FPD87392

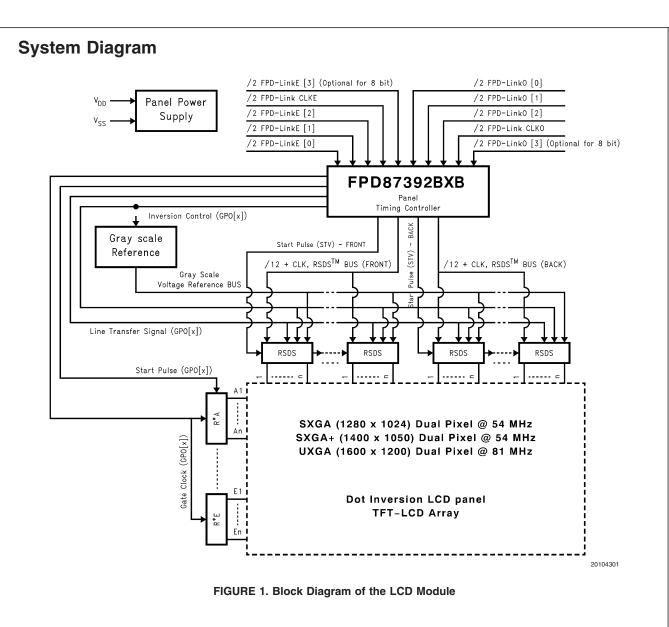
FPD87392BXB +3.3V TFT-LCD Timing Controller with Dual LVDS Inputs/Dual RSDS Outputs for TFT-LCD Monitor and Notebook (SXGA/SXGA+/UXGA)

Literature Number: SNOSAD3A

FPD87392BXB +3.3V TFT-LCD Timing Controller with Dual LVDS Inputs/Dual RSDS[™] Outputs for TFT-LCD Monitor and Notebook (SXGA/SXGA+/UXGA)

General Description


The FPD87392BXB Panel Timing Controller is an integrated FPD-Link + RSDS™ + TFT-LCD Timing Controller. The logic architecture is implemented using standard and default timing controller functionality based on an Embedded Gate Array. The device is reconfigurable to the needs of a specific application by providing user-defined specifications or customer supplied VHDL/Verilog code.


The FPD87392BXB is a timing controller that combines an LVDS dual pixel input interface with National's Reduced Swing Differential Signaling (RSDS[™]) output column driver interface for SXGA, SXGA+ and UXGA resolutions. It resides on the TFT-LCD panel and provides the data buffering and control signal generation. The RSDS[™] data path to the column driver contributes toward lowering radiated EMI and reduced system dynamic power consumption. The RSDS[™] dual 12 pair differential bus conveys up to 24-bit color data for SXGA/SXGA+/UXGA panels when using VESA 60Hz standard timing.

Features

- Input frequency range from 25 MHz to 85 MHz
- Support display resolutions SXGA (1280x1024), SXGA+ (1400x1050) and UXGA (1600x1200)
- Embedded gate array for custom panel timing
- RSDS™ (Reduced Swing Differential Signaling) Column Driver bus for low power and reduced EMI
- Drives RSDS[™] column driver up to 170 Mb/s with an 85 MHz clock
- 6 or 8 bit LVDS dual pixel input interface (FPD-Link)
- Virtual 8-bit color depth in FRC mode
- Flexible RSDS[™] data output mapping for Bottom or Top mount
- Supports 1 and 2 line inversion mode for RVS output
- Supports Graphics Controllers with spread spectrum interface for lower EMI
- Free Run Mode Function
- Fail-safe function in DE mode (Bonding Option)
 Supports DE mode and SYNC only mode (Bonding
- Option)
- Power-On-Reset Support
- CMOS circuitry operates from a 3.0V to 3.6V supply
- 128 TQFP package with body size 14mm x 14mm x 1.0mm, 0.4mm Pitch

July 2004

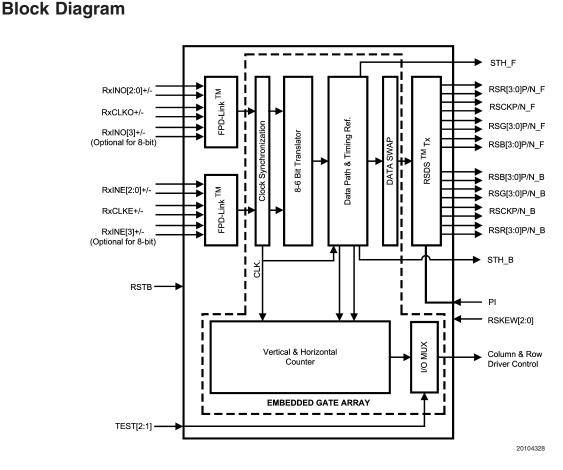


FIGURE 2. Block Diagram

Functional Description

DUAL FPD-LINK RECEIVERS

The LVDS based FPD-Link Receivers inputs video data and control timing through 8 pairs of LVDS channels plus 2 pairs of LVDS clocks to provide 24-bit color or use only 6 pairs of LVDS channels plus 2 LVDS clocks to provide 18-bit color. The video data is converted to a parallel data stream and routed to the 8-6 bit translator.

SPREAD SPECTRUM SUPPORT

The FPD-Link receiver supports graphics controllers with Spread Spectrum interfaces for reducing EMI. The Spread Spectrum methods supported are Center and Down Spread. A maximum of 2% total is supported at a frequency modulation of 100kHz maximum.

8-6 BIT TRANSLATOR

8-bit data is reduced to a 6-bit data path via a time multiplexed dithering technique or simple truncation of the LSBs. This function is enabled via the input control pins.

DATAPATH BLOCK AND RSDS TRANSMITTER

6(8)-bit video data (RGB) is input to the Datapath Block supports up to an 85 MHz dual pixel rate. The data is delayed to align the Column Driver Start Pulse (STH) with the Column Driver data. The dual data bus (RSR[3:0]P/N, RSG[3:0]P/N, RSB[3:0]P/N) outputs at a 170 MHz rate on 24 differential output channels. The clock is output on the (Front, Back) RSCKP/N differential pairs. The RSDS Column Drivers latch data on both positive and negative edges of the clock. The swap function provides flexible RSDS data output mappings for either Top or Bottom mount. The RSDS output setup/hold timings are also adjustable through the RSKEW[2:0] input pins.

TIMING CONTROL FUNCTION

The Timing Control function generates control to Column Drivers, Row Drivers, and power supply. The GPOs (General Purpose Outputs) provide for CD latch pulse, REV, and Row Driver control generation. The General Purpose Outputs allow the user to generate control anywhere within the frame data. Standard Row Driver interface or Custom Row Driver interfaces can be implemented with the GPOs (General Purpose Outputs).

