple of 64	-4	-6	-8	76
DuCy(HSI16) ⁽²⁾	Duty Cycle	-	45	-	55	%
۸ (HSI16)	HSI16 oscillator frequency drift over temperature	T _A = 0 to 85 °C	-1	-	1	%
$\Delta_{Temp}(HSI16)$		T _A = -40 to 125 °C	-2	-	1.5	%
Δ _{VDD} (HSI16)	HSI16 oscillator frequency drift over V _{DD}	V _{DD} =1.62 V to 3.6 V	-0.1	-	0.05	%
t _{su} (HSI16) ⁽²⁾	HSI16 oscillator start-up time	-	-	0.8	1.2	μs
t _{stab} (HSI16) ⁽²⁾	HSI16 oscillator stabilization time	-	-	3	5	μs
I _{DD} (HSI16) ⁽²⁾	HSI16 oscillator power consumption	-	-	155	190	μA

^{1.} Guaranteed by characterization results.

^{2.} Guaranteed by design.

Figure 25. HSI16 frequency versus temperature

Multi-speed internal (MSI) RC oscillator

Table 60. MSI oscillator characteristics⁽¹⁾

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
			Range 0	98.7	100	101.3	
			Range 1	197.4	200	202.6	- kHz
			Range 2	394.8	400	405.2	
			Range 3	789.6	800	810.4	
			Range 4	0.987	1	1.013	
		MSI mode	Range 5	1.974	2	2.026	
		IVISI Mode	Range 6	3.948	4	4.052	
			Range 7	7.896	8	8.104	NALIZ
			Range 8	15.79	16	16.21	MHz
	MSI frequency after factory calibration, done		Range 9	23.69	24	24.31	
			Range 10	31.58	32	32.42	- 1
			Range 11	47.38	48	48.62	
f _{MSI}	at V _{DD} =3 V and T _A =30 °C		Range 0	-	98.304	-	- kHz
			Range 1	-	196.608	-	
			Range 2	-	393.216	-	
			Range 3	-	786.432	-	
			Range 4	-	1.016	-	
		PLL mode XTAL=	Range 5	-	1.999	-	
		32.768 kHz	Range 6	-	3.998	-	
			Range 7	-	7.995	-	NALIZ
			Range 8	-	15.991	-	MHz
			Range 9	-	23.986	-	
			Range 10	-	32.014	-	-
			Range 11	-	48.005	-	
(2)	MSI oscillator		T _A = -0 to 85 °C	-3.5	-	3	
$\Delta_{TEMP}(MSI)^{(2)}$	frequency drift over temperature	MSI mode	T _A = -40 to 125 °C	-8	ı	6	%

Table 60. MSI oscillator characteristics⁽¹⁾ (continued)

Symbol	Parameter		Conditions	•	Min	Тур	Max	Unit
			Damma O to 2	V _{DD} =1.62 V to 3.6 V	-1.2	-	0.5	
			Range 0 to 3	V _{DD} =2.4 V to 3.6 V	-0.5	-	- 0.5	
$\Delta_{\text{VDD}}(\text{MSI})^{(2)}$	MSI oscillator frequency drift	MSI mode	to	V _{DD} =1.62 V to 3.6 V	-2.5	-	0.7	%
ΔΔDD(IM2I), ,	over V _{DD} (reference is 3 V)		Range 4 to 7	V _{DD} =2.4 V to 3.6 V	-0.8	-	0.7	70
			Range 8 to 11	V _{DD} =1.62 V to 3.6 V	-5	-	1.2	
				V _{DD} =2.4 V to 3.6 V	-1.6	-	1.2	
AFCAMBLING	Frequency		$T_A = -40 \text{ to } 85^\circ$	°C	-	1	2	
ΔF _{SAMPLING} (MSI) ⁽²⁾⁽⁶⁾	variation in sampling mode ⁽³⁾	MSI mode	T_{A} = -40 to 125		-	2	4	%
P_USB Jitter(MSI) ⁽⁶⁾	Period jitter for USB clock ⁽⁴⁾	PLL mode Range 11	for next transition	-	-	-	3.458	90
			Range 11	for paired transition	-	-	-	3.916
MT_USB	, (F)	PLL mode Range 11	for next transition	-	-	-	2	ns
Jitter(MSI) ⁽⁶⁾			for paired transition	-	-	-	1	115
CC jitter(MSI) ⁽⁶⁾	RMS cycle-to- cycle jitter	PLL mode R	ange 11	-	-	60	-	ps
P jitter(MSI) ⁽⁶⁾	RMS Period jitter	PLL mode R	ange 11	-	-	50	-	ps
		Range 0		-	-	10	20	
		Range 1		-	-	5	10	
+ (MCI)(6)	MSI oscillator	Range 2		-	-	4	8	
t _{SU} (MSI) ⁽⁶⁾	start-up time	Range 3		-	-	3	7	us
		Range 4 to 7	7	-	-	3	6	
		Range 8 to 1	11	-	-	2.5	6	
t _{STAB} (MSI) ⁽⁶⁾		PLL mode Range 11	10 % of final frequency	-	-	0.25	0.5	
			5 % of final frequency	-	-	0.5	1.25	ms
			1 % of final frequency	-	-	-	2.5	

Table 60. MSI oscillator characteristics⁽¹⁾ (continued)

Symbol	Parameter		Conditions		Min	Тур	Max	Unit	
		MSI and PLL mode	Range 0	-	-	0.6	1	μΑ	
			Range 1	-	-	0.8	1.2		
			Range 2	-	-	1.2	1.7		
	(IVISINS) I DOMAR		Range 3	-	-	1.9	2.5		
			Range 4	-	-	4.7	6		
(MCI)(6)			Range 5	-	-	6.5	9		
IDD(INIQI)(4)			Range 6	-	-	11	15		
			Range 7	-	-	18.5	25		
			Range 8	-	-	62	80		
			Range 9	-	-	85	110		
			Range 10	-	-	110	130		
					Range 11	-	-	155	190

- 1. Guaranteed by characterization results.
- 2. This is a deviation for an individual part once the initial frequency has been measured.
- 3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
- Average period of MSI @48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter of MSI @48 MHz clock.
- Only accumulated jitter of MSI @48 MHz is extracted over 28 cycles.
 For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI @48 MHz, for 1000 captures over 28 cycles.
 For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI @48 MHz, for 1000 captures over 56 cycles.
- 6. Guaranteed by design.

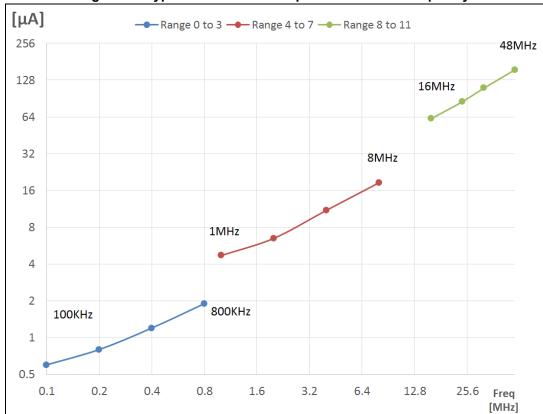


Figure 26. Typical current consumption versus MSI frequency

High-speed internal 48 MHz (HSI48) RC oscillator

Table 61. HSI48 oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI48}	HSI48 Frequency	V _{DD} =3.0V, T _A =30°C	-	48	-	MHz
TRIM	HSI48 user trimming step	-	-	0.11 ⁽²⁾	0.18 ⁽²⁾	%
USER TRIM COVERAGE	HSI48 user trimming coverage	±32 steps	±3 ⁽³⁾	±3.5 ⁽³⁾	-	%
DuCy(HSI48)	Duty Cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
400	Accuracy of the HSI48 oscillator over temperature (factory calibrated)	V _{DD} = 3.0 V to 3.6 V, T _A = -15 to 85 °C	-	-	±3 ⁽³⁾	%
ACC _{HSI48_REL}		V _{DD} = 1.65 V to 3.6 V, T _A = -40 to 125 °C	-	-	±4.5 ⁽³⁾	70
D (H6140)	HSI48 oscillator frequency drift	V _{DD} = 3 V to 3.6 V	-	0.025 ⁽³⁾	0.05 ⁽³⁾	%
D _{VDD} (HSI48)	with V _{DD}	V _{DD} = 1.65 V to 3.6 V	-	0.05 ⁽³⁾	0.1 ⁽³⁾	70
t _{su} (HSI48)	HSI48 oscillator start-up time	-	-	2.5 ⁽²⁾	6 ⁽²⁾	μs
I _{DD} (HSI48)	HSI48 oscillator power consumption	-	-	340 ⁽²⁾	380 ⁽²⁾	μA

Table of the occurator characteristics (continued)							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
N _T jitter	Next transition jitter Accumulated jitter on 28 cycles ⁽⁴⁾	-	-	+/-0.15 ⁽²⁾	-	ns	
P _T jitter	Paired transition jitter	-	-	+/-0.25 ⁽²⁾	-	ns	

Table 61, HSI48 oscillator characteristics⁽¹⁾ (continued)

1. $V_{DD} = 3 \text{ V}$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$ unless otherwise specified.

Accumulated jitter on 56 cycles⁽⁴⁾

- 2. Guaranteed by design.
- 3. Guaranteed by characterization results.
- 4. Jitter measurement are performed without clock source activated in parallel.

Figure 27. HSI48 frequency versus temperature 6 4 2 0 -2 -6 -30 -10 10 30 50 70 110 130 -50 90 °C --- Avg - min - max MSv40989V1

Low-speed internal (LSI) RC oscillator

Table 62. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{LSI}	LSI Frequency	V _{DD} = 3.0 V, T _A = 30 °C	31.04	-	32.96	kHz	
		V_{DD} = 1.62 to 3.6 V, T_A = -40 to 125 °C	29.5	-	34	KHZ	
t _{SU} (LSI) ⁽²⁾	LSI oscillator start- up time	-	1	80	130	μs	
t _{STAB} (LSI) ⁽²⁾	LSI oscillator stabilization time	5% of final frequency	-	125	180	μs	
I _{DD} (LSI) ⁽²⁾	LSI oscillator power consumption	-	-	110	180	nA	

- 1. Guaranteed by characterization results.
- 2. Guaranteed by design.

DS11912 Rev 7 141/221

6.3.9 PLL characteristics

The parameters given in *Table 63* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*.

Table 63. PLL, PLLSAI1 characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f	PLL input clock ⁽²⁾	-	4	-	16	MHz	
f _{PLL_IN}	PLL input clock duty cycle	-	45	-	55	%	
f	DLL multiplier output pleak D	Voltage scaling Range 1	3.0968	-	80		
f _{PLL_P_OUT}	PLL multiplier output clock P	Voltage scaling Range 2	3.0968	-	26	MHz	
£	DLL multiplier output plack O	Voltage scaling Range 1	12	-	80	MUZ	
†PLL_Q_OUT	PLL multiplier output clock Q	Voltage scaling Range 2	12	-	26	MHz	
f _{PLL_R_OUT}	PLL multiplier output clock R	Voltage scaling Range 1	12	-	80	MHz	
		Voltage scaling Range 2	12	-	26		
	PLL VCO output	Voltage scaling Range 1	96	-	344	MHz	
f _{VCO_OUT}		Voltage scaling Range 2	96	-	128		
t _{LOCK}	PLL lock time	-	-	15	40	μs	
littor	RMS cycle-to-cycle jitter	0 / 1 00 111	-	40	-	Lno	
Jitter	RMS period jitter	- System clock 80 MHz	-	30	-	±ps	
I _{DD} (PLL)	PLL power consumption on $V_{DD}^{(1)}$	VCO freq = 96 MHz	-	200	260		
		VCO freq = 192 MHz	-	300	380	μA	
		VCO freq = 344 MHz	-	520	650		

^{1.} Guaranteed by design.

47/

^{2.} Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between the 2 PLLs.

6.3.10 Flash memory characteristics

Table 64. Flash memory characteristics⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit	
t _{prog}	64-bit programming time	-	81.69	90.76	μs	
4	one row (32 double	normal programming	2.61	2.90		
^I prog_row	word) programming time	fast programming	1.91	2.12		
+	one page (2 Kbyte)	normal programming	20.91	23.24	ms	
t _{prog_page}	programming time	fast programming	15.29	16.98		
t _{ERASE}	Page (2 KB) erase time	-	22.02	24.47		
4	one bank (512 Kbyte) programming time	normal programming	5.35	5.95	s	
^t prog_bank		fast programming	3.91	4.35		
t _{ME}	Mass erase time (one or two banks)	-	22.13	24.59	ms	
	Average consumption from V _{DD}	Write mode	3.4	-	mA	
I _{DD}		Erase mode	3.4	-		
	Maximum current (pook)	Write mode	7 (for 2 µs)	-	111/4	
	Maximum current (peak)	Erase mode	7 (for 41 μs)	-		

^{1.} Guaranteed by design.

Table 65. Flash memory endurance and data retention

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	10	kcycles
	Data retention	1 kcycle ⁽²⁾ at T _A = 85 °C	30	
		1 kcycle ⁽²⁾ at T _A = 105 °C	15	
.		1 kcycle ⁽²⁾ at T _A = 125 °C	7	Years
t _{RET}		10 kcycles ⁽²⁾ at T _A = 55 °C	30	rears
		10 kcycles ⁽²⁾ at T _A = 85 °C	15	
		10 kcycles ⁽²⁾ at T _A = 105 °C	10	

^{1.} Guaranteed by characterization results.

^{2.} Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 66*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T_{A} = +25 °C, f_{HCLK} = 80 MHz, conforming to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V _{DD} and V _{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, T_{A} = +25 °C, f_{HCLK} = 80 MHz, conforming to IEC 61000-4-4	5A

Table 66. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- · Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Tuble 07. Limi characteristics						
Symbol	Parameter	Conditions	Conditions Monitored frequency band		Unit	
			noquoney bund	8 MHz/ 80 MHz		
			0.1 MHz to 30 MHz	-8		
		DD , A ,	30 MHz to 130 MHz	2	dBµV	
S _{EMI}	Peak level LQFP100 package compliant with IEC 61967-2		130 MHz to 1 GHz	5	чьμν	
		•	1 GHz to 2 GHz	8		
			EMI Level	2.5	-	

Table 67. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C, conforming to ANSI/ESDA/JEDEC JS-001	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD STM5.3.1	C3	250	V

Table 68. ESD absolute maximum ratings

47/

DS11912 Rev 7 145/221

^{1.} Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 69. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	T _A = +105 °C conforming to JESD78A	II

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOX} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in *Table 70*.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Table 70. I/O current injection susceptibility⁽¹⁾

Symbol	Description	Functional susceptibility		Unit
Symbol	Description	Negative injection	Positive injection	Oilit
	Injected current on all pins except PA4, PA5, PE8, PE9, PE10, PE11, PE12	-5	N/A ⁽²⁾	
I _{INJ}	Injected current on PE8, PE9, PE10, PE11, PE12	-0	N/A ⁽²⁾	mA
	Injected current on PA4, PA5 pins	-5	0	

- 1. Guaranteed by characterization results.
- 2. Injection is not possible.