RSDS OUTPUT VOLTAGE CONTROL

The RSDS output voltage swing is controlled through an external load resistor connected to the RPI pin. The RSDS output signal levels can be adjusted to suit the particular application. This is dependent on overall LCD module design characteristics such as trace impedance, termination, etc. The RSDS output voltage is inversely related to the RPI value. Lower RPI values will increase the RSDS output voltage swing and consequently overall power consumption will also increase.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

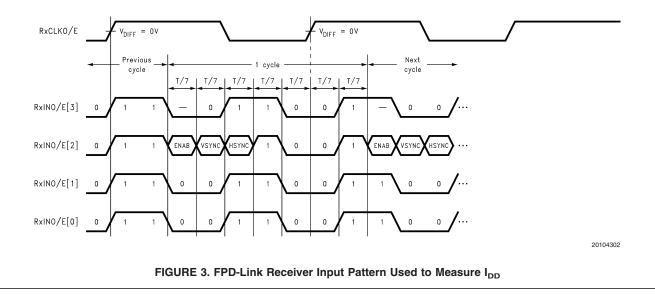
Supply Voltage (V _{DD})	-0.3V to +4.0V
DC TTL Input Voltage (V _{IN})	-0.3V to (V _{DD} + 0.3V)
DC LVDS Input Voltage (V _{IN})	-0.3V to (V _{DD} + 0.3V)
DC Output Voltage (V _{OUT})	-0.3V to (V _{DD} + 0.3V)
Junction Temperature	+150°C
Storage Temperature Range	
(T _{STG})	-65°C to +150°C
Lead Temperature (T_L)	
(Soldering 10 sec.)	260°C

ESD Rating:

(C _{ZAP} = 120 pF,	MM = 200V,
R _{ZAP} = 1500W)	HBM = 2000V

Operating Conditions

	Min	Max	Units	
Supply Voltage (V _{DD})	3.0	3.6	V	
Operating Temp. Range (T_A)	0	70	°C	
Supply Noise Voltage		100	mV_{PP}	


DC Electrical Characteristics

 $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 3.0V$ to 3.6V, $I_{PI} = 100 \ \mu A$ (Unless otherwise specified)

TTL DC Electrical Characteristics

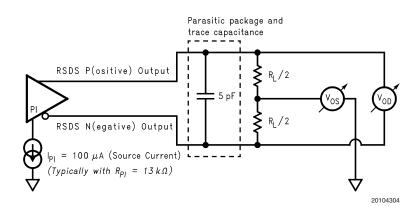
Symbol	Parameter	Conditions	Min	Тур	Мах	Units
V _{DD}	Core Supply Voltage		3.0	3.3	3.6	V
V _{IH}	Minimum Input High Voltage		2.0			V
V _{IL}	Maximum Input Low Voltage				0.8	V
V _{OH}	Output High Voltage	I _{OH} = -8mA	V _{DD} -0.6			V
V _{OL}	Output Low Voltage	I _{OL} = 8 mA			0.4	V
I _{IN}	Input Current	$V_{IN} = V_{DD}, \text{ GND}$			±10	μA
I _{PU}	Pull-Up Current	$V_{DD} = 3.3V, V_{IN} = V_{DD}$			-50	μA
I _{PD}	Pull-Down Current	$V_{DD} = 3.3V, V_{IN} = GND$			+50	μA
I _{DD}	Average Supply Current	$C_{L(TTL)} = 15 \text{ pF},$ $R_{L(RSDS)} = 100\Omega \text{ and}$ $C_{L(RSDS)} = 5 \text{ pF}$ (jig & test fixture capacitance), $I_{PI} = 100 \mu A$ (Typically PI pin connected to 13 k Ω to ground), See <i>Figure 3</i> for input conditions		170 (CLK = 65 MHz, V _{DD} = 3.3V)	250 (CLK = 85 MHz, V _{DD} = 3.6V)	mA

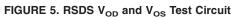
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

DC Electrical Characteristics

 T_{A} = 0°C to 70°C, V_{DD} = 3.0V to 3.6V, I_{PI} = 100 μA (Unless otherwise specified) (Continued)

FPD-Link (LVDS) Receiver Input Characteristics Symbol Parameter Conditions Min Max Units Тур LVDS RECEIVER DC SPECIFICATIONS Note: LVDS Receiver DC parameters are measured under static and steady state conditions which may not reflect the actual performance in the end application. Differential Input High Threshold $V_{\text{TH}_{LVDS}}$ +100mV Voltage $V_{CM} = 1.2V$ Differential Input Low Threshold V_{TLIVDS} -100 mV Voltage $I_{\rm IN}$ Input Current $V_{IN} = 2.05V, V_{DD} =$ ±10 μA 3.6V $V_{IN} = 0.55V, V_{DD} =$ ±10 μA 3.6V $V_{DD} = 3.0 - 3.6V$ V V_{IN} Input Voltage Range (Single-ended) 0.55 2.00 $|V_{ID}|$ **Differential Input Voltage** 0.100 0.600 V Common Mode Voltage Offset ٧ $V_{\rm CM}$ $V_{DD} = 3.0 - 3.6V$ $0.55 + |V_{ID}|/2$ $2.05 - |V_{ID}|/2$ $|V_{\rm ID}| = 100 \, {\rm mV}$ 2.05V $V_{CM} = 2.00V$ 1.95V $|V_{|D}| = 600 \, \text{mV}$ = 1.75VV_{см} 1.45V $|V_{1D}| = 350 \, \text{mV}$ = 1.25 mV 1.15V .075V = 850 mV $|V_{|D}| = 600 \text{ mV}$ 650 m V $V_{CM} = 600 \text{ mV}$ $|V_{\text{ID}}| = 100 \text{ mV}$ GND 0.55V $V_{CM} = (1.25V); |V_{ID}| = 350mV$ Typical Application $V_{CM} = (850 \text{ mV to } 1.75\text{V}); |V_{ID}| = 600 \text{ mV}$ V_{CM} range with Maximum $|V_{ID}|$ $|V_{ID}|$ and V_{CM} Allowable Operating Range 20104303 FIGURE 4. FPD-Link Receiver V_{ID} and V_{CM} Definitions


FPD87392BXB


DC Electrical Characteristics

 T_{A} = 0°C to 70°C, V_{DD} = 3.0V to 3.6V, I_{PI} = 100 μA (Unless otherwise specified) (Continued)

RSDS Output

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VODRSDS	Differential Output Voltage	$R_L = 100\Omega$		±200		mV
VOSRSDS	Offset Voltage		1.1	1.3	1.5	V

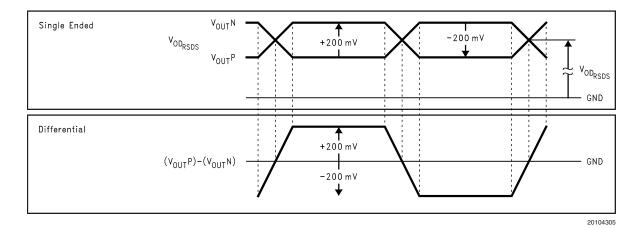
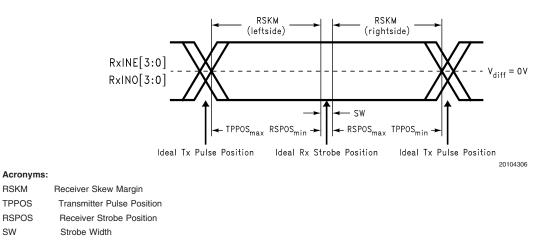


FIGURE 6. RSDS Output Waveforms: Single Ended vs Differential

AC Electrical Characteristics

 $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 3.0V$ to 3.6V, $I_{PI} = 100 \ \mu A$ (Unless otherwise specified)


LVDS Data Input

Symbol	Parameter	Conditions	Min	Max	Units
RPLLS	FPD-Link Receiver Phase Lock Loop Wake-up Time			10	ms
RSKM	RxIN Skew Margin (Note 2) and (Figure 7)	V _{DD} = 3.3V, CLK = 85 MHz	240		ps

Note 2: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account transmitter pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window: RSPOS). This margin allows for LVDS interconnect skew, inter-symbol interference (both dependent on type and length of cable), and source clock (FPD-Link Transmitter TxCLK IN) jitter. The specified RSKM minimum assumes a TPPOS max of 200 ps.

RSKM = cable skew (type, length) + source clock jitter (cycle to cycle) + remaining margin for data sampling (20)

This parameter is guaranteed by design. The limits are based on statistical analysis of the device performance over PVT (Process, Voltage, Temperature) range.

Definitions:

RSKM

SW

SW: Setup and Hold Time (Internal data sampling window)

RSKM: Cable Skew (type, length) + Source Clock Jitter (cycle to cycle) + Remaining margin for data sampling (≥ 0) Cable Skew: Typically 10 ps - 40 ps per foot.