6.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 71* are derived from tests performed under the conditions summarized in *Table 23: General operating conditions*. All I/Os are designed as CMOS- and TTL-compliant.

Table 71. I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	I/O input low level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	-	0.3xV _{DDIOx} (2)	
$V_{IL}^{(1)}$	I/O input low level voltage	1.62 V <v<sub>DDIOX<3.6 V</v<sub>	-	-	0.39xV _{DDIOx} -0.06 ⁽³⁾	٧
	I/O input low level voltage	1.08 V <v<sub>DDIOx<1.62 V</v<sub>	-	-	0.43xV _{DDIOx} -0.1 ⁽³⁾	
	I/O input high level voltage	1.62 V <v<sub>DDIOX<3.6 V</v<sub>	0.7xV _{DDIOx} ⁽²⁾	-	-	
V _{IH} ⁽¹⁾	I/O input high level voltage	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	0.49xV _{DDIOX} +0.26 ⁽³⁾	-	-	٧
	I/O input high level voltage	1.08 V <v<sub>DDIOx<1.62 V</v<sub>	0.61xV _{DDIOX} +0.05 ⁽³⁾	-	-	
V _{hys} ⁽³⁾	TT_xx, FT_xxx and NRST I/O input hysteresis	1.62 V <v<sub>DDIOx<3.6 V</v<sub>	-	200	-	mV
		$V_{IN} \le Max(V_{DDXXX})^{(5)(6)}$	-	-	±100	
	FT_xx input leakage current ⁽³⁾⁽⁴⁾	$\begin{aligned} & Max(V_{DDXXX}) \leq V_{IN} \leq \\ & Max(V_{DDXXX}) + 1 \ V^{(5)(6)} \end{aligned}$	-	ı	650 ⁽³⁾⁽⁷⁾	
		Max(V_{DDXXX})+1 V < $V_{IN} \le 5.5 V^{(3)(6)}$	-	ı	200 ⁽⁷⁾	
I _{lkg}		$V_{IN} \le Max(V_{DDXXX})$ (5)(6)	-	ı	±150	nA
J	FT_u and PC3 I/O	$\begin{aligned} & Max(V_{DDXXX}) \leq V_{IN} \leq \\ & Max(V_{DDXXX}) + 1 \ V^{(5)(6)} \end{aligned}$	-	ı	2500 ⁽³⁾	
		$Max(V_{DDXXX})+1 V < V_{IN} \le 5.5 V^{(5)(6)}$	-	-	250	
	TT_xx input leakage	$V_{IN} \le Max(V_{DDXXX})^{(7)}$	-	-	±150	
	current	$Max(V_{DDXXX}) \le V_{IN} < 3.6 V^{(7)}$	-	-	2000 ⁽³⁾	
R _{PU}	Weak pull-up equivalent resistor ⁽⁸⁾	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁸⁾	$V_{IN} = V_{DDIOx}$	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

DS11912 Rev 7 147/221

- 1. Refer to Figure 28: I/O input characteristics.
- 2. Tested in production.
- 3. Guaranteed by design.
- 4. All FT_xx IO except FT_u and PC3 I/O.
- 5. $Max(V_{DDXXX})$ is the maximum value of all the I/O supplies.
- To sustain a voltage higher than Min(V_{DD}, V_{DDA}, V_{DDUSB}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled
- 7. This value represents the pad leakage of the IO itself. The total product pad leakage is provided by this formula: $I_{Total_Ileak_max} = 10 \ \mu A + [number of IOs where V_{IN} is applied on the pad] x I_{lkg}(Max)$.
- 8. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 28* for standard I/Os, and in *Figure 28* for 5 V tolerant I/Os.

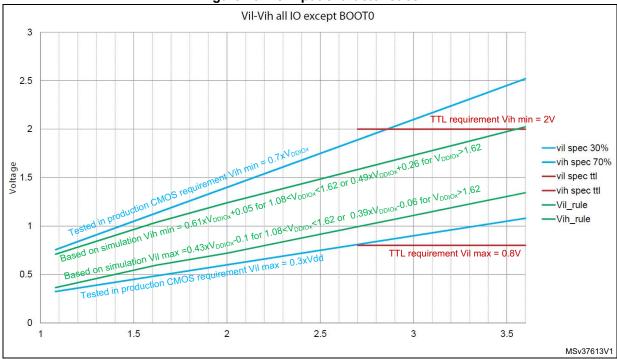


Figure 28. I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OI}/V_{OH}).

GPIOs PC13, PC14 and PC15 are supplied through the power switch, limiting source capability up to 3 mA only.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DDIOX}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 20: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 20: Voltage characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT or TT unless otherwise specified).

Table 72. Output voltage characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	$ I_{IO} = 8 \text{ mA}^{(3)}$ $V_{DDIOx} \ge 2.7 \text{ V}$	V _{DDIOx} -0.4	-	
V _{OL} ⁽⁴⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽⁴⁾	Output high level voltage for an I/O pin	$ I_{IO} = 8 \text{ mA}^{(5)}$ $V_{DDIOx} \ge 2.7 \text{ V}$	2.4	-	
V _{OL} ⁽⁴⁾	Output low level voltage for an I/O pin	PC13, PC14 and PC15	-	0.07	
V _{OH} ⁽⁴⁾	Output high level voltage for an I/O pin	I _{IO} = 3 mA V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -0.35	-	
V _{OL} ⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA ⁽⁵⁾	-	1.3	
V _{OH} ⁽⁴⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 2.7 V	V _{DDIOx} -1.3	-	V
V _{OL} ⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA ⁽³⁾	-	0.45	V
V _{OH} ⁽⁴⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥ 1.62 V	V _{DDIOx} -0.45	-	
V _{OL} ⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 2 mA	-	0.35_xV_{DDIOx}	
V _{OH} ⁽⁴⁾	Output high level voltage for an I/O pin	$1.62 \text{ V} \ge \text{V}_{\text{DDIOx}} \ge 1.08 \text{ V}$	0.65 _x V _{DDIOx}	-	
		I _{IO} = 20 mA V _{DDIOx} ≥ 2.7 V	-	0.4	
V _{OLFM+}	Output low level voltage for an FT I/O pin in FM+ mode (FT I/O with "f" option)	I _{IO} = 10 mA V _{DDIOx} ≥ 1.62 V	-	0.4	
	• ,	I _{IO} = 2 mA 1.62 V ≥ V _{DDIOx} ≥ 1.08 V	-	0.4	

The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 20:
 Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

- 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
- 3. PC13, PC14 and PC15 are tested/characterized at their maximum current of 3 mA.
- 4. Guaranteed by design.
- 5. Not applicable to PC13, PC14 and PC15.

DS11912 Rev 7 149/221

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 29* and *Table 73*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*.

Table 73. I/O AC characteristics⁽¹⁾⁽²⁾

Speed	Symbol	Parameter	Conditions	Min	Max	Unit		
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5			
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1			
	Fmax	Maximum frequency	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1	MHz		
	Fillax	i waxiinum irequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	10	IVII		
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1.5			
00			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1			
00			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25			
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	52			
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	140	nc		
	11/11		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	17	ns		
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37			
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	110			
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25			
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	10	1		
	Fmax	Maximum frequency	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1	MUz		
	Fillax	i waxiinum nequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50	MHz		
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	15			
01			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1			
01			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	9			
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	16			
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	40	ns ns		
	11/11	Output 1130 and Ian time	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	4.5			
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	9			
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	21			

150/221 DS11912 Rev 7

Downloaded from Arrow.com.

Table 73. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

Speed	Symbol	Parameter	Conditions	Min	Max	Unit			
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50				
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	25				
	Fmax	may Maximum fraguancy	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5	MHz			
	rillax	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	100 ⁽³⁾	IVITZ			
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37.5				
10			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5				
10			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5.8				
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	11				
	Tr/Tf	Tr/Tf Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	28	20			
	11/11		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	2.5	ns			
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	5				
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	12				
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	120 ⁽³⁾				
			C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	50				
	F	Maximum francisco	C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10	N41.1-			
	Fmax	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	180 ⁽³⁾	MHz			
11			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	75				
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10				
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	3.3				
	Tr/Tf	Output rise and fall time	C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	6	ns			
			C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	16				
- Fm I	Fmax	Maximum frequency	C=E0 =E 1 6 \/2\/	-	1	MHz			
Fm+	Tf	Output fall time ⁽⁴⁾	- C=50 pF, 1.6 V≤V _{DDIOx} ≤3.6 V	-	5	ns			

The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register. Refer to the RM0394 reference manual for a description of GPIO Port configuration register.

^{2.} Guaranteed by design.

^{3.} This value represents the I/O capability but the maximum system frequency is limited to 80 MHz.

^{4.} The fall time is defined between 70% and 30% of the output waveform accordingly to I^2C specification.

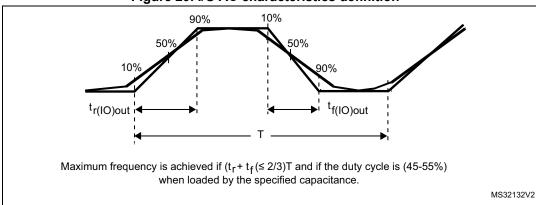


Figure 29. I/O AC characteristics definition⁽¹⁾

1. Refer to Table 73: I/O AC characteristics.

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} .

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 23: General operating conditions*.

Table 74. NRST pin characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 _x V _{DDIOx}	V
V _{IH(NRST)}	NRST input high level voltage	-	0.7 _x V _{DDIOx}	-	-	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	70	ns
V _{NF(NRST)}	NRST input not filtered pulse	1.71 V ≤ V _{DD} ≤ 3.6 V	350	-	-	ns

Guaranteed by design.

^{2.} The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

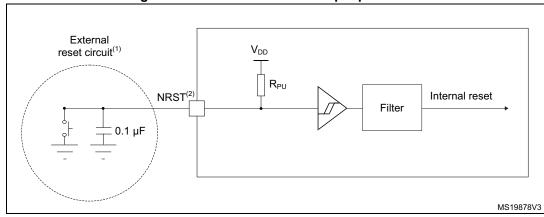


Figure 30. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 74: NRST pin characteristics. Otherwise the reset is not taken into account by the device.
- 3. The external capacitor on NRST must be placed as close as possible to the device.

6.3.16 Extended interrupt and event controller input (EXTI) characteristics

The pulse on the interrupt input must have a minimal length in order to guarantee that it is detected by the event controller.

Table 75. EXTI Input Characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PLEC	Pulse length to event controller	-	20	-	-	ns

^{1.} Guaranteed by design.

6.3.17 Analog switches booster

Table 76. Analog switches booster characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
V_{DD}	Supply voltage	1.62	-	3.6	V
t _{SU(BOOST)}	Booster startup time	-	-	240	μs
	Booster consumption for 1.62 V ≤ V _{DD} ≤ 2.0 V	-	-	250	
I _{DD(BOOST)}	Booster consumption for 2.0 V ≤ V _{DD} ≤ 2.7 V	-	-	500	μΑ
	Booster consumption for $2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$	-	-	900	

1. Guaranteed by design.

47/

DS11912 Rev 7 153/221

6.3.18 Analog-to-Digital converter characteristics

Unless otherwise specified, the parameters given in *Table 77* are preliminary values derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 23: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Table 77. ADC characteristics⁽¹⁾ (2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage	-	1.62	-	3.6	V
\/	Desitive reference veltage	V _{DDA} ≥ 2 V	2	-	V_{DDA}	V
V_{REF+}	Positive reference voltage	V _{DDA} < 2 V		V_{DDA}		V
V _{REF-}	Negative reference voltage	-		V _{SSA}		V
f	ADC aloak from unner	Range 1	0.14	-	80	MHz
f _{ADC}	ADC clock frequency	Range 2	0.14	-	26	IVIDZ
		Resolution = 12 bits	-	-	5.33	
	Sampling rate for FAST	Resolution = 10 bits	-	-	6.15	
	channels	Resolution = 8 bits	-	-	7.27	
£		Resolution = 6 bits	-	-	8.88	Mono
f _s	Sampling rate for SLOW	Resolution = 12 bits	-	-	4.21	Msps
		Resolution = 10 bits	-	-	4.71	
	channels	Resolution = 8 bits	-	-	5.33	
		Resolution = 6 bits	-	-	6.15	
f_{TRIG}	External trigger frequency	f _{ADC} = 80 MHz Resolution = 12 bits	-	-	5.33	MHz
		Resolution = 12 bits	-	-	15	1/f _{ADC}
V _{CMIN}	Input common mode	Differential mode	(V _{REF+} + V _{REF-})/2 - 0.18	(V _{REF+} + V _{REF-})/2	(V _{REF+} + V _{REF-})/2 + 0.18	V
V _{AIN} (3)	Conversion voltage range(2)	-	0	-	V _{REF+}	V
R _{AIN}	External input impedance	-	-	-	50	kΩ
C _{ADC}	Internal sample and hold capacitor	-	-	5	-	pF
t _{STAB}	Power-up time	-		1		conversion cycle
+ .	Calibration time	f _{ADC} = 80 MHz		1.45		μs
t _{CAL}	Calibration time	-		116		1/f _{ADC}

Table 77. ADC characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Tun	Max	Unit
Symbol	Parameter			Тур		Unit
	Trigger conversion	CKMODE = 00	1.5	2	2.5	
t	latency Regular and	CKMODE = 01	-	-	2.0	1/f _{ADC}
t _{LATR}	injected channels without conversion abort	CKMODE = 10	-	-	2.25	'/'ADC
	Conversion about	CKMODE = 11	-	-	2.125	
	Tainana	CKMODE = 00	2.5	3	3.5	
	Trigger conversion CK		-	-	3.0	A /E
t _{LATRINJ}	aborting a regular	CKMODE = 10	-	-	3.25	1/f _{ADC}
	conversion	CKMODE = 11	-	-	3.125	
	Oline at time a	f _{ADC} = 80 MHz	0.03125	-	8.00625	μs
t _s	Sampling time	pling time - 2.5		-	640.5	1/f _{ADC}
t _{ADCVREG_STUP}	ADC voltage regulator start-up time	-	-	-	20	μs
	Total conversion time	f _{ADC} = 80 MHz Resolution = 12 bits	0.1875	-	8.1625	μs
t _{CONV}	(including sampling time)	Resolution = 12 bits	success	12.5 cycle sive appro = 15 to 65	ximation	1/f _{ADC}
		fs = 5 Msps	-	730	830	
I _{DDA} (ADC)	ADC consumption from the V _{DDA} supply	fs = 1 Msps	-	160	220	μΑ
	THE FOOD CAPPE.	fs = 10 ksps	-	16	50	
	ADC consumption from	fs = 5 Msps	-	130	160	
I _{DDV_S} (ADC)	the V _{REF+} single ended	fs = 1 Msps	-	30	40	μΑ
	mode	fs = 10 ksps	-	0.6	2	
	ADC consumption from	fs = 5 Msps	-	260	310	
I _{DDV D} (ADC)	the V _{REF+} differential	fs = 1 Msps	-	60	70	μΑ
_	mode	fs = 10 ksps	-	1.3	3	

^{1.} Guaranteed by design

The maximum value of R_{AIN} can be found in *Table 78: Maximum ADC RAIN*.