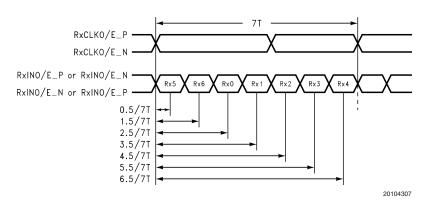
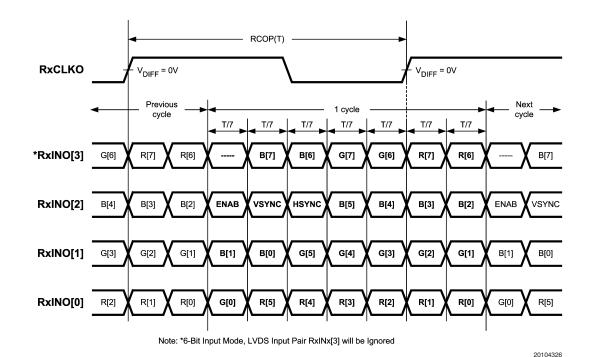



FIGURE 8. Ideal Strobe Position for LVDS Input

AC Electrical Characteristics

 $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 3.0V$ to 3.6V, $I_{PI} = 100 \ \mu A$ (Unless otherwise specified) (Continued)

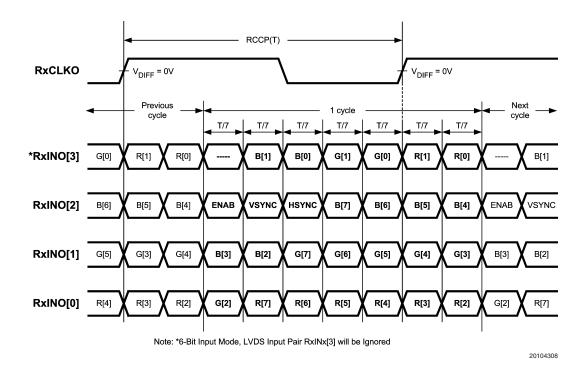


FIGURE 10. FPD-Link Receiver NS Input Data Mappings

AC Electrical Characteristics

 T_{A} = 0°C to 70°C, V_{DD} = 3.0V to 3.6V, I_{PI} = 100 μA (Unless otherwise specified) (Continued)

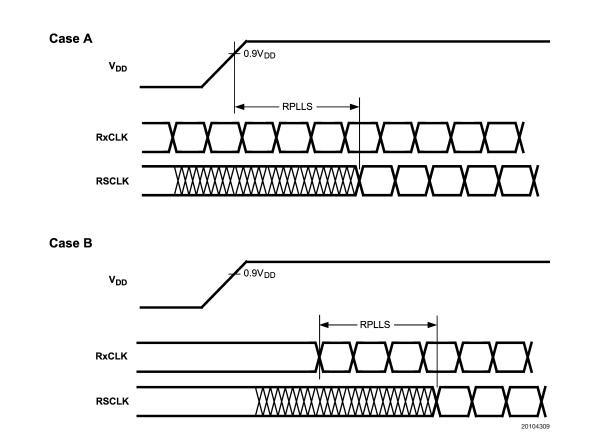


FIGURE 11. FPD-Link Receiver Phase Lock Loop Wake-up Time

AC Electrical Characteristics

 $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 3.0V$ to 3.6V, $I_{PI} = 100 \ \mu A$ (Unless otherwise specified) (Continued)

Output Timing

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
RCHP	RSDS Clock (RSCK) High Period	R_T = 100Ω, I_{PI} = 100 μA, CLK= 85 MHz		5.7		ns
RCLP	RSDS Clock (RSCK) Low Period	$R_{T} = 100\Omega$, $I_{PI} = 100 mu{A}$, CLK = 85 MHz		5.8		ns
SPSTU	STH Rising to RSCK Falling	$R_{T} = 100\Omega$, $I_{PI} = 100 mu{A}$, CLK = 85 MHz	3.0			ns
SPHLD	STH Falling to RSCK Falling	R _T = 100Ω, I _{PI} = 100 μA, CLK = 85 MHz	3.0			ns
RSTU	RS(R, G, B) Setup to Falling or Rising Edge of RSCK	$\begin{split} R_{T} &= 100\Omega, \ C_{L(RSDS)} = 5 \ \text{pF}, \\ I_{\text{PI}} &= 100 \ \mu\text{A}, \\ CLK &= 85 \ \text{MHz}, \ \text{RSDS}[2:0] = ``100" \end{split}$		3.28		ns
RHLD	RS(R, G, B) Hold from Falling or Rising Edge of RSCK	$\begin{split} R_{T} &= 100\Omega, \ C_{L(RSDS)} = 5 \ pF, \\ I_{PI} &= 100 \ \mu\text{A}, \ CLK = 85 \ MHz, \\ RSDS[2:0] &= ``100'' \end{split}$		1.87		ns

RSDS Setup and Hold Time with Data Skew Control Values - Reference Only

 $(RxCLKP/N = 85 \text{ MHz}; V_{DD} = 3.0 \text{ to } 3.6\text{V}, R_T = 100\Omega; I_{PI} = 100 \ \mu\text{A}; \text{Duty Clock} = 50\%/50\%, \pm 5\%; 25^{\circ}\text{C})$ Note: Typical values on this table are measured under Static and Steady state conditions which may not be reflective of its performance in the end application.

DeDela-01	S	Setup Time (RSTU)			Hold Time (RHLD)			
RSDS[2:0]	Min	Тур	Мах	Min	Тур	Max	Units	
000		1.26			3.91			
001		1.75			3.41			
010		2.30			2.90			
011		2.77			2.41			
100		3.28			1.87		ns	
101		3.79			1.37			
110		4.27			0.89			
111		4.77			0.76			

AC Electrical Characteristics

 T_{A} = 0°C to 70°C, V_{DD} = 3.0V to 3.6V, I_{PI} = 100 μA (Unless otherwise specified) (Continued)

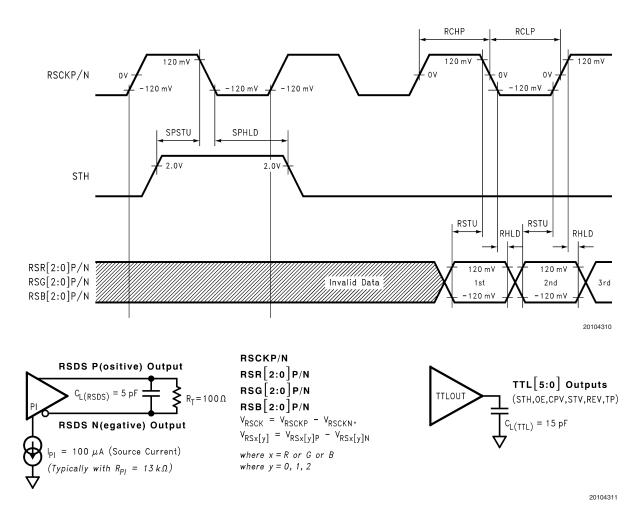
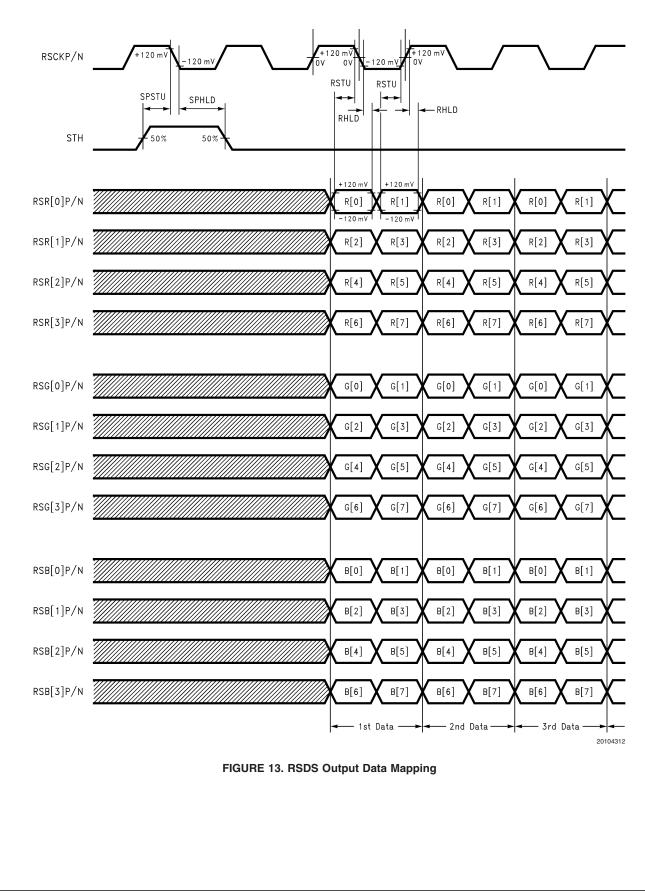
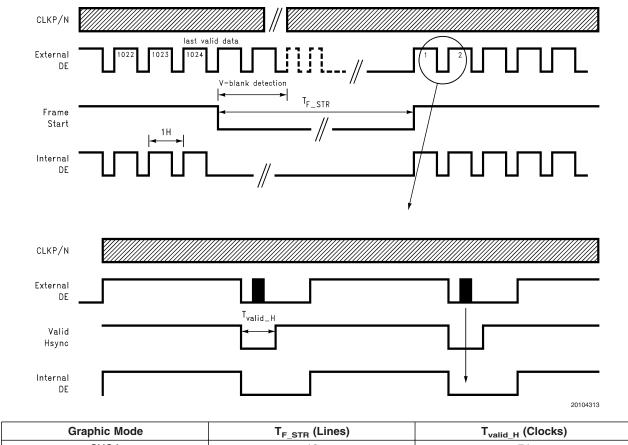