^{2.} The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when $V_{DDA} \ge 2.4$ V.

V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pinouts and pin description for further details.

Table 78. Maximum ADC R_{AIN}⁽¹⁾⁽²⁾

Danabatian	Sampling cycle	Sampling time [ns]		nax (Ω)
Resolution	@80 MHz	@80 MHz	Fast channels ⁽³⁾	Slow channels ⁽⁴⁾
	2.5	31.25	100	N/A
	6.5	81.25	330	100
	12.5	156.25	680	470
40 hita	24.5	306.25	1500	1200
12 bits	47.5	593.75	2200	1800
	92.5	1156.25	4700	3900
	247.5	3093.75	12000	10000
	640.5	8006.75	39000	33000
	2.5	31.25	120	N/A
	6.5	81.25	390	180
	12.5	156.25	820	560
40 hita	24.5	306.25	1500	1200
10 bits	47.5	593.75	2200	1800
	92.5	1156.25	5600	4700
	247.5	3093.75	12000	10000
	640.5	8006.75	47000	39000
	2.5	31.25	180	N/A
	6.5	81.25	470	270
	12.5	156.25	1000	680
8 bits	24.5	306.25	1800	1500
8 DIIS	47.5	593.75	2700	2200
	92.5	1156.25	6800	5600
	247.5	3093.75	15000	12000
	640.5	8006.75	50000	50000
	2.5	31.25	220	N/A
	6.5	81.25	560	330
	12.5	156.25	1200	1000
6 hita	24.5	306.25	2700	2200
6 bits	47.5	593.75	3900	3300
	92.5	1156.25	8200	6800
	247.5	3093.75	18000	15000
	640.5	8006.75	50000	50000

^{1.} Guaranteed by design.

- 2. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when $V_{DDA} \ge 2.4$ V.
- 3. Fast channels are: PC0, PC1, PC2, PC3, PA0, PA1.
- 4. Slow channels are: all ADC inputs except the fast channels.

DS11912 Rev 7 157/221

Table 79. ADC accuracy - limited test conditions 1⁽¹⁾⁽²⁾⁽³⁾

Sym- bol	Parameter	Conditions ⁽⁴⁾			Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	5	
ET	Total		ended	Slow channel (max speed)	-	4	5	
E1	unadjusted error		Differential	Fast channel (max speed)	_	3.5	4.5	
			Dillerential	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	1	2.5	
EO	Offset		ended	Slow channel (max speed)	-	1	2.5	
	error		Differential	Fast channel (max speed)	-	1.5	2.5	
			Dillerential	Slow channel (max speed)	-	1.5	2.5	
			Single	Fast channel (max speed)	-	2.5	4.5	
EG	Gain error		ended	Slow channel (max speed)	-	2.5	4.5	LSB
EG	Gain enoi		Differential	Fast channel (max speed)	-	2.5	3.5	LSB
			Dillerential	Slow channel (max speed)	-	2.5	3.5	
			Single	Fast channel (max speed)	-	1	1.5	
ED	Differential ED linearity		ended	Slow channel (max speed)	-	1	1.5	i
	ED linearity error	ADC clock frequency ≤	Differential	Fast channel (max speed)	-	1	1.2	i
		80 MHz, Sampling rate ≤ 5.33 Msps,	Dillerential	Slow channel (max speed)	-	1	1.2	i
		Sampling rate ≤ 5.33 Msps, $V_{DDA} = VREF + = 3 V$,	Single	Fast channel (max speed)	-	1.5	2.5	
EL	Integral	TA = 25 °C	ended	Slow channel (max speed)	-	1.5	2.5	
	linearity error		Differential	Fast channel (max speed)	-	1	2	i
			Dillerential	Slow channel (max speed)	-	1	2	
			Single	Fast channel (max speed)	10.4	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10.4	10.5	-	bits
LINOB	bits		Differential	Fast channel (max speed)	10.8	10.9	-	Dits
			Dillerential	Slow channel (max speed)	10.8	10.9	-	
	Cianal to		Single	Fast channel (max speed)	64.4	65	-	
SINIAD	Signal-to- noise and		ended	Slow channel (max speed)	64.4	65	-	i
SINAD	distortion		Differential	Fast channel (max speed)	66.8	67.4	-	i
	ratio		Dillerential	Slow channel (max speed)	66.8	67.4	-	dB
			Single	Fast channel (max speed)	65	66	-	ub
SNR	Signal-to-		ended	Slow channel (max speed)	65	66	•	1
SINK	noise ratio	oise ratio	Differential	Fast channel (max speed)	67	68	-	1
			Dilletetillal	Slow channel (max speed)	67	68	ı	

Table 79. ADC accuracy - limited test conditions $1^{(1)(2)(3)}$ (continued)

Sym- bol	Parameter	C	Conditions ⁽⁴⁾						
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-74	-73		
THD	Total harmonic	80 MHz, Sampling rate ≤ 5.33 Msps,	ended	Slow channel (max speed)	-	-74	-73	dB	
טווו	distortion	$V_{DDA} = V_{REF+} = 3 \text{ V},$	Differential	Fast channel (max speed)	-	-79	-76	uВ	
		TA = 25 °C	Dillerential	Slow channel (max speed)	-	-79	-76		

- 1. Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when $V_{DDA} \ge 2.4$ V. No oversampling.

DS11912 Rev 7 159/221

Table 80. ADC accuracy - limited test conditions $2^{(1)(2)(3)}$

Sym- bol	Parameter		Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	6.5	
	Total		ended	Slow channel (max speed)	-	4	6.5	
ET	unadjusted error		Differential	Fast channel (max speed)	-	3.5	5.5	
			Dillerential	Slow channel (max speed)	-	3.5	5.5	
			Single	Fast channel (max speed)	-	1	4.5	
EO	Offset		ended	Slow channel (max speed)	-	1	5	
	error		Differential	Fast channel (max speed)	-	1.5	3	
			Dillerential	Slow channel (max speed)	-	1.5	3	
			Single	Fast channel (max speed)	-	2.5	6	
EG	Gain error		ended	Slow channel (max speed)	-	2.5	6	LSB
EG	Gain enoi		Differential	Fast channel (max speed)	-	2.5	3.5	LOD
			Dillerential	Slow channel (max speed)	-	2.5	3.5	
		ADC clock frequency ≤ 80 MHz, Sampling rate ≤ 5.33 Msps,	Single	Fast channel (max speed)	-	1	1.5	
ED	Differential ED linearity		ended	Slow channel (max speed)	-	1	1.5	
	ED linearity error		Differential	Fast channel (max speed)	-	1	1.2	
	error		Dillerential	Slow channel (max speed)	-	1	1.2	
			Single	Fast channel (max speed)	-	1.5	3.5	
EL	Integral	2 V ≤ V _{DDA}	ended	Slow channel (max speed)	-	1.5	3.5	
	linearity error		Differential	Fast channel (max speed)	-	1	3	
			Dillerential	Slow channel (max speed)	-	1	2.5	
			Single	Fast channel (max speed)	10	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10	10.5	-	bits
LINOB	bits		Differential	Fast channel (max speed)	10.7	10.9	-	טונס
			Dillerential	Slow channel (max speed)	10.7	10.9	-	
	Cianal to		Single	Fast channel (max speed)	62	65	-	
CINIAD	Signal-to- noise and		ended	Slow channel (max speed)	62	65	-	
SINAD	distortion		Differential	Fast channel (max speed)	66	67.4	-	
	ratio		Dillerential	Slow channel (max speed)	66	67.4	-	٩D
			Single	Fast channel (max speed)	64	66	-	dB
SNR	Signal-to-			Slow channel (max speed)	64	66	-	
SINK	noise ratio	L L		Fast channel (max speed)	66.5	68	-	
			Differential	Slow channel (max speed)	66.5	68	-	

Table 80. ADC accuracy - limited test conditions $2^{(1)(2)(3)}$ (continued)

Sym- bol	Parameter	C	Conditions ⁽⁴⁾					
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-74	-65	
THD	Total	80 MHz,	ended	Slow channel (max speed)	-	-74	-67	dB
טחו	harmonic distortion	Sampling rate ≤ 5.33 Msps,	Differential	Fast channel (max speed)	-	-79	-70	uБ
		2 V ≤ V _{DDA}	Dillerential	Slow channel (max speed)	-	-79	-71	

- 1. Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
 significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
 Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when $V_{DDA} \ge 2.4$ V. No oversampling.

DS11912 Rev 7 161/221

Table 81. ADC accuracy - limited test conditions 3⁽¹⁾⁽²⁾⁽³⁾

Sym- bol	Parameter		Conditions ⁽⁴	test conditions 3(%-%-)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	5.5	7.5	
	Total		ended	Slow channel (max speed)	-	4.5	6.5	
ET	unadjusted error		Differential	Fast channel (max speed)	-	4.5	7.5	
			Differential	Slow channel (max speed)	-	4.5	5.5	
			Single	Fast channel (max speed)	-	2	5	
EO	Offset		ended	Slow channel (max speed)	-	2.5	5	
EO	error		Differential	Fast channel (max speed)	-	2	3.5	
			Dillerential	Slow channel (max speed)	-	2.5	3	
			Single	Fast channel (max speed)	-	4.5	7	
EG	Cain arrar		ended	Slow channel (max speed)	-	3.5	6	LSB
EG	Gain error		Differential	Fast channel (max speed)	-	3.5	4	LOD
		ADC clock frequency ≤ 80 MHz, Sampling rate ≤ 5.33 Msps, 1.65 V ≤ V _{DDA} = V _{REF+} ≤	Dillerential	Slow channel (max speed)	-	3.5	5	
			Single	Fast channel (max speed)	-	1.2	1.5	
ED	Differential ED linearity		ended	Slow channel (max speed)	-	1.2	1.5	
	ED linearity error		Differential	Fast channel (max speed)	-	1	1.2	
	error		Dillerential	Slow channel (max speed)	-	1	1.2	
			Single	Fast channel (max speed)	-	3	3.5	
EL	Integral linearity	3.6 V, Voltage scaling Range 1	ended	Slow channel (max speed)	-	2.5	3.5	
	error		Differential	Fast channel (max speed)	-	2	2.5	
			Dillerential	Slow channel (max speed)	-	2	2.5	
			Single	Fast channel (max speed)	10	10.4	ı	
ENOB	Effective number of		ended	Slow channel (max speed)	10	10.4	ı	bits
LINOD	bits		Differential	Fast channel (max speed)	10.6	10.7	ı	טונס
			Dilicicitiai	Slow channel (max speed)	10.6	10.7	ı	
	Signal-to-		Single	Fast channel (max speed)	62	64	ı	
SINIAD	noise and		ended	Slow channel (max speed)	62	64	ı	
SINAD	distortion		Differential	Fast channel (max speed)	65	66	-	
	ratio		Dillerential	Slow channel (max speed)	65	66	ı	dB
			Single	Fast channel (max speed)	63	65	-	uБ
SNR	Signal-to-		ended	Slow channel (max speed)	63	65	ı	
SINIX	noise ratio		Differential	Fast channel (max speed)	66	67	•	
			Dilletetitial	Slow channel (max speed)	66	67	-	

Table 81. ADC accuracy - limited test conditions $3^{(1)(2)(3)}$ (continued)

Sym- bol	Parameter	C	Conditions ⁽⁴⁾					
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-69	-67	
	Total	otal 80 MHz, Sampling rate ≤ 5.33 Msps, _	ended	Slow channel (max speed)	-	-71	-67	
THD	harmonic distortion	$1.65 \text{ V} \le \text{V}_{\text{DDA}} = \text{V}_{\text{REF+}} \le$		Fast channel (max speed)	-	-72	-71	dB
	distortion	3.6 V, Voltage scaling Range 1	Differential	Slow channel (max speed)	-	-72	-71	

- 1. Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
 significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
 Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when $V_{DDA} \ge 2.4$ V. No oversampling.