FIGURE 12. RSDS and TTL (CMOS) Output Timing Diagram

AC Electrical Characteristics

 $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 3.0V$ to 3.6V, $I_{PI} = 100 \ \mu A$ (Unless otherwise specified) (Continued)



AC Electrical Characteristics

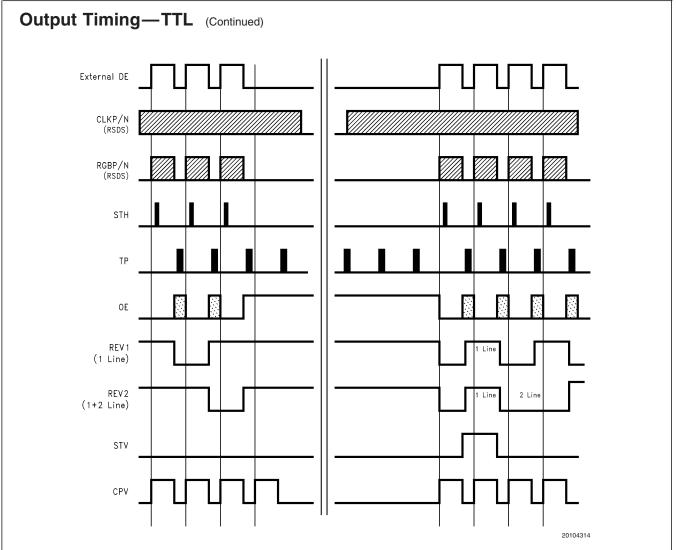
 $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 3.0V$ to 3.6V, $I_{PI} = 100 \ \mu A$ (Unless otherwise specified) (Continued)

Failure Detect (B/O pin "FDE" = High)

This function is valid in DE mode and FDE pin set to "High". Invalid external DE pulse does not affect the internal operation during failure zone.

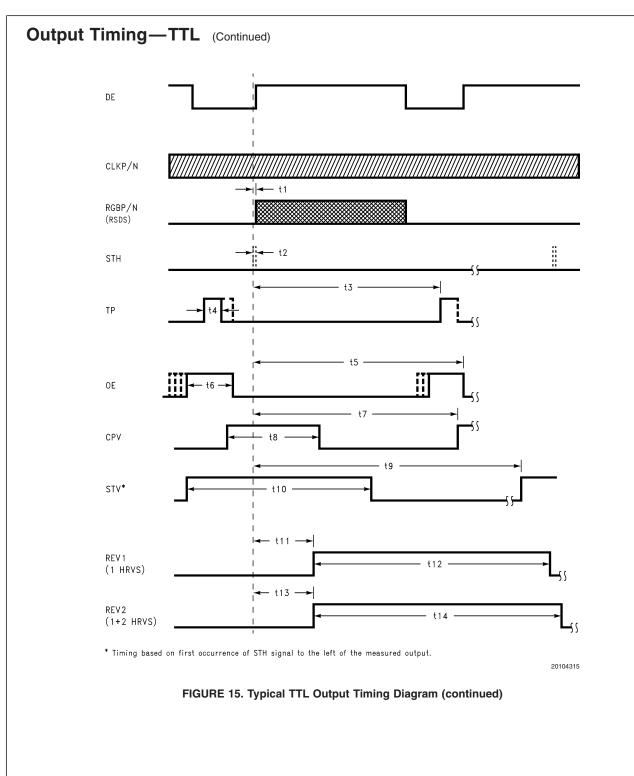
Graphic Mode	T _{F_STR} (Lines)	T _{valid_H} (Clocks)
SXGA	12	74
SXGA+	12	74
UXGA	12	101

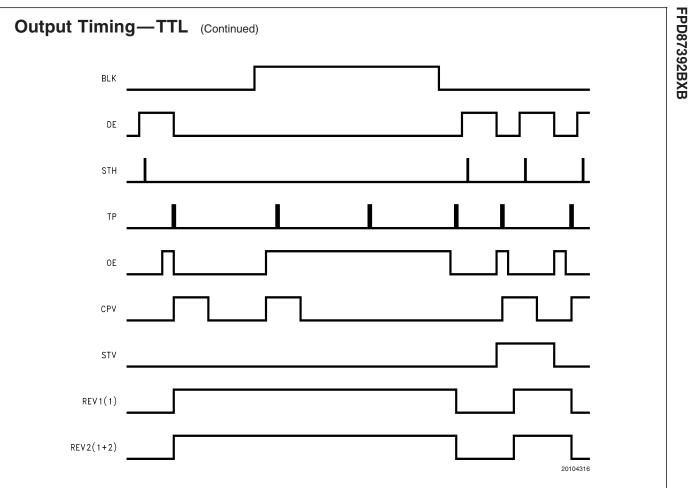
Note: T_{F_STR} (Frame Start Time) and T_{valid_H} (Valid H Time) is estimated numbers. These values may not work properly for the specific application and needs optimization procedure on the actual system.