DS11912 Rev 7 163/221

Table 82. ADC accuracy - limited test conditions 4⁽¹⁾⁽²⁾⁽³⁾

Sym- bol	Parameter	(Conditions ⁽⁴⁾				Max	Unit
			Single	Fast channel (max speed)	-	5	5.4	
ET	Total		ended	Slow channel (max speed)	-	4	5	
	unadjusted error		Differential	Fast channel (max speed)	-	4	5	
			Dillerential	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	2	4	
EO	Offset		ended	Slow channel (max speed)	-	2	4	
	error		Differential	Fast channel (max speed)	-	2	3.5	
			Dillerential	Slow channel (max speed)	-	2	3.5	
			Single	Fast channel (max speed)	-	4	4.5	
EG	Gain error		ended	Slow channel (max speed)	-	4	4.5	LSB
LG	Gain enoi		Differential	Fast channel (max speed)	-	3	4	LOD
				Slow channel (max speed)	-	3	4	
			Single	Fast channel (max speed)	-	1	1.5	
ED	Differential ED linearity		ended	Slow channel (max speed)	-	1	1.5	
	ED linearity error		Differential	Fast channel (max speed)	-	1	1.2	
			Dillerential	Slow channel (max speed)	-	1	1.2	
			Single	Fast channel (max speed)	-	2.5	3	
EL	Integral linearity	Voltage scaling Range 2	ended	Slow channel (max speed)	-	2.5	3	
LL	error		Differential	Fast channel (max speed)	-	2	2.5	
			Dilicicitiai	Slow channel (max speed)	-	2	2.5	
			Single	Fast channel (max speed)	10.2	10.5	ı	
ENOB	Effective number of		ended	Slow channel (max speed)	10.2	10.5	ı	bits
LINOD	bits		Differential	Fast channel (max speed)	10.6	10.7	ı	Dita
			Dilicicitiai	Slow channel (max speed)	10.6	10.7	ı	
	Signal-to-		Single	Fast channel (max speed)	63	65	ı	
SINAD	noise and		ended	Slow channel (max speed)	63	65	-	
SINAD	distortion		Differential	Fast channel (max speed)	65	66	-	
	ratio		Dillerential	Slow channel (max speed)	65	66	-	dB
			Single	Fast channel (max speed)	64	65	•	ub
SNR	Signal-to-		ended	Slow channel (max speed)	64	65	ı	
ONIX	noise ratio		Differential	Fast channel (max speed)	66	67	-	
			Dilloretitial	Slow channel (max speed)	66	67	-	

				(**************************************		,		
Sym- bol	Parameter		Conditions ⁽⁴)	Min	Тур	Max	Unit
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-71	-69	
THD	Total harmonic	26 MHz, 1.65 V ≤ V _{DDA} = VREF+ ≤	ended	Slow channel (max speed)		-71	-69	dB
1110	distortion	3.6 V,	Differential	Fast channel (max speed)	1	-73	-72	ub
		Voltage scaling Range 2	Dillerellia	Slow channel (max speed)		-73	-72	

Table 82. ADC accuracy - limited test conditions $4^{(1)(2)(3)}$ (continued)

- Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when $V_{DDA} \ge 2.4$ V. No oversampling.

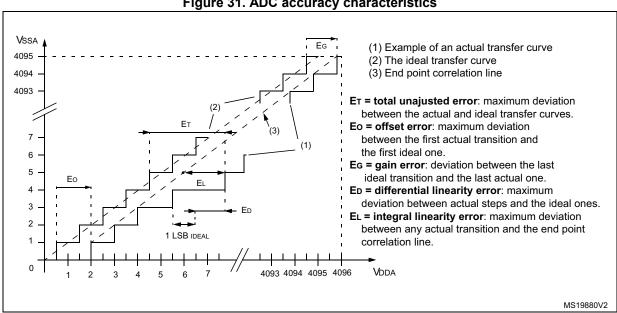


Figure 31. ADC accuracy characteristics

DS11912 Rev 7 165/221

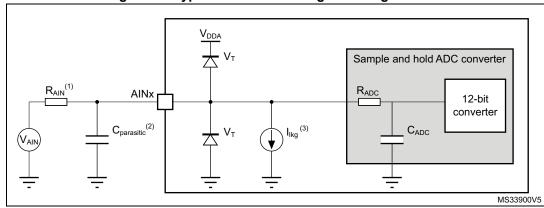


Figure 32. Typical connection diagram using the ADC

- 1. Refer to Table 77: ADC characteristics for the values of R_{AIN} and C_{ADC} .
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (refer to *Table 71: I/O static characteristics* for the value of the pad capacitance). A high C_{parasitic} value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced.
- 3. Refer to Table 71: I/O static characteristics for the values of Ilkg.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 18: Power supply scheme*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.19 Digital-to-Analog converter characteristics

Table 83. DAC characteristics⁽¹⁾

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
V_{DDA}	Analog supply voltage for DAC ON		ffer OFF (no resistive OUT1 pin or internal	1.71	-	3.6	
	57.6 611	Other modes		1.80	-		
V _{REF+}	Positive reference voltage	DAC output buffer OFF (no resistive load on DAC1_OUT1 pin or internal connection)		1.71	ı	V _{DDA}	V
		Other modes		1.80	-		
V _{REF-}	Negative reference voltage		-		V_{SSA}		
R _L	Resistive load	DAC output connected to V _{SSA}		5	-	-	kΩ
	Troologivo loda	buffer ON	connected to V _{DDA}	25	1	-	1132
Ro	Output Impedance	DAC output bu	ffer OFF	9.6	11.7	13.8	kΩ
Б	Output impedance sample	V _{DD} = 2.7 V		ı	i	2	
R _{BON}	and hold mode, output buffer ON	V _{DD} = 2.0 V		-	-	3.5	kΩ
Б	Output impedance sample	V _{DD} = 2.7 V			-	16.5	1.0
R _{BOFF}	and hold mode, output buffer OFF	V _{DD} = 2.0 V		-	-	18.0	kΩ
C _L	0	DAC output bu	ffer ON	-	-	50	pF
C _{SH}	- Capacitive load	Sample and ho	old mode	-	0.1	1	μF
V _{DAC_OUT}	Voltage on DAC1_OUT1	DAC output bu	ffer ON	0.2	-	V _{REF+} - 0.2	V
	output	DAC output bu	ffer OFF	0	-	V _{REF+}	
	0 111: 1: (6 11 1 6		±0.5 LSB	-	1.7	3	
	Settling time (full scale: for a 12-bit code transition	Normal mode DAC output	±1 LSB	-	1.6	2.9	
	between the lowest and	buffer ON	±2 LSB	-	1.55	2.85	
t _{SETTLING}	the highest input codes when DAC1_OUT1	CL ≤ 50 pF, RL ≥ 5 kΩ	±4 LSB	-	1.48	2.8	μs
	reaches final value ±0.5LSB, ±1 LSB, ±2 LSB,		±8 LSB	-	1.4	2.75	
	±4 LSB, ±8 LSB)	Normal mode DAC output buffer OFF, ±1LSB, CL = 10 pF		-	2	2.5	
t (2)	Wakeup time from off state (setting the ENx bit in the		Normal mode DAC output buffer ON $CL \le 50$ pF, $RL \ge 5$ k Ω		4.2	7.5	110
t _{WAKEUP} ⁽²⁾	DAC Control register) until final value ±1 LSB	,	DAC output buffer F	-	2	5	μs
PSRR	V _{DDA} supply rejection ratio	Normal mode I CL ≤ 50 pF, RL	DAC output buffer ON . = 5 kΩ, DC	-	-80	-28	dB

DS11912 Rev 7 167/221

Table 83. DAC characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions			Тур	Max	Unit
T _{W_to_W}	Minimal time between two consecutive writes into the DAC_DORx register to guarantee a correct DAC1_OUT1 for a small variation of the input code (1 LSB) DAC_MCR:MODEx[2:0] = 000 or 001 DAC_MCR:MODEx[2:0] = 010 or 011	CL ≤ 50 pF, RL CL ≤ 10 pF	≥ 5 kΩ	1	-	-	μs
		DAC1_OUT1	DAC output buffer ON, C _{SH} = 100 nF	-	0.7	3.5	ma
	Sampling time in sample and hold mode (code transition between the	pin connected	DAC output buffer OFF, C _{SH} = 100 nF	ı	10.5	18	ms
[†] SAMP	lowest input code and the highest input code when DAC1_OUT1 reaches final value ±1LSB)	DAC1_OUT1 pin not connected (internal connection only)	DAC output buffer OFF	-	2	3.5	μs
I _{leak}	Output leakage current	Sample and ho DAC1_OUT1 p		-	-	_(3)	nA
Cl _{int}	Internal sample and hold capacitor		-	5.2	7	8.8	pF
t _{TRIM}	Middle code offset trim time	DAC output bu	ffer ON	50	-	-	μs
V	Middle code offset for 1	V _{REF+} = 3.6 V		-	1500	-	u\/
V _{offset}	trim code step	V _{REF+} = 1.8 V		-	750	-	μV
		DAC output	No load, middle code (0x800)	-	315	500	
		buffer ON No load, worst code (0xF1C)		-	450	670	
I _{DDA} (DAC)	DAC consumption from V_{DDA}	DAC output No load, middle buffer OFF code (0x800)		-	-	0.2	μΑ
		Sample and ho	old mode, C _{SH} =	-	315 _x Ton/(Ton +Toff) (4)	670 x Ton/(Ton +Toff) (4)	

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
		DAC output	No load, middle code (0x800)	-	185	240	
			No load, worst code (0xF1C)	-	340	400	
		DAC output buffer OFF	No load, middle code (0x800)	-	155	205	
I _{DDV} (DAC) DAC consumptio V _{REF+}	DAC consumption from V _{REF+}	Sample and hold mode, buffer ON, C _{SH} = 100 nF, worst case		-	185 _x Ton/(Ton +Toff) (4)	400 x Ton/(Ton +Toff) (4)	μΑ
		Sample and hold mode, buffer OFF, C _{SH} = 100 nF, worst case		-	155 _x Ton/(Ton +Toff) (4)	205 _x Ton/(Ton +Toff) (4)	

Table 83. DAC characteristics⁽¹⁾ (continued)

- 1. Guaranteed by design.
- 2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
- 3. Refer to Table 71: I/O static characteristics.
- 4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0394 reference manual for more details.

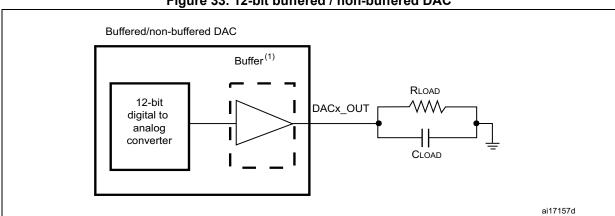


Figure 33. 12-bit buffered / non-buffered DAC

The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.

Table 84. DAC accuracy⁽¹⁾

Symbol	Parameter	Conditio	ns	Min	Тур	Max	Unit
DNL	Differential non	DAC output buffer ON		-	-	±2	
DINL	linearity (2)	DAC output buffer OFF		-	-	±2	
-	monotonicity	10 bits		(guarantee	d	
INL	Integral non	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±4	
IIVE	linearity ⁽³⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±4	
		DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±12	
Offset	Offset error at code 0x800 ⁽³⁾	CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±25	LSB
		DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±8	
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±5	
OffsetCal	Offset Error at code 0x800	DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±5	
OlisetCal	after calibration	CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	_	±7	
Cain	Gain error ⁽⁵⁾	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±0.5	%
Gain	Gain error	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±0.5	70
TUE	Total	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±30	LSB
TOE	unadjusted error	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±12	LOD
TUECal	Total unadjusted error after calibration	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±23	LSB
CNID	Signal-to-noise	DAC output buffer ON CL \leq 50 pF, RL \geq 5 k Ω 1 kHz, BW 500 kHz		-	71.2	-	40
SNR	ratio	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz BW 500 kHz		-	71.6	-	dB
TUD	Total harmonic	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1	kHz	-	-78	-	40
THD	distortion	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz		-	-79	-	dB

Table 84. DAC accuracy⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Signal-to-noise SINAD and distortion ratio	Signal-to-noise	DAC output buffer ON CL \leq 50 pF, RL \geq 5 k Ω , 1 kHz	-	70.4	-	dB
		DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	71	-	uБ
Effective		DAC output buffer ON CL \leq 50 pF, RL \geq 5 k Ω , 1 kHz	-	11.4	-	bits
ENOB n	number of bits	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	11.5	-	มแร

- 1. Guaranteed by design.
- 2. Difference between two consecutive codes 1 LSB.
- 3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
- 4. Difference between the value measured at Code (0x001) and the ideal value.
- Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and (V_{REF+} – 0.2) V when buffer is ON.

6.3.20 Voltage reference buffer characteristics

Table 85. VREFBUF characteristics⁽¹⁾

Symbol	Parameter	Condition	ons	Min	Тур	Max	Unit
		Normal made	V _{RS} = 0	2.4	-	3.6	
	Analog supply	Normal mode	V _{RS} = 1	2.8	-	3.6	
V_{DDA}	voltage	Degraded mode ⁽²⁾	V _{RS} = 0	1.65	-	2.4	
		Degraded mode(=)	V _{RS} = 1	1.65	-	2.8	V
		Normal mode	V _{RS} = 0	2.046 ⁽³⁾	2.048	2.049 ⁽³⁾	V
V _{REFBUF} _	Voltage reference	Normal mode	V _{RS} = 1	2.498 ⁽³⁾	2.5	2.502 ⁽³⁾	
OUT	output	Degraded mode ⁽²⁾	V _{RS} = 0	V _{DDA} -150 mV	-	V_{DDA}	
		Degraded mode.	V _{RS} = 1	V _{DDA} -150 mV	i	V_{DDA}	
TRIM	Trim step resolution	-	-	-	±0.05	±0.1	%
CL	Load capacitor	-			1	1.5	μF
esr	Equivalent Serial Resistor of Cload			-	-	2	Ω
I _{load}	Static load current			-	-	4	mA
	Line regulation	2.8 V ≤ V _{DDA} ≤ 3.6 V	I _{load} = 500 μA	-	200	1000	ppm/V
l _{line_reg}	Line regulation	I _{load} = 4 mA -	-	100	500	ррпі/ ۷	
I _{load_reg}	Load regulation	500 μA ≤ I _{load} ≤4 mA	Normal mode	-	50	500	ppm/mA
Т.	Temperature	-40 °C < T _J < +125 °C	;	-	-	T _{coeff} _ vrefint +	ppm/°C
T _{Coeff}	coefficient	0 °C < T _J < +50 °C	-	-	T _{coeff} vrefint + 50	ррпі/ С	
PSRR	Power supply	DC		40	60	-	dB
FORK	rejection	100 kHz		25	40	-	uБ
		$CL = 0.5 \mu F^{(4)}$		-	300	350	
t _{START}	Start-up time	CL = 1.1 µF ⁽⁴⁾		-	500	650	μs
		$CL = 1.5 \mu F^{(4)}$		-	650	800	
Inrush	Control of maximum DC current drive on VREFBUF_ OUT during start-up phase (5)	-	-	-	8	-	mA

Table 85. VREFBUF characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
. O. VREFBUF	I _{load} = 0 μA	-	16	25		
I _{DDA} (VREF BUF)	I _{DDA} (VREF consumption	I _{load} = 500 μA	-	18	30	μΑ
from V	from V _{DDA}	I _{load} = 4 mA	-	35	50	

- 1. Guaranteed by design, unless otherwise specified.
- In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which follows (V_{DDA} drop voltage).
- 3. Guaranteed by test in production.
- 4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.
- To correctly control the VREFBUF inrush current during start-up phase and scaling change, the V_{DDA} voltage should be in the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for V_{RS} = 0 and V_{RS} = 1.

DS11912 Rev 7 173/221

6.3.21 Comparator characteristics

Table 86. COMP characteristics⁽¹⁾

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage		-	1.62	-	3.6	
V _{IN}	Comparator input voltage range		-	0	-	V_{DDA}	V
V _{BG} ⁽²⁾	Scaler input voltage		-		V _{REFINT}	-	
V _{SC}	Scaler offset voltage	-		-	±5	±10	mV
I _{DDA} (SCALER)	Scaler static consumption B	BRG_EN=0 (br	ridge disable)	-	200	300	nA
IDDA(SCALER)	from V _{DDA}	BRG_EN=1 (bi	ridge enable)	-	0.8	1	μΑ
t _{START_SCALER}	Scaler startup time		-	-	100	200	μs
		High-speed	V _{DDA} ≥ 2.7 V	-	-	5	
	Comparator startup time to reach propagation delay specification	mode	V _{DDA} < 2.7 V	-	-	7	μs
t _{START}		Medium mode	V _{DDA} ≥ 2.7 V	-	-	15	
		Medium mode	V _{DDA} < 2.7 V	-	-	25	
		Ultra-low-powe	r mode	-	-	40	
		High-speed	V _{DDA} ≥ 2.7 V	-	55	80	no
t _D ⁽³⁾	Propagation delay with	mode	V _{DDA} < 2.7 V	-	65	100	ns
'D` ′	100 mV overdrive	Medium mode		-	0.55	0.9	110
		Ultra-low-powe	r mode	-	4	7	μs
V _{offset}	Comparator offset error	Full common mode range	-	-	±5	±20	mV
		No hysteresis		-	0	-	
V	Comparator byotorosis	Low hysteresis		-	8	-	m)/
V_{hys}	Comparator hysteresis	Medium hysteresis		-	15	-	mV
		High hysteresis	High hysteresis		27	-	

		Jim Onaraoto.	notioo (oontiinaoa	,			
Symbol	Parameter	Co	Conditions			Max	Unit
			Static	-	400	600	
I _{DDA} (COMP) Comparator consumption from V _{DDA}		Ultra-low- power mode	With 50 kHz ±100 mV overdrive square signal	-	1200	-	nA
		Static	-	5	7		
		Medium mode	With 50 kHz ±100 mV overdrive square signal	-	6	1	
			Static	-	70	100	μA
		High-speed mode	With 50 kHz ±100 mV overdrive square signal	-	75	1	
l _{bias}	Comparator input bias current		-	-	-	_(4)	nA

Table 86. COMP characteristics⁽¹⁾ (continued)

6.3.22 Operational amplifiers characteristics

Table 87. OPAMP characteristics⁽¹⁾

Symbol	Parameter	Conditions		Тур	Max	Unit
V _{DDA}	Analog supply voltage ⁽²⁾	-	1.8	-	3.6	V
CMIR	Common mode input range	-	0	-	V_{DDA}	V
VI	Input offset	25 °C, No Load on output.	-	-	±1.5	mV
VI _{OFFSET}	voltage	All voltage/Temp.	-	-	±3	IIIV
A\/ .	Input offset	Normal mode	-	±5	-	μV/°C
ΔVI _{OFFSET}	voltage drift	Low-power mode	-	±10	-	μν/ Ο
TRIMOFFSETP TRIMLPOFFSETP	Offset trim step at low common input voltage (0.1 x V _{DDA})	-	-	0.8	1.1	mV
TRIMOFFSETN TRIMLPOFFSETN	Offset trim step at high common input voltage (0.9 x V _{DDA})	-	-	1	1.35	IIIV

^{1.} Guaranteed by design, unless otherwise specified.

^{2.} Refer to Table 26: Embedded internal voltage reference.

^{3.} Guaranteed by characterization results.

^{4.} Mostly I/O leakage when used in analog mode. Refer to I_{lkg} parameter in Table 71: I/O static characteristics.

Table 87. OPAMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Con	ditions	Min	Тур	Max	Unit	
		Normal mode		-	-	500		
I _{LOAD}	Drive current	Low-power mode	V _{DDA} ≥ 2 V	-	-	100		
	Drive current in	Normal mode	V	-	-	450	μA	
I _{LOAD_} PGA	PGA mode	Low-power mode	- V _{DDA} ≥ 2 V	-	-	50		
R _{LOAD}	Resistive load (connected to	Normal mode	V _{DDA} < 2 V	4	1	1		
NLOAD	VSSA or to VDDA)	Low-power mode	VDDA \ Z V	20	-	-	kΩ	
D	Resistive load in PGA mode (connected to	Normal mode	V <2V	4.5	-	-	K12	
R _{LOAD_} PGA	VSSA or to V _{DDA})	Low-power mode	- V _{DDA} < 2 V	40	ı	ı		
C _{LOAD}	Capacitive load		-	ı	ı	50	pF	
CMRR	Common mode	Normal mode		-	-85	-	dB	
CIVILLE	rejection ratio	Low-power mode		ı	-90	-	uБ	
DODD	Power supply rejection ratio	Normal mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 4 \text{ k}\Omega \text{ DC}$	70	85	-	dB	
FORK		Low-power mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 20 \text{ k}\Omega \text{ DC}$	72	90	-	αБ	
		Normal mode	V _{DDA} ≥ 2.4 V	550	1600	2200		
GBW	Gain Bandwidth	Low-power mode	(OPA_RANGE = 1)	100	420	600	kHz	
GBW	Product	Normal mode	V _{DDA} < 2.4 V	250	700	950	IN 12	
		Low-power mode	(OPA_RANGE = 0)	40	180	280		
	Slew rate	Normal mode	- V _{DDA} ≥ 2.4 V	ı	700	ı		
SR ⁽³⁾	(from 10 and	Low-power mode	VDDA ≥ 2.4 V	ı	180	ı	V/ms	
OIX.	90% of output voltage)	Normal mode	- V _{DDA} < 2.4 V	ı	300	ı	V/1113	
	voltago)	Low-power mode	VDDA \ Z.+ V	-	80	-		
AO	Open loop gain	Normal mode		55	110	ı	dB	
AO	Open loop gain	Low-power mode		45	110	ı	uБ	
V _{OHSAT} ⁽³⁾	High saturation	Normal mode	I _{load} = max or R _{load} =	V _{DDA} - 100	-	-		
VOHSAT`	voltage	Low-power mode	min Input at V _{DDA} .		-	-	mV	
V (3)	Low saturation	Normal mode	I _{load} = max or R _{load} =	-	-	100		
V _{OLSAT} ⁽³⁾	voltage	Low-power mode	min Input at 0.	ı	ı	50		
(0)	Phase margin	Normal mode		ı	74	-	٥	
Φ_{m}		Low-power mode		ı	66	-		

Table 87. OPAMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Con	ditions	Min	Тур	Max	Unit
014		Normal mode		-	13	-	ın
GM	Gain margin	Low-power mode		-	20	-	dB
	Wake up time	Normal mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 4 \text{ k}\Omega$ follower configuration	-	5	10	
^t WAKEUP	from OFF state.	Low-power mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 20 \text{ k}\Omega$ follower configuration	-	10	30	μs
I _{bias}	OPAMP input bias current	General purpose input		-	-	_(4)	nA
				-	2	-	
PGA gain ⁽³⁾	Non inverting	-		-	4	-	
PGA gain ^(*)	gain value			-	8	-	-
				-	16	-	
		PGA Gain = 2		-	80/80	-	
	R2/R1 internal resistance values in PGA mode ⁽⁵⁾	PGA Gain = 4		-	120/ 40	-	
R _{network}		PGA Gain = 8		-	140/ 20	-	kΩ/kΩ
		PGA Gain = 16		-	150/ 10	-	
Delta R	Resistance variation (R1 or R2)		-	-15	-	15	%
PGA gain error	PGA gain error		-	-1	-	1	%
		Gain = 2	-	-	GBW/	-	
DCA DW	PGA bandwidth	Gain = 4	-	-	GBW/	-	MU-
PGA BW	for different non inverting gain	Gain = 8	-	-	GBW/ 8	-	MHz
		Gain = 16	-	-	GBW/ 16	-	

Table 87. OPAMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
en i		Normal mode	at 1 kHz, Output loaded with 4 kΩ	-	500	-	
	Voltage noise	Low-power mode	at 1 kHz, Output loaded with 20 kΩ	-	600	-	nV/√Hz
	density	Normal mode	at 10 kHz, Output loaded with 4 kΩ	-	180	-	110/ 1112
		Low-power mode	at 10 kHz, Output loaded with 20 kΩ	-	290	-	
I _{DDA} (OPAMP) ⁽³⁾	OPAMP	Normal mode	no Load, quiescent	-	120	260	
	consumption from V _{DDA}	Low-power mode	mode	-	45	100	μA

- 1. Guaranteed by design, unless otherwise specified.
- 2. The temperature range is limited to 0 °C-125 °C when V_{DDA} is below 2 V
- 3. Guaranteed by characterization results.
- 4. Mostly I/O leakage, when used in analog mode. Refer to I_{lkg} parameter in *Table 71: I/O static characteristics*.
- R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1

6.3.23 Temperature sensor characteristics

Table 88. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{TS} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽²⁾	Average slope	2.3	2.5	2.7	mV/°C
V ₃₀	Voltage at 30°C (±5 °C) ⁽³⁾	0.742	0.76	0.785	V
t _{START} (TS_BUF) ⁽¹⁾	Sensor Buffer Start-up time in continuous mode ⁽⁴⁾	-	8	15	μs
t _{START} (1)	Start-up time when entering in continuous mode ⁽⁴⁾	-	70	120	μs
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	5	-	-	μs
I _{DD} (TS) ⁽¹⁾	Temperature sensor consumption from V_{DD} , when selected by ADC	-	4.7	7	μΑ

- 1. Guaranteed by design.
- 2. Guaranteed by characterization results.
- Measured at V_{DDA} = 3.0 V ±10 mV. The V₃₀ ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 8: Temperature sensor calibration values.
- 4. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

6.3.24 V_{BAT} monitoring characteristics

Table 89. V_{BAT} monitoring characteristics

Symbol	Parameter		Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	39	-	kΩ
Q	Ratio on V _{BAT} measurement		3	-	-
Er ⁽¹⁾	Error on Q		-	10	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading the VBAT	12	-	-	μs

^{1.} Guaranteed by design.

Table 90. V_{BAT} charging characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{BC}	Battery	VBRS = 0	-	5	-	kΩ
	charging resistor	VBRS = 1	-	1.5	-	

6.3.25 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 91. TIMx⁽¹⁾ characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
t _{res(TIM)}	Timer resolution time	-	1	-	t _{TIMxCLK}
	Timer resolution time	f _{TIMxCLK} = 80 MHz	12.5	-	ns
f _{EXT}	Timer external clock frequency on CH1 to CH4	-	0	f _{TIMxCLK} /2	MHz
		f _{TIMxCLK} = 80 MHz	0	40	MHz
Res _{TIM}	Timer resolution	TIMx (except TIM2)	-	16	bit
		TIM2	-	32	
tCOUNTER	16-bit counter clock period	-	1	65536	t _{TIMxCLK}
		f _{TIMxCLK} = 80 MHz	0.0125	819.2	μs
t _{MAX_COUNT}	Maximum possible count with 32-bit counter	-	-	65536 × 65536	t _{TIMxCLK}
		f _{TIMxCLK} = 80 MHz	-	53.68	s

^{1.} TIMx is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.

DS11912 Rev 7 179/221

			\ /	
Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit
/4	0	0.125	512	
/8	1	0.250	1024	
/16	2	0.500	2048	
/32	3	1.0	4096	ms
/64	4	2.0	8192	
/128	5	4.0	16384	
/256	6 or 7	8.0	32768	

Table 92. IWDG min/max timeout period at 32 kHz (LSI)⁽¹⁾

The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Table 50: 11115 Illimitar tilliout talae at 50 illiliz (i 5211)					
Prescaler	WDGTB	Min timeout value	Max timeout value	Unit	
1	0	0.0512	3.2768		
2	1	0.1024	6.5536	me	
4	2	0.2048	13.1072	ms	
8	3	0.4096	26.2144		

Table 93. WWDG min/max timeout value at 80 MHz (PCLK)

6.3.26 Communication interfaces characteristics

I²C interface characteristics

The I2C interface meets the timings requirements of the I²C-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bitrate up to 100 kbit/s
- Fast-mode (Fm): with a bitrate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bitrate up to 1 Mbit/s.

The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0394 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and $V_{\rm DDIOX}$ is disabled, but is still present. Only FT_f I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I2C I/Os characteristics.