Output Timing—TTL

Parameter	Comments	SXGA	SXGA+	UXGA	Remarks/
Faranieler	(TPW, OE2, OE1 : 3'b000)	@ 54 MHz	@ 54 MHz	@ 81 MHz	Unit
t1	STH Rising to Active Data	2	2	2	CLKP/N
t2	High Duration of STH	1	1	1	CLKP/N
t3	STH Rising to TP Rising	660	720	820	CLKP/N
t4	High Duration of TP	54	54	81	CLKP/N
t5	STH Rising to OE Falling	687	747	861	CLKP/N
t6	High Duration of OE	189	189	284	CLKP/N
t7	STH Rising to CPV	660	720	820	CLKP/N
t8	High Duration of CPV	422	422	540	CLKP/N
t9	STH Rising to STV	238	298	280	CLKP/N
t10	High Duration of STV	1	1	1	Line
		(844)	(844)	(1080)	(CLKP/N)
t11	STH Rising to REV (1 LINE)	645	705	805	CLKP/N
t12	High/Low Duration of REV (1 LINE)	1	1	1	Line
		(844)	(844)	(1080)	(CLKP/N)
t13	STH Rising to REV2 (1 + 2 LINE)	645	705	805	CLKP/N
t14	High/Low Duration of REV2 (1 + 2 LINE)	1 (the first line)/2	1 (the first line)/2	1 (the first line)/2	Line
		(844/1688)	(844/1688)	(1080/2160)	(CLKP/N)

Line = Hsync Cycle


TP/OE Duty Control Configuration


Resolution	TPW	OEW2	OEW1	ТР	ΟE (µs)	@ 54 MHz (CLK)	@ 81 MHz (CLK)
SXGA, SXGA+	0	0	0	1.0	3.5	189	284
	0	0	1	1.0 μs 54 CLK @ 54 MHz 27 CLK @ 81 MHz	3.0	162	243
	0	1	0			2.5	135
@ 54 MHz	0	1	1		2.0	108	162
UXGA	1	0	0	0.5	3.5	189	284
@ 81 MHz	1	0	1	0.5 μs 27 CLK @ 54 MHz	3.0	162	243
	1	1	0	41 CLK @ 54 MHz	2.5	135	203
	1	1	1		2.0	108	162



Output Timing—TTL (Continued) 8-BIT RSDS Output Data Mapping

D '		DMAP	2, DMAP1			DMAP2, DMAP1			
Pin No.	00	01	10	11	Pin No.	Pin No. 00		10	11
NO.	Top Mount		Botto	m Mount]	Тор Г	Nount	Botto	m Mount
47	R3P_F	R0N_F	B0N_B	B3P_B	78	R3P_B	R0N_B	B0N_F	B3P_F
48	R3N_F	R0P_F	B0P_B	B3N_B	79	R3N_B	R0P_B	B0P_F	B3N_F
49	R2P_F	R1N_F	B1N_B	B2P_B	80	R2P_B	R1N_B	B1N_F	B2P_F
50	R2N_F	R1P_F	B1P_B	B2N_B	81	R2N_B	R1P_B	B1P_F	B2N_F
51	R1P_F	R2N_F	B2N_B	B1P_B	82	R1P_B	R2N_B	B2N_F	B1P_F
52	R1N_F	R2P_F	B2P_B	B1N_B	83	R1N_B	R2P_B	B2P_F	B1N_F
53	R0P_F	R3N_F	B3N_B	B0P_B	84	R0P_B	R3N_B	B3N_F	B0P_F
54	R0N_F	R3P_F	B3P_B	B0N_B	85	R0N_B	R3P_B	B3P_F	B0N_F
56	G3P_F	G0N_F	G0N_B	G3P_B	87	G3P_B	G0N_B	G0N_F	G3P_F
57	G3N_F	G0P_F	G0P_B	G3N_B	88	G3N_B	G0P_B	G0P_F	G3N_F
58	G2P_F	G1N_F	G1N_B	G2P_B	89	G2P_B	G1N_B	G1N_F	G2P_F
59	G2N_F	G1P_F	G1P_B	G2N_B	90	G2N_B	G1P_B	G1P_F	G2N_F
60	G1P_F	G2N_F	G2N_B	G1P_B	91	G1P_B	G2N_B	G2N_F	G1P_F
61	G1N_F	G2P_F	G2P_B	G1N_B	92	G1N_B	G2P_B	G2P_F	G1N_F
62	G0P_F	G3N_F	G3N_B	G0P_B	93	G0P_B	G3N_B	G3N_F	G0P_F
63	G0N_F	G3P_F	G3P_B	G0N_B	94	G0N_B	G3P_B	G3P_F	G0N_F
65	CLKP_F		CLKP_B		95	CLKP_B		CLKP_F	
66	CLKN_F	CLKN_F			96	CLKN_B		CLKN_F	
67	B3P_F	B0N_F	R0N_B	R3P_B	98	B3P_B	B0N_B	R0N_F	R3P_F
68	B3N_F	B0P_F	R0P_B	R3N_B	99	B3N_B	B0P_B	R0P_F	R3N_F
69	B2P_F	B1N_F	R1N_B	R2P_B	100	B2P_B	B1N_B	R1N_F	R2P_F
70	B2N_F	B1P_F	R1P_B	R2N_B	101	B2N_B	B1P_B	R1P_F	R2N_F
71	B1P_F	B2N_F	R2N_B	R1P_B	102	B1P_B	B2N_B	R2N_F	R1P_F
72	B1N_F	B2P_F	R2P_B	R1N_B	103	B1N_B	B2P_B	R2P_F	R1N_F
73	B0P_F	B3N_F	R3N_B	R0P_B	104	B0P_B	B3N_B	R3N_F	R0P_F
74	B0N_F	B3P_F	R3P_B	R0N_B	105	B0N_B	B3P_B	R3P_F	R0N_F
107	ST	H_F	S	ΓH_B	108	STI	H_B	S	TH_F

Output Timing—TTL (Continued) 6-BIT RSDS Output Data Mapping

		DMAI	DMAP2, DMAP1			DMAP2, DMAP1				
Pin No.	00	01	10	11	Pin No.	00	01	10	11	
	Top Mount		Botto	Bottom Mount		Тор	Mount	Botto	om Mount	
47	HI-Z	R0N_F	B0N_B	HI-Z	78	HI-Z	R0N_B	B0N_F	HI-Z	
48	HI-Z	R0P_F	B0P_B	HI-Z	79	HI-Z	R0P_B	B0P_F	HI-Z	
49	R2P_F	R1N_F	B1N_B	B2P_B	80	R2P_B	R1N_B	B1N_F	B2P_F	
50	R2N_F	R1P_F	B1P_B	B2N_B	81	R2N_B	R1P_B	B1P_F	B2N_F	
51	R1P_F	R2N_F	B2N_B	B1P_B	82	R1P_B	R2N_B	B2N_F	B1P_F	
52	R1N_F	R2P_F	B2P_B	B1N_B	83	R1N_B	R2P_B	B2P_F	B1N_F	
53	R0P_F	HI-Z	HI-Z	B0P_B	84	R0P_B	HI-Z	HI-Z	B0P_F	
54	R0N_F	HI-Z	HI-Z	B0N_B	85	R0N_B	HI-Z	HI-Z	B0N_F	
56	HI-Z	G0N_F	G0N_B	HI-Z	87	HI-Z	G0N_B	G0N_F	HI-Z	
57	HI-Z	G0P_F	G0P_B	HI-Z	88	HI-Z	G0P_B	G0P_F	HI-Z	
58	G2P_F	G1N_F	G1N_B	G2P_B	89	G2P_B	G1N_B	G1N_F	G2P_F	
59	G2N_F	G1P_F	G1P_B	G2N_B	90	G2N_B	G1P_B	G1P_F	G2N_F	
60	G1P_F	G2N_F	G2N_B	G1P_B	91	G1P_B	G2N_B	G2N_F	G1P_F	
61	G1N_F	G2P_F	G2P_B	G1N_B	92	G1N_B	G2P_B	G2P_F	G1N_F	
62	G0P_F	HI-Z	HI-Z	G0P_B	93	G0P_B	HI-Z	HI-Z	G0P_F	
63	G0N_F	HI-Z	HI-Z	G0N_B	94	G0N_B	HI-Z	HI-Z	G0N_F	
65	CLKP_F		CLKP_B		95	CLKP_B (CLKP_F	CLKP_F	
66	CLKN_F		CLKN_B		96	CLKN_B		CLKN_F		
67	HI-Z	B0N_F	R0N_B	HI-Z	98	HI-Z	B0N_B	R0N_F	HI-Z	
68	HI-Z	B0P_F	R0P_B	HI-Z	99	HI-Z	B0P_B	R0P_F	HI-Z	
69	B2P_F	B1N_F	R1N_B	R2P_B	100	B2P_B	B1N_B	R1N_F	R2P_F	
70	B2N_F	B1P_F	R1P_B	R2N_B	101	B2N_B	B1P_B	R1P_F	R2N_F	
71	B1P_F	B2N_F	R2N_B	R1P_B	102	B1P_B	B2N_B	R2N_F	R1P_F	
72	B1N_F	B2P_F	R2P_B	R1N_B	103	B1N_B	B2P_B	R2P_F	R1N_F	
73	B0P_F	HI-Z	HI-Z	R0P_B	104	B0P_B	HI-Z	HI-Z	R0P_F	
74	B0N_F	HI-Z	HI-Z	R0N_B	105	B0N_B	HI-Z	HI-Z	R0N_F	
107	S	TH_F	S	TH_B	108	S	TH_B	S	STH_F	

Note: Note: For 6-bit output mode, RSDS pair 3P/Ns will be in HI-Z mode.