All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Table 94. I2C analog filter characteristics⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

- 1. Guaranteed by design.
- 2. Spikes with widths below $t_{\mbox{\scriptsize AF}(\mbox{\scriptsize min})}$ are filtered.
- 3. Spikes with widths above $t_{\text{AF}(\text{max})}$ are not filtered

SPI characteristics

Unless otherwise specified, the parameters given in *Table 95* for SPI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 23: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Table 95. SPI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		Master mode receiver/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			40		
f _{SCK} 1/t _{c(SCK)} SPI clock frequency		Master mode receiver/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			16		
	Master mode transmitter 1.71 < V _{DD} < 3.6 V Voltage Range 1			40			
	Slave mode receiver 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	-	40	MHz		
		Slave mode transmitter/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			37 ⁽²⁾		
		Slave mode transmitter/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			20 ⁽²⁾		
		Voltage Range 2			13		
t _{su(NSS)}	NSS setup time	Slave mode, SPI prescaler = 2	4 _x T _{PCLK}	-	-	ns	
t _{h(NSS)}	NSS hold time	Slave mode, SPI prescaler = 2	2 _x T _{PCLK}	-	-	ns	
t _{w(SCKH)}	SCK high and low time	Master mode	T _{PCLK} -2	T _{PCLK}	T _{PCLK} +2	ns	
t _{su(MI)}	Data input setup time	Master mode	4	-	-	ns	
t _{su(SI)}	Data input setup time	Slave mode	1.5	-	-	115	
t _{h(MI)}	Data input hold time	Master mode	6.5	-	-	ne	
t _{h(SI)}	Data iliput liolu tilile	Slave mode	1.5	-	_	ns	
t _{a(SO)}	Data output access time	Slave mode	9	-	36	ns	
t _{dis(SO)}	Data output disable time	Slave mode	9	-	16	ns	

	,					
Symbol	Parameter	arameter Conditions		Тур	Max	Unit
	Slave mode 2.7 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	13.5		
t _{v(SO)}	Data output valid time	Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	24	ns
		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 2	-	12.5	33	
t _{v(MO)}		Master mode	-	4.5	6	
t _{h(SO)}	Data output hold time	Slave mode	7	-	-	ns
t _{h(MO)}	Data output Hold tillle	Master mode	0	-	-	115

Table 95. SPI characteristics⁽¹⁾ (continued)

Maximum frequency in Slave transmitter mode is determined by the sum of t_{v(SO)} and t_{su(MI)} which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having t_{su(MI)} = 0 while Duty(SCK) = 50 %.

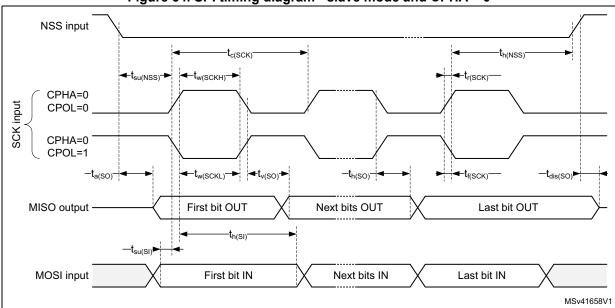


Figure 34. SPI timing diagram - slave mode and CPHA = 0

^{1.} Guaranteed by characterization results.

Electrical characteristics STM32L452xx

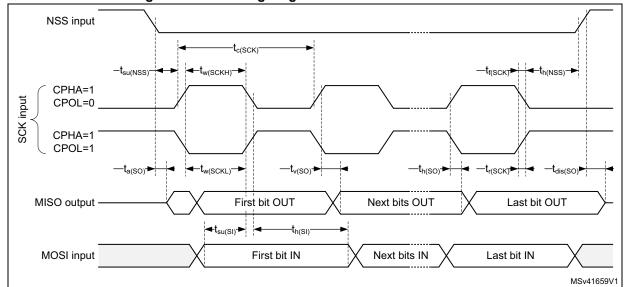


Figure 35. SPI timing diagram - slave mode and CPHA = 1

1. Measurement points are done at CMOS levels: 0.3 $\rm V_{DD}$ and 0.7 $\rm V_{DD}$

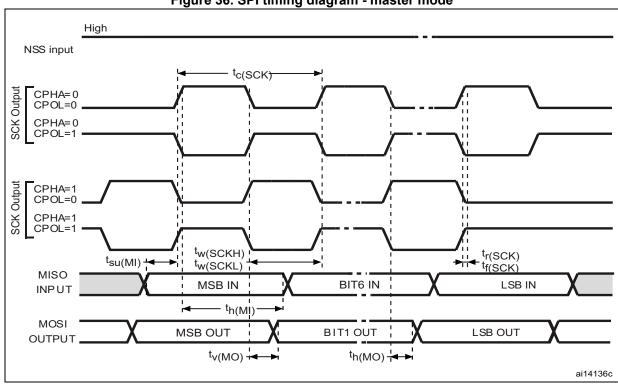


Figure 36. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: 0.3 $\rm V_{DD}$ and 0.7 $\rm V_{DD}$

47/

Quad SPI characteristics

Unless otherwise specified, the parameters given in *Table 96* and *Table 97* for Quad SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 15 or 20 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics.

Table 96. Quad SPI characteristics in SDR mode⁽¹⁾

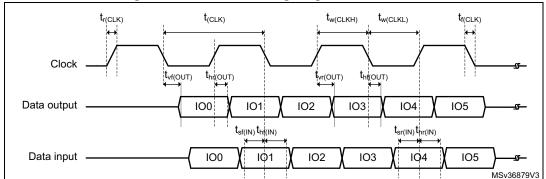
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		1.71 < V _{DD} < 3.6 V, C _{LOAD} = 20 pF Voltage Range 1	-	-	40	
F _{CK}	F _{CK} 1/t _(CK) Quad SPI clock frequency	1.71 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1		-	48	MHz
1/t _(CK)		2.7 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1	-	-	60	IVII IZ
		1.71 < V _{DD} < 3.6 V C _{LOAD} = 20 pF Voltage Range 2	-	-	26	
t _{w(CKH)}	Quad SPI clock high and	f - 48 MHz proce-0	t _(CK) /2-2	-	t _(CK) /2	
t _{w(CKL)}	low time	f _{AHBCLK} = 48 MHz, presc=0	t _(CK) /2	-	t _(CK) /2+2	
+	Data input satur timo	Voltage Range 1	2	-	-	
t _{s(IN)}	Data input setup time	Voltage Range 2	3.5	-	-	
+	Data input hold time	Voltage Range 1	5	-	-	ns
t _{h(IN)}	Data input floid time	Voltage Range 2	6.5	-	-	115
	Data output valid time	Voltage Range 1	-	1	5	
t _{v(OUT)}	Data output valid time	Voltage Range 2	-	3	5	
4	Data output hold time	Voltage Range 1	0	-	-	
t _{h(OUT)}	Data output hold time	Voltage Range 2	0	-	-	

^{1.} Guaranteed by characterization results.

Electrical characteristics STM32L452xx

Table 97. QUADSPI characteristics in DDR mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		1.71 < V _{DD} < 3.6 V, C _{LOAD} = 20 pF Voltage Range 1			40	
F _{CK}	Quad SPI clock frequency	2 < V _{DD} < 3.6 V, C _{LOAD} = 20 pF Voltage Range 1	-	-	48	N 41 1-
1/t _(CK)		1.71 < V _{DD} < 3.6 V, C _{LOAD} = 15 pF Voltage Range 1	-	-	48	MHz
		1.71 < V _{DD} < 3.6 V C _{LOAD} = 20 pF Voltage Range 2	-	-	26	
t _{w(CKH)}	Quad SPI clock high	Pl clock high		-	t _(CK) /2	
t _{w(CKL)}	and low time	f _{AHBCLK} = 48 MHz, presc=0	t _(CK) /2	-	t _(CK) /2+2	
4	Data input setup time	Voltage Range 1	1			
t _{sr(IN)}	on rising edge	Voltage Range 2	3.5	-	-	
1	Data input setup time on falling edge	Voltage Range 1	1			
t _{sf(IN)}		Voltage Range 2	1.5	-	-	
	Data input hold time	Voltage Range 1	6			
t _{hr(IN)}	on rising edge	Voltage Range 2	6.5	-	-	
4	Data input hold time	Voltage Range 1	5.5			,,,
t _{hf(IN)}	on falling edge	Voltage Range 2	5.5	-	-	ns
	Data output valid time	Voltage Range 1		5	5.5	
t _{vr(OUT)}	on rising edge	Voltage Range 2	-	9.5	14	
	Data output valid time	Voltage Range 1		5	8.5	
t _{vf(OUT)}	on falling edge	Voltage Range 2	-	15	19	
4 .	Data output hold time	Voltage Range 1	3.5	-		
$t_{hr(OUT)}$	on rising edge	Voltage Range 2	8	-	_	
4	Data output hold time Voltage Range 1		3.5	-		
t _{hf(OUT)}	on falling edge	Voltage Range 2	13	-	<u> </u>	


^{1.} Guaranteed by characterization results.

47/

 $t_{\mathsf{r}(\mathsf{CK})}$ $t_{(CK)}$ $t_{\text{w}(\text{CKH})}$ $t_{\text{w}(\text{CKL})}$ $t_{\text{f}(\text{CK})}$ Clock t_{v(OUT)} $t_{h(OUT)} \\ \longleftrightarrow$ Data output D0 D1 D2 $t_{s(IN)}$ $t_{h(\text{IN})} \\$ Data input D0 D1 D2 MSv36878V1

Figure 37. Quad SPI timing diagram - SDR mode

SAI characteristics

Unless otherwise specified, the parameters given in *Table 98* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,FS).

Table 98. SAI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{MCLK}	SAI Main clock output	-	-	50	MHz	
		Master transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	18.5		
		Master transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	12.5		
		Master receiver Voltage Range 1	-	25		
f _{CK} SAI clock frequency	SAI clock frequency ⁽²⁾	Slave transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	22.5	MHz	
		Slave transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	14.5		
		Slave receiver Voltage Range 1	-	25		
		Voltage Range 2	-	12.5		
		Master mode 2.7 ≤ V _{DD} ≤ 3.6	-	22		
t _{v(FS)}	FS valid time	Master mode 1.71 ≤ V _{DD} ≤ 3.6	-	40	ns	
t _{h(FS)}	FS hold time	Master mode	10	-	ns	
t _{su(FS)}	FS setup time	Slave mode	1	-	ns	
t _{h(FS)}	FS hold time	Slave mode	2	-	ns	
t _{su(SD_A_MR)}	Data input setup time	Master receiver	2	-	ns	
t _{su(SD_B_SR)}	Data iliput setup tillie	Slave receiver	1.5	-	113	
t _{h(SD_A_MR)}	Data input hold time	Master receiver	5	-	ns	
t _{h(SD_B_SR)}	Data input noid time	Slave receiver	2.5	-	110	

Symbol Conditions Unit **Parameter** Min Max Slave transmitter (after enable edge) 22 $2.7 \leq V_{\text{DD}} \leq 3.6$ Data output valid time ns $t_{v(SD_B_ST)}$ Slave transmitter (after enable edge) 34 $1.71 \le V_{\rm DD} \le 3.6$ Data output hold time Slave transmitter (after enable edge) 10 ns $t_{h(SD_B_ST)}$ Master transmitter (after enable edge) 27 $2.7 \leq V_{\text{DD}} \leq 3.6$ Data output valid time ns t_{v(SD A MT)} Master transmitter (after enable edge) 40 $1.71 \leq V_{\text{DD}} \leq 3.6$ Master transmitter (after enable edge) 10 Data output hold time ns t_{h(SD_A_MT)}

Table 98. SAI characteristics⁽¹⁾ (continued)

- Guaranteed by characterization results.
- 2. APB clock frequency must be at least twice SAI clock frequency.

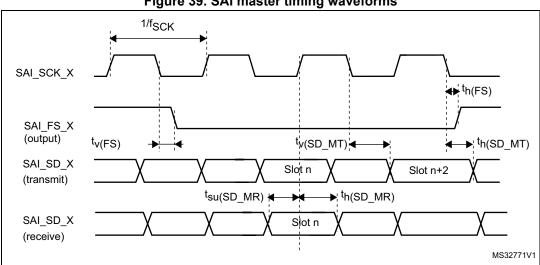


Figure 39. SAI master timing waveforms

Electrical characteristics STM32L452xx

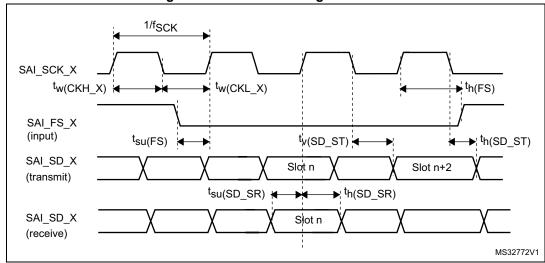


Figure 40. SAI slave timing waveforms

SDMMC characteristics

Unless otherwise specified, the parameters given in *Table 99* for SDIO are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 23: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output characteristics.

Table 99. SD / MMC dynamic characteristics, V_{DD} =2.7 V to 3.6 $V^{(1)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz		
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	4/3	-		
t _{W(CKL)}	Clock low time	f _{PP} = 50 MHz	8	10		ns		
t _{W(CKH)}	Clock high time	f _{PP} = 50 MHz	8	10	-	ns		
CMD, D input	ts (referenced to CK) in MMC and SD H	S mode						
t _{ISU}	Input setup time HS	f _{PP} = 50 MHz	3.5	-		ns		
t _{IH}	Input hold time HS	f _{PP} = 50 MHz	2.5	-		ns		
CMD, D outp	uts (referenced to CK) in MMC and SD	HS mode						
t _{OV}	Output valid time HS	f _{PP} = 50 MHz	-	12	13	ns		
t _{OH}	Output hold time HS	f _{PP} = 50 MHz	10	-	-	ns		
CMD, D input	CMD, D inputs (referenced to CK) in SD default mode							
t _{ISUD}	Input setup time SD	f _{PP} = 50 MHz	3.5	-	-	ns		
t _{IHD}	Input hold time SD	f _{PP} = 50 MHz	3	-	-	ns		

Table 99. SD / MMC dynamic characteristics, V_{DD} =2.7 V to 3.6 $V^{(1)}$ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
CMD, D outputs (referenced to CK) in SD default mode						
t _{OVD}	Output valid default time SD	f _{PP} = 50 MHz	-	2	3	ns
t _{OHD}	Output hold default time SD	f _{PP} = 50 MHz	0	-	-	ns

^{1.} Guaranteed by characterization results.

Table 100. eMMC dynamic characteristics, V_{DD} = 1.71 V to 1.9 $V^{(1)(2)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDIO_CK/f _{PCLK2} frequency ratio	-	-	-	4/3	-
t _{W(CKL)}	Clock low time	f _{PP} = 50 MHz	8	10	-	ns
t _{W(CKH)}	Clock high time	f _{PP} = 50 MHz	8	10	-	ns
CMD, D inpu	ts (referenced to CK) in eMMC mode					
t _{ISU}	Input setup time HS	f _{PP} = 50 MHz	0	-	-	ns
t _{IH}	Input hold time HS	f _{PP} = 50 MHz	1.5	-	-	ns
CMD, D outp	uts (referenced to CK) in eMMC mode					
t _{OV}	Output valid time HS	f _{PP} = 50 MHz	-	13.5	15	ns
t _{OH}	Output hold time HS	f _{PP} = 50 MHz	9	-	-	ns

^{1.} Guaranteed by characterization results.

Figure 41. SDIO high-speed mode

ty

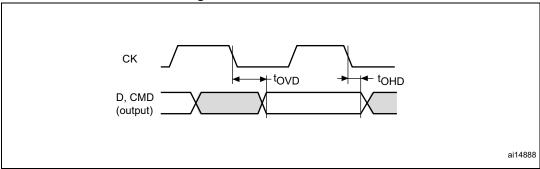
ty

tw(CKH)

D, CMD
(output)

D, CMD
(input)

ai14887


47/

DS11912 Rev 7 191/221

^{2.} $C_{LOAD} = 20pF$.

Electrical characteristics STM32L452xx

Figure 42. SD default mode

USB characteristics

The STM32L452xx USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation).

Table 101. USB electrical characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDUSB}	USB transceiver operating volta	USB transceiver operating voltage		-	3.6	V
T _{crystal_less}	USB crystal less operation temp	erature	-15	-	85	°C
t _{STARTUP} (3)	USB transceiver startup time	-	-	1.0	μs	
R _{PUI}	Embedded USB_DP pull-up val	ue during idle	900	1250	1600	
R _{PUR}	Embedded USB_DP pull-up value during reception		1400	2300	3200	Ω
Z _{DRV} ⁽³⁾	Output driver impedance ⁽⁴⁾	Driving high and low	28	36	44	Ω

^{1.} $T_A = -40$ to 125 °C unless otherwise specified.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

^{2.} The STM32L452xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V voltage range.

^{3.} Guaranteed by design.

No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching
impedance is already included in the embedded driver.

Package information 7

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

LQFP100 package information 7.1

This LQFP is a 100-pin, 14 x 14 mm low-profile quad flat package.

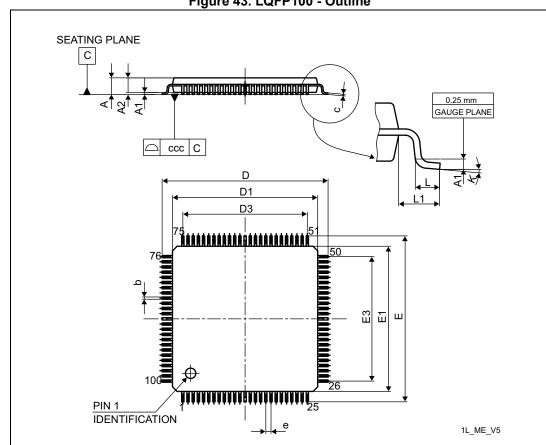


Figure 43. LQFP100 - Outline

1. Drawing is not to scale.

Table 102, LQFP100 - Mechanical data

Symbol	Symbol				inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571

DS11912 Rev 7 193/221

Table 102. LQFP100 - Mechanical data (continued)

Compleal		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
ccc	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to four decimal digits.

Figure 44. LQFP100 - Recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figures give examples of topside marking orientation versus pin 1 identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

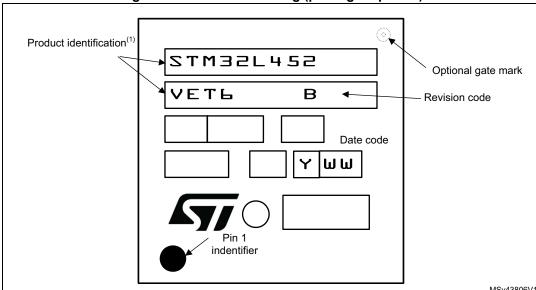


Figure 45. LQFP100 marking (package top view)

Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.

4

DS11912 Rev 7 195/221

7.2 UFBGA100 package information

This UFBGA is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.

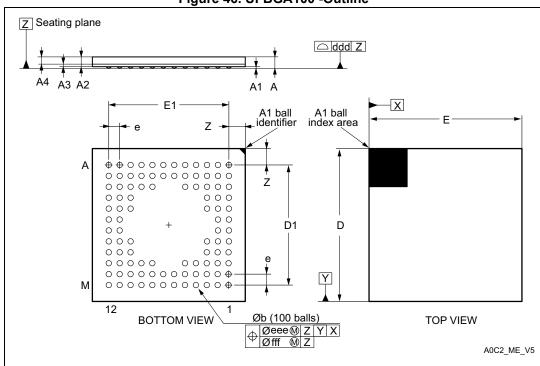


Figure 46. UFBGA100 -Outline

1. Drawing is not to scale.

Table 103. UFBGA100 - Mechanical data

Symbol	millimeters			inches ⁽¹⁾		
Syllibol	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	-	-	0.600	-	-	0.0236
A1	-	-	0.110	-	-	0.0043
A2	-	0.450	-	-	0.0177	-
A3	-	0.130	-	-	0.0051	0.0094
A4	-	0.320	-	-	0.0126	-
b	0.240	0.290	0.340	0.0094	0.0114	0.0134
D	6.850	7.000	7.150	0.2697	0.2756	0.2815
D1	-	5.500	-	-	0.2165	-
E	6.850	7.000	7.150	0.2697	0.2756	0.2815
E1	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
Z	-	0.750	-	-	0.0295	-

	rabio 1001 01 Box 1100 moonamour data (commuou)							
Symbol		millimeters		inches ⁽¹⁾				
Symbol Min.	Тур.	Max.	Min.	Тур.	Max.			
ddd	-	-	0.080	-	-	0.0031		
eee	-	-	0.150	-	-	0.0059		
fff	_	_	0.050	-	_	0.0020		

Table 103. UFBGA100 - Mechanical data (continued)

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

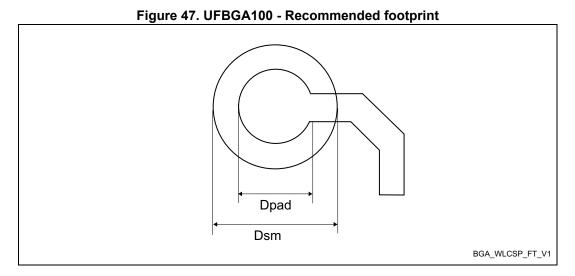


Table 104. UFBGA100 - Recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values		
Pitch	0.5		
Dpad	0.280 mm		
Dsm	0.370 mm typ. (depends on the solder mask registration tolerance)		
Stencil opening	0.280 mm		
Stencil thickness	Between 0.100 mm and 0.125 mm		

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

577

DS11912 Rev 7 197/221

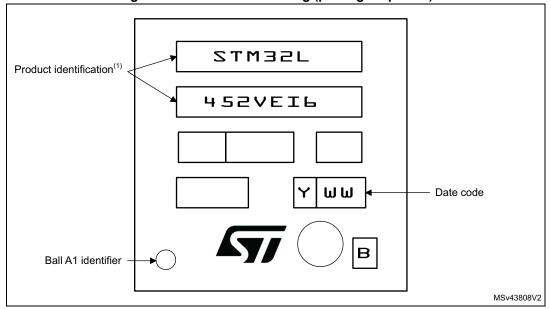


Figure 48. UFBGA100 marking (package top view)

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

7.3 LQFP64 package information

This LQFP is a 64-pin, 10 x 10 mm low-profile quad flat package.

Figure 49. LQFP64 - Outline

1. Drawing is not to scale.

Table 105. LQFP64 - Mechanical data

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

47/

DS11912 Rev 7 199/221

Comple of	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
ccc	-	-	0.080	-	-	0.0031

Table 105. LQFP64 - Mechanical data (continued)

^{1.} Values in inches are converted from mm and rounded to four decimal digits.

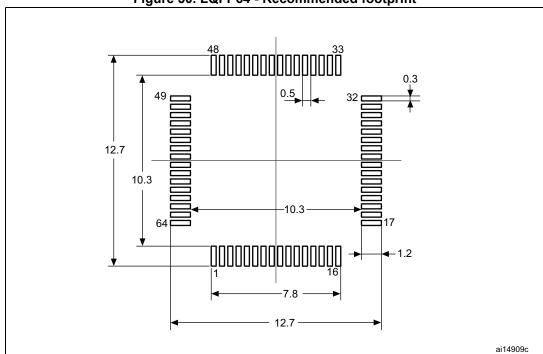


Figure 50. LQFP64 - Recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure give examples of topside marking orientation versus pin 1 identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

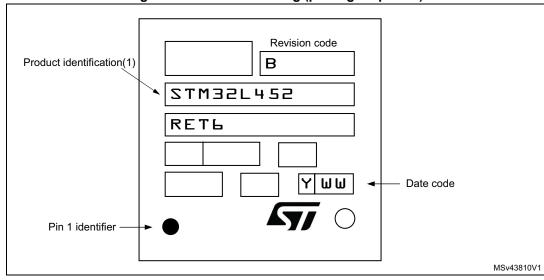


Figure 51. LQFP64 marking (package top view)

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

DS11912 Rev 7 201/221

7.4 UFBGA64 package information

This UFBGA is a 64 balls, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array package.

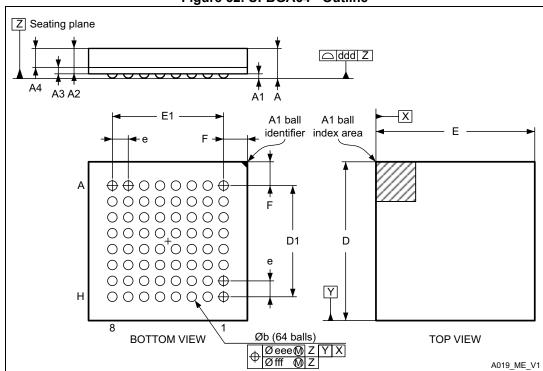


Figure 52. UFBGA64 - Outline

1. Drawing is not to scale.

Table 106. UFBGA64 - Mechanical data

	Table 100. Of BOAGT Meditalibal data							
Oh. a.l.		millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max		
Α	0.460	0.530	0.600	0.0181	0.0209	0.0236		
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043		
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197		
A3	0.080	0.130	0.180	0.0031	0.0051	0.0071		
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146		
b	0.170	0.280	0.330	0.0067	0.0110	0.0130		
D	4.850	5.000	5.150	0.1909	0.1969	0.2028		
D1	3.450	3.500	3.550	0.1358	0.1378	0.1398		
E	4.850	5.000	5.150	0.1909	0.1969	0.2028		
E1	3.450	3.500	3.550	0.1358	0.1378	0.1398		
е	-	0.500	-	-	0.0197	-		
F	0.700	0.750	0.800	0.0276	0.0295	0.0315		

	(**************************************								
Symbol	millimeters			inches ⁽¹⁾					
Symbol	Min	Тур	Max	Min	Тур	Max			
ddd	-	-	0.080	-	-	0.0031			
eee	-	-	0.150	-	-	0.0059			
fff	-	-	0.050	-	-	0.0020			

Table 106. UFBGA64 - Mechanical data (continued)

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

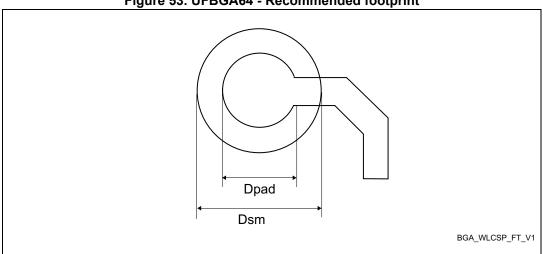


Figure 53. UFBGA64 - Recommended footprint

Table 107. UFBGA64 - Recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

DS11912 Rev 7 203/221

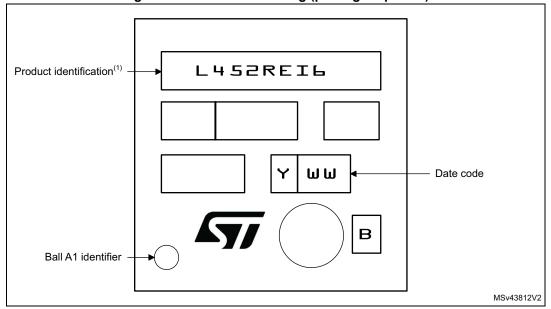


Figure 54. UFBGA64 marking (package top view)

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

4

7.5 WLCSP64 package information

This WLCSP is a 64 balls, 3.357x3.657 mm 0.4 mm pitch wafer level chip scale package.

ORIENTATION // bbb Z REFERENCE **DETAIL A** ·G A7 A6 A5 A3 A2 A1-B8 B7 B6 B5 B4 B3 B2 B1 C8 C7 C6 C7 C4 C3 C2 C1 D8 D7 D6 D5 D4 D3 D2 D1 E8 E7 E6 E5 E4 E3 E2 E1 FB F7 F6 F5 F4 F3 F2 F1 (69) (67) (66) (65) (64) (63) (62) (G1) H8 H7 H6 H5 H4 H3 H2 H1 D D (4X) **TOP VIEW BOTTOM VIEW** SIDE VIEW **BUMP SIDE** WAFER BACK SIDE - A2 BUMP -Øb FRONT VIEW □ eee Z Ż øb(49x) SEATING PLANE **DETAIL A** ROTATED 90° A07P_ME_V1

Figure 55. WLCSP64 - Outline

- 1. Dimensions are expressed in millimeters.
- 2. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
- 3. Bump position designation per JESD 95-1, SPP-010.