LVDS Input and RSDS Output Data

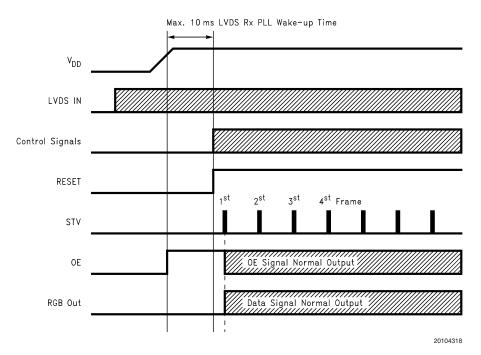
RxMap	BIT_CFG2	BIT_CFG1	Input Data	Output Data	Functional Description
0	0	0	8-bit	8-bit	Data is unchanged (NS mapping)
0	0	1	8-bit	6-bit	2 MSBs are HI-Z, FRC Enabled (NS)
0	1	0	6-bit	8-bit	2 LSBs are zero (NS)
0	1	1	6-bit	6-bit	2 MSBs are HI-Z (NS)
1	0	0	8-bit	8-bit	Data is unchanged (SS mapping)
1	0	1	8-bit	6-bit	2 MSBs are HI-Z, FRC Enabled (SS)
1	1	0	6-bit	8-bit	2 LSBs are zero (SS)
1	1	1	6-bit	6-bit	2 MSBs are HI-Z (SS)

FPD87392BXB

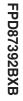
Input Signal Timing

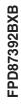
Sync only mode, no DE inputted, is supported when the SYNC pin (Bonding Option pin) is enable high. Whenever DE signal is inputted, it works as DE mode. In the DE mode, H-blank min is considered with Failure detection mode enabled. In the defaults mode, T_{valid_H} should be subtracted in the table below.

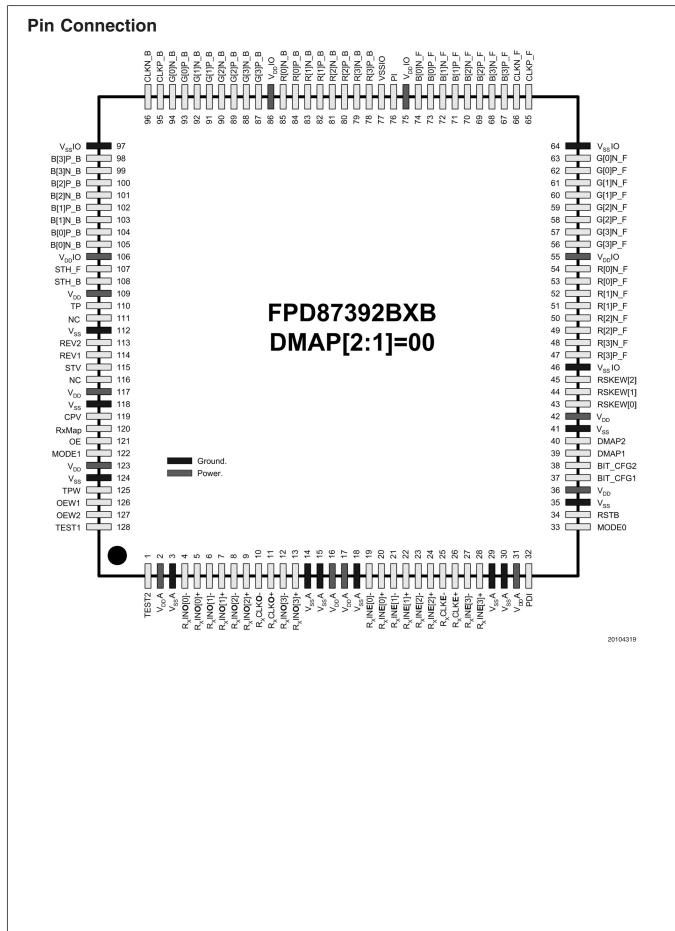
		Sync	Mode (Bon	ding Option))			Node	Number of	Number of
Graphia	H-Timing (clocks)			V-Timing (lines)			H-Timing (clocks)	V-Timing (lines)	Total	Total Pixel Clocks
Graphic Mode	From Sync to Data	Total H-Timing		From Sync Total V-Timing to Data		H-Blank	H-Blank Detection	Blank Lines in a	in a Horizontal Line	
	Тур	Min	Max	Тур	Min	Мах	Min	Min	Тур	Тур
SXGA	248	1430	2047	38	1066	2047	150	2	1066	1688
SXGA+	128	1550	2047	12	1066	2047	150	2	1066	1688
UXGA	304	1804	4095	46	1250	2047	204	2	1250	2160
H-Sy va da		(VBP)				;				-
H-Sync (HSW)										
	valid data	· · · · · · · · · · · · · · · · · · ·	From sync	to data 		(WIDTH)		> ∢	(HFP) →	20104317