DS11912 Rev 7 205/221

Table 108. WLCSP64 - Mechanical data

Coursels al	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
Α	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
А3	-	0.025	-	-	0.0010	-
b ⁽²⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	3.322	3.357	3.392	0.1308	0.1322	0.1335
E	3.622	3.657	3.692	0.1426	0.1440	0.1454
е	-	0.400	-	-	0.0157	-
e1	-	2.800	-	-	0.1102	-
e2	-	2.800	-	-	0.1102	-
F	-	0.2785	-	-	0.0110	-
G	-	0.4285	-	-	0.0169	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
ccc	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

- 1. Values in inches are converted from mm and rounded to 4 decimal digits.
- 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Dsm

BGA_WLCSP_FT_V1

Figure 56. WLCSP64 - Recommended footprint

1. Dimensions are expressed in millimeters.

Table 109. WLCSP64 - Recommended PCB design rules (0.4 mm pitch)

Dimension	Recommended values
Pitch	0.4 mm
Dpad	0.225 mm
Dsm	0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.250 mm
Stencil thickness	0.100 mm

Device marking

The following figures give an example of topside marking orientation versus ball A1 identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Product identification⁽¹⁾

Product identification⁽¹⁾

Ball A1 identifier

L 4 5 2 R E Y B

Date code

MSv43814V2

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

DS11912 Rev 7 207/221

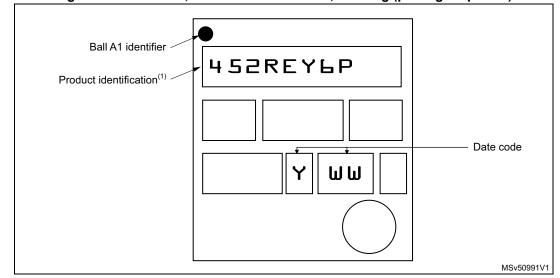


Figure 58. WLCSP64, external SMPS device, marking (package top view)

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

7.6 LQFP48 package information

This LQFP is a 48 pins, 7 x 7 mm low-profile quad flat package

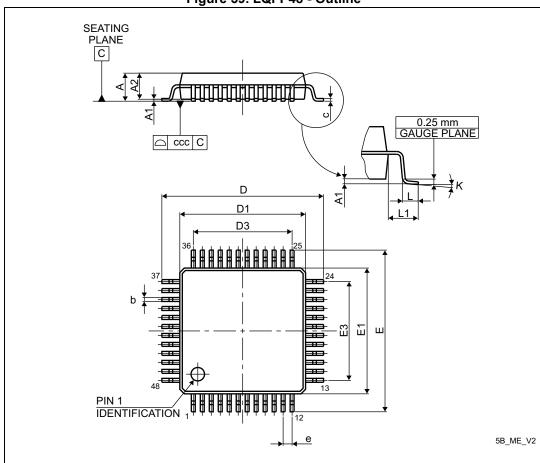


Figure 59. LQFP48 - Outline

1. Drawing is not to scale.

Table 110. LQFP48 - Mechanical data

Cumbal	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

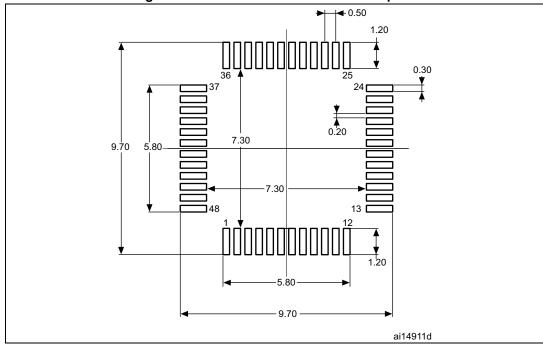


Figure 60. LQFP48 - Recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

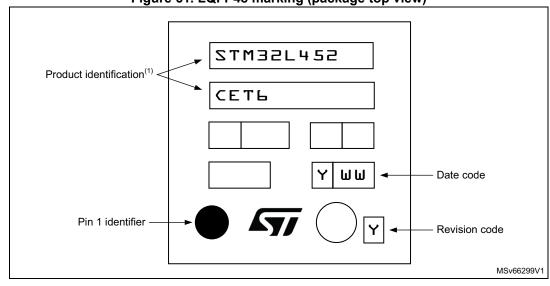


Figure 61. LQFP48 marking (package top view)

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified

DS11912 Rev 7 211/221

and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

7.7 UFQFPN48 package information

This UFQFPN is a 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package.

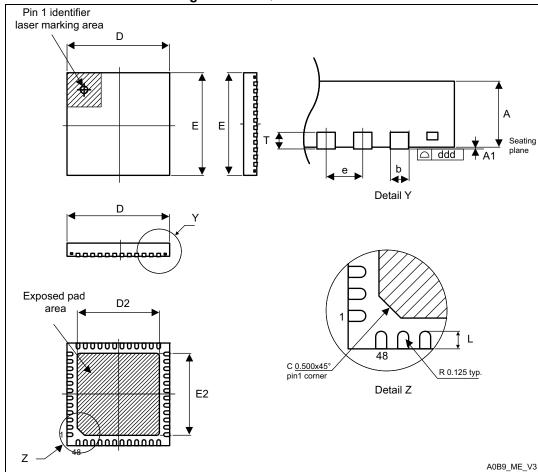


Figure 62. UFQFPN48 - Outline

- 1. Drawing is not to scale.
- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
Α	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

Table 111. UFQFPN48 - Mechanical data

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

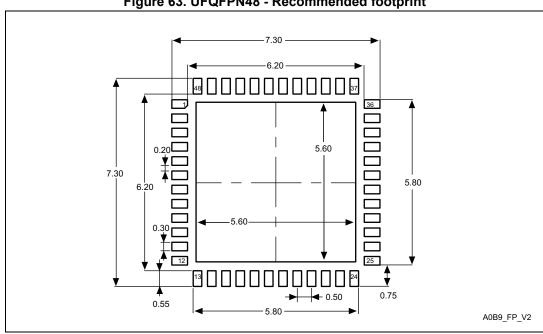


Figure 63. UFQFPN48 - Recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

The printed markings may differ depending on the supply chain.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

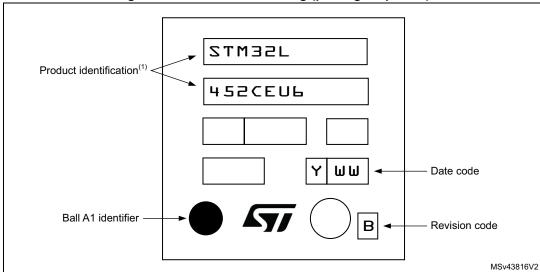


Figure 64. UFQFPN48 marking (package top view)

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

7.8 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_J \max = T_A \max + (P_D \max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of all I_{DDXXX} and V_{DDXXX}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

$$P_{I/O}$$
 max = $\Sigma (V_{OL} \times I_{OL}) + \Sigma ((V_{DDIOx} - V_{OH}) \times I_{OH})$,

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol Parameter Value Unit Thermal resistance junction-ambient 56 LQFP100 - 14 × 14 mm / 0.5 mm pitch Thermal resistance junction-ambient 75 UFBGA100 - 7 × 7 mm / 0.5 mm pitch Thermal resistance junction-ambient 58 LQFP64 - 10 × 10 mm / 0.5 mm pitch Thermal resistance junction-ambient Θ_{JA} 65 °C/W UFBGA64 - 5×5 mm / 0.5 mm pitch Thermal resistance junction-ambient 53 WLCSP64 3.357 x 3.657 / 0.4 mm pitch Thermal resistance junction-ambient 55.7 LQFP48 7 x 7 / 0.5 mm pitch Thermal resistance junction-ambient 29 UFQFPN48 - 7 × 7 mm / 0.5 mm pitch

Table 112. Package thermal characteristics

7.8.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.8.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

DS11912 Rev 7 215/221

As applications do not commonly use the STM32L452xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range is best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 75 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V

 $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$

This gives: $P_{INTmax} = 175 \text{ mW}$ and $P_{IOmax} = 272 \text{ mW}$:

 $P_{Dmax} = 175 + 272 = 447 \text{ mW}$

Using the values obtained in *Table 112* T_{Jmax} is calculated as follows:

For LQFP64, 58 °C/W

 T_{lmax} = 75 °C + (58 °C/W × 447 mW) = 75 °C + 25.926 °C = 100.926 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105$ °C) see Section 8: Ordering information.

In this case, parts must be ordered at least with the temperature range suffix 6 (see Part numbering).

Note:

With this given P_{Dmax} user can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 3).

Suffix 6: $T_{Amax} = T_{Jmax}$ - (58°C/W × 447 mW) = 105-25.926 = 79.074 °C Suffix 3: $T_{Amax} = T_{Jmax}$ - (58°C/W × 447 mW) = 130-25.926 = 104.074 °C

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 100 °C (measured according to JESD51-2), I_{DDmax} = 20 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V

 $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

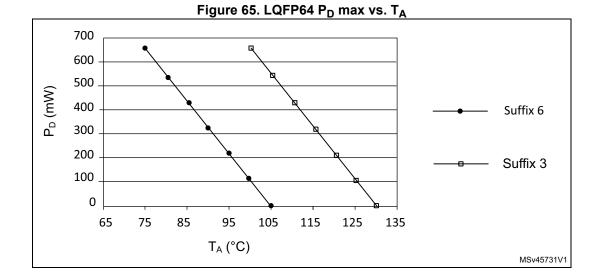
This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$:

 $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

47/

Using the values obtained in $\textit{Table 112}\,\mathsf{T}_{\mathsf{Jmax}}$ is calculated as follows:

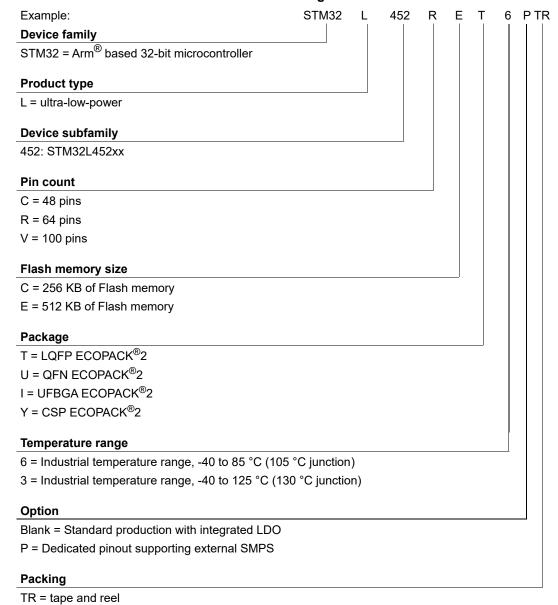

For LQFP64, 58 °C/W

$$T_{Jmax}$$
 = 100 °C + (58 °C/W × 134 mW) = 100 °C + 7.772 °C = 107.772 °C

This is above the range of the suffix 6 version parts ($-40 < T_J < 105$ °C).

In this case, parts must be ordered at least with the temperature range suffix 3 (see *Section 8: Ordering information*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Refer to *Figure 65* to select the required temperature range (suffix 6 or 3) according to your ambient temperature or power requirements.



Ordering information STM32L452xx

8 Ordering information

xxx = programmed parts

Table 113. STM32L452xx ordering information scheme

For a list of available options (such as speed, package) or for further information on any aspect of this device contact the nearest ST sales office.

STM32L452xx Revision history

9 Revision history

Table 114. Document revision history

Date	Revision	Changes
04-Apr-2017	1	Initial release.
03-May-2017	2	Removed Suffix 7 ordering code and all information related to 40-105 °C temperature range. Updated ULPBench® score on cover page. Updated some power consumptions on cover page. Updated Table 2: STM32L452xx family device features and peripheral counts. Updated max currents in Table 27, Table 29, Table 29, Table 31, Table 42, Table 44, Table 45, Table 46, Table 47, Table 48, Table 49. Updated Table 70. Updated Table 77. Added Section 6.3.24: V _{BAT} monitoring characteristics.
26-May-2017	3	Added missing LPUART communication interface on cover page. Fixed OPAMP index in Table 4: STM32L452xx modes overview. Replaced RAM2 by SRAM2 in Section 3.9.3: Voltage regulator and Section 3.9.4: Low-power modes. Updated Section 3.7: Boot modes. Added Table 10: DFSDM1 implementation. Updated Table 71: I/O static characteristics. Updated Section 7.2: UFBGA100 package information.
21-May-2018	4	Updated DAC terminology in all the document for clarification: single DAC instance (= DAC1) with 2 output channels. Added ECOPACK2® information in Features. Updated LPUART bullet in Features. Updated Section 3.9.1: Power supply schemes. Added Figure 3: Power-up/down sequence. Added DFSDM1 in Table 6: STM32L452xx peripherals interconnect matrix. Updated Clock-out capability in Section 3.11: Clocks and startup. Updated Figure 4: Clock tree. Updated Section 3.14.1: Nested vectored interrupt controller (NVIC). Removed a footnote in Table 16: STM32L452xx pin definitions. Updated Section 6.3.2: Operating conditions at power-up / power-down. Updated A _{Coeff} in Table 26: Embedded internal voltage reference.

DS11912 Rev 7 219/221

Revision history STM32L452xx

Table 114. Document revision history (continued)

Date	Revision	Changes
21-May-2018	4 (continued)	Updated Table 51: Peripheral current consumption. Added Section 6.3.16: Extended interrupt and event controller input (EXTI) characteristics. Updated Table 71: I/O static characteristics. Updated Table 83: DAC characteristics.
16-Jan-2019	5	Added package size on WLCSP silhouette on cover page. Update all figures in Section 4: Pinouts and pin description in order to remove the main function after reset (between brackets) from pin names. Added Figure 12: STM32L452Rx, external SMPS device, WLCSP64 pinout(1). Updated Table 16: STM32L452xx pin definitions. Updated Figure 48: UFBGA100 marking (package top view). Updated Figure 54: UFBGA64 marking (package top view). Updated Table 108: WLCSP64 - Mechanical data. Updated Table 109: WLCSP64 - Recommended PCB design rules (0.4 mm pitch). Updated Figure 57: WLCSP64 marking (package top view). Added Figure 58: WLCSP64, external SMPS device, marking (package top view). Updated WLCSP package size in Table 112: Package thermal characteristics.
19-Jun-2020	6	Updated Figure 15: STM32L452xx memory map. Updated Table 60: MSI oscillator characteristics. Updated Section 6.3.14: I/O port characteristics. Updated Table 72: Output voltage characteristics. Updated Figure 38: Quad SPI timing diagram - DDR mode. Updated Table 101: USB electrical characteristics.
14-Oct-2020	7	Added LQFP48 Package. Updated Table 2: STM32L452xx family device features and peripheral counts. Added Figure 13: STM32L452Cx LQFP48 pinout ⁽¹⁾ . Updated Table 16: STM32L452xx pin definitions. Updated Figure 15: STM32L452xx memory map. Updated Table 23: General operating conditions. Updated Section 7: Package information. Added Section 7.6: LQFP48 package information. Updated Table 112: Package thermal characteristics.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

DS11912 Rev 7 221/221