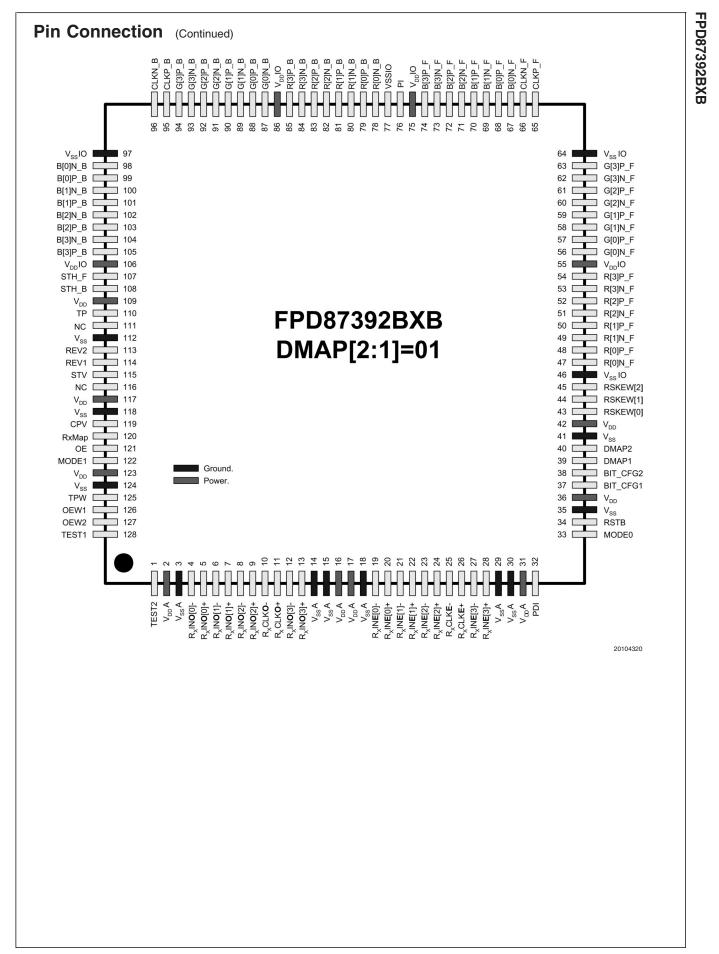

FIGURE 17. Video Signal Format

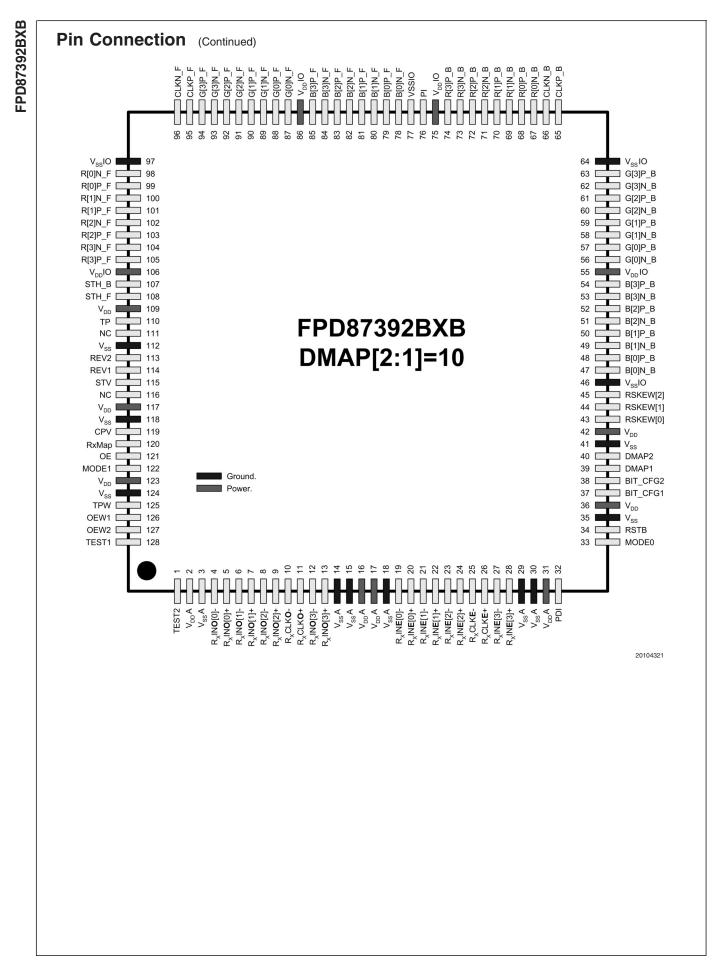
Supports VESA Standard in SYNC Mode (B/O SYNC Pin = High)

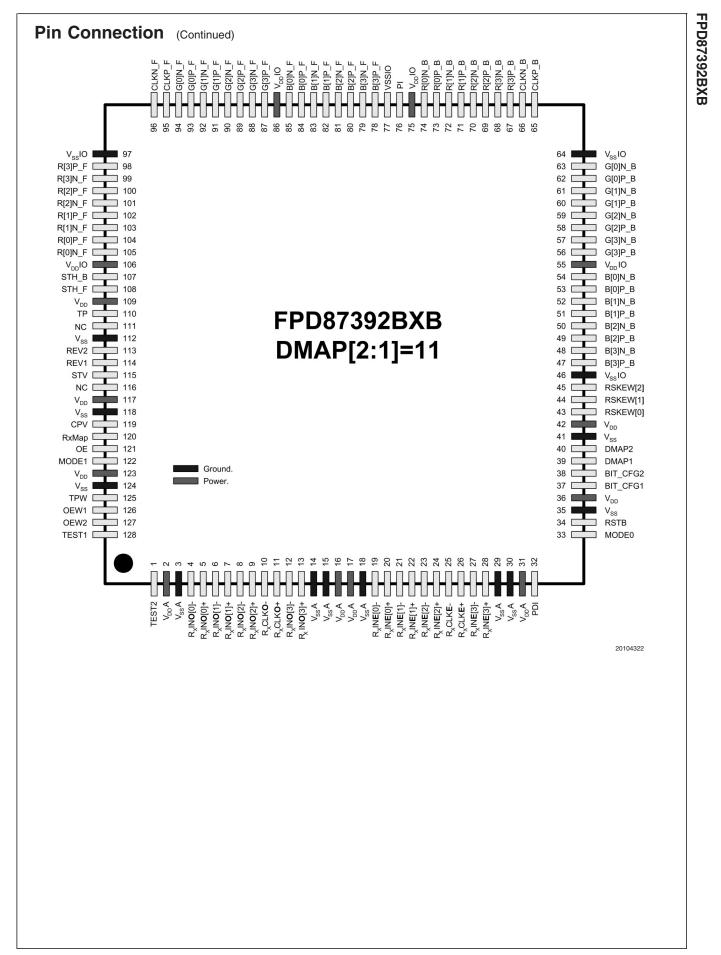

WIDTH HFP HSW HBP	1280 48 112 248	1400 48 112	1600 64 192	clock clock clock
HSW HBP	112	112	192	
HBP				clock
	248	100		
	-	128	304	clock
HEIGHT	1024	1050	1200	Line
VFP	1	1	1	Line
VSW	3	3	3	Line
VBP	38	12	46	Line
	•	•		
	VFP VSW	VFP 1 VSW 3	VFP 1 1 VSW 3 3	VFP 1 1 1 VSW 3 3 3


Power Up Sequence (Defaults)


When Power is ON, the TCON start to operate and generate the control signals by inputted LVDS signals. LVDS Receiver will take maximum 10 ms for the PLL wake-up time. Whether LVDS signals exist before the power-on doesn't effect. When the Reset is reach to 2.0V, the R, G, B data and control signals are outputted sequentially and the sequence is just as following figure.







Pin Description System Interface

Symbol	Pin No.	Туре	Function	
RxINO[0]P/N and	4, 5	LVDSI	FPD-Link Data Differential Pair 0 Input	
RxINE[0]P/N	19, 20			
RxINO[1]P/N and	6, 7	LVDSI	FPD-Link Data Differential Pair 1 Input	
RxINE[1]P/N	21, 22			
RxINO[2]P/N and	8, 9	LVDSI	FPD-Link Data Differential Pair 2 Input	
RxINE[2]P/N	23, 24			
RxINO[3]P/N and	12, 13	LVDSI	FPD-Link Data Differential Pair 3 Input	
RxINE[3]P/N	25, 26			
RxCLKOP/N and	10, 11	LVDSI	FPD-Link Clock Differential Pair Input	
RxCLKEP/N	27, 28			

RSDS Interface

Symbol	Pin No.	Туре	Function
B[3:0]P/N_B	47–54	RSO	Blue Reduced Swing Differential Outputs to Back Column Drivers
G[3:0]P/N_B	56-63	RSO	Green Reduced Swing Differential Outputs to Back Column Drivers
R[3:0]P/N_B	67–74	4 RSO Red Reduced Swing Differential Outputs to Back Column Drivers	
CLKP/N_B	65, 66	RSO	Clock Reduced Swing Differential Outputs to Back Column Drivers
B[3:0]P/N_F	78–85	RSO	Blue Reduced Swing Differential Outputs to Front Column Drivers
G[3:0]P/N_F	87–94	RSO	Green Reduced Swing Differential Outputs to Front Column Drivers
R[3:0]P/N_F	98–105	RSO	Red Reduced Swing Differential Outputs to Front Column Drivers
CLKP/N_F	CLKP/N_F 95, 96 RSO		Clock Reduced Swing Differential Outputs to Front Column Drivers
		I	External Resistor Input for RSDS Output (V _{OD}) Level Control
		I	Output RSDS Data Skew Control (Default 3'b000)

Column/Row Driver Control

Symbol	Pin No.	Туре	Function
TP	110	то	Line Latch Signal Output to Column Drivers
STH_B	107 TO		Horizontal Start Signal Output to Back Column Drivers
STH_F	108	то	Horizontal Start Signal Output to Front Column Drivers
REV1	114	то	Data Inversion Output to Column Driver (1 Line)
REV2	113 TO		Data Inversion Output to Column Driver (1 + 2 Line)
STV	115 TO		Row Driver Start Pulse
CPV 119 TO		то	Row Driver Shift Clock
OE	121	то	Control TFT Gate Pulse Width to Row Drivers

Pin Description (Continued) Control Input

Symbol	Pin No.	Туре	Function
BIT_CFG1/2	37, 38	I	LVDS Input and RSDS Output Bit Selection
MODE[1:0]	122, 33	I	Graphic Mode Selection
			"00": SXGA, "01": SXGA+, "10": UXGA, "11": Don't Care
DMAP1/2	39, 40	I	RSDS Output Data Mapping
TPW	125	I	TP Duty Control (Default Low)
OEW1/2	126, 127	I	OE Duty Control (Default 2'b00)
TEST1/2	128, 1	I	Test Mode
			Low: Normal Operation, High: Test Mode
PDI	32	I	LVDS Power Down (Active Low)
RSTB	34	I	System Reset (Active Low)
RxMap	120	I	RxMap=1(SS Mapping); RxMap=0, NS Mapping
NC	111, 116		No Connect

Power Supply

Symbol	Pin No.	Туре	Function
V _{DD}	36, 42, 109,	Р	Digital Power for Logic Core and LVDS Deserializer
	117, 123		
V _{SS}	35, 41, 112,	G	Digital Ground for Logic Core and LVDS Deserializer
	118, 124		
V _{DDA}	2, 16, 17,	Р	Power for LVDS PLL and Analog Bandgap
	31		
V _{SSA}	3, 14, 15,	G	Ground for LVDS PLL and Analog Bandgap
	18, 29, 30		
V _{DDIO}	55, 75, 86,	Р	Digital I/O Power and RSDS Outputs
	106		
V _{SSIO}	46, 64, 77,	G	Digital I/O Ground and RSDS Outputs
	97		

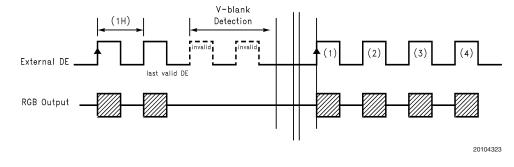
Bonding Option (B/O)

Symbol	Pin No.	Туре	Function
SYNC	B/O	PU	SYNC Mode
			High: Enable, Low: Disable
FRM	B/O	PU	Free Run Mode
			High: Enable, Low: Disable
FDE	B/O	PU	Failure Detection
			High: Enable, Low: Disable
POR	B/O		Power-On-Reset
			High: Enable, Low: Disable

Pin Types

I	-Input (3.3V TTL-Compatible)	G	-Ground
то	-TTL Output (3.3V TTL-Compatible)	PU	-Pull-Up
LVDSI	-Low Voltage Differential Signal Input	PD	-Pull-Down

RSO -Reduced Swing Differential Output

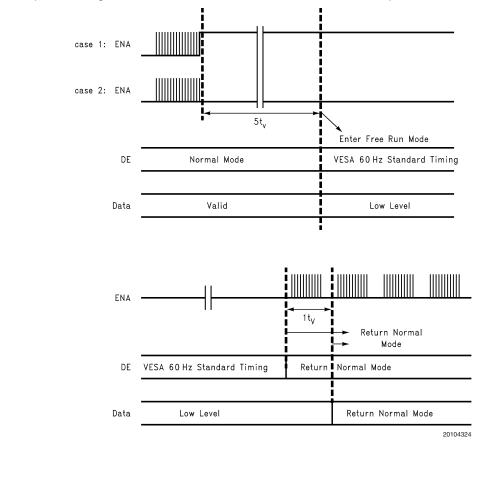

P -Power

Appendix 1. DE Mode Timing Details

DE Mode (Disabled SYNC Pin)

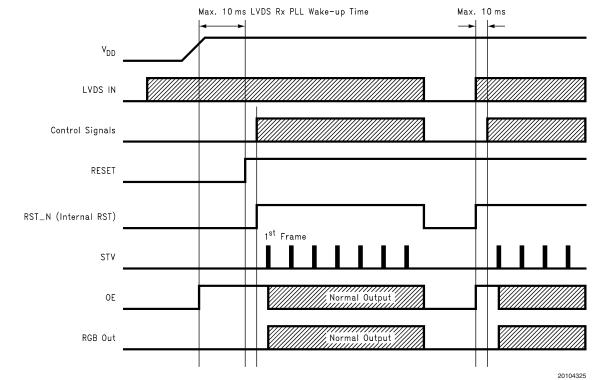
Always true whenever DE is exist as inputted signal. If V_{SYNC}, H_{SYNC} and DE are available, DE mode is superior and generate the control timing. "V-blank Detection" period is two cycles of the previous DE signals. After the V-blank detection period, "Counter" start to count whenever DE signal available followed on the rising edge.

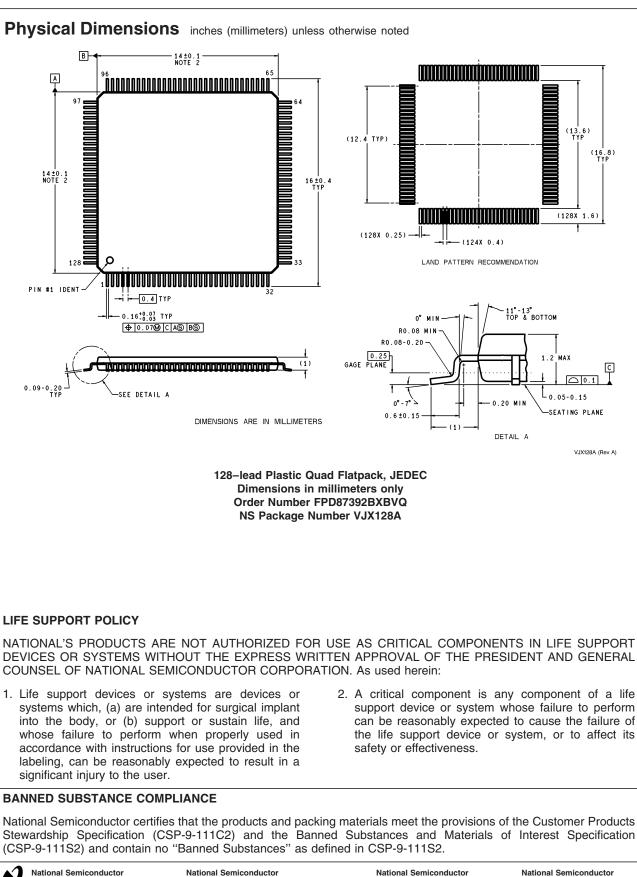
Case 1: Disabled Failure Detection Mode



Case 2: Enabled Failure Detection Mode (SXGA). Please refer to the "Failure Detect" on page 10.

Appendix 2. Free Run Mode Function (B/O Pin FRM "Low" to Disable)


Either input DE signal, ENA, on the DE mode or V_{SYNC} on the SYNC mode are lost more than 5 frames (here, "lost" means ENA or V_{SYNC} signal more than 5 frames without change), then the TCON will enter the Free Run Mode. In the Free Run Mode, the vertical and horizontal period will follow VESA 60 Hz standard and output data will be in the Low Level.


When TCON detects input signal back to normal ("normal" means ENA or V_{SYNC} signal has to change from Low Level to High Level), then output control signals will return to the Normal Mode. In the next frame, output data will also return to Normal Mode.

Appendix 3. Power-Up Sequence on "POR Enabled" Mode

When Bonding option pins, POR (Power-On-Reset), enable set to "High", TCON start running as POR mode. If the input LVDS clocks lost with any reasons during the normal operation, POR output signal (RST_N) will be low until LVDS clock comeback again. The Reset counter start to count with LVDS clock resume then turn to normal operation mode before the 10 ms PLL Wake-Up time limits.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